]> git.proxmox.com Git - mirror_qemu.git/blob - hw/display/xlnx_dp.c
7058443797944c891be3d5637f498af1ed1903ac
[mirror_qemu.git] / hw / display / xlnx_dp.c
1 /*
2 * xlnx_dp.c
3 *
4 * Copyright (C) 2015 : GreenSocs Ltd
5 * http://www.greensocs.com/ , email: info@greensocs.com
6 *
7 * Developed by :
8 * Frederic Konrad <fred.konrad@greensocs.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 2 of the License, or
13 * (at your option)any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 *
23 */
24
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "hw/display/xlnx_dp.h"
30 #include "hw/irq.h"
31 #include "migration/vmstate.h"
32
33 #ifndef DEBUG_DP
34 #define DEBUG_DP 0
35 #endif
36
37 #define DPRINTF(fmt, ...) do { \
38 if (DEBUG_DP) { \
39 qemu_log("xlnx_dp: " fmt , ## __VA_ARGS__); \
40 } \
41 } while (0)
42
43 /*
44 * Register offset for DP.
45 */
46 #define DP_LINK_BW_SET (0x0000 >> 2)
47 #define DP_LANE_COUNT_SET (0x0004 >> 2)
48 #define DP_ENHANCED_FRAME_EN (0x0008 >> 2)
49 #define DP_TRAINING_PATTERN_SET (0x000C >> 2)
50 #define DP_LINK_QUAL_PATTERN_SET (0x0010 >> 2)
51 #define DP_SCRAMBLING_DISABLE (0x0014 >> 2)
52 #define DP_DOWNSPREAD_CTRL (0x0018 >> 2)
53 #define DP_SOFTWARE_RESET (0x001C >> 2)
54 #define DP_TRANSMITTER_ENABLE (0x0080 >> 2)
55 #define DP_MAIN_STREAM_ENABLE (0x0084 >> 2)
56 #define DP_FORCE_SCRAMBLER_RESET (0x00C0 >> 2)
57 #define DP_VERSION_REGISTER (0x00F8 >> 2)
58 #define DP_CORE_ID (0x00FC >> 2)
59
60 #define DP_AUX_COMMAND_REGISTER (0x0100 >> 2)
61 #define AUX_ADDR_ONLY_MASK (0x1000)
62 #define AUX_COMMAND_MASK (0x0F00)
63 #define AUX_COMMAND_SHIFT (8)
64 #define AUX_COMMAND_NBYTES (0x000F)
65
66 #define DP_AUX_WRITE_FIFO (0x0104 >> 2)
67 #define DP_AUX_ADDRESS (0x0108 >> 2)
68 #define DP_AUX_CLOCK_DIVIDER (0x010C >> 2)
69 #define DP_TX_USER_FIFO_OVERFLOW (0x0110 >> 2)
70 #define DP_INTERRUPT_SIGNAL_STATE (0x0130 >> 2)
71 #define DP_AUX_REPLY_DATA (0x0134 >> 2)
72 #define DP_AUX_REPLY_CODE (0x0138 >> 2)
73 #define DP_AUX_REPLY_COUNT (0x013C >> 2)
74 #define DP_REPLY_DATA_COUNT (0x0148 >> 2)
75 #define DP_REPLY_STATUS (0x014C >> 2)
76 #define DP_HPD_DURATION (0x0150 >> 2)
77 #define DP_MAIN_STREAM_HTOTAL (0x0180 >> 2)
78 #define DP_MAIN_STREAM_VTOTAL (0x0184 >> 2)
79 #define DP_MAIN_STREAM_POLARITY (0x0188 >> 2)
80 #define DP_MAIN_STREAM_HSWIDTH (0x018C >> 2)
81 #define DP_MAIN_STREAM_VSWIDTH (0x0190 >> 2)
82 #define DP_MAIN_STREAM_HRES (0x0194 >> 2)
83 #define DP_MAIN_STREAM_VRES (0x0198 >> 2)
84 #define DP_MAIN_STREAM_HSTART (0x019C >> 2)
85 #define DP_MAIN_STREAM_VSTART (0x01A0 >> 2)
86 #define DP_MAIN_STREAM_MISC0 (0x01A4 >> 2)
87 #define DP_MAIN_STREAM_MISC1 (0x01A8 >> 2)
88 #define DP_MAIN_STREAM_M_VID (0x01AC >> 2)
89 #define DP_MSA_TRANSFER_UNIT_SIZE (0x01B0 >> 2)
90 #define DP_MAIN_STREAM_N_VID (0x01B4 >> 2)
91 #define DP_USER_DATA_COUNT_PER_LANE (0x01BC >> 2)
92 #define DP_MIN_BYTES_PER_TU (0x01C4 >> 2)
93 #define DP_FRAC_BYTES_PER_TU (0x01C8 >> 2)
94 #define DP_INIT_WAIT (0x01CC >> 2)
95 #define DP_PHY_RESET (0x0200 >> 2)
96 #define DP_PHY_VOLTAGE_DIFF_LANE_0 (0x0220 >> 2)
97 #define DP_PHY_VOLTAGE_DIFF_LANE_1 (0x0224 >> 2)
98 #define DP_TRANSMIT_PRBS7 (0x0230 >> 2)
99 #define DP_PHY_CLOCK_SELECT (0x0234 >> 2)
100 #define DP_TX_PHY_POWER_DOWN (0x0238 >> 2)
101 #define DP_PHY_PRECURSOR_LANE_0 (0x023C >> 2)
102 #define DP_PHY_PRECURSOR_LANE_1 (0x0240 >> 2)
103 #define DP_PHY_POSTCURSOR_LANE_0 (0x024C >> 2)
104 #define DP_PHY_POSTCURSOR_LANE_1 (0x0250 >> 2)
105 #define DP_PHY_STATUS (0x0280 >> 2)
106
107 #define DP_TX_AUDIO_CONTROL (0x0300 >> 2)
108 #define DP_TX_AUD_CTRL (1)
109
110 #define DP_TX_AUDIO_CHANNELS (0x0304 >> 2)
111 #define DP_TX_AUDIO_INFO_DATA(n) ((0x0308 + 4 * n) >> 2)
112 #define DP_TX_M_AUD (0x0328 >> 2)
113 #define DP_TX_N_AUD (0x032C >> 2)
114 #define DP_TX_AUDIO_EXT_DATA(n) ((0x0330 + 4 * n) >> 2)
115 #define DP_INT_STATUS (0x03A0 >> 2)
116 #define DP_INT_MASK (0x03A4 >> 2)
117 #define DP_INT_EN (0x03A8 >> 2)
118 #define DP_INT_DS (0x03AC >> 2)
119
120 /*
121 * Registers offset for Audio Video Buffer configuration.
122 */
123 #define V_BLEND_OFFSET (0xA000)
124 #define V_BLEND_BG_CLR_0 (0x0000 >> 2)
125 #define V_BLEND_BG_CLR_1 (0x0004 >> 2)
126 #define V_BLEND_BG_CLR_2 (0x0008 >> 2)
127 #define V_BLEND_SET_GLOBAL_ALPHA_REG (0x000C >> 2)
128 #define V_BLEND_OUTPUT_VID_FORMAT (0x0014 >> 2)
129 #define V_BLEND_LAYER0_CONTROL (0x0018 >> 2)
130 #define V_BLEND_LAYER1_CONTROL (0x001C >> 2)
131
132 #define V_BLEND_RGB2YCBCR_COEFF(n) ((0x0020 + 4 * n) >> 2)
133 #define V_BLEND_IN1CSC_COEFF(n) ((0x0044 + 4 * n) >> 2)
134
135 #define V_BLEND_LUMA_IN1CSC_OFFSET (0x0068 >> 2)
136 #define V_BLEND_CR_IN1CSC_OFFSET (0x006C >> 2)
137 #define V_BLEND_CB_IN1CSC_OFFSET (0x0070 >> 2)
138 #define V_BLEND_LUMA_OUTCSC_OFFSET (0x0074 >> 2)
139 #define V_BLEND_CR_OUTCSC_OFFSET (0x0078 >> 2)
140 #define V_BLEND_CB_OUTCSC_OFFSET (0x007C >> 2)
141
142 #define V_BLEND_IN2CSC_COEFF(n) ((0x0080 + 4 * n) >> 2)
143
144 #define V_BLEND_LUMA_IN2CSC_OFFSET (0x00A4 >> 2)
145 #define V_BLEND_CR_IN2CSC_OFFSET (0x00A8 >> 2)
146 #define V_BLEND_CB_IN2CSC_OFFSET (0x00AC >> 2)
147 #define V_BLEND_CHROMA_KEY_ENABLE (0x01D0 >> 2)
148 #define V_BLEND_CHROMA_KEY_COMP1 (0x01D4 >> 2)
149 #define V_BLEND_CHROMA_KEY_COMP2 (0x01D8 >> 2)
150 #define V_BLEND_CHROMA_KEY_COMP3 (0x01DC >> 2)
151
152 /*
153 * Registers offset for Audio Video Buffer configuration.
