]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
146cd16dd28ef76e6ec6184da14529c9b2e10739
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
39
40 /* context entry operations */
41 #define VTD_CE_GET_RID2PASID(ce) \
42 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
43 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
44 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
45
46 /* pe operations */
47 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
48 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
49 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
50 if (ret_fr) { \
51 ret_fr = -ret_fr; \
52 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
53 trace_vtd_fault_disabled(); \
54 } else { \
55 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
56 } \
57 goto error; \
58 } \
59 }
60
61 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
62 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
63
64 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
65 uint64_t wmask, uint64_t w1cmask)
66 {
67 stq_le_p(&s->csr[addr], val);
68 stq_le_p(&s->wmask[addr], wmask);
69 stq_le_p(&s->w1cmask[addr], w1cmask);
70 }
71
72 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
73 {
74 stq_le_p(&s->womask[addr], mask);
75 }
76
77 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
78 uint32_t wmask, uint32_t w1cmask)
79 {
80 stl_le_p(&s->csr[addr], val);
81 stl_le_p(&s->wmask[addr], wmask);
82 stl_le_p(&s->w1cmask[addr], w1cmask);
83 }
84
85 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
86 {
87 stl_le_p(&s->womask[addr], mask);
88 }
89
90 /* "External" get/set operations */
91 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
92 {
93 uint64_t oldval = ldq_le_p(&s->csr[addr]);
94 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
95 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
96 stq_le_p(&s->csr[addr],
97 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
98 }
99
100 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
101 {
102 uint32_t oldval = ldl_le_p(&s->csr[addr]);
103 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
104 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
105 stl_le_p(&s->csr[addr],
106 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
107 }
108
109 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
110 {
111 uint64_t val = ldq_le_p(&s->csr[addr]);
112 uint64_t womask = ldq_le_p(&s->womask[addr]);
113 return val & ~womask;
114 }
115
116 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
117 {
118 uint32_t val = ldl_le_p(&s->csr[addr]);
119 uint32_t womask = ldl_le_p(&s->womask[addr]);
120 return val & ~womask;
121 }
122
123 /* "Internal" get/set operations */
124 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
125 {
126 return ldq_le_p(&s->csr[addr]);
127 }
128
129 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
130 {
131 return ldl_le_p(&s->csr[addr]);
132 }
133
134 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
135 {
136 stq_le_p(&s->csr[addr], val);
137 }
138
139 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
140 uint32_t clear, uint32_t mask)
141 {
142 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
143 stl_le_p(&s->csr[addr], new_val);
144 return new_val;
145 }
146
147 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
148 uint64_t clear, uint64_t mask)
149 {
150 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
151 stq_le_p(&s->csr[addr], new_val);
152 return new_val;
153 }
154
155 static inline void vtd_iommu_lock(IntelIOMMUState *s)
156 {
157 qemu_mutex_lock(&s->iommu_lock);
158 }
159
160 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
161 {
162 qemu_mutex_unlock(&s->iommu_lock);
163 }
164
165 /* Whether the address space needs to notify new mappings */
166 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
167 {
168 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
169 }
170
171 /* GHashTable functions */
172 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
173 {
174 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
175 }
176
177 static guint vtd_uint64_hash(gconstpointer v)
178 {
179 return (guint)*(const uint64_t *)v;
180 }
181
182 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
183 gpointer user_data)
184 {
185 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
186 uint16_t domain_id = *(uint16_t *)user_data;
187 return entry->domain_id == domain_id;
188 }
189
190 /* The shift of an addr for a certain level of paging structure */
191 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
192 {
193 assert(level != 0);
194 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
195 }
196
197 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
198 {
199 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
200 }
201
202 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
203 gpointer user_data)
204 {
205 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
206 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
207 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
208 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
209 return (entry->domain_id == info->domain_id) &&
210 (((entry->gfn & info->mask) == gfn) ||
211 (entry->gfn == gfn_tlb));
212 }
213
214 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
215 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
216 */
217 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
218 {
219 VTDAddressSpace *vtd_as;
220 VTDBus *vtd_bus;
221 GHashTableIter bus_it;
222 uint32_t devfn_it;
223
224 trace_vtd_context_cache_reset();
225
226 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
227
228 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
229 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
230 vtd_as = vtd_bus->dev_as[devfn_it];
231 if (!vtd_as) {
232 continue;
233 }
234 vtd_as->context_cache_entry.context_cache_gen = 0;
235 }
236 }
237 s->context_cache_gen = 1;
238 }
239
240 /* Must be called with IOMMU lock held. */
241 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
242 {
243 assert(s->iotlb);
244 g_hash_table_remove_all(s->iotlb);
245 }
246
247 static void vtd_reset_iotlb(IntelIOMMUState *s)
248 {
249 vtd_iommu_lock(s);
250 vtd_reset_iotlb_locked(s);
251 vtd_iommu_unlock(s);
252 }
253
254 static void vtd_reset_caches(IntelIOMMUState *s)
255 {
256 vtd_iommu_lock(s);
257 vtd_reset_iotlb_locked(s);
258 vtd_reset_context_cache_locked(s);
259 vtd_iommu_unlock(s);
260 }
261
262 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
263 uint32_t level)
264 {
265 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
266 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
267 }
268
269 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
270 {
271 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
272 }
273
274 /* Must be called with IOMMU lock held */
275 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
276 hwaddr addr)
277 {
278 VTDIOTLBEntry *entry;
279 uint64_t key;
280 int level;
281
282 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
283 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
284 source_id, level);
285 entry = g_hash_table_lookup(s->iotlb, &key);
286 if (entry) {
287 goto out;
288 }
289 }
290
291 out:
292 return entry;
293 }
294
295 /* Must be with IOMMU lock held */
296 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
297 uint16_t domain_id, hwaddr addr, uint64_t slpte,
298 uint8_t access_flags, uint32_t level)
299 {
300 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
301 uint64_t *key = g_malloc(sizeof(*key));
302 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
303
304 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
305 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
306 trace_vtd_iotlb_reset("iotlb exceeds size limit");
307 vtd_reset_iotlb_locked(s);
308 }
309
310 entry->gfn = gfn;
311 entry->domain_id = domain_id;
312 entry->slpte = slpte;
313 entry->access_flags = access_flags;
314 entry->mask = vtd_slpt_level_page_mask(level);
315 *key = vtd_get_iotlb_key(gfn, source_id, level);
316 g_hash_table_replace(s->iotlb, key, entry);
317 }
318
319 /* Given the reg addr of both the message data and address, generate an
320 * interrupt via MSI.
321 */
322 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
323 hwaddr mesg_data_reg)
324 {
325 MSIMessage msi;
326
327 assert(mesg_data_reg < DMAR_REG_SIZE);
328 assert(mesg_addr_reg < DMAR_REG_SIZE);
329
330 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
331 msi.data = vtd_get_long_raw(s, mesg_data_reg);
332
333 trace_vtd_irq_generate(msi.address, msi.data);
334
335 apic_get_class()->send_msi(&msi);
336 }
337
338 /* Generate a fault event to software via MSI if conditions are met.
339 * Notice that the value of FSTS_REG being passed to it should be the one
340 * before any update.
341 */
342 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
343 {
344 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
345 pre_fsts & VTD_FSTS_IQE) {
346 error_report_once("There are previous interrupt conditions "
347 "to be serviced by software, fault event "
348 "is not generated");
349 return;
350 }
351 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
352 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
353 error_report_once("Interrupt Mask set, irq is not generated");
354 } else {
355 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
356 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
357 }
358 }
359
360 /* Check if the Fault (F) field of the Fault Recording Register referenced by
361 * @index is Set.
362 */
363 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
364 {
365 /* Each reg is 128-bit */
366 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
367 addr += 8; /* Access the high 64-bit half */
368
369 assert(index < DMAR_FRCD_REG_NR);
370
371 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
372 }
373
374 /* Update the PPF field of Fault Status Register.
375 * Should be called whenever change the F field of any fault recording
376 * registers.
377 */
378 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
379 {
380 uint32_t i;
381 uint32_t ppf_mask = 0;
382
383 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
384 if (vtd_is_frcd_set(s, i)) {
385 ppf_mask = VTD_FSTS_PPF;
386 break;
387 }
388 }
389 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
390 trace_vtd_fsts_ppf(!!ppf_mask);
391 }
392
393 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
394 {
395 /* Each reg is 128-bit */
396 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
397 addr += 8; /* Access the high 64-bit half */
398
399 assert(index < DMAR_FRCD_REG_NR);
400
401 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
402 vtd_update_fsts_ppf(s);
403 }
404
405 /* Must not update F field now, should be done later */
406 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
407 uint16_t source_id, hwaddr addr,
408 VTDFaultReason fault, bool is_write)
409 {
410 uint64_t hi = 0, lo;
411 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
412
413 assert(index < DMAR_FRCD_REG_NR);
414
415 lo = VTD_FRCD_FI(addr);
416 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
417 if (!is_write) {
418 hi |= VTD_FRCD_T;
419 }
420 vtd_set_quad_raw(s, frcd_reg_addr, lo);
421 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
422
423 trace_vtd_frr_new(index, hi, lo);
424 }
425
426 /* Try to collapse multiple pending faults from the same requester */
427 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
428 {
429 uint32_t i;
430 uint64_t frcd_reg;
431 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
432
433 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
434 frcd_reg = vtd_get_quad_raw(s, addr);
435 if ((frcd_reg & VTD_FRCD_F) &&
436 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
437 return true;
438 }
439 addr += 16; /* 128-bit for each */
440 }
441 return false;
442 }
443
444 /* Log and report an DMAR (address translation) fault to software */
445 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
446 hwaddr addr, VTDFaultReason fault,
447 bool is_write)
448 {
449 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
450
451 assert(fault < VTD_FR_MAX);
452
453 if (fault == VTD_FR_RESERVED_ERR) {
454 /* This is not a normal fault reason case. Drop it. */
455 return;
456 }
457
458 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
459
460 if (fsts_reg & VTD_FSTS_PFO) {
461 error_report_once("New fault is not recorded due to "
462 "Primary Fault Overflow");
463 return;
464 }
465
466 if (vtd_try_collapse_fault(s, source_id)) {
467 error_report_once("New fault is not recorded due to "
468 "compression of faults");
469 return;
470 }
471
472 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
473 error_report_once("Next Fault Recording Reg is used, "
474 "new fault is not recorded, set PFO field");
475 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
476 return;
477 }
478
479 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
480
481 if (fsts_reg & VTD_FSTS_PPF) {
482 error_report_once("There are pending faults already, "
483 "fault event is not generated");
484 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
485 s->next_frcd_reg++;
486 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
487 s->next_frcd_reg = 0;
488 }
489 } else {
490 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
491 VTD_FSTS_FRI(s->next_frcd_reg));
492 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
493 s->next_frcd_reg++;
494 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
495 s->next_frcd_reg = 0;
496 }
497 /* This case actually cause the PPF to be Set.
498 * So generate fault event (interrupt).
499 */
500 vtd_generate_fault_event(s, fsts_reg);
501 }
502 }
503
504 /* Handle Invalidation Queue Errors of queued invalidation interface error
505 * conditions.