154 */
155 #define AV_BUF_MANAGER_OFFSET (0xB000)
156 #define AV_BUF_FORMAT (0x0000 >> 2)
157 #define AV_BUF_NON_LIVE_LATENCY (0x0008 >> 2)
158 #define AV_CHBUF0 (0x0010 >> 2)
159 #define AV_CHBUF1 (0x0014 >> 2)
160 #define AV_CHBUF2 (0x0018 >> 2)
161 #define AV_CHBUF3 (0x001C >> 2)
162 #define AV_CHBUF4 (0x0020 >> 2)
163 #define AV_CHBUF5 (0x0024 >> 2)
164 #define AV_BUF_STC_CONTROL (0x002C >> 2)
165 #define AV_BUF_STC_INIT_VALUE0 (0x0030 >> 2)
166 #define AV_BUF_STC_INIT_VALUE1 (0x0034 >> 2)
167 #define AV_BUF_STC_ADJ (0x0038 >> 2)
168 #define AV_BUF_STC_VIDEO_VSYNC_TS_REG0 (0x003C >> 2)
169 #define AV_BUF_STC_VIDEO_VSYNC_TS_REG1 (0x0040 >> 2)
170 #define AV_BUF_STC_EXT_VSYNC_TS_REG0 (0x0044 >> 2)
171 #define AV_BUF_STC_EXT_VSYNC_TS_REG1 (0x0048 >> 2)
172 #define AV_BUF_STC_CUSTOM_EVENT_TS_REG0 (0x004C >> 2)
173 #define AV_BUF_STC_CUSTOM_EVENT_TS_REG1 (0x0050 >> 2)
174 #define AV_BUF_STC_CUSTOM_EVENT2_TS_REG0 (0x0054 >> 2)
175 #define AV_BUF_STC_CUSTOM_EVENT2_TS_REG1 (0x0058 >> 2)
176 #define AV_BUF_STC_SNAPSHOT0 (0x0060 >> 2)
177 #define AV_BUF_STC_SNAPSHOT1 (0x0064 >> 2)
178 #define AV_BUF_OUTPUT_AUDIO_VIDEO_SELECT (0x0070 >> 2)
179 #define AV_BUF_HCOUNT_VCOUNT_INT0 (0x0074 >> 2)
180 #define AV_BUF_HCOUNT_VCOUNT_INT1 (0x0078 >> 2)
181 #define AV_BUF_DITHER_CONFIG (0x007C >> 2)
182 #define AV_BUF_DITHER_CONFIG_MAX (0x008C >> 2)
183 #define AV_BUF_DITHER_CONFIG_MIN (0x0090 >> 2)
184 #define AV_BUF_PATTERN_GEN_SELECT (0x0100 >> 2)
185 #define AV_BUF_AUD_VID_CLK_SOURCE (0x0120 >> 2)
186 #define AV_BUF_SRST_REG (0x0124 >> 2)
187 #define AV_BUF_AUDIO_RDY_INTERVAL (0x0128 >> 2)
188 #define AV_BUF_AUDIO_CH_CONFIG (0x012C >> 2)
189
190 #define AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(n)((0x0200 + 4 * n) >> 2)
191
192 #define AV_BUF_VIDEO_COMP_SCALE_FACTOR(n) ((0x020C + 4 * n) >> 2)
193
194 #define AV_BUF_LIVE_VIDEO_COMP_SF(n) ((0x0218 + 4 * n) >> 2)
195
196 #define AV_BUF_LIVE_VID_CONFIG (0x0224 >> 2)
197
198 #define AV_BUF_LIVE_GFX_COMP_SF(n) ((0x0228 + 4 * n) >> 2)
199
200 #define AV_BUF_LIVE_GFX_CONFIG (0x0234 >> 2)
201
202 #define AUDIO_MIXER_REGISTER_OFFSET (0xC000)
203 #define AUDIO_MIXER_VOLUME_CONTROL (0x0000 >> 2)
204 #define AUDIO_MIXER_META_DATA (0x0004 >> 2)
205 #define AUD_CH_STATUS_REG(n) ((0x0008 + 4 * n) >> 2)
206 #define AUD_CH_A_DATA_REG(n) ((0x0020 + 4 * n) >> 2)
207 #define AUD_CH_B_DATA_REG(n) ((0x0038 + 4 * n) >> 2)
208
209 #define DP_AUDIO_DMA_CHANNEL(n) (4 + n)
210 #define DP_GRAPHIC_DMA_CHANNEL (3)
211 #define DP_VIDEO_DMA_CHANNEL (0)
212
213 enum DPGraphicFmt {
214 DP_GRAPHIC_RGBA8888 = 0 << 8,
215 DP_GRAPHIC_ABGR8888 = 1 << 8,
216 DP_GRAPHIC_RGB888 = 2 << 8,
217 DP_GRAPHIC_BGR888 = 3 << 8,
218 DP_GRAPHIC_RGBA5551 = 4 << 8,
219 DP_GRAPHIC_RGBA4444 = 5 << 8,
220 DP_GRAPHIC_RGB565 = 6 << 8,
221 DP_GRAPHIC_8BPP = 7 << 8,
222 DP_GRAPHIC_4BPP = 8 << 8,
223 DP_GRAPHIC_2BPP = 9 << 8,
224 DP_GRAPHIC_1BPP = 10 << 8,
225 DP_GRAPHIC_MASK = 0xF << 8
226 };
227
228 enum DPVideoFmt {
229 DP_NL_VID_CB_Y0_CR_Y1 = 0,
230 DP_NL_VID_CR_Y0_CB_Y1 = 1,
231 DP_NL_VID_Y0_CR_Y1_CB = 2,
232 DP_NL_VID_Y0_CB_Y1_CR = 3,
233 DP_NL_VID_YV16 = 4,
234 DP_NL_VID_YV24 = 5,
235 DP_NL_VID_YV16CL = 6,
236 DP_NL_VID_MONO = 7,
237 DP_NL_VID_YV16CL2 = 8,
238 DP_NL_VID_YUV444 = 9,
239 DP_NL_VID_RGB888 = 10,
240 DP_NL_VID_RGBA8880 = 11,
241 DP_NL_VID_RGB888_10BPC = 12,
242 DP_NL_VID_YUV444_10BPC = 13,
243 DP_NL_VID_YV16CL2_10BPC = 14,
244 DP_NL_VID_YV16CL_10BPC = 15,
245 DP_NL_VID_YV16_10BPC = 16,
246 DP_NL_VID_YV24_10BPC = 17,
247 DP_NL_VID_Y_ONLY_10BPC = 18,
248 DP_NL_VID_YV16_420 = 19,
249 DP_NL_VID_YV16CL_420 = 20,
250 DP_NL_VID_YV16CL2_420 = 21,
251 DP_NL_VID_YV16_420_10BPC = 22,
252 DP_NL_VID_YV16CL_420_10BPC = 23,
253 DP_NL_VID_YV16CL2_420_10BPC = 24,
254 DP_NL_VID_FMT_MASK = 0x1F
255 };
256
257 typedef enum DPGraphicFmt DPGraphicFmt;
258 typedef enum DPVideoFmt DPVideoFmt;
259
260 static const VMStateDescription vmstate_dp = {
261 .name = TYPE_XLNX_DP,
262 .version_id = 1,
263 .fields = (VMStateField[]){
264 VMSTATE_UINT32_ARRAY(core_registers, XlnxDPState,
265 DP_CORE_REG_ARRAY_SIZE),
266 VMSTATE_UINT32_ARRAY(avbufm_registers, XlnxDPState,
267 DP_AVBUF_REG_ARRAY_SIZE),
268 VMSTATE_UINT32_ARRAY(vblend_registers, XlnxDPState,
269 DP_VBLEND_REG_ARRAY_SIZE),
270 VMSTATE_UINT32_ARRAY(audio_registers, XlnxDPState,
271 DP_AUDIO_REG_ARRAY_SIZE),
272 VMSTATE_END_OF_LIST()
273 }
274 };
275
276 static void xlnx_dp_update_irq(XlnxDPState *s);
277
278 static uint64_t xlnx_dp_audio_read(void *opaque, hwaddr offset, unsigned size)
279 {
280 XlnxDPState *s = XLNX_DP(opaque);
281
282 offset = offset >> 2;
283 return s->audio_registers[offset];
284 }
285
286 static void xlnx_dp_audio_write(void *opaque, hwaddr offset, uint64_t value,
287 unsigned size)
288 {
289 XlnxDPState *s = XLNX_DP(opaque);
290
291 offset = offset >> 2;
292
293 switch (offset) {
294 case AUDIO_MIXER_META_DATA:
295 s->audio_registers[offset] = value & 0x00000001;
296 break;
297 default:
298 s->audio_registers[offset] = value;
299 break;
300 }
301 }
302
303 static const MemoryRegionOps audio_ops = {
304 .read = xlnx_dp_audio_read,