506 */
507 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
508 {
509 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
510
511 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
512 vtd_generate_fault_event(s, fsts_reg);
513 }
514
515 /* Set the IWC field and try to generate an invalidation completion interrupt */
516 static void vtd_generate_completion_event(IntelIOMMUState *s)
517 {
518 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
519 trace_vtd_inv_desc_wait_irq("One pending, skip current");
520 return;
521 }
522 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
523 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
524 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
525 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
526 "new event not generated");
527 return;
528 } else {
529 /* Generate the interrupt event */
530 trace_vtd_inv_desc_wait_irq("Generating complete event");
531 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
532 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
533 }
534 }
535
536 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
537 VTDRootEntry *re,
538 uint8_t devfn)
539 {
540 if (s->root_scalable && devfn > UINT8_MAX / 2) {
541 return re->hi & VTD_ROOT_ENTRY_P;
542 }
543
544 return re->lo & VTD_ROOT_ENTRY_P;
545 }
546
547 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
548 VTDRootEntry *re)
549 {
550 dma_addr_t addr;
551
552 addr = s->root + index * sizeof(*re);
553 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
554 re->lo = 0;
555 return -VTD_FR_ROOT_TABLE_INV;
556 }
557 re->lo = le64_to_cpu(re->lo);
558 re->hi = le64_to_cpu(re->hi);
559 return 0;
560 }
561
562 static inline bool vtd_ce_present(VTDContextEntry *context)
563 {
564 return context->lo & VTD_CONTEXT_ENTRY_P;
565 }
566
567 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
568 VTDRootEntry *re,
569 uint8_t index,
570 VTDContextEntry *ce)
571 {
572 dma_addr_t addr, ce_size;
573
574 /* we have checked that root entry is present */
575 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
576 VTD_CTX_ENTRY_LEGACY_SIZE;
577
578 if (s->root_scalable && index > UINT8_MAX / 2) {
579 index = index & (~VTD_DEVFN_CHECK_MASK);
580 addr = re->hi & VTD_ROOT_ENTRY_CTP;
581 } else {
582 addr = re->lo & VTD_ROOT_ENTRY_CTP;
583 }
584
585 addr = addr + index * ce_size;
586 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
587 return -VTD_FR_CONTEXT_TABLE_INV;
588 }
589
590 ce->lo = le64_to_cpu(ce->lo);
591 ce->hi = le64_to_cpu(ce->hi);
592 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
593 ce->val[2] = le64_to_cpu(ce->val[2]);
594 ce->val[3] = le64_to_cpu(ce->val[3]);
595 }
596 return 0;
597 }
598
599 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
600 {
601 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
602 }
603
604 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
605 {
606 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
607 }
608
609 /* Whether the pte indicates the address of the page frame */
610 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
611 {
612 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
613 }
614
615 /* Get the content of a spte located in @base_addr[@index] */
616 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
617 {
618 uint64_t slpte;
619
620 assert(index < VTD_SL_PT_ENTRY_NR);
621
622 if (dma_memory_read(&address_space_memory,
623 base_addr + index * sizeof(slpte), &slpte,
624 sizeof(slpte))) {
625 slpte = (uint64_t)-1;
626 return slpte;
627 }
628 slpte = le64_to_cpu(slpte);
629 return slpte;
630 }
631
632 /* Given an iova and the level of paging structure, return the offset
633 * of current level.
634 */
635 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
636 {
637 return (iova >> vtd_slpt_level_shift(level)) &
638 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
639 }
640
641 /* Check Capability Register to see if the @level of page-table is supported */
642 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
643 {
644 return VTD_CAP_SAGAW_MASK & s->cap &
645 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
646 }
647
648 /* Return true if check passed, otherwise false */
649 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
650 VTDPASIDEntry *pe)
651 {
652 switch (VTD_PE_GET_TYPE(pe)) {
653 case VTD_SM_PASID_ENTRY_FLT:
654 case VTD_SM_PASID_ENTRY_SLT:
655 case VTD_SM_PASID_ENTRY_NESTED:
656 break;
657 case VTD_SM_PASID_ENTRY_PT:
658 if (!x86_iommu->pt_supported) {
659 return false;
660 }
661 break;
662 default:
663 /* Unknwon type */
664 return false;
665 }
666 return true;
667 }
668
669 static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base,
670 uint32_t pasid,
671 VTDPASIDDirEntry *pdire)
672 {
673 uint32_t index;
674 dma_addr_t addr, entry_size;
675
676 index = VTD_PASID_DIR_INDEX(pasid);
677 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
678 addr = pasid_dir_base + index * entry_size;
679 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
680 return -VTD_FR_PASID_TABLE_INV;
681 }
682
683 return 0;
684 }
685
686 static int vtd_get_pasid_entry(IntelIOMMUState *s,
687 uint32_t pasid,
688 VTDPASIDDirEntry *pdire,
689 VTDPASIDEntry *pe)
690 {
691 uint32_t index;
692 dma_addr_t addr, entry_size;
693 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
694
695 index = VTD_PASID_TABLE_INDEX(pasid);
696 entry_size = VTD_PASID_ENTRY_SIZE;
697 addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
698 addr = addr + index * entry_size;
699 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
700 return -VTD_FR_PASID_TABLE_INV;
701 }
702
703 /* Do translation type check */
704 if (!vtd_pe_type_check(x86_iommu, pe)) {
705 return -VTD_FR_PASID_TABLE_INV;
706 }
707
708 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
709 return -VTD_FR_PASID_TABLE_INV;
710 }
711
712 return 0;
713 }
714
715 static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s,
716 dma_addr_t pasid_dir_base,
717 uint32_t pasid,
718 VTDPASIDEntry *pe)
719 {
720 int ret;
721 VTDPASIDDirEntry pdire;
722
723 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
724 if (ret) {
725 return ret;
726 }
727
728 ret = vtd_get_pasid_entry(s, pasid, &pdire, pe);
729 if (ret) {
730 return ret;
731 }
732
733 return ret;
734 }
735
736 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
737 VTDContextEntry *ce,
738 VTDPASIDEntry *pe)
739 {
740 uint32_t pasid;
741 dma_addr_t pasid_dir_base;
742 int ret = 0;
743
744 pasid = VTD_CE_GET_RID2PASID(ce);
745 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
746 ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe);
747
748 return ret;
749 }
750
751 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
752 VTDContextEntry *ce,
753 bool *pe_fpd_set)
754 {
755 int ret;
756 uint32_t pasid;
757 dma_addr_t pasid_dir_base;
758 VTDPASIDDirEntry pdire;
759 VTDPASIDEntry pe;
760
761 pasid = VTD_CE_GET_RID2PASID(ce);
762 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
763
764 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
765 if (ret) {
766 return ret;
767 }
768
769 if (pdire.val & VTD_PASID_DIR_FPD) {
770 *pe_fpd_set = true;
771 return 0;
772 }
773
774 ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe);
775 if (ret) {
776 return ret;
777 }
778
779 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
780 *pe_fpd_set = true;
781 }
782
783 return 0;
784 }
785
786 /* Get the page-table level that hardware should use for the second-level
787 * page-table walk from the Address Width field of context-entry.
788 */
789 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
790 {
791 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
792 }
793
794 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
795 VTDContextEntry *ce)
796 {
797 VTDPASIDEntry pe;
798
799 if (s->root_scalable) {
800 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
801 return VTD_PE_GET_LEVEL(&pe);
802 }
803
804 return vtd_ce_get_level(ce);
805 }
806
807 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
808 {
809 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
810 }
811
812 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
813 VTDContextEntry *ce)
814 {
815 VTDPASIDEntry pe;
816
817 if (s->root_scalable) {
818 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
819 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
820 }
821
822 return vtd_ce_get_agaw(ce);
823 }
824
825 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
826 {
827 return ce->lo & VTD_CONTEXT_ENTRY_TT;
828 }
829
830 /* Only for Legacy Mode. Return true if check passed, otherwise false */
831 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
832 VTDContextEntry *ce)
833 {
834 switch (vtd_ce_get_type(ce)) {
835 case VTD_CONTEXT_TT_MULTI_LEVEL:
836 /* Always supported */
837 break;
838 case VTD_CONTEXT_TT_DEV_IOTLB:
839 if (!x86_iommu->dt_supported) {
840 error_report_once("%s: DT specified but not supported", __func__);
841 return false;
842 }
843 break;
844 case VTD_CONTEXT_TT_PASS_THROUGH:
845 if (!x86_iommu->pt_supported) {
846 error_report_once("%s: PT specified but not supported", __func__);
847 return false;
848 }
849 break;
850 default:
851 /* Unknown type */
852 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
853 vtd_ce_get_type(ce));
854 return false;
855 }
856 return true;
857 }
858
859 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
860 VTDContextEntry *ce, uint8_t aw)
861 {
862 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
863 return 1ULL << MIN(ce_agaw, aw);
864 }
865
866 /* Return true if IOVA passes range check, otherwise false. */
867 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
868 uint64_t iova, VTDContextEntry *ce,
869 uint8_t aw)
870 {
871 /*
872 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
873 * in CAP_REG and AW in context-entry.
874 */
875 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
876 }
877
878 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
879 VTDContextEntry *ce)
880 {
881 VTDPASIDEntry pe;
882
883 if (s->root_scalable) {
884 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
885 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
886 }
887
888 return vtd_ce_get_slpt_base(ce);
889 }
890
891 /*
892 * Rsvd field masks for spte:
893 * Index [1] to [4] 4k pages
894 * Index [5] to [8] large pages
895 */
896 static uint64_t vtd_paging_entry_rsvd_field[9];
897
898 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
899 {
900 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
901 /* Maybe large page */
902 return slpte & vtd_paging_entry_rsvd_field[level + 4];
903 } else {
904 return slpte & vtd_paging_entry_rsvd_field[level];
905 }
906 }
907
908 /* Find the VTD address space associated with a given bus number */
909 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
910 {
911 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
912 if (!vtd_bus) {
913 /*
914 * Iterate over the registered buses to find the one which
915 * currently hold this bus number, and update the bus_num
916 * lookup table:
917 */
918 GHashTableIter iter;
919
920 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
921 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
922 if (pci_bus_num(vtd_bus->bus) == bus_num) {
923 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
924 return vtd_bus;
925 }
926 }
927 }
928 return vtd_bus;
929 }
930
931 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
932 * of the translation, can be used for deciding the size of large page.
933 */
934 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
935 uint64_t iova, bool is_write,
936 uint64_t *slptep, uint32_t *slpte_level,
937 bool *reads, bool *writes, uint8_t aw_bits)
938 {
939 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
940 uint32_t level = vtd_get_iova_level(s, ce);
941 uint32_t offset;
942 uint64_t slpte;
943 uint64_t access_right_check;
944
945 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
946 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
947 __func__, iova);
948 return -VTD_FR_ADDR_BEYOND_MGAW;
949 }
950
951 /* FIXME: what is the Atomics request here? */
952 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
953
954 while (true) {
955 offset = vtd_iova_level_offset(iova, level);
956 slpte = vtd_get_slpte(addr, offset);
957
958 if (slpte == (uint64_t)-1) {
959 error_report_once("%s: detected read error on DMAR slpte "
960 "(iova=0x%" PRIx64 ")", __func__, iova);
961 if (level == vtd_get_iova_level(s, ce)) {
962 /* Invalid programming of context-entry */
963 return -VTD_FR_CONTEXT_ENTRY_INV;
964 } else {
965 return -VTD_FR_PAGING_ENTRY_INV;
966 }
967 }
968 *reads = (*reads) && (slpte & VTD_SL_R);
969 *writes = (*writes) && (slpte & VTD_SL_W);
970 if (!(slpte & access_right_check)) {
971 error_report_once("%s: detected slpte permission error "
972 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
973 "slpte=0x%" PRIx64 ", write=%d)", __func__,
974 iova, level, slpte, is_write);
975 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
976 }
977 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
978 error_report_once("%s: detected splte reserve non-zero "
979 "iova=0x%" PRIx64 ", level=0x%" PRIx32
980 "slpte=0x%" PRIx64 ")", __func__, iova,
981 level, slpte);
982 return -VTD_FR_PAGING_ENTRY_RSVD;
983 }
984
985 if (vtd_is_last_slpte(slpte, level)) {
986 *slptep = slpte;
987 *slpte_level = level;
988 return 0;
989 }
990 addr = vtd_get_slpte_addr(slpte, aw_bits);
991 level--;
992 }
993 }
994
995 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
996
997 /**
998 * Constant information used during page walking
999 *
1000 * @hook_fn: hook func to be called when detected page
1001 * @private: private data to be passed into hook func
1002 * @notify_unmap: whether we should notify invalid entries
1003 * @as: VT-d address space of the device
1004 * @aw: maximum address width
1005 * @domain: domain ID of the page walk
1006 */
1007 typedef struct {
1008 VTDAddressSpace *as;
1009 vtd_page_walk_hook hook_fn;
1010 void *private;
1011 bool notify_unmap;
1012 uint8_t aw;
1013 uint16_t domain_id;
1014 } vtd_page_walk_info;
1015
1016 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
1017 {
1018 VTDAddressSpace *as = info->as;
1019 vtd_page_walk_hook hook_fn = info->hook_fn;
1020 void *private = info->private;
1021 DMAMap target = {
1022 .iova = entry->iova,
1023 .size = entry->addr_mask,
1024 .translated_addr = entry->translated_addr,
1025 .perm = entry->perm,
1026 };
1027 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1028
1029 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
1030 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1031 return 0;
1032 }
1033
1034 assert(hook_fn);
1035
1036 /* Update local IOVA mapped ranges */
1037 if (entry->perm) {
1038 if (mapped) {
1039 /* If it's exactly the same translation, skip */
1040 if (!memcmp(mapped, &target, sizeof(target))) {
1041 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1042 entry->translated_addr);
1043 return 0;
1044 } else {
1045 /*
1046 * Translation changed. Normally this should not
1047 * happen, but it can happen when with buggy guest
1048 * OSes. Note that there will be a small window that
1049 * we don't have map at all. But that's the best
1050 * effort we can do. The ideal way to emulate this is
1051 * atomically modify the PTE to follow what has
1052 * changed, but we can't. One example is that vfio
1053 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1054 * interface to modify a mapping (meanwhile it seems
1055 * meaningless to even provide one). Anyway, let's
1056 * mark this as a TODO in case one day we'll have
1057 * a better solution.