305 .write = xlnx_dp_audio_write,
306 .endianness = DEVICE_NATIVE_ENDIAN,
307 };
308
309 static inline uint32_t xlnx_dp_audio_get_volume(XlnxDPState *s,
310 uint8_t channel)
311 {
312 switch (channel) {
313 case 0:
314 return extract32(s->audio_registers[AUDIO_MIXER_VOLUME_CONTROL], 0, 16);
315 case 1:
316 return extract32(s->audio_registers[AUDIO_MIXER_VOLUME_CONTROL], 16,
317 16);
318 default:
319 return 0;
320 }
321 }
322
323 static inline void xlnx_dp_audio_activate(XlnxDPState *s)
324 {
325 bool activated = ((s->core_registers[DP_TX_AUDIO_CONTROL]
326 & DP_TX_AUD_CTRL) != 0);
327 AUD_set_active_out(s->amixer_output_stream, activated);
328 xlnx_dpdma_set_host_data_location(s->dpdma, DP_AUDIO_DMA_CHANNEL(0),
329 &s->audio_buffer_0);
330 xlnx_dpdma_set_host_data_location(s->dpdma, DP_AUDIO_DMA_CHANNEL(1),
331 &s->audio_buffer_1);
332 }
333
334 static inline void xlnx_dp_audio_mix_buffer(XlnxDPState *s)
335 {
336 /*
337 * Audio packets are signed and have this shape:
338 * | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
339 * | R3 | L3 | R2 | L2 | R1 | L1 | R0 | L0 |
340 *
341 * Output audio is 16bits saturated.
342 */
343 int i;
344
345 if ((s->audio_data_available[0]) && (xlnx_dp_audio_get_volume(s, 0))) {
346 for (i = 0; i < s->audio_data_available[0] / 2; i++) {
347 s->temp_buffer[i] = (int64_t)(s->audio_buffer_0[i])
348 * xlnx_dp_audio_get_volume(s, 0) / 8192;
349 }
350 s->byte_left = s->audio_data_available[0];
351 } else {
352 memset(s->temp_buffer, 0, s->audio_data_available[1] / 2);
353 }
354
355 if ((s->audio_data_available[1]) && (xlnx_dp_audio_get_volume(s, 1))) {
356 if ((s->audio_data_available[0] == 0)
357 || (s->audio_data_available[1] == s->audio_data_available[0])) {
358 for (i = 0; i < s->audio_data_available[1] / 2; i++) {
359 s->temp_buffer[i] += (int64_t)(s->audio_buffer_1[i])
360 * xlnx_dp_audio_get_volume(s, 1) / 8192;
361 }
362 s->byte_left = s->audio_data_available[1];
363 }
364 }
365
366 for (i = 0; i < s->byte_left / 2; i++) {
367 s->out_buffer[i] = MAX(-32767, MIN(s->temp_buffer[i], 32767));
368 }
369
370 s->data_ptr = 0;
371 }
372
373 static void xlnx_dp_audio_callback(void *opaque, int avail)
374 {
375 /*
376 * Get some data from the DPDMA and compute these datas.
377 * Then wait for QEMU's audio subsystem to call this callback.
378 */
379 XlnxDPState *s = XLNX_DP(opaque);
380 size_t written = 0;
381
382 /* If there are already some data don't get more data. */
383 if (s->byte_left == 0) {
384 s->audio_data_available[0] = xlnx_dpdma_start_operation(s->dpdma, 4,
385 true);
386 s->audio_data_available[1] = xlnx_dpdma_start_operation(s->dpdma, 5,
387 true);
388 xlnx_dp_audio_mix_buffer(s);
389 }
390
391 /* Send the buffer through the audio. */
392 if (s->byte_left <= MAX_QEMU_BUFFER_SIZE) {
393 if (s->byte_left != 0) {
394 written = AUD_write(s->amixer_output_stream,
395 &s->out_buffer[s->data_ptr], s->byte_left);
396 } else {
397 int len_to_copy;
398 /*
399 * There is nothing to play.. We don't have any data! Fill the
400 * buffer with zero's and send it.
401 */
402 written = 0;
403 while (avail) {
404 len_to_copy = MIN(AUD_CHBUF_MAX_DEPTH, avail);
405 memset(s->out_buffer, 0, len_to_copy);
406 avail -= AUD_write(s->amixer_output_stream, s->out_buffer,
407 len_to_copy);
408 }
409 }
410 } else {
411 written = AUD_write(s->amixer_output_stream,
412 &s->out_buffer[s->data_ptr], MAX_QEMU_BUFFER_SIZE);
413 }
414 s->byte_left -= written;
415 s->data_ptr += written;
416 }
417
418 /*
419 * AUX channel related function.
420 */
421 static void xlnx_dp_aux_clear_rx_fifo(XlnxDPState *s)
422 {
423 fifo8_reset(&s->rx_fifo);
424 }
425
426 static void xlnx_dp_aux_push_rx_fifo(XlnxDPState *s, uint8_t *buf, size_t len)
427 {
428 DPRINTF("Push %u data in rx_fifo\n", (unsigned)len);
429 fifo8_push_all(&s->rx_fifo, buf, len);
430 }
431
432 static uint8_t xlnx_dp_aux_pop_rx_fifo(XlnxDPState *s)
433 {
434 uint8_t ret;
435
436 if (fifo8_is_empty(&s->rx_fifo)) {
437 qemu_log_mask(LOG_GUEST_ERROR,
438 "%s: Reading empty RX_FIFO\n",
439 __func__);
440 /*
441 * The datasheet is not clear about the reset value, it seems
442 * to be unspecified. We choose to return '0'.
443 */
444 ret = 0;
445 } else {
446 ret = fifo8_pop(&s->rx_fifo);
447 DPRINTF("pop 0x%" PRIX8 " from rx_fifo.\n", ret);
448 }
449 return ret;
450 }
451
452 static void xlnx_dp_aux_clear_tx_fifo(XlnxDPState *s)
453 {
454 fifo8_reset(&s->tx_fifo);
455 }
456
457 static void xlnx_dp_aux_push_tx_fifo(XlnxDPState *s, uint8_t *buf, size_t len)
458 {
459 DPRINTF("Push %u data in tx_fifo\n", (unsigned)len);
460 fifo8_push_all(&s->tx_fifo, buf, len);
461 }
462
463 static uint8_t xlnx_dp_aux_pop_tx_fifo(XlnxDPState *s)
464 {
465 uint8_t ret;
466
467 if (fifo8_is_empty(&s->tx_fifo)) {
468 DPRINTF("tx_fifo underflow..\n");
469 abort();
470 }
471 ret = fifo8_pop(&s->tx_fifo);
472 DPRINTF("pop 0x%2.2X from tx_fifo.\n", ret);
473 return ret;
474 }
475
476 static uint32_t xlnx_dp_aux_get_address(XlnxDPState *s)
477 {
478 return s->core_registers[DP_AUX_ADDRESS];
479 }
480
481 /*
482 * Get command from the register.