1058 */
1059 IOMMUAccessFlags cache_perm = entry->perm;
1060 int ret;
1061
1062 /* Emulate an UNMAP */
1063 entry->perm = IOMMU_NONE;
1064 trace_vtd_page_walk_one(info->domain_id,
1065 entry->iova,
1066 entry->translated_addr,
1067 entry->addr_mask,
1068 entry->perm);
1069 ret = hook_fn(entry, private);
1070 if (ret) {
1071 return ret;
1072 }
1073 /* Drop any existing mapping */
1074 iova_tree_remove(as->iova_tree, &target);
1075 /* Recover the correct permission */
1076 entry->perm = cache_perm;
1077 }
1078 }
1079 iova_tree_insert(as->iova_tree, &target);
1080 } else {
1081 if (!mapped) {
1082 /* Skip since we didn't map this range at all */
1083 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1084 return 0;
1085 }
1086 iova_tree_remove(as->iova_tree, &target);
1087 }
1088
1089 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1090 entry->translated_addr, entry->addr_mask,
1091 entry->perm);
1092 return hook_fn(entry, private);
1093 }
1094
1095 /**
1096 * vtd_page_walk_level - walk over specific level for IOVA range
1097 *
1098 * @addr: base GPA addr to start the walk
1099 * @start: IOVA range start address
1100 * @end: IOVA range end address (start <= addr < end)
1101 * @read: whether parent level has read permission
1102 * @write: whether parent level has write permission
1103 * @info: constant information for the page walk
1104 */
1105 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1106 uint64_t end, uint32_t level, bool read,
1107 bool write, vtd_page_walk_info *info)
1108 {
1109 bool read_cur, write_cur, entry_valid;
1110 uint32_t offset;
1111 uint64_t slpte;
1112 uint64_t subpage_size, subpage_mask;
1113 IOMMUTLBEntry entry;
1114 uint64_t iova = start;
1115 uint64_t iova_next;
1116 int ret = 0;
1117
1118 trace_vtd_page_walk_level(addr, level, start, end);
1119
1120 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1121 subpage_mask = vtd_slpt_level_page_mask(level);
1122
1123 while (iova < end) {
1124 iova_next = (iova & subpage_mask) + subpage_size;
1125
1126 offset = vtd_iova_level_offset(iova, level);
1127 slpte = vtd_get_slpte(addr, offset);
1128
1129 if (slpte == (uint64_t)-1) {
1130 trace_vtd_page_walk_skip_read(iova, iova_next);
1131 goto next;
1132 }
1133
1134 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1135 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1136 goto next;
1137 }
1138
1139 /* Permissions are stacked with parents' */
1140 read_cur = read && (slpte & VTD_SL_R);
1141 write_cur = write && (slpte & VTD_SL_W);
1142
1143 /*
1144 * As long as we have either read/write permission, this is a
1145 * valid entry. The rule works for both page entries and page
1146 * table entries.
1147 */
1148 entry_valid = read_cur | write_cur;
1149
1150 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1151 /*
1152 * This is a valid PDE (or even bigger than PDE). We need
1153 * to walk one further level.
1154 */
1155 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1156 iova, MIN(iova_next, end), level - 1,
1157 read_cur, write_cur, info);
1158 } else {
1159 /*
1160 * This means we are either:
1161 *
1162 * (1) the real page entry (either 4K page, or huge page)
1163 * (2) the whole range is invalid
1164 *
1165 * In either case, we send an IOTLB notification down.
1166 */
1167 entry.target_as = &address_space_memory;
1168 entry.iova = iova & subpage_mask;
1169 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1170 entry.addr_mask = ~subpage_mask;
1171 /* NOTE: this is only meaningful if entry_valid == true */
1172 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1173 ret = vtd_page_walk_one(&entry, info);
1174 }
1175
1176 if (ret < 0) {
1177 return ret;
1178 }
1179
1180 next:
1181 iova = iova_next;
1182 }
1183
1184 return 0;
1185 }
1186
1187 /**
1188 * vtd_page_walk - walk specific IOVA range, and call the hook
1189 *
1190 * @s: intel iommu state
1191 * @ce: context entry to walk upon
1192 * @start: IOVA address to start the walk
1193 * @end: IOVA range end address (start <= addr < end)
1194 * @info: page walking information struct
1195 */
1196 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1197 uint64_t start, uint64_t end,
1198 vtd_page_walk_info *info)
1199 {
1200 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1201 uint32_t level = vtd_get_iova_level(s, ce);
1202
1203 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1204 return -VTD_FR_ADDR_BEYOND_MGAW;
1205 }
1206
1207 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1208 /* Fix end so that it reaches the maximum */
1209 end = vtd_iova_limit(s, ce, info->aw);
1210 }
1211
1212 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1213 }
1214
1215 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1216 VTDRootEntry *re)
1217 {
1218 /* Legacy Mode reserved bits check */
1219 if (!s->root_scalable &&
1220 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1221 goto rsvd_err;
1222
1223 /* Scalable Mode reserved bits check */
1224 if (s->root_scalable &&
1225 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1226 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1227 goto rsvd_err;
1228
1229 return 0;
1230
1231 rsvd_err:
1232 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1233 ", lo=0x%"PRIx64,
1234 __func__, re->hi, re->lo);
1235 return -VTD_FR_ROOT_ENTRY_RSVD;
1236 }
1237
1238 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1239 VTDContextEntry *ce)
1240 {
1241 if (!s->root_scalable &&
1242 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1243 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1244 error_report_once("%s: invalid context entry: hi=%"PRIx64
1245 ", lo=%"PRIx64" (reserved nonzero)",
1246 __func__, ce->hi, ce->lo);
1247 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1248 }
1249
1250 if (s->root_scalable &&
1251 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1252 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1253 ce->val[2] ||
1254 ce->val[3])) {
1255 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1256 ", val[2]=%"PRIx64
1257 ", val[1]=%"PRIx64
1258 ", val[0]=%"PRIx64" (reserved nonzero)",
1259 __func__, ce->val[3], ce->val[2],
1260 ce->val[1], ce->val[0]);
1261 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1262 }
1263
1264 return 0;
1265 }
1266
1267 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1268 VTDContextEntry *ce)
1269 {
1270 VTDPASIDEntry pe;
1271
1272 /*
1273 * Make sure in Scalable Mode, a present context entry
1274 * has valid rid2pasid setting, which includes valid
1275 * rid2pasid field and corresponding pasid entry setting
1276 */
1277 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1278 }
1279
1280 /* Map a device to its corresponding domain (context-entry) */
1281 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1282 uint8_t devfn, VTDContextEntry *ce)
1283 {
1284 VTDRootEntry re;
1285 int ret_fr;
1286 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1287
1288 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1289 if (ret_fr) {
1290 return ret_fr;
1291 }
1292
1293 if (!vtd_root_entry_present(s, &re, devfn)) {
1294 /* Not error - it's okay we don't have root entry. */
1295 trace_vtd_re_not_present(bus_num);
1296 return -VTD_FR_ROOT_ENTRY_P;
1297 }
1298
1299 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1300 if (ret_fr) {
1301 return ret_fr;
1302 }
1303
1304 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1305 if (ret_fr) {
1306 return ret_fr;
1307 }
1308
1309 if (!vtd_ce_present(ce)) {
1310 /* Not error - it's okay we don't have context entry. */
1311 trace_vtd_ce_not_present(bus_num, devfn);
1312 return -VTD_FR_CONTEXT_ENTRY_P;
1313 }
1314
1315 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1316 if (ret_fr) {
1317 return ret_fr;
1318 }
1319
1320 /* Check if the programming of context-entry is valid */
1321 if (!s->root_scalable &&
1322 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1323 error_report_once("%s: invalid context entry: hi=%"PRIx64
1324 ", lo=%"PRIx64" (level %d not supported)",
1325 __func__, ce->hi, ce->lo,
1326 vtd_ce_get_level(ce));
1327 return -VTD_FR_CONTEXT_ENTRY_INV;
1328 }
1329
1330 if (!s->root_scalable) {
1331 /* Do translation type check */
1332 if (!vtd_ce_type_check(x86_iommu, ce)) {
1333 /* Errors dumped in vtd_ce_type_check() */
1334 return -VTD_FR_CONTEXT_ENTRY_INV;
1335 }
1336 } else {
1337 /*
1338 * Check if the programming of context-entry.rid2pasid
1339 * and corresponding pasid setting is valid, and thus
1340 * avoids to check pasid entry fetching result in future
1341 * helper function calling.
1342 */
1343 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1344 if (ret_fr) {
1345 return ret_fr;
1346 }
1347 }
1348
1349 return 0;
1350 }
1351
1352 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1353 void *private)
1354 {
1355 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1356 return 0;
1357 }
1358
1359 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1360 VTDContextEntry *ce)
1361 {
1362 VTDPASIDEntry pe;
1363
1364 if (s->root_scalable) {
1365 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1366 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1367 }
1368
1369 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1370 }
1371
1372 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1373 VTDContextEntry *ce,
1374 hwaddr addr, hwaddr size)
1375 {
1376 IntelIOMMUState *s = vtd_as->iommu_state;
1377 vtd_page_walk_info info = {
1378 .hook_fn = vtd_sync_shadow_page_hook,
1379 .private = (void *)&vtd_as->iommu,
1380 .notify_unmap = true,
1381 .aw = s->aw_bits,
1382 .as = vtd_as,
1383 .domain_id = vtd_get_domain_id(s, ce),
1384 };
1385
1386 return vtd_page_walk(s, ce, addr, addr + size, &info);
1387 }
1388
1389 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1390 {
1391 int ret;
1392 VTDContextEntry ce;
1393 IOMMUNotifier *n;
1394
1395 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1396 pci_bus_num(vtd_as->bus),
1397 vtd_as->devfn, &ce);
1398 if (ret) {
1399 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1400 /*
1401 * It's a valid scenario to have a context entry that is
1402 * not present. For example, when a device is removed
1403 * from an existing domain then the context entry will be
1404 * zeroed by the guest before it was put into another
1405 * domain. When this happens, instead of synchronizing
1406 * the shadow pages we should invalidate all existing
1407 * mappings and notify the backends.
1408 */
1409 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1410 vtd_address_space_unmap(vtd_as, n);
1411 }
1412 ret = 0;
1413 }
1414 return ret;
1415 }
1416
1417 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1418 }
1419
1420 /*
1421 * Check if specific device is configed to bypass address
1422 * translation for DMA requests. In Scalable Mode, bypass
1423 * 1st-level translation or 2nd-level translation, it depends
1424 * on PGTT setting.
1425 */
1426 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1427 {
1428 IntelIOMMUState *s;
1429 VTDContextEntry ce;
1430 VTDPASIDEntry pe;
1431 int ret;
1432
1433 assert(as);
1434
1435 s = as->iommu_state;
1436 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1437 as->devfn, &ce);
1438 if (ret) {
1439 /*
1440 * Possibly failed to parse the context entry for some reason
1441 * (e.g., during init, or any guest configuration errors on
1442 * context entries). We should assume PT not enabled for
1443 * safety.
1444 */
1445 return false;
1446 }
1447
1448 if (s->root_scalable) {
1449 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1450 if (ret) {
1451 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1452 __func__, ret);
1453 return false;
1454 }
1455 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1456 }
1457
1458 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1459 }
1460
1461 /* Return whether the device is using IOMMU translation. */
1462 static bool vtd_switch_address_space(VTDAddressSpace *as)
1463 {
1464 bool use_iommu;
1465 /* Whether we need to take the BQL on our own */
1466 bool take_bql = !qemu_mutex_iothread_locked();
1467
1468 assert(as);
1469
1470 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1471
1472 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1473 VTD_PCI_SLOT(as->devfn),
1474 VTD_PCI_FUNC(as->devfn),
1475 use_iommu);
1476
1477 /*
1478 * It's possible that we reach here without BQL, e.g., when called
1479 * from vtd_pt_enable_fast_path(). However the memory APIs need
1480 * it. We'd better make sure we have had it already, or, take it.
1481 */
1482 if (take_bql) {
1483 qemu_mutex_lock_iothread();
1484 }
1485
1486 /* Turn off first then on the other */
1487 if (use_iommu) {
1488 memory_region_set_enabled(&as->nodmar, false);
1489 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1490 } else {
1491 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1492 memory_region_set_enabled(&as->nodmar, true);
1493 }
1494
1495 if (take_bql) {
1496 qemu_mutex_unlock_iothread();
1497 }
1498
1499 return use_iommu;
1500 }
1501
1502 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1503 {
1504 GHashTableIter iter;
1505 VTDBus *vtd_bus;
1506 int i;
1507
1508 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1509 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1510 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1511 if (!vtd_bus->dev_as[i]) {
1512 continue;
1513 }
1514 vtd_switch_address_space(vtd_bus->dev_as[i]);
1515 }
1516 }
1517 }
1518
1519 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1520 {
1521 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1522 }
1523
1524 static const bool vtd_qualified_faults[] = {
1525 [VTD_FR_RESERVED] = false,
1526 [VTD_FR_ROOT_ENTRY_P] = false,
1527 [VTD_FR_CONTEXT_ENTRY_P] = true,
1528 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1529 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1530 [VTD_FR_WRITE] = true,
1531 [VTD_FR_READ] = true,
1532 [VTD_FR_PAGING_ENTRY_INV] = true,
1533 [VTD_FR_ROOT_TABLE_INV] = false,
1534 [VTD_FR_CONTEXT_TABLE_INV] = false,
1535 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1536 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1537 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1538 [VTD_FR_PASID_TABLE_INV] = false,
1539 [VTD_FR_RESERVED_ERR] = false,
1540 [VTD_FR_MAX] = false,
1541 };
1542
1543 /* To see if a fault condition is "qualified", which is reported to software
1544 * only if the FPD field in the context-entry used to process the faulting
1545 * request is 0.
1546 */
1547 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1548 {
1549 return vtd_qualified_faults[fault];
1550 }
1551
1552 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1553 {
1554 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1555 }
1556
1557 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1558 {
1559 VTDBus *vtd_bus;
1560 VTDAddressSpace *vtd_as;
1561 bool success = false;
1562
1563 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1564 if (!vtd_bus) {
1565 goto out;
1566 }
1567
1568 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1569 if (!vtd_as) {
1570 goto out;
1571 }
1572
1573 if (vtd_switch_address_space(vtd_as) == false) {
1574 /* We switched off IOMMU region successfully. */
1575 success = true;
1576 }
1577
1578 out:
1579 trace_vtd_pt_enable_fast_path(source_id, success);
1580 }
1581
1582 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1583 * translation.
1584 *
1585 * Called from RCU critical section.
1586 *
1587 * @bus_num: The bus number
1588 * @devfn: The devfn, which is the combined of device and function number
1589 * @is_write: The access is a write operation
1590 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1591 *
1592 * Returns true if translation is successful, otherwise false.
1593 */
1594 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1595 uint8_t devfn, hwaddr addr, bool is_write,
1596 IOMMUTLBEntry *entry)
1597 {
1598 IntelIOMMUState *s = vtd_as->iommu_state;
1599 VTDContextEntry ce;
1600 uint8_t bus_num = pci_bus_num(bus);
1601 VTDContextCacheEntry *cc_entry;
1602 uint64_t slpte, page_mask;
1603 uint32_t level;
1604 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1605 int ret_fr;
1606 bool is_fpd_set = false;
1607 bool reads = true;
1608 bool writes = true;
1609 uint8_t access_flags;
1610 VTDIOTLBEntry *iotlb_entry;
1611
1612 /*
1613 * We have standalone memory region for interrupt addresses, we
1614 * should never receive translation requests in this region.
1615 */
1616 assert(!vtd_is_interrupt_addr(addr));
1617
1618 vtd_iommu_lock(s);
1619
1620 cc_entry = &vtd_as->context_cache_entry;
1621
1622 /* Try to fetch slpte form IOTLB */
1623 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1624 if (iotlb_entry) {
1625 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1626 iotlb_entry->domain_id);
1627 slpte = iotlb_entry->slpte;
1628 access_flags = iotlb_entry->access_flags;
1629 page_mask = iotlb_entry->mask;
1630 goto out;
1631 }
1632
1633 /* Try to fetch context-entry from cache first */
1634 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1635 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1636 cc_entry->context_entry.lo,
1637 cc_entry->context_cache_gen);
1638 ce = cc_entry->context_entry;
1639 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1640 if (!is_fpd_set && s->root_scalable) {
1641 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1642 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1643 }
1644 } else {
1645 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1646 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1647 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1648 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1649 }
1650 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1651 /* Update context-cache */
1652 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1653 cc_entry->context_cache_gen,
1654 s->context_cache_gen);
1655 cc_entry->context_entry = ce;
1656 cc_entry->context_cache_gen = s->context_cache_gen;
1657 }
1658
1659 /*
1660 * We don't need to translate for pass-through context entries.
1661 * Also, let's ignore IOTLB caching as well for PT devices.
1662 */
1663 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1664 entry->iova = addr & VTD_PAGE_MASK_4K;
1665 entry->translated_addr = entry->iova;
1666 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1667 entry->perm = IOMMU_RW;
1668 trace_vtd_translate_pt(source_id, entry->iova);
1669
1670 /*
1671 * When this happens, it means firstly caching-mode is not
1672 * enabled, and this is the first passthrough translation for
1673 * the device. Let's enable the fast path for passthrough.
1674 *
1675 * When passthrough is disabled again for the device, we can
1676 * capture it via the context entry invalidation, then the
1677 * IOMMU region can be swapped back.
1678 */
1679 vtd_pt_enable_fast_path(s, source_id);
1680 vtd_iommu_unlock(s);
1681 return true;
1682 }
1683
1684 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1685 &reads, &writes, s->aw_bits);
1686 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1687
1688 page_mask = vtd_slpt_level_page_mask(level);
1689 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1690 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1691 access_flags, level);
1692 out:
1693 vtd_iommu_unlock(s);
1694 entry->iova = addr & page_mask;
1695 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1696 entry->addr_mask = ~page_mask;
1697 entry->perm = access_flags;
1698 return true;
1699
1700 error:
1701 vtd_iommu_unlock(s);
1702 entry->iova = 0;
1703 entry->translated_addr = 0;
1704 entry->addr_mask = 0;
1705 entry->perm = IOMMU_NONE;
1706 return false;
1707 }
1708
1709 static void vtd_root_table_setup(IntelIOMMUState *s)
1710 {
1711 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1712 s->root_extended = s->root & VTD_RTADDR_RTT;
1713 if (s->scalable_mode) {
1714 s->root_scalable = s->root & VTD_RTADDR_SMT;
1715 }
1716 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1717
1718 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1719 }
1720
1721 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1722 uint32_t index, uint32_t mask)
1723 {
1724 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1725 }
1726
1727 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1728 {
1729 uint64_t value = 0;
1730 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1731 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1732 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1733 s->intr_eime = value & VTD_IRTA_EIME;
1734
1735 /* Notify global invalidation */
1736 vtd_iec_notify_all(s, true, 0, 0);
1737
1738 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1739 }
1740
1741 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1742 {
1743 VTDAddressSpace *vtd_as;
1744
1745 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1746 vtd_sync_shadow_page_table(vtd_as);
1747 }
1748 }
1749
1750 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1751 {
1752 trace_vtd_inv_desc_cc_global();
1753 /* Protects context cache */
1754 vtd_iommu_lock(s);
1755 s->context_cache_gen++;
1756 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1757 vtd_reset_context_cache_locked(s);
1758 }
1759 vtd_iommu_unlock(s);
1760 vtd_address_space_refresh_all(s);
1761 /*
1762 * From VT-d spec 6.5.2.1, a global context entry invalidation
1763 * should be followed by a IOTLB global invalidation, so we should
1764 * be safe even without this. Hoewever, let's replay the region as
1765 * well to be safer, and go back here when we need finer tunes for
1766 * VT-d emulation codes.
1767 */
1768 vtd_iommu_replay_all(s);
1769 }
1770
1771 /* Do a context-cache device-selective invalidation.
1772 * @func_mask: FM field after shifting
1773 */
1774 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1775 uint16_t source_id,
1776 uint16_t func_mask)
1777 {
1778 uint16_t mask;
1779 VTDBus *vtd_bus;
1780 VTDAddressSpace *vtd_as;
1781 uint8_t bus_n, devfn;
1782 uint16_t devfn_it;
1783
1784 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1785
1786 switch (func_mask & 3) {
1787 case 0:
1788 mask = 0; /* No bits in the SID field masked */
1789 break;
1790 case 1:
1791 mask = 4; /* Mask bit 2 in the SID field */
1792 break;
1793 case 2:
1794 mask = 6; /* Mask bit 2:1 in the SID field */
1795 break;
1796 case 3:
1797 mask = 7; /* Mask bit 2:0 in the SID field */
1798 break;
1799 }
1800 mask = ~mask;
1801
1802 bus_n = VTD_SID_TO_BUS(source_id);
1803 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1804 if (vtd_bus) {
1805 devfn = VTD_SID_TO_DEVFN(source_id);
1806 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1807 vtd_as = vtd_bus->dev_as[devfn_it];
1808 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1809 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1810 VTD_PCI_FUNC(devfn_it));
1811 vtd_iommu_lock(s);
1812 vtd_as->context_cache_entry.context_cache_gen = 0;
1813 vtd_iommu_unlock(s);
1814 /*
1815 * Do switch address space when needed, in case if the
1816 * device passthrough bit is switched.
1817 */
1818 vtd_switch_address_space(vtd_as);
1819 /*
1820 * So a device is moving out of (or moving into) a
1821 * domain, resync the shadow page table.
1822 * This won't bring bad even if we have no such
1823 * notifier registered - the IOMMU notification
1824 * framework will skip MAP notifications if that
1825 * happened.
1826 */
1827 vtd_sync_shadow_page_table(vtd_as);
1828 }
1829 }
1830 }
1831 }
1832
1833 /* Context-cache invalidation
1834 * Returns the Context Actual Invalidation Granularity.