483 */
484 static void xlnx_dp_aux_set_command(XlnxDPState *s, uint32_t value)
485 {
486 bool address_only = (value & AUX_ADDR_ONLY_MASK) != 0;
487 AUXCommand cmd = (value & AUX_COMMAND_MASK) >> AUX_COMMAND_SHIFT;
488 uint8_t nbytes = (value & AUX_COMMAND_NBYTES) + 1;
489 uint8_t buf[16];
490 int i;
491
492 /*
493 * When an address_only command is executed nothing happen to the fifo, so
494 * just make nbytes = 0.
495 */
496 if (address_only) {
497 nbytes = 0;
498 }
499
500 switch (cmd) {
501 case READ_AUX:
502 case READ_I2C:
503 case READ_I2C_MOT:
504 s->core_registers[DP_AUX_REPLY_CODE] = aux_request(s->aux_bus, cmd,
505 xlnx_dp_aux_get_address(s),
506 nbytes, buf);
507 s->core_registers[DP_REPLY_DATA_COUNT] = nbytes;
508
509 if (s->core_registers[DP_AUX_REPLY_CODE] == AUX_I2C_ACK) {
510 xlnx_dp_aux_push_rx_fifo(s, buf, nbytes);
511 }
512 break;
513 case WRITE_AUX:
514 case WRITE_I2C:
515 case WRITE_I2C_MOT:
516 for (i = 0; i < nbytes; i++) {
517 buf[i] = xlnx_dp_aux_pop_tx_fifo(s);
518 }
519 s->core_registers[DP_AUX_REPLY_CODE] = aux_request(s->aux_bus, cmd,
520 xlnx_dp_aux_get_address(s),
521 nbytes, buf);
522 xlnx_dp_aux_clear_tx_fifo(s);
523 break;
524 case WRITE_I2C_STATUS:
525 qemu_log_mask(LOG_UNIMP, "xlnx_dp: Write i2c status not implemented\n");
526 break;
527 default:
528 abort();
529 }
530
531 s->core_registers[DP_INTERRUPT_SIGNAL_STATE] |= 0x04;
532 }
533
534 static void xlnx_dp_set_dpdma(const Object *obj, const char *name, Object *val,
535 Error **errp)
536 {
537 XlnxDPState *s = XLNX_DP(obj);
538 if (s->console) {
539 DisplaySurface *surface = qemu_console_surface(s->console);
540 XlnxDPDMAState *dma = XLNX_DPDMA(val);
541 xlnx_dpdma_set_host_data_location(dma, DP_GRAPHIC_DMA_CHANNEL,
542 surface_data(surface));
543 }
544 }
545
546 static inline uint8_t xlnx_dp_global_alpha_value(XlnxDPState *s)
547 {
548 return (s->vblend_registers[V_BLEND_SET_GLOBAL_ALPHA_REG] & 0x1FE) >> 1;
549 }
550
551 static inline bool xlnx_dp_global_alpha_enabled(XlnxDPState *s)
552 {
553 /*
554 * If the alpha is totally opaque (255) we consider the alpha is disabled to
555 * reduce CPU consumption.
556 */
557 return ((xlnx_dp_global_alpha_value(s) != 0xFF) &&
558 ((s->vblend_registers[V_BLEND_SET_GLOBAL_ALPHA_REG] & 0x01) != 0));
559 }
560
561 static void xlnx_dp_recreate_surface(XlnxDPState *s)
562 {
563 /*
564 * Two possibilities, if blending is enabled the console displays
565 * bout_plane, if not g_plane is displayed.
566 */
567 uint16_t width = s->core_registers[DP_MAIN_STREAM_HRES];
568 uint16_t height = s->core_registers[DP_MAIN_STREAM_VRES];
569 DisplaySurface *current_console_surface = qemu_console_surface(s->console);
570
571 if ((width != 0) && (height != 0)) {
572 /*
573 * As dpy_gfx_replace_surface calls qemu_free_displaysurface on the
574 * surface we need to be careful and don't free the surface associated
575 * to the console or double free will happen.
576 */
577 if (s->bout_plane.surface != current_console_surface) {
578 qemu_free_displaysurface(s->bout_plane.surface);
579 }
580 if (s->v_plane.surface != current_console_surface) {
581 qemu_free_displaysurface(s->v_plane.surface);
582 }
583 if (s->g_plane.surface != current_console_surface) {
584 qemu_free_displaysurface(s->g_plane.surface);
585 }
586
587 s->g_plane.surface
588 = qemu_create_displaysurface_from(width, height,
589 s->g_plane.format, 0, NULL);
590 s->v_plane.surface
591 = qemu_create_displaysurface_from(width, height,
592 s->v_plane.format, 0, NULL);
593 if (xlnx_dp_global_alpha_enabled(s)) {
594 s->bout_plane.surface =
595 qemu_create_displaysurface_from(width,
596 height,
597 s->g_plane.format,
598 0, NULL);
599 dpy_gfx_replace_surface(s->console, s->bout_plane.surface);
600 } else {
601 s->bout_plane.surface = NULL;
602 dpy_gfx_replace_surface(s->console, s->g_plane.surface);
603 }
604
605 xlnx_dpdma_set_host_data_location(s->dpdma, DP_GRAPHIC_DMA_CHANNEL,
606 surface_data(s->g_plane.surface));
607 xlnx_dpdma_set_host_data_location(s->dpdma, DP_VIDEO_DMA_CHANNEL,
608 surface_data(s->v_plane.surface));
609 }
610 }
611
612 /*
613 * Change the graphic format of the surface.
614 */
615 static void xlnx_dp_change_graphic_fmt(XlnxDPState *s)
616 {
617 switch (s->avbufm_registers[AV_BUF_FORMAT] & DP_GRAPHIC_MASK) {
618 case DP_GRAPHIC_RGBA8888:
619 s->g_plane.format = PIXMAN_r8g8b8a8;
620 break;
621 case DP_GRAPHIC_ABGR8888:
622 s->g_plane.format = PIXMAN_a8b8g8r8;
623 break;
624 case DP_GRAPHIC_RGB565:
625 s->g_plane.format = PIXMAN_r5g6b5;
626 break;
627 case DP_GRAPHIC_RGB888:
628 s->g_plane.format = PIXMAN_r8g8b8;
629 break;
630 case DP_GRAPHIC_BGR888:
631 s->g_plane.format = PIXMAN_b8g8r8;
632 break;
633 default:
634 DPRINTF("error: unsupported graphic format %u.\n",
635 s->avbufm_registers[AV_BUF_FORMAT] & DP_GRAPHIC_MASK);
636 abort();
637 }
638
639 switch (s->avbufm_registers[AV_BUF_FORMAT] & DP_NL_VID_FMT_MASK) {
640 case 0:
641 s->v_plane.format = PIXMAN_x8b8g8r8;
642 break;
643 case DP_NL_VID_Y0_CB_Y1_CR:
644 s->v_plane.format = PIXMAN_yuy2;
645 break;
646 case DP_NL_VID_RGBA8880:
647 s->v_plane.format = PIXMAN_x8b8g8r8;
648 break;
649 default:
650 DPRINTF("error: unsupported video format %u.\n",
651 s->avbufm_registers[AV_BUF_FORMAT] & DP_NL_VID_FMT_MASK);
652 abort();
653 }
654
655 xlnx_dp_recreate_surface(s);
656 }
657
658 static void xlnx_dp_update_irq(XlnxDPState *s)
659 {
660 uint32_t flags;
661
662 flags = s->core_registers[DP_INT_STATUS] & ~s->core_registers[DP_INT_MASK];
663 DPRINTF("update IRQ value = %" PRIx32 "\n", flags);
664 qemu_set_irq(s->irq, flags != 0);
665 }
666
667 static uint64_t xlnx_dp_read(void *opaque, hwaddr offset, unsigned size)
668 {
669 XlnxDPState *s = XLNX_DP(opaque);
670 uint64_t ret = 0;
671
672 offset = offset >> 2;
673
674 switch (offset) {
675 case DP_TX_USER_FIFO_OVERFLOW:
676 /* This register is cleared after a read */
677 ret = s->core_registers[DP_TX_USER_FIFO_OVERFLOW];
678 s->core_registers[DP_TX_USER_FIFO_OVERFLOW] = 0;
679 break;
680 case DP_AUX_REPLY_DATA:
681 ret = xlnx_dp_aux_pop_rx_fifo(s);
682 break;
683 case DP_INTERRUPT_SIGNAL_STATE:
684 /*
685 * XXX: Not sure it is the right thing to do actually.