1835 * @val: the content of the CCMD_REG
1836 */
1837 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1838 {
1839 uint64_t caig;
1840 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1841
1842 switch (type) {
1843 case VTD_CCMD_DOMAIN_INVL:
1844 /* Fall through */
1845 case VTD_CCMD_GLOBAL_INVL:
1846 caig = VTD_CCMD_GLOBAL_INVL_A;
1847 vtd_context_global_invalidate(s);
1848 break;
1849
1850 case VTD_CCMD_DEVICE_INVL:
1851 caig = VTD_CCMD_DEVICE_INVL_A;
1852 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1853 break;
1854
1855 default:
1856 error_report_once("%s: invalid context: 0x%" PRIx64,
1857 __func__, val);
1858 caig = 0;
1859 }
1860 return caig;
1861 }
1862
1863 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1864 {
1865 trace_vtd_inv_desc_iotlb_global();
1866 vtd_reset_iotlb(s);
1867 vtd_iommu_replay_all(s);
1868 }
1869
1870 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1871 {
1872 VTDContextEntry ce;
1873 VTDAddressSpace *vtd_as;
1874
1875 trace_vtd_inv_desc_iotlb_domain(domain_id);
1876
1877 vtd_iommu_lock(s);
1878 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1879 &domain_id);
1880 vtd_iommu_unlock(s);
1881
1882 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1883 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1884 vtd_as->devfn, &ce) &&
1885 domain_id == vtd_get_domain_id(s, &ce)) {
1886 vtd_sync_shadow_page_table(vtd_as);
1887 }
1888 }
1889 }
1890
1891 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1892 uint16_t domain_id, hwaddr addr,
1893 uint8_t am)
1894 {
1895 VTDAddressSpace *vtd_as;
1896 VTDContextEntry ce;
1897 int ret;
1898 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1899
1900 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1901 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1902 vtd_as->devfn, &ce);
1903 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1904 if (vtd_as_has_map_notifier(vtd_as)) {
1905 /*
1906 * As long as we have MAP notifications registered in
1907 * any of our IOMMU notifiers, we need to sync the
1908 * shadow page table.
1909 */
1910 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1911 } else {
1912 /*
1913 * For UNMAP-only notifiers, we don't need to walk the
1914 * page tables. We just deliver the PSI down to
1915 * invalidate caches.
1916 */
1917 IOMMUTLBEntry entry = {
1918 .target_as = &address_space_memory,
1919 .iova = addr,
1920 .translated_addr = 0,
1921 .addr_mask = size - 1,
1922 .perm = IOMMU_NONE,
1923 };
1924 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1925 }
1926 }
1927 }
1928 }
1929
1930 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1931 hwaddr addr, uint8_t am)
1932 {
1933 VTDIOTLBPageInvInfo info;
1934
1935 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1936
1937 assert(am <= VTD_MAMV);
1938 info.domain_id = domain_id;
1939 info.addr = addr;
1940 info.mask = ~((1 << am) - 1);
1941 vtd_iommu_lock(s);
1942 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1943 vtd_iommu_unlock(s);
1944 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1945 }
1946
1947 /* Flush IOTLB
1948 * Returns the IOTLB Actual Invalidation Granularity.
1949 * @val: the content of the IOTLB_REG
1950 */
1951 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1952 {
1953 uint64_t iaig;
1954 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1955 uint16_t domain_id;
1956 hwaddr addr;
1957 uint8_t am;
1958
1959 switch (type) {
1960 case VTD_TLB_GLOBAL_FLUSH:
1961 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1962 vtd_iotlb_global_invalidate(s);
1963 break;
1964
1965 case VTD_TLB_DSI_FLUSH:
1966 domain_id = VTD_TLB_DID(val);
1967 iaig = VTD_TLB_DSI_FLUSH_A;
1968 vtd_iotlb_domain_invalidate(s, domain_id);
1969 break;
1970
1971 case VTD_TLB_PSI_FLUSH:
1972 domain_id = VTD_TLB_DID(val);
1973 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1974 am = VTD_IVA_AM(addr);
1975 addr = VTD_IVA_ADDR(addr);
1976 if (am > VTD_MAMV) {
1977 error_report_once("%s: address mask overflow: 0x%" PRIx64,
1978 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
1979 iaig = 0;
1980 break;
1981 }
1982 iaig = VTD_TLB_PSI_FLUSH_A;
1983 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1984 break;
1985
1986 default:
1987 error_report_once("%s: invalid granularity: 0x%" PRIx64,
1988 __func__, val);
1989 iaig = 0;
1990 }
1991 return iaig;
1992 }
1993
1994 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1995
1996 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1997 {
1998 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1999 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2000 }
2001
2002 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2003 {
2004 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2005
2006 trace_vtd_inv_qi_enable(en);
2007
2008 if (en) {
2009 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2010 /* 2^(x+8) entries */
2011 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2012 s->qi_enabled = true;
2013 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2014 /* Ok - report back to driver */
2015 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2016
2017 if (s->iq_tail != 0) {
2018 /*
2019 * This is a spec violation but Windows guests are known to set up
2020 * Queued Invalidation this way so we allow the write and process
2021 * Invalidation Descriptors right away.
2022 */
2023 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2024 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2025 vtd_fetch_inv_desc(s);
2026 }
2027 }
2028 } else {
2029 if (vtd_queued_inv_disable_check(s)) {
2030 /* disable Queued Invalidation */
2031 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2032 s->iq_head = 0;
2033 s->qi_enabled = false;
2034 /* Ok - report back to driver */
2035 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2036 } else {
2037 error_report_once("%s: detected improper state when disable QI "
2038 "(head=0x%x, tail=0x%x, last_type=%d)",
2039 __func__,
2040 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2041 }
2042 }
2043 }
2044
2045 /* Set Root Table Pointer */
2046 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2047 {
2048 vtd_root_table_setup(s);
2049 /* Ok - report back to driver */
2050 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2051 vtd_reset_caches(s);
2052 vtd_address_space_refresh_all(s);
2053 }
2054
2055 /* Set Interrupt Remap Table Pointer */
2056 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2057 {
2058 vtd_interrupt_remap_table_setup(s);
2059 /* Ok - report back to driver */
2060 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2061 }
2062
2063 /* Handle Translation Enable/Disable */
2064 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2065 {
2066 if (s->dmar_enabled == en) {
2067 return;
2068 }
2069
2070 trace_vtd_dmar_enable(en);
2071
2072 if (en) {
2073 s->dmar_enabled = true;
2074 /* Ok - report back to driver */
2075 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2076 } else {
2077 s->dmar_enabled = false;
2078
2079 /* Clear the index of Fault Recording Register */
2080 s->next_frcd_reg = 0;
2081 /* Ok - report back to driver */
2082 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2083 }
2084
2085 vtd_reset_caches(s);
2086 vtd_address_space_refresh_all(s);
2087 }
2088
2089 /* Handle Interrupt Remap Enable/Disable */
2090 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2091 {
2092 trace_vtd_ir_enable(en);
2093
2094 if (en) {
2095 s->intr_enabled = true;
2096 /* Ok - report back to driver */
2097 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2098 } else {
2099 s->intr_enabled = false;
2100 /* Ok - report back to driver */
2101 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2102 }
2103 }
2104
2105 /* Handle write to Global Command Register */
2106 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2107 {
2108 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2109 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2110 uint32_t changed = status ^ val;
2111
2112 trace_vtd_reg_write_gcmd(status, val);
2113 if (changed & VTD_GCMD_TE) {
2114 /* Translation enable/disable */
2115 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2116 }
2117 if (val & VTD_GCMD_SRTP) {
2118 /* Set/update the root-table pointer */
2119 vtd_handle_gcmd_srtp(s);
2120 }
2121 if (changed & VTD_GCMD_QIE) {
2122 /* Queued Invalidation Enable */
2123 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2124 }
2125 if (val & VTD_GCMD_SIRTP) {
2126 /* Set/update the interrupt remapping root-table pointer */
2127 vtd_handle_gcmd_sirtp(s);
2128 }
2129 if (changed & VTD_GCMD_IRE) {
2130 /* Interrupt remap enable/disable */
2131 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2132 }
2133 }
2134
2135 /* Handle write to Context Command Register */
2136 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2137 {
2138 uint64_t ret;
2139 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2140
2141 /* Context-cache invalidation request */
2142 if (val & VTD_CCMD_ICC) {
2143 if (s->qi_enabled) {
2144 error_report_once("Queued Invalidation enabled, "
2145 "should not use register-based invalidation");
2146 return;
2147 }
2148 ret = vtd_context_cache_invalidate(s, val);
2149 /* Invalidation completed. Change something to show */
2150 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2151 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2152 ret);
2153 }
2154 }
2155
2156 /* Handle write to IOTLB Invalidation Register */
2157 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2158 {
2159 uint64_t ret;
2160 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2161
2162 /* IOTLB invalidation request */
2163 if (val & VTD_TLB_IVT) {
2164 if (s->qi_enabled) {
2165 error_report_once("Queued Invalidation enabled, "
2166 "should not use register-based invalidation");
2167 return;
2168 }
2169 ret = vtd_iotlb_flush(s, val);
2170 /* Invalidation completed. Change something to show */
2171 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2172 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2173 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2174 }
2175 }
2176
2177 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2178 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2179 VTDInvDesc *inv_desc)
2180 {
2181 dma_addr_t base_addr = s->iq;
2182 uint32_t offset = s->iq_head;
2183 uint32_t dw = s->iq_dw ? 32 : 16;
2184 dma_addr_t addr = base_addr + offset * dw;
2185
2186 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2187 error_report_once("Read INV DESC failed.");
2188 return false;
2189 }
2190 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2191 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2192 if (dw == 32) {
2193 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2194 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2195 }
2196 return true;
2197 }
2198
2199 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2200 {
2201 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2202 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2203 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2204 " (reserved nonzero)", __func__, inv_desc->hi,
2205 inv_desc->lo);
2206 return false;
2207 }
2208 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2209 /* Status Write */
2210 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2211 VTD_INV_DESC_WAIT_DATA_SHIFT);
2212
2213 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2214
2215 /* FIXME: need to be masked with HAW? */
2216 dma_addr_t status_addr = inv_desc->hi;
2217 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2218 status_data = cpu_to_le32(status_data);
2219 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2220 sizeof(status_data))) {
2221 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2222 return false;
2223 }
2224 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2225 /* Interrupt flag */
2226 vtd_generate_completion_event(s);
2227 } else {
2228 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2229 " (unknown type)", __func__, inv_desc->hi,
2230 inv_desc->lo);
2231 return false;
2232 }
2233 return true;
2234 }
2235
2236 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2237 VTDInvDesc *inv_desc)
2238 {
2239 uint16_t sid, fmask;
2240
2241 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2242 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2243 " (reserved nonzero)", __func__, inv_desc->hi,
2244 inv_desc->lo);
2245 return false;
2246 }
2247 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2248 case VTD_INV_DESC_CC_DOMAIN:
2249 trace_vtd_inv_desc_cc_domain(
2250 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2251 /* Fall through */
2252 case VTD_INV_DESC_CC_GLOBAL:
2253 vtd_context_global_invalidate(s);
2254 break;
2255
2256 case VTD_INV_DESC_CC_DEVICE:
2257 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2258 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2259 vtd_context_device_invalidate(s, sid, fmask);
2260 break;
2261
2262 default:
2263 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2264 " (invalid type)", __func__, inv_desc->hi,
2265 inv_desc->lo);
2266 return false;
2267 }
2268 return true;
2269 }
2270
2271 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2272 {
2273 uint16_t domain_id;
2274 uint8_t am;
2275 hwaddr addr;
2276
2277 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2278 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2279 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2280 ", lo=0x%"PRIx64" (reserved bits unzero)\n",
2281 __func__, inv_desc->hi, inv_desc->lo);
2282 return false;
2283 }
2284
2285 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2286 case VTD_INV_DESC_IOTLB_GLOBAL:
2287 vtd_iotlb_global_invalidate(s);
2288 break;
2289
2290 case VTD_INV_DESC_IOTLB_DOMAIN:
2291 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2292 vtd_iotlb_domain_invalidate(s, domain_id);
2293 break;
2294
2295 case VTD_INV_DESC_IOTLB_PAGE:
2296 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2297 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2298 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2299 if (am > VTD_MAMV) {
2300 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2301 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
2302 __func__, inv_desc->hi, inv_desc->lo,
2303 am, (unsigned)VTD_MAMV);
2304 return false;
2305 }
2306 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2307 break;
2308
2309 default:
2310 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2311 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
2312 __func__, inv_desc->hi, inv_desc->lo,
2313 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2314 return false;
2315 }
2316 return true;
2317 }
2318
2319 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2320 VTDInvDesc *inv_desc)
2321 {
2322 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2323 inv_desc->iec.index,
2324 inv_desc->iec.index_mask);
2325
2326 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2327 inv_desc->iec.index,
2328 inv_desc->iec.index_mask);
2329 return true;
2330 }
2331
2332 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2333 VTDInvDesc *inv_desc)
2334 {
2335 VTDAddressSpace *vtd_dev_as;
2336 IOMMUTLBEntry entry;
2337 struct VTDBus *vtd_bus;
2338 hwaddr addr;
2339 uint64_t sz;
2340 uint16_t sid;
2341 uint8_t devfn;
2342 bool size;
2343 uint8_t bus_num;
2344
2345 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2346 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2347 devfn = sid & 0xff;
2348 bus_num = sid >> 8;
2349 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2350
2351 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2352 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2353 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2354 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2355 inv_desc->hi, inv_desc->lo);
2356 return false;
2357 }
2358
2359 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2360 if (!vtd_bus) {
2361 goto done;
2362 }
2363
2364 vtd_dev_as = vtd_bus->dev_as[devfn];
2365 if (!vtd_dev_as) {
2366 goto done;
2367 }
2368
2369 /* According to ATS spec table 2.4:
2370 * S = 0, bits 15:12 = xxxx range size: 4K
2371 * S = 1, bits 15:12 = xxx0 range size: 8K
2372 * S = 1, bits 15:12 = xx01 range size: 16K
2373 * S = 1, bits 15:12 = x011 range size: 32K
2374 * S = 1, bits 15:12 = 0111 range size: 64K
2375 * ...
2376 */
2377 if (size) {
2378 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2379 addr &= ~(sz - 1);
2380 } else {
2381 sz = VTD_PAGE_SIZE;
2382 }
2383
2384 entry.target_as = &vtd_dev_as->as;
2385 entry.addr_mask = sz - 1;
2386 entry.iova = addr;
2387 entry.perm = IOMMU_NONE;
2388 entry.translated_addr = 0;
2389 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2390
2391 done:
2392 return true;
2393 }
2394
2395 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2396 {
2397 VTDInvDesc inv_desc;
2398 uint8_t desc_type;
2399
2400 trace_vtd_inv_qi_head(s->iq_head);
2401 if (!vtd_get_inv_desc(s, &inv_desc)) {
2402 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2403 return false;
2404 }
2405
2406 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2407 /* FIXME: should update at first or at last? */
2408 s->iq_last_desc_type = desc_type;
2409
2410 switch (desc_type) {
2411 case VTD_INV_DESC_CC:
2412 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2413 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2414 return false;
2415 }
2416 break;
2417
2418 case VTD_INV_DESC_IOTLB:
2419 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2420 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2421 return false;
2422 }
2423 break;
2424
2425 /*
2426 * TODO: the entity of below two cases will be implemented in future series.
2427 * To make guest (which integrates scalable mode support patch set in
2428 * iommu driver) work, just return true is enough so far.
2429 */
2430 case VTD_INV_DESC_PC:
2431 break;
2432
2433 case VTD_INV_DESC_PIOTLB:
2434 break;
2435
2436 case VTD_INV_DESC_WAIT:
2437 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2438 if (!vtd_process_wait_desc(s, &inv_desc)) {
2439 return false;
2440 }
2441 break;
2442
2443 case VTD_INV_DESC_IEC:
2444 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2445 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2446 return false;
2447 }
2448 break;
2449
2450 case VTD_INV_DESC_DEVICE:
2451 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2452 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2453 return false;
2454 }
2455 break;
2456
2457 default:
2458 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2459 " (unknown type)", __func__, inv_desc.hi,
2460 inv_desc.lo);
2461 return false;
2462 }
2463 s->iq_head++;
2464 if (s->iq_head == s->iq_size) {
2465 s->iq_head = 0;
2466 }
2467 return true;
2468 }
2469
2470 /* Try to fetch and process more Invalidation Descriptors */
2471 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2472 {
2473 trace_vtd_inv_qi_fetch();
2474
2475 if (s->iq_tail >= s->iq_size) {
2476 /* Detects an invalid Tail pointer */
2477 error_report_once("%s: detected invalid QI tail "
2478 "(tail=0x%x, size=0x%x)",
2479 __func__, s->iq_tail, s->iq_size);
2480 vtd_handle_inv_queue_error(s);
2481 return;
2482 }
2483 while (s->iq_head != s->iq_tail) {
2484 if (!vtd_process_inv_desc(s)) {
2485 /* Invalidation Queue Errors */
2486 vtd_handle_inv_queue_error(s);
2487 break;
2488 }
2489 /* Must update the IQH_REG in time */
2490 vtd_set_quad_raw(s, DMAR_IQH_REG,
2491 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2492 VTD_IQH_QH_MASK);
2493 }
2494 }
2495
2496 /* Handle write to Invalidation Queue Tail Register */
2497 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2498 {
2499 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2500
2501 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2502 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2503 __func__, val);
2504 return;
2505 }
2506 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2507 trace_vtd_inv_qi_tail(s->iq_tail);
2508
2509 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2510 /* Process Invalidation Queue here */
2511 vtd_fetch_inv_desc(s);
2512 }
2513 }
2514
2515 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2516 {
2517 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2518 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2519 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2520
2521 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2522 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2523 trace_vtd_fsts_clear_ip();
2524 }
2525 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2526 * Descriptors if there are any when Queued Invalidation is enabled?
2527 */
2528 }
2529
2530 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2531 {
2532 uint32_t fectl_reg;
2533 /* FIXME: when software clears the IM field, check the IP field. But do we
2534 * need to compare the old value and the new value to conclude that
2535 * software clears the IM field? Or just check if the IM field is zero?
2536 */
2537 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2538
2539 trace_vtd_reg_write_fectl(fectl_reg);
2540
2541 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2542 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2543 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2544 }
2545 }
2546
2547 static void vtd_handle_ics_write(IntelIOMMUState *s)
2548 {
2549 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2550 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2551
2552 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2553 trace_vtd_reg_ics_clear_ip();
2554 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2555 }
2556 }
2557
2558 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2559 {
2560 uint32_t iectl_reg;
2561 /* FIXME: when software clears the IM field, check the IP field. But do we
2562 * need to compare the old value and the new value to conclude that
2563 * software clears the IM field? Or just check if the IM field is zero?
2564 */
2565 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2566
2567 trace_vtd_reg_write_iectl(iectl_reg);
2568
2569 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2570 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2571 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2572 }
2573 }
2574
2575 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2576 {
2577 IntelIOMMUState *s = opaque;
2578 uint64_t val;
2579
2580 trace_vtd_reg_read(addr, size);
2581
2582 if (addr + size > DMAR_REG_SIZE) {
2583 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2584 " size=0x%u", __func__, addr, size);
2585 return (uint64_t)-1;
2586 }
2587
2588 switch (addr) {
2589 /* Root Table Address Register, 64-bit */
2590 case DMAR_RTADDR_REG:
2591 if (size == 4) {
2592 val = s->root & ((1ULL << 32) - 1);
2593 } else {
2594 val = s->root;
2595 }
2596 break;
2597
2598 case DMAR_RTADDR_REG_HI:
2599 assert(size == 4);
2600 val = s->root >> 32;
2601 break;
2602
2603 /* Invalidation Queue Address Register, 64-bit */
2604 case DMAR_IQA_REG:
2605 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2606 if (size == 4) {
2607 val = val & ((1ULL << 32) - 1);
2608 }
2609 break;
2610
2611 case DMAR_IQA_REG_HI:
2612 assert(size == 4);
2613 val = s->iq >> 32;
2614 break;
2615
2616 default:
2617 if (size == 4) {
2618 val = vtd_get_long(s, addr);
2619 } else {
2620 val = vtd_get_quad(s, addr);
2621 }
2622 }
2623
2624 return val;
2625 }
2626
2627 static void vtd_mem_write(void *opaque, hwaddr addr,
2628 uint64_t val, unsigned size)
2629 {
2630 IntelIOMMUState *s = opaque;
2631
2632 trace_vtd_reg_write(addr, size, val);
2633
2634 if (addr + size > DMAR_REG_SIZE) {
2635 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2636 " size=0x%u", __func__, addr, size);
2637 return;
2638 }
2639
2640 switch (addr) {
2641 /* Global Command Register, 32-bit */
2642 case DMAR_GCMD_REG:
2643 vtd_set_long(s, addr, val);
2644 vtd_handle_gcmd_write(s);
2645 break;
2646
2647 /* Context Command Register, 64-bit */
2648 case DMAR_CCMD_REG:
2649 if (size == 4) {
2650 vtd_set_long(s, addr, val);
2651 } else {
2652 vtd_set_quad(s, addr, val);
2653 vtd_handle_ccmd_write(s);
2654 }
2655 break;
2656
2657 case DMAR_CCMD_REG_HI:
2658 assert(size == 4);
2659 vtd_set_long(s, addr, val);
2660 vtd_handle_ccmd_write(s);
2661 break;
2662
2663 /* IOTLB Invalidation Register, 64-bit */
2664 case DMAR_IOTLB_REG:
2665 if (size == 4) {
2666 vtd_set_long(s, addr, val);
2667 } else {
2668 vtd_set_quad(s, addr, val);
2669 vtd_handle_iotlb_write(s);
2670 }
2671 break;
2672
2673 case DMAR_IOTLB_REG_HI:
2674 assert(size == 4);
2675 vtd_set_long(s, addr, val);
2676 vtd_handle_iotlb_write(s);
2677 break;
2678
2679 /* Invalidate Address Register, 64-bit */
2680 case DMAR_IVA_REG:
2681 if (size == 4) {
2682 vtd_set_long(s, addr, val);
2683 } else {
2684 vtd_set_quad(s, addr, val);
2685 }
2686 break;
2687
2688 case DMAR_IVA_REG_HI:
2689 assert(size == 4);
2690 vtd_set_long(s, addr, val);
2691 break;
2692
2693 /* Fault Status Register, 32-bit */
2694 case DMAR_FSTS_REG:
2695 assert(size == 4);
2696 vtd_set_long(s, addr, val);
2697 vtd_handle_fsts_write(s);
2698 break;
2699
2700 /* Fault Event Control Register, 32-bit */
2701 case DMAR_FECTL_REG:
2702 assert(size == 4);
2703 vtd_set_long(s, addr, val);
2704 vtd_handle_fectl_write(s);
2705 break;
2706
2707 /* Fault Event Data Register, 32-bit */
2708 case DMAR_FEDATA_REG:
2709 assert(size == 4);
2710 vtd_set_long(s, addr, val);
2711 break;
2712
2713 /* Fault Event Address Register, 32-bit */
2714 case DMAR_FEADDR_REG:
2715 if (size == 4) {
2716 vtd_set_long(s, addr, val);
2717 } else {
2718 /*
2719 * While the register is 32-bit only, some guests (Xen...) write to
2720 * it with 64-bit.