686 * The register is not written by the device driver so it's stuck
687 * to 0x04.
688 */
689 ret = s->core_registers[DP_INTERRUPT_SIGNAL_STATE];
690 s->core_registers[DP_INTERRUPT_SIGNAL_STATE] &= ~0x04;
691 break;
692 case DP_AUX_WRITE_FIFO:
693 case DP_TX_AUDIO_INFO_DATA(0):
694 case DP_TX_AUDIO_INFO_DATA(1):
695 case DP_TX_AUDIO_INFO_DATA(2):
696 case DP_TX_AUDIO_INFO_DATA(3):
697 case DP_TX_AUDIO_INFO_DATA(4):
698 case DP_TX_AUDIO_INFO_DATA(5):
699 case DP_TX_AUDIO_INFO_DATA(6):
700 case DP_TX_AUDIO_INFO_DATA(7):
701 case DP_TX_AUDIO_EXT_DATA(0):
702 case DP_TX_AUDIO_EXT_DATA(1):
703 case DP_TX_AUDIO_EXT_DATA(2):
704 case DP_TX_AUDIO_EXT_DATA(3):
705 case DP_TX_AUDIO_EXT_DATA(4):
706 case DP_TX_AUDIO_EXT_DATA(5):
707 case DP_TX_AUDIO_EXT_DATA(6):
708 case DP_TX_AUDIO_EXT_DATA(7):
709 case DP_TX_AUDIO_EXT_DATA(8):
710 /* write only registers */
711 ret = 0;
712 break;
713 default:
714 assert(offset <= (0x3AC >> 2));
715 ret = s->core_registers[offset];
716 break;
717 }
718
719 DPRINTF("core read @%" PRIx64 " = 0x%8.8" PRIX64 "\n", offset << 2, ret);
720 return ret;
721 }
722
723 static void xlnx_dp_write(void *opaque, hwaddr offset, uint64_t value,
724 unsigned size)
725 {
726 XlnxDPState *s = XLNX_DP(opaque);
727
728 DPRINTF("core write @%" PRIx64 " = 0x%8.8" PRIX64 "\n", offset, value);
729
730 offset = offset >> 2;
731
732 switch (offset) {
733 /*
734 * Only special write case are handled.
735 */
736 case DP_LINK_BW_SET:
737 s->core_registers[offset] = value & 0x000000FF;
738 break;
739 case DP_LANE_COUNT_SET:
740 case DP_MAIN_STREAM_MISC0:
741 s->core_registers[offset] = value & 0x0000000F;
742 break;
743 case DP_TRAINING_PATTERN_SET:
744 case DP_LINK_QUAL_PATTERN_SET:
745 case DP_MAIN_STREAM_POLARITY:
746 case DP_PHY_VOLTAGE_DIFF_LANE_0:
747 case DP_PHY_VOLTAGE_DIFF_LANE_1:
748 s->core_registers[offset] = value & 0x00000003;
749 break;
750 case DP_ENHANCED_FRAME_EN:
751 case DP_SCRAMBLING_DISABLE:
752 case DP_DOWNSPREAD_CTRL:
753 case DP_MAIN_STREAM_ENABLE:
754 case DP_TRANSMIT_PRBS7:
755 s->core_registers[offset] = value & 0x00000001;
756 break;
757 case DP_PHY_CLOCK_SELECT:
758 s->core_registers[offset] = value & 0x00000007;
759 break;
760 case DP_SOFTWARE_RESET:
761 /*
762 * No need to update this bit as it's read '0'.
763 */
764 /*
765 * TODO: reset IP.
766 */
767 break;
768 case DP_TRANSMITTER_ENABLE:
769 s->core_registers[offset] = value & 0x01;
770 break;
771 case DP_FORCE_SCRAMBLER_RESET:
772 /*
773 * No need to update this bit as it's read '0'.
774 */
775 /*
776 * TODO: force a scrambler reset??
777 */
778 break;
779 case DP_AUX_COMMAND_REGISTER:
780 s->core_registers[offset] = value & 0x00001F0F;
781 xlnx_dp_aux_set_command(s, s->core_registers[offset]);
782 break;
783 case DP_MAIN_STREAM_HTOTAL:
784 case DP_MAIN_STREAM_VTOTAL:
785 case DP_MAIN_STREAM_HSTART:
786 case DP_MAIN_STREAM_VSTART:
787 s->core_registers[offset] = value & 0x0000FFFF;
788 break;
789 case DP_MAIN_STREAM_HRES:
790 case DP_MAIN_STREAM_VRES:
791 s->core_registers[offset] = value & 0x0000FFFF;
792 xlnx_dp_recreate_surface(s);
793 break;
794 case DP_MAIN_STREAM_HSWIDTH:
795 case DP_MAIN_STREAM_VSWIDTH:
796 s->core_registers[offset] = value & 0x00007FFF;
797 break;
798 case DP_MAIN_STREAM_MISC1:
799 s->core_registers[offset] = value & 0x00000086;
800 break;
801 case DP_MAIN_STREAM_M_VID:
802 case DP_MAIN_STREAM_N_VID:
803 s->core_registers[offset] = value & 0x00FFFFFF;
804 break;
805 case DP_MSA_TRANSFER_UNIT_SIZE:
806 case DP_MIN_BYTES_PER_TU:
807 case DP_INIT_WAIT:
808 s->core_registers[offset] = value & 0x00000007;
809 break;
810 case DP_USER_DATA_COUNT_PER_LANE:
811 s->core_registers[offset] = value & 0x0003FFFF;
812 break;
813 case DP_FRAC_BYTES_PER_TU:
814 s->core_registers[offset] = value & 0x000003FF;
815 break;
816 case DP_PHY_RESET:
817 s->core_registers[offset] = value & 0x00010003;
818 /*
819 * TODO: Reset something?
820 */
821 break;
822 case DP_TX_PHY_POWER_DOWN:
823 s->core_registers[offset] = value & 0x0000000F;
824 /*
825 * TODO: Power down things?
826 */
827 break;
828 case DP_AUX_WRITE_FIFO: {
829 uint8_t c = value;
830 xlnx_dp_aux_push_tx_fifo(s, &c, 1);
831 break;
832 }
833 case DP_AUX_CLOCK_DIVIDER:
834 break;
835 case DP_AUX_REPLY_COUNT:
836 /*
837 * Writing to this register clear the counter.
838 */
839 s->core_registers[offset] = 0x00000000;
840 break;
841 case DP_AUX_ADDRESS:
842 s->core_registers[offset] = value & 0x000FFFFF;
843 break;
844 case DP_VERSION_REGISTER:
845 case DP_CORE_ID:
846 case DP_TX_USER_FIFO_OVERFLOW:
847 case DP_AUX_REPLY_DATA:
848 case DP_AUX_REPLY_CODE:
849 case DP_REPLY_DATA_COUNT:
850 case DP_REPLY_STATUS:
851 case DP_HPD_DURATION:
852 /*
853 * Write to read only location..