2721 */
2722 vtd_set_quad(s, addr, val);
2723 }
2724 break;
2725
2726 /* Fault Event Upper Address Register, 32-bit */
2727 case DMAR_FEUADDR_REG:
2728 assert(size == 4);
2729 vtd_set_long(s, addr, val);
2730 break;
2731
2732 /* Protected Memory Enable Register, 32-bit */
2733 case DMAR_PMEN_REG:
2734 assert(size == 4);
2735 vtd_set_long(s, addr, val);
2736 break;
2737
2738 /* Root Table Address Register, 64-bit */
2739 case DMAR_RTADDR_REG:
2740 if (size == 4) {
2741 vtd_set_long(s, addr, val);
2742 } else {
2743 vtd_set_quad(s, addr, val);
2744 }
2745 break;
2746
2747 case DMAR_RTADDR_REG_HI:
2748 assert(size == 4);
2749 vtd_set_long(s, addr, val);
2750 break;
2751
2752 /* Invalidation Queue Tail Register, 64-bit */
2753 case DMAR_IQT_REG:
2754 if (size == 4) {
2755 vtd_set_long(s, addr, val);
2756 } else {
2757 vtd_set_quad(s, addr, val);
2758 }
2759 vtd_handle_iqt_write(s);
2760 break;
2761
2762 case DMAR_IQT_REG_HI:
2763 assert(size == 4);
2764 vtd_set_long(s, addr, val);
2765 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2766 break;
2767
2768 /* Invalidation Queue Address Register, 64-bit */
2769 case DMAR_IQA_REG:
2770 if (size == 4) {
2771 vtd_set_long(s, addr, val);
2772 } else {
2773 vtd_set_quad(s, addr, val);
2774 }
2775 if (s->ecap & VTD_ECAP_SMTS &&
2776 val & VTD_IQA_DW_MASK) {
2777 s->iq_dw = true;
2778 } else {
2779 s->iq_dw = false;
2780 }
2781 break;
2782
2783 case DMAR_IQA_REG_HI:
2784 assert(size == 4);
2785 vtd_set_long(s, addr, val);
2786 break;
2787
2788 /* Invalidation Completion Status Register, 32-bit */
2789 case DMAR_ICS_REG:
2790 assert(size == 4);
2791 vtd_set_long(s, addr, val);
2792 vtd_handle_ics_write(s);
2793 break;
2794
2795 /* Invalidation Event Control Register, 32-bit */
2796 case DMAR_IECTL_REG:
2797 assert(size == 4);
2798 vtd_set_long(s, addr, val);
2799 vtd_handle_iectl_write(s);
2800 break;
2801
2802 /* Invalidation Event Data Register, 32-bit */
2803 case DMAR_IEDATA_REG:
2804 assert(size == 4);
2805 vtd_set_long(s, addr, val);
2806 break;
2807
2808 /* Invalidation Event Address Register, 32-bit */
2809 case DMAR_IEADDR_REG:
2810 assert(size == 4);
2811 vtd_set_long(s, addr, val);
2812 break;
2813
2814 /* Invalidation Event Upper Address Register, 32-bit */
2815 case DMAR_IEUADDR_REG:
2816 assert(size == 4);
2817 vtd_set_long(s, addr, val);
2818 break;
2819
2820 /* Fault Recording Registers, 128-bit */
2821 case DMAR_FRCD_REG_0_0:
2822 if (size == 4) {
2823 vtd_set_long(s, addr, val);
2824 } else {
2825 vtd_set_quad(s, addr, val);
2826 }
2827 break;
2828
2829 case DMAR_FRCD_REG_0_1:
2830 assert(size == 4);
2831 vtd_set_long(s, addr, val);
2832 break;
2833
2834 case DMAR_FRCD_REG_0_2:
2835 if (size == 4) {
2836 vtd_set_long(s, addr, val);
2837 } else {
2838 vtd_set_quad(s, addr, val);
2839 /* May clear bit 127 (Fault), update PPF */
2840 vtd_update_fsts_ppf(s);
2841 }
2842 break;
2843
2844 case DMAR_FRCD_REG_0_3:
2845 assert(size == 4);
2846 vtd_set_long(s, addr, val);
2847 /* May clear bit 127 (Fault), update PPF */
2848 vtd_update_fsts_ppf(s);
2849 break;
2850
2851 case DMAR_IRTA_REG:
2852 if (size == 4) {
2853 vtd_set_long(s, addr, val);
2854 } else {
2855 vtd_set_quad(s, addr, val);
2856 }
2857 break;
2858
2859 case DMAR_IRTA_REG_HI:
2860 assert(size == 4);
2861 vtd_set_long(s, addr, val);
2862 break;
2863
2864 default:
2865 if (size == 4) {
2866 vtd_set_long(s, addr, val);
2867 } else {
2868 vtd_set_quad(s, addr, val);
2869 }
2870 }
2871 }
2872
2873 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2874 IOMMUAccessFlags flag, int iommu_idx)
2875 {
2876 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2877 IntelIOMMUState *s = vtd_as->iommu_state;
2878 IOMMUTLBEntry iotlb = {
2879 /* We'll fill in the rest later. */
2880 .target_as = &address_space_memory,
2881 };
2882 bool success;
2883
2884 if (likely(s->dmar_enabled)) {
2885 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2886 addr, flag & IOMMU_WO, &iotlb);
2887 } else {
2888 /* DMAR disabled, passthrough, use 4k-page*/
2889 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2890 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2891 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2892 iotlb.perm = IOMMU_RW;
2893 success = true;
2894 }
2895
2896 if (likely(success)) {
2897 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2898 VTD_PCI_SLOT(vtd_as->devfn),
2899 VTD_PCI_FUNC(vtd_as->devfn),
2900 iotlb.iova, iotlb.translated_addr,
2901 iotlb.addr_mask);
2902 } else {
2903 error_report_once("%s: detected translation failure "
2904 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2905 __func__, pci_bus_num(vtd_as->bus),
2906 VTD_PCI_SLOT(vtd_as->devfn),
2907 VTD_PCI_FUNC(vtd_as->devfn),
2908 addr);
2909 }
2910
2911 return iotlb;
2912 }
2913
2914 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2915 IOMMUNotifierFlag old,
2916 IOMMUNotifierFlag new)
2917 {
2918 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2919 IntelIOMMUState *s = vtd_as->iommu_state;
2920
2921 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2922 error_report("We need to set caching-mode=on for intel-iommu to enable "
2923 "device assignment with IOMMU protection.");
2924 exit(1);
2925 }
2926
2927 /* Update per-address-space notifier flags */
2928 vtd_as->notifier_flags = new;
2929
2930 if (old == IOMMU_NOTIFIER_NONE) {
2931 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2932 } else if (new == IOMMU_NOTIFIER_NONE) {
2933 QLIST_REMOVE(vtd_as, next);
2934 }
2935 }
2936
2937 static int vtd_post_load(void *opaque, int version_id)
2938 {
2939 IntelIOMMUState *iommu = opaque;
2940
2941 /*
2942 * Memory regions are dynamically turned on/off depending on
2943 * context entry configurations from the guest. After migration,
2944 * we need to make sure the memory regions are still correct.
2945 */
2946 vtd_switch_address_space_all(iommu);
2947
2948 return 0;
2949 }
2950
2951 static const VMStateDescription vtd_vmstate = {
2952 .name = "iommu-intel",
2953 .version_id = 1,
2954 .minimum_version_id = 1,
2955 .priority = MIG_PRI_IOMMU,
2956 .post_load = vtd_post_load,
2957 .fields = (VMStateField[]) {
2958 VMSTATE_UINT64(root, IntelIOMMUState),
2959 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2960 VMSTATE_UINT64(iq, IntelIOMMUState),
2961 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2962 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2963 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2964 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2965 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2966 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2967 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2968 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2969 VMSTATE_BOOL(root_scalable, IntelIOMMUState),
2970 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2971 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2972 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2973 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2974 VMSTATE_END_OF_LIST()
2975 }
2976 };
2977
2978 static const MemoryRegionOps vtd_mem_ops = {
2979 .read = vtd_mem_read,
2980 .write = vtd_mem_write,
2981 .endianness = DEVICE_LITTLE_ENDIAN,
2982 .impl = {
2983 .min_access_size = 4,
2984 .max_access_size = 8,
2985 },
2986 .valid = {
2987 .min_access_size = 4,
2988 .max_access_size = 8,
2989 },
2990 };
2991
2992 static Property vtd_properties[] = {
2993 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2994 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2995 ON_OFF_AUTO_AUTO),
2996 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2997 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
2998 VTD_HOST_ADDRESS_WIDTH),
2999 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3000 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3001 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3002 DEFINE_PROP_END_OF_LIST(),
3003 };
3004
3005 /* Read IRTE entry with specific index */
3006 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3007 VTD_IR_TableEntry *entry, uint16_t sid)
3008 {
3009 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3010 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3011 dma_addr_t addr = 0x00;
3012 uint16_t mask, source_id;
3013 uint8_t bus, bus_max, bus_min;
3014
3015 addr = iommu->intr_root + index * sizeof(*entry);
3016 if (dma_memory_read(&address_space_memory, addr, entry,
3017 sizeof(*entry))) {
3018 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3019 __func__, index, addr);
3020 return -VTD_FR_IR_ROOT_INVAL;
3021 }
3022
3023 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3024 le64_to_cpu(entry->data[0]));
3025
3026 if (!entry->irte.present) {
3027 error_report_once("%s: detected non-present IRTE "
3028 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3029 __func__, index, le64_to_cpu(entry->data[1]),
3030 le64_to_cpu(entry->data[0]));
3031 return -VTD_FR_IR_ENTRY_P;
3032 }
3033
3034 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3035 entry->irte.__reserved_2) {
3036 error_report_once("%s: detected non-zero reserved IRTE "
3037 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3038 __func__, index, le64_to_cpu(entry->data[1]),
3039 le64_to_cpu(entry->data[0]));
3040 return -VTD_FR_IR_IRTE_RSVD;
3041 }
3042
3043 if (sid != X86_IOMMU_SID_INVALID) {
3044 /* Validate IRTE SID */
3045 source_id = le32_to_cpu(entry->irte.source_id);
3046 switch (entry->irte.sid_vtype) {
3047 case VTD_SVT_NONE:
3048 break;
3049
3050 case VTD_SVT_ALL:
3051 mask = vtd_svt_mask[entry->irte.sid_q];
3052 if ((source_id & mask) != (sid & mask)) {
3053 error_report_once("%s: invalid IRTE SID "
3054 "(index=%u, sid=%u, source_id=%u)",
3055 __func__, index, sid, source_id);
3056 return -VTD_FR_IR_SID_ERR;
3057 }
3058 break;
3059
3060 case VTD_SVT_BUS:
3061 bus_max = source_id >> 8;
3062 bus_min = source_id & 0xff;
3063 bus = sid >> 8;
3064 if (bus > bus_max || bus < bus_min) {
3065 error_report_once("%s: invalid SVT_BUS "
3066 "(index=%u, bus=%u, min=%u, max=%u)",
3067 __func__, index, bus, bus_min, bus_max);
3068 return -VTD_FR_IR_SID_ERR;
3069 }
3070 break;
3071
3072 default:
3073 error_report_once("%s: detected invalid IRTE SVT "
3074 "(index=%u, type=%d)", __func__,
3075 index, entry->irte.sid_vtype);
3076 /* Take this as verification failure. */
3077 return -VTD_FR_IR_SID_ERR;
3078 break;
3079 }
3080 }
3081
3082 return 0;
3083 }
3084
3085 /* Fetch IRQ information of specific IR index */
3086 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3087 X86IOMMUIrq *irq, uint16_t sid)
3088 {
3089 VTD_IR_TableEntry irte = {};
3090 int ret = 0;
3091
3092 ret = vtd_irte_get(iommu, index, &irte, sid);
3093 if (ret) {
3094 return ret;
3095 }
3096
3097 irq->trigger_mode = irte.irte.trigger_mode;
3098 irq->vector = irte.irte.vector;
3099 irq->delivery_mode = irte.irte.delivery_mode;
3100 irq->dest = le32_to_cpu(irte.irte.dest_id);
3101 if (!iommu->intr_eime) {
3102 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3103 #define VTD_IR_APIC_DEST_SHIFT (8)
3104 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3105 VTD_IR_APIC_DEST_SHIFT;
3106 }
3107 irq->dest_mode = irte.irte.dest_mode;
3108 irq->redir_hint = irte.irte.redir_hint;
3109
3110 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3111 irq->delivery_mode, irq->dest, irq->dest_mode);
3112
3113 return 0;
3114 }
3115
3116 /* Interrupt remapping for MSI/MSI-X entry */
3117 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3118 MSIMessage *origin,
3119 MSIMessage *translated,
3120 uint16_t sid)
3121 {
3122 int ret = 0;
3123 VTD_IR_MSIAddress addr;
3124 uint16_t index;
3125 X86IOMMUIrq irq = {};
3126
3127 assert(origin && translated);
3128
3129 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3130
3131 if (!iommu || !iommu->intr_enabled) {
3132 memcpy(translated, origin, sizeof(*origin));
3133 goto out;
3134 }
3135
3136 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3137 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3138 "address=0x%" PRIx64, __func__, origin->address);
3139 return -VTD_FR_IR_REQ_RSVD;
3140 }
3141
3142 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3143 if (addr.addr.__head != 0xfee) {
3144 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3145 __func__, addr.data);
3146 return -VTD_FR_IR_REQ_RSVD;
3147 }
3148
3149 /* This is compatible mode. */
3150 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3151 memcpy(translated, origin, sizeof(*origin));
3152 goto out;
3153 }
3154
3155 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3156
3157 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3158 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3159
3160 if (addr.addr.sub_valid) {
3161 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3162 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3163 }
3164
3165 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3166 if (ret) {
3167 return ret;
3168 }
3169
3170 if (addr.addr.sub_valid) {
3171 trace_vtd_ir_remap_type("MSI");
3172 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3173 error_report_once("%s: invalid IR MSI "
3174 "(sid=%u, address=0x%" PRIx64
3175 ", data=0x%" PRIx32 ")",
3176 __func__, sid, origin->address, origin->data);
3177 return -VTD_FR_IR_REQ_RSVD;
3178 }
3179 } else {
3180 uint8_t vector = origin->data & 0xff;
3181 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3182
3183 trace_vtd_ir_remap_type("IOAPIC");
3184 /* IOAPIC entry vector should be aligned with IRTE vector
3185 * (see vt-d spec 5.1.5.1). */
3186 if (vector != irq.vector) {
3187 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3188 }
3189
3190 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3191 * (see vt-d spec 5.1.5.1). */
3192 if (trigger_mode != irq.trigger_mode) {
3193 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3194 irq.trigger_mode);
3195 }
3196 }
3197
3198 /*
3199 * We'd better keep the last two bits, assuming that guest OS
3200 * might modify it. Keep it does not hurt after all.