854 */
855 break;
856 case DP_TX_AUDIO_CONTROL:
857 s->core_registers[offset] = value & 0x00000001;
858 xlnx_dp_audio_activate(s);
859 break;
860 case DP_TX_AUDIO_CHANNELS:
861 s->core_registers[offset] = value & 0x00000007;
862 xlnx_dp_audio_activate(s);
863 break;
864 case DP_INT_STATUS:
865 s->core_registers[DP_INT_STATUS] &= ~value;
866 xlnx_dp_update_irq(s);
867 break;
868 case DP_INT_EN:
869 s->core_registers[DP_INT_MASK] &= ~value;
870 xlnx_dp_update_irq(s);
871 break;
872 case DP_INT_DS:
873 s->core_registers[DP_INT_MASK] |= ~value;
874 xlnx_dp_update_irq(s);
875 break;
876 default:
877 assert(offset <= (0x504C >> 2));
878 s->core_registers[offset] = value;
879 break;
880 }
881 }
882
883 static const MemoryRegionOps dp_ops = {
884 .read = xlnx_dp_read,
885 .write = xlnx_dp_write,
886 .endianness = DEVICE_NATIVE_ENDIAN,
887 .valid = {
888 .min_access_size = 4,
889 .max_access_size = 4,
890 },
891 .impl = {
892 .min_access_size = 4,
893 .max_access_size = 4,
894 },
895 };
896
897 /*
898 * This is to handle Read/Write to the Video Blender.
899 */
900 static void xlnx_dp_vblend_write(void *opaque, hwaddr offset,
901 uint64_t value, unsigned size)
902 {
903 XlnxDPState *s = XLNX_DP(opaque);
904 bool alpha_was_enabled;
905
906 DPRINTF("vblend: write @0x%" HWADDR_PRIX " = 0x%" PRIX32 "\n", offset,
907 (uint32_t)value);
908 offset = offset >> 2;
909
910 switch (offset) {
911 case V_BLEND_BG_CLR_0:
912 case V_BLEND_BG_CLR_1:
913 case V_BLEND_BG_CLR_2:
914 s->vblend_registers[offset] = value & 0x00000FFF;
915 break;
916 case V_BLEND_SET_GLOBAL_ALPHA_REG:
917 /*
918 * A write to this register can enable or disable blending. Thus we need
919 * to recreate the surfaces.
920 */
921 alpha_was_enabled = xlnx_dp_global_alpha_enabled(s);
922 s->vblend_registers[offset] = value & 0x000001FF;
923 if (xlnx_dp_global_alpha_enabled(s) != alpha_was_enabled) {
924 xlnx_dp_recreate_surface(s);
925 }
926 break;
927 case V_BLEND_OUTPUT_VID_FORMAT:
928 s->vblend_registers[offset] = value & 0x00000017;
929 break;
930 case V_BLEND_LAYER0_CONTROL:
931 case V_BLEND_LAYER1_CONTROL:
932 s->vblend_registers[offset] = value & 0x00000103;
933 break;
934 case V_BLEND_RGB2YCBCR_COEFF(0):
935 case V_BLEND_RGB2YCBCR_COEFF(1):
936 case V_BLEND_RGB2YCBCR_COEFF(2):
937 case V_BLEND_RGB2YCBCR_COEFF(3):
938 case V_BLEND_RGB2YCBCR_COEFF(4):
939 case V_BLEND_RGB2YCBCR_COEFF(5):
940 case V_BLEND_RGB2YCBCR_COEFF(6):
941 case V_BLEND_RGB2YCBCR_COEFF(7):
942 case V_BLEND_RGB2YCBCR_COEFF(8):
943 case V_BLEND_IN1CSC_COEFF(0):
944 case V_BLEND_IN1CSC_COEFF(1):
945 case V_BLEND_IN1CSC_COEFF(2):
946 case V_BLEND_IN1CSC_COEFF(3):
947 case V_BLEND_IN1CSC_COEFF(4):
948 case V_BLEND_IN1CSC_COEFF(5):
949 case V_BLEND_IN1CSC_COEFF(6):
950 case V_BLEND_IN1CSC_COEFF(7):
951 case V_BLEND_IN1CSC_COEFF(8):
952 case V_BLEND_IN2CSC_COEFF(0):
953 case V_BLEND_IN2CSC_COEFF(1):
954 case V_BLEND_IN2CSC_COEFF(2):
955 case V_BLEND_IN2CSC_COEFF(3):
956 case V_BLEND_IN2CSC_COEFF(4):
957 case V_BLEND_IN2CSC_COEFF(5):
958 case V_BLEND_IN2CSC_COEFF(6):
959 case V_BLEND_IN2CSC_COEFF(7):
960 case V_BLEND_IN2CSC_COEFF(8):
961 s->vblend_registers[offset] = value & 0x0000FFFF;
962 break;
963 case V_BLEND_LUMA_IN1CSC_OFFSET:
964 case V_BLEND_CR_IN1CSC_OFFSET:
965 case V_BLEND_CB_IN1CSC_OFFSET:
966 case V_BLEND_LUMA_IN2CSC_OFFSET:
967 case V_BLEND_CR_IN2CSC_OFFSET:
968 case V_BLEND_CB_IN2CSC_OFFSET:
969 case V_BLEND_LUMA_OUTCSC_OFFSET:
970 case V_BLEND_CR_OUTCSC_OFFSET:
971 case V_BLEND_CB_OUTCSC_OFFSET:
972 s->vblend_registers[offset] = value & 0x3FFF7FFF;
973 break;
974 case V_BLEND_CHROMA_KEY_ENABLE:
975 s->vblend_registers[offset] = value & 0x00000003;
976 break;
977 case V_BLEND_CHROMA_KEY_COMP1:
978 case V_BLEND_CHROMA_KEY_COMP2:
979 case V_BLEND_CHROMA_KEY_COMP3:
980 s->vblend_registers[offset] = value & 0x0FFF0FFF;
981 break;
982 default:
983 s->vblend_registers[offset] = value;
984 break;
985 }
986 }
987
988 static uint64_t xlnx_dp_vblend_read(void *opaque, hwaddr offset,
989 unsigned size)
990 {
991 XlnxDPState *s = XLNX_DP(opaque);
992
993 DPRINTF("vblend: read @0x%" HWADDR_PRIX " = 0x%" PRIX32 "\n", offset,
994 s->vblend_registers[offset >> 2]);
995 return s->vblend_registers[offset >> 2];
996 }
997
998 static const MemoryRegionOps vblend_ops = {
999 .read = xlnx_dp_vblend_read,
1000 .write = xlnx_dp_vblend_write,
1001 .endianness = DEVICE_NATIVE_ENDIAN,
1002 .valid = {
1003 .min_access_size = 4,
1004 .max_access_size = 4,
1005 },
1006 .impl = {
1007 .min_access_size = 4,
1008 .max_access_size = 4,
1009 },
1010 };
1011
1012 /*
1013 * This is to handle Read/Write to the Audio Video buffer manager.
1014 */
1015 static void xlnx_dp_avbufm_write(void *opaque, hwaddr offset, uint64_t value,
1016 unsigned size)
1017 {
1018 XlnxDPState *s = XLNX_DP(opaque);
1019
1020 DPRINTF("avbufm: write @0x%" HWADDR_PRIX " = 0x%" PRIX32 "\n", offset,
1021 (uint32_t)value);
1022 offset = offset >> 2;
1023
1024 switch (offset) {
1025 case AV_BUF_FORMAT:
1026 s->avbufm_registers[offset] = value & 0x00000FFF;
1027 xlnx_dp_change_graphic_fmt(s);
1028 break;
1029 case AV_CHBUF0:
1030 case AV_CHBUF1:
1031 case AV_CHBUF2:
1032 case AV_CHBUF3:
1033 case AV_CHBUF4:
1034 case AV_CHBUF5:
1035 s->avbufm_registers[offset] = value & 0x0000007F;
1036 break;
1037 case AV_BUF_OUTPUT_AUDIO_VIDEO_SELECT:
1038 s->avbufm_registers[offset] = value & 0x0000007F;
1039 break;
1040 case AV_BUF_DITHER_CONFIG:
1041 s->avbufm_registers[offset] = value & 0x000007FF;
1042 break;
1043 case AV_BUF_DITHER_CONFIG_MAX:
1044 case AV_BUF_DITHER_CONFIG_MIN:
1045 s->avbufm_registers[offset] = value & 0x00000FFF;
1046 break;
1047 case AV_BUF_PATTERN_GEN_SELECT:
1048 s->avbufm_registers[offset] = value & 0xFFFFFF03;
1049 break;
1050 case AV_BUF_AUD_VID_CLK_SOURCE:
1051 s->avbufm_registers[offset] = value & 0x00000007;
1052 break;
1053 case AV_BUF_SRST_REG:
1054 s->avbufm_registers[offset] = value & 0x00000002;
1055 break;
1056 case AV_BUF_AUDIO_CH_CONFIG:
1057 s->avbufm_registers[offset] = value & 0x00000003;
1058 break;
1059 case AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(0):
1060 case AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(1):
1061 case AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(2):
1062 case AV_BUF_VIDEO_COMP_SCALE_FACTOR(0):
1063 case AV_BUF_VIDEO_COMP_SCALE_FACTOR(1):
1064 case AV_BUF_VIDEO_COMP_SCALE_FACTOR(2):
1065 s->avbufm_registers[offset] = value & 0x0000FFFF;
1066 break;
1067 case AV_BUF_LIVE_VIDEO_COMP_SF(0):
1068 case AV_BUF_LIVE_VIDEO_COMP_SF(1):
1069 case AV_BUF_LIVE_VIDEO_COMP_SF(2):
1070 case AV_BUF_LIVE_VID_CONFIG:
1071 case AV_BUF_LIVE_GFX_COMP_SF(0):
1072 case AV_BUF_LIVE_GFX_COMP_SF(1):
1073 case AV_BUF_LIVE_GFX_COMP_SF(2):
1074 case AV_BUF_LIVE_GFX_CONFIG:
1075 case AV_BUF_NON_LIVE_LATENCY:
1076 case AV_BUF_STC_CONTROL:
1077 case AV_BUF_STC_INIT_VALUE0:
1078 case AV_BUF_STC_INIT_VALUE1:
1079 case AV_BUF_STC_ADJ:
1080 case AV_BUF_STC_VIDEO_VSYNC_TS_REG0:
1081 case AV_BUF_STC_VIDEO_VSYNC_TS_REG1:
1082 case AV_BUF_STC_EXT_VSYNC_TS_REG0:
1083 case AV_BUF_STC_EXT_VSYNC_TS_REG1:
1084 case AV_BUF_STC_CUSTOM_EVENT_TS_REG0:
1085 case AV_BUF_STC_CUSTOM_EVENT_TS_REG1:
1086 case AV_BUF_STC_CUSTOM_EVENT2_TS_REG0:
1087 case AV_BUF_STC_CUSTOM_EVENT2_TS_REG1:
1088 case AV_BUF_STC_SNAPSHOT0:
1089 case AV_BUF_STC_SNAPSHOT1:
1090 case AV_BUF_HCOUNT_VCOUNT_INT0:
1091 case AV_BUF_HCOUNT_VCOUNT_INT1:
1092 qemu_log_mask(LOG_UNIMP, "avbufm: unimplemented register 0x%04"
1093 PRIx64 "\n",
1094 offset << 2);
1095 break;
1096 default:
1097 s->avbufm_registers[offset] = value;
1098 break;
1099 }
1100 }
1101
1102 static uint64_t xlnx_dp_avbufm_read(void *opaque, hwaddr offset,
1103 unsigned size)
1104 {
1105 XlnxDPState *s = XLNX_DP(opaque);
1106
1107 offset = offset >> 2;
1108 return s->avbufm_registers[offset];
1109 }
1110
1111 static const MemoryRegionOps avbufm_ops = {
1112 .read = xlnx_dp_avbufm_read,
1113 .write = xlnx_dp_avbufm_write,
1114 .endianness = DEVICE_NATIVE_ENDIAN,
1115 .valid = {
1116 .min_access_size = 4,
1117 .max_access_size = 4,
1118 },
1119 .impl = {
1120 .min_access_size = 4,
1121 .max_access_size = 4,
1122 },
1123 };
1124
1125 /*
1126 * This is a global alpha blending using pixman.
1127 * Both graphic and video planes are multiplied with the global alpha
1128 * coefficient and added.
1129 */
1130 static inline void xlnx_dp_blend_surface(XlnxDPState *s)
1131 {
1132 pixman_fixed_t alpha1[] = { pixman_double_to_fixed(1),
1133 pixman_double_to_fixed(1),
1134 pixman_double_to_fixed(1.0) };
1135 pixman_fixed_t alpha2[] = { pixman_double_to_fixed(1),
1136 pixman_double_to_fixed(1),
1137 pixman_double_to_fixed(1.0) };
1138
1139 if ((surface_width(s->g_plane.surface)
1140 != surface_width(s->v_plane.surface)) ||
1141 (surface_height(s->g_plane.surface)
1142 != surface_height(s->v_plane.surface))) {
1143 return;
1144 }
1145
1146 alpha1[2] = pixman_double_to_fixed((double)(xlnx_dp_global_alpha_value(s))
1147 / 256.0);
1148 alpha2[2] = pixman_double_to_fixed((255.0
1149 - (double)xlnx_dp_global_alpha_value(s))
1150 / 256.0);
1151
1152 pixman_image_set_filter(s->g_plane.surface->image,
1153 PIXMAN_FILTER_CONVOLUTION, alpha1, 3);
1154 pixman_image_composite(PIXMAN_OP_SRC, s->g_plane.surface->image, 0,
1155 s->bout_plane.surface->image, 0, 0, 0, 0, 0, 0,
1156 surface_width(s->g_plane.surface),
1157 surface_height(s->g_plane.surface));
1158 pixman_image_set_filter(s->v_plane.surface->image,
1159 PIXMAN_FILTER_CONVOLUTION, alpha2, 3);
1160 pixman_image_composite(PIXMAN_OP_ADD, s->v_plane.surface->image, 0,
1161 s->bout_plane.surface->image, 0, 0, 0, 0, 0, 0,
1162 surface_width(s->g_plane.surface),
1163 surface_height(s->g_plane.surface));
1164 }
1165
1166 static void xlnx_dp_update_display(void *opaque)
1167 {
1168 XlnxDPState *s = XLNX_DP(opaque);
1169
1170 if ((s->core_registers[DP_TRANSMITTER_ENABLE] & 0x01) == 0) {
1171 return;
1172 }
1173
1174 s->core_registers[DP_INT_STATUS] |= (1 << 13);
1175 xlnx_dp_update_irq(s);
1176
1177 xlnx_dpdma_trigger_vsync_irq(s->dpdma);
1178
1179 /*
1180 * Trigger the DMA channel.
1181 */
1182 if (!xlnx_dpdma_start_operation(s->dpdma, 3, false)) {
1183 /*
1184 * An error occurred don't do anything with the data..
1185 * Trigger an underflow interrupt.
1186 */
1187 s->core_registers[DP_INT_STATUS] |= (1 << 21);
1188 xlnx_dp_update_irq(s);
1189 return;
1190 }
1191
1192 if (xlnx_dp_global_alpha_enabled(s)) {
1193 if (!xlnx_dpdma_start_operation(s->dpdma, 0, false)) {
1194 s->core_registers[DP_INT_STATUS] |= (1 << 21);
1195 xlnx_dp_update_irq(s);
1196 return;
1197 }
1198 xlnx_dp_blend_surface(s);
1199 }
1200
1201 /*
1202 * XXX: We might want to update only what changed.
1203 */
1204 dpy_gfx_update_full(s->console);
1205 }
1206
1207 static const GraphicHwOps xlnx_dp_gfx_ops = {
1208 .gfx_update = xlnx_dp_update_display,
1209 };
1210
1211 static void xlnx_dp_init(Object *obj)
1212 {
1213 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1214 XlnxDPState *s = XLNX_DP(obj);
1215
1216 memory_region_init(&s->container, obj, TYPE_XLNX_DP, 0xC050);
1217
1218 memory_region_init_io(&s->core_iomem, obj, &dp_ops, s, TYPE_XLNX_DP
1219 ".core", 0x3AF);
1220 memory_region_add_subregion(&s->container, 0x0000, &s->core_iomem);
1221
1222 memory_region_init_io(&s->vblend_iomem, obj, &vblend_ops, s, TYPE_XLNX_DP
1223 ".v_blend", 0x1DF);
1224 memory_region_add_subregion(&s->container, 0xA000, &s->vblend_iomem);
1225
1226 memory_region_init_io(&s->avbufm_iomem, obj, &avbufm_ops, s, TYPE_XLNX_DP
1227 ".av_buffer_manager", 0x238);
1228 memory_region_add_subregion(&s->container, 0xB000, &s->avbufm_iomem);
1229
1230 memory_region_init_io(&s->audio_iomem, obj, &audio_ops, s, TYPE_XLNX_DP
1231 ".audio", sizeof(s->audio_registers));
1232 memory_region_add_subregion(&s->container, 0xC000, &s->audio_iomem);
1233
1234 sysbus_init_mmio(sbd, &s->container);
1235 sysbus_init_irq(sbd, &s->irq);
1236
1237 object_property_add_link(obj, "dpdma", TYPE_XLNX_DPDMA,
1238 (Object **) &s->dpdma,
1239 xlnx_dp_set_dpdma,
1240 OBJ_PROP_LINK_STRONG,
1241 &error_abort);
1242
1243 /*
1244 * Initialize AUX Bus.
1245 */
1246 s->aux_bus = aux_init_bus(DEVICE(obj), "aux");
1247
1248 /*
1249 * Initialize DPCD and EDID..
1250 */
1251 s->dpcd = DPCD(aux_create_slave(s->aux_bus, "dpcd"));
1252 object_property_add_child(OBJECT(s), "dpcd", OBJECT(s->dpcd), NULL);
1253
1254 s->edid = I2CDDC(qdev_create(BUS(aux_get_i2c_bus(s->aux_bus)), "i2c-ddc"));
1255 i2c_set_slave_address(I2C_SLAVE(s->edid), 0x50);
1256 object_property_add_child(OBJECT(s), "edid", OBJECT(s->edid), NULL);
1257
1258 fifo8_create(&s->rx_fifo, 16);
1259 fifo8_create(&s->tx_fifo, 16);
1260 }
1261
1262 static void xlnx_dp_realize(DeviceState *dev, Error **errp)
1263 {
1264 XlnxDPState *s = XLNX_DP(dev);
1265 DisplaySurface *surface;
1266 struct audsettings as;
1267
1268 qdev_init_nofail(DEVICE(s->dpcd));
1269 aux_map_slave(AUX_SLAVE(s->dpcd), 0x0000);
1270
1271 s->console = graphic_console_init(dev, 0, &xlnx_dp_gfx_ops, s);
1272 surface = qemu_console_surface(s->console);
1273 xlnx_dpdma_set_host_data_location(s->dpdma, DP_GRAPHIC_DMA_CHANNEL,
1274 surface_data(surface));
1275
1276 as.freq = 44100;
1277 as.nchannels = 2;
1278 as.fmt = AUDIO_FORMAT_S16;
1279 as.endianness = 0;
1280
1281 AUD_register_card("xlnx_dp.audio", &s->aud_card);
1282
1283 s->amixer_output_stream = AUD_open_out(&s->aud_card,
1284 s->amixer_output_stream,
1285 "xlnx_dp.audio.out",
1286 s,
1287 xlnx_dp_audio_callback,
1288 &as);
1289 AUD_set_volume_out(s->amixer_output_stream, 0, 255, 255);
1290 xlnx_dp_audio_activate(s);
1291 }
1292
1293 static void xlnx_dp_reset(DeviceState *dev)
1294 {
1295 XlnxDPState *s = XLNX_DP(dev);
1296
1297 memset(s->core_registers, 0, sizeof(s->core_registers));
1298 s->core_registers[DP_VERSION_REGISTER] = 0x04010000;
1299 s->core_registers[DP_CORE_ID] = 0x01020000;
1300 s->core_registers[DP_REPLY_STATUS] = 0x00000010;
1301 s->core_registers[DP_MSA_TRANSFER_UNIT_SIZE] = 0x00000040;
1302 s->core_registers[DP_INIT_WAIT] = 0x00000020;
1303 s->core_registers[DP_PHY_RESET] = 0x00010003;
1304 s->core_registers[DP_INT_MASK] = 0xFFFFF03F;
1305 s->core_registers[DP_PHY_STATUS] = 0x00000043;
1306 s->core_registers[DP_INTERRUPT_SIGNAL_STATE] = 0x00000001;
1307
1308 s->vblend_registers[V_BLEND_RGB2YCBCR_COEFF(0)] = 0x00001000;
1309 s->vblend_registers[V_BLEND_RGB2YCBCR_COEFF(4)] = 0x00001000;
1310 s->vblend_registers[V_BLEND_RGB2YCBCR_COEFF(8)] = 0x00001000;
1311 s->vblend_registers[V_BLEND_IN1CSC_COEFF(0)] = 0x00001000;
1312 s->vblend_registers[V_BLEND_IN1CSC_COEFF(4)] = 0x00001000;
1313 s->vblend_registers[V_BLEND_IN1CSC_COEFF(8)] = 0x00001000;
1314 s->vblend_registers[V_BLEND_IN2CSC_COEFF(0)] = 0x00001000;
1315 s->vblend_registers[V_BLEND_IN2CSC_COEFF(4)] = 0x00001000;
1316 s->vblend_registers[V_BLEND_IN2CSC_COEFF(8)] = 0x00001000;
1317
1318 s->avbufm_registers[AV_BUF_NON_LIVE_LATENCY] = 0x00000180;
1319 s->avbufm_registers[AV_BUF_OUTPUT_AUDIO_VIDEO_SELECT] = 0x00000008;
1320 s->avbufm_registers[AV_BUF_DITHER_CONFIG_MAX] = 0x00000FFF;
1321 s->avbufm_registers[AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(0)] = 0x00010101;
1322 s->avbufm_registers[AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(1)] = 0x00010101;
1323 s->avbufm_registers[AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(2)] = 0x00010101;
1324 s->avbufm_registers[AV_BUF_VIDEO_COMP_SCALE_FACTOR(0)] = 0x00010101;
1325 s->avbufm_registers[AV_BUF_VIDEO_COMP_SCALE_FACTOR(1)] = 0x00010101;
1326 s->avbufm_registers[AV_BUF_VIDEO_COMP_SCALE_FACTOR(2)] = 0x00010101;
1327 s->avbufm_registers[AV_BUF_LIVE_VIDEO_COMP_SF(0)] = 0x00010101;
1328 s->avbufm_registers[AV_BUF_LIVE_VIDEO_COMP_SF(1)] = 0x00010101;
1329 s->avbufm_registers[AV_BUF_LIVE_VIDEO_COMP_SF(2)] = 0x00010101;
1330 s->avbufm_registers[AV_BUF_LIVE_GFX_COMP_SF(0)] = 0x00010101;
1331 s->avbufm_registers[AV_BUF_LIVE_GFX_COMP_SF(1)] = 0x00010101;
1332 s->avbufm_registers[AV_BUF_LIVE_GFX_COMP_SF(2)] = 0x00010101;
1333
1334 memset(s->audio_registers, 0, sizeof(s->audio_registers));
1335 s->byte_left = 0;
1336
1337 xlnx_dp_aux_clear_rx_fifo(s);
1338 xlnx_dp_change_graphic_fmt(s);
1339 xlnx_dp_update_irq(s);
1340 }
1341
1342 static void xlnx_dp_class_init(ObjectClass *oc, void *data)
1343 {
1344 DeviceClass *dc = DEVICE_CLASS(oc);
1345
1346 dc->realize = xlnx_dp_realize;
1347 dc->vmsd = &vmstate_dp;
1348 dc->reset = xlnx_dp_reset;
1349 }
1350
1351 static const TypeInfo xlnx_dp_info = {
1352 .name = TYPE_XLNX_DP,
1353 .parent = TYPE_SYS_BUS_DEVICE,
1354 .instance_size = sizeof(XlnxDPState),
1355 .instance_init = xlnx_dp_init,
1356 .class_init = xlnx_dp_class_init,
1357 };
1358
1359 static void xlnx_dp_register_types(void)
1360 {
1361 type_register_static(&xlnx_dp_info);
1362 }
1363
1364 type_init(xlnx_dp_register_types)