3201 */
3202 irq.msi_addr_last_bits = addr.addr.__not_care;
3203
3204 /* Translate X86IOMMUIrq to MSI message */
3205 x86_iommu_irq_to_msi_message(&irq, translated);
3206
3207 out:
3208 trace_vtd_ir_remap_msi(origin->address, origin->data,
3209 translated->address, translated->data);
3210 return 0;
3211 }
3212
3213 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3214 MSIMessage *dst, uint16_t sid)
3215 {
3216 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3217 src, dst, sid);
3218 }
3219
3220 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3221 uint64_t *data, unsigned size,
3222 MemTxAttrs attrs)
3223 {
3224 return MEMTX_OK;
3225 }
3226
3227 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3228 uint64_t value, unsigned size,
3229 MemTxAttrs attrs)
3230 {
3231 int ret = 0;
3232 MSIMessage from = {}, to = {};
3233 uint16_t sid = X86_IOMMU_SID_INVALID;
3234
3235 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3236 from.data = (uint32_t) value;
3237
3238 if (!attrs.unspecified) {
3239 /* We have explicit Source ID */
3240 sid = attrs.requester_id;
3241 }
3242
3243 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3244 if (ret) {
3245 /* TODO: report error */
3246 /* Drop this interrupt */
3247 return MEMTX_ERROR;
3248 }
3249
3250 apic_get_class()->send_msi(&to);
3251
3252 return MEMTX_OK;
3253 }
3254
3255 static const MemoryRegionOps vtd_mem_ir_ops = {
3256 .read_with_attrs = vtd_mem_ir_read,
3257 .write_with_attrs = vtd_mem_ir_write,
3258 .endianness = DEVICE_LITTLE_ENDIAN,
3259 .impl = {
3260 .min_access_size = 4,
3261 .max_access_size = 4,
3262 },
3263 .valid = {
3264 .min_access_size = 4,
3265 .max_access_size = 4,
3266 },
3267 };
3268
3269 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3270 {
3271 uintptr_t key = (uintptr_t)bus;
3272 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3273 VTDAddressSpace *vtd_dev_as;
3274 char name[128];
3275
3276 if (!vtd_bus) {
3277 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3278 *new_key = (uintptr_t)bus;
3279 /* No corresponding free() */
3280 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3281 PCI_DEVFN_MAX);
3282 vtd_bus->bus = bus;
3283 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3284 }
3285
3286 vtd_dev_as = vtd_bus->dev_as[devfn];
3287
3288 if (!vtd_dev_as) {
3289 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3290 PCI_FUNC(devfn));
3291 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3292
3293 vtd_dev_as->bus = bus;
3294 vtd_dev_as->devfn = (uint8_t)devfn;
3295 vtd_dev_as->iommu_state = s;
3296 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3297 vtd_dev_as->iova_tree = iova_tree_new();
3298
3299 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3300 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3301
3302 /*
3303 * Build the DMAR-disabled container with aliases to the
3304 * shared MRs. Note that aliasing to a shared memory region
3305 * could help the memory API to detect same FlatViews so we
3306 * can have devices to share the same FlatView when DMAR is
3307 * disabled (either by not providing "intel_iommu=on" or with
3308 * "iommu=pt"). It will greatly reduce the total number of
3309 * FlatViews of the system hence VM runs faster.
3310 */
3311 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3312 "vtd-nodmar", &s->mr_nodmar, 0,
3313 memory_region_size(&s->mr_nodmar));
3314
3315 /*
3316 * Build the per-device DMAR-enabled container.
3317 *
3318 * TODO: currently we have per-device IOMMU memory region only
3319 * because we have per-device IOMMU notifiers for devices. If
3320 * one day we can abstract the IOMMU notifiers out of the
3321 * memory regions then we can also share the same memory
3322 * region here just like what we've done above with the nodmar
3323 * region.
3324 */
3325 strcat(name, "-dmar");
3326 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3327 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3328 name, UINT64_MAX);
3329 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3330 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3331 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3332 VTD_INTERRUPT_ADDR_FIRST,
3333 &vtd_dev_as->iommu_ir, 1);
3334
3335 /*
3336 * Hook both the containers under the root container, we
3337 * switch between DMAR & noDMAR by enable/disable
3338 * corresponding sub-containers
3339 */
3340 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3341 MEMORY_REGION(&vtd_dev_as->iommu),
3342 0);
3343 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3344 &vtd_dev_as->nodmar, 0);
3345
3346 vtd_switch_address_space(vtd_dev_as);
3347 }
3348 return vtd_dev_as;
3349 }
3350
3351 /* Unmap the whole range in the notifier's scope. */
3352 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3353 {
3354 IOMMUTLBEntry entry;
3355 hwaddr size;
3356 hwaddr start = n->start;
3357 hwaddr end = n->end;
3358 IntelIOMMUState *s = as->iommu_state;
3359 DMAMap map;
3360
3361 /*
3362 * Note: all the codes in this function has a assumption that IOVA
3363 * bits are no more than VTD_MGAW bits (which is restricted by
3364 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3365 */
3366
3367 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
3368 /*
3369 * Don't need to unmap regions that is bigger than the whole
3370 * VT-d supported address space size
3371 */
3372 end = VTD_ADDRESS_SIZE(s->aw_bits);
3373 }
3374
3375 assert(start <= end);
3376 size = end - start;
3377
3378 if (ctpop64(size) != 1) {
3379 /*
3380 * This size cannot format a correct mask. Let's enlarge it to
3381 * suite the minimum available mask.
3382 */
3383 int n = 64 - clz64(size);
3384 if (n > s->aw_bits) {
3385 /* should not happen, but in case it happens, limit it */
3386 n = s->aw_bits;
3387 }
3388 size = 1ULL << n;
3389 }
3390
3391 entry.target_as = &address_space_memory;
3392 /* Adjust iova for the size */
3393 entry.iova = n->start & ~(size - 1);
3394 /* This field is meaningless for unmap */
3395 entry.translated_addr = 0;
3396 entry.perm = IOMMU_NONE;
3397 entry.addr_mask = size - 1;
3398
3399 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3400 VTD_PCI_SLOT(as->devfn),
3401 VTD_PCI_FUNC(as->devfn),
3402 entry.iova, size);
3403
3404 map.iova = entry.iova;
3405 map.size = entry.addr_mask;
3406 iova_tree_remove(as->iova_tree, &map);
3407
3408 memory_region_notify_one(n, &entry);
3409 }
3410
3411 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3412 {
3413 VTDAddressSpace *vtd_as;
3414 IOMMUNotifier *n;
3415
3416 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3417 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3418 vtd_address_space_unmap(vtd_as, n);
3419 }
3420 }
3421 }
3422
3423 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3424 {
3425 vtd_address_space_unmap_all(s);
3426 vtd_switch_address_space_all(s);
3427 }
3428
3429 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3430 {
3431 memory_region_notify_one((IOMMUNotifier *)private, entry);
3432 return 0;
3433 }
3434
3435 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3436 {
3437 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3438 IntelIOMMUState *s = vtd_as->iommu_state;
3439 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3440 VTDContextEntry ce;
3441
3442 /*
3443 * The replay can be triggered by either a invalidation or a newly
3444 * created entry. No matter what, we release existing mappings
3445 * (it means flushing caches for UNMAP-only registers).
3446 */
3447 vtd_address_space_unmap(vtd_as, n);
3448
3449 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3450 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3451 "legacy mode",
3452 bus_n, PCI_SLOT(vtd_as->devfn),
3453 PCI_FUNC(vtd_as->devfn),
3454 vtd_get_domain_id(s, &ce),
3455 ce.hi, ce.lo);
3456 if (vtd_as_has_map_notifier(vtd_as)) {
3457 /* This is required only for MAP typed notifiers */
3458 vtd_page_walk_info info = {
3459 .hook_fn = vtd_replay_hook,
3460 .private = (void *)n,
3461 .notify_unmap = false,
3462 .aw = s->aw_bits,
3463 .as = vtd_as,
3464 .domain_id = vtd_get_domain_id(s, &ce),
3465 };
3466
3467 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3468 }
3469 } else {
3470 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3471 PCI_FUNC(vtd_as->devfn));
3472 }
3473
3474 return;
3475 }
3476
3477 /* Do the initialization. It will also be called when reset, so pay
3478 * attention when adding new initialization stuff.
3479 */
3480 static void vtd_init(IntelIOMMUState *s)
3481 {
3482 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3483
3484 memset(s->csr, 0, DMAR_REG_SIZE);
3485 memset(s->wmask, 0, DMAR_REG_SIZE);
3486 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3487 memset(s->womask, 0, DMAR_REG_SIZE);
3488
3489 s->root = 0;
3490 s->root_extended = false;
3491 s->root_scalable = false;
3492 s->dmar_enabled = false;
3493 s->intr_enabled = false;
3494 s->iq_head = 0;
3495 s->iq_tail = 0;
3496 s->iq = 0;
3497 s->iq_size = 0;
3498 s->qi_enabled = false;
3499 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3500 s->iq_dw = false;
3501 s->next_frcd_reg = 0;
3502 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3503 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3504 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3505 if (s->dma_drain) {
3506 s->cap |= VTD_CAP_DRAIN;
3507 }
3508 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3509 s->cap |= VTD_CAP_SAGAW_48bit;
3510 }
3511 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3512
3513 /*
3514 * Rsvd field masks for spte
3515 */
3516 vtd_paging_entry_rsvd_field[0] = ~0ULL;
3517 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3518 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3519 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3520 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3521 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3522 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3523 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3524 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3525
3526 if (x86_iommu_ir_supported(x86_iommu)) {
3527 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3528 if (s->intr_eim == ON_OFF_AUTO_ON) {
3529 s->ecap |= VTD_ECAP_EIM;
3530 }
3531 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3532 }
3533
3534 if (x86_iommu->dt_supported) {
3535 s->ecap |= VTD_ECAP_DT;
3536 }
3537
3538 if (x86_iommu->pt_supported) {
3539 s->ecap |= VTD_ECAP_PT;
3540 }
3541
3542 if (s->caching_mode) {
3543 s->cap |= VTD_CAP_CM;
3544 }
3545
3546 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3547 if (s->scalable_mode) {
3548 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3549 }
3550
3551 vtd_reset_caches(s);
3552
3553 /* Define registers with default values and bit semantics */
3554 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3555 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3556 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3557 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3558 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3559 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3560 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3561 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3562 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3563
3564 /* Advanced Fault Logging not supported */
3565 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3566 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3567 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3568 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3569
3570 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3571 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3572 */
3573 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3574
3575 /* Treated as RO for implementations that PLMR and PHMR fields reported
3576 * as Clear in the CAP_REG.
3577 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3578 */
3579 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3580
3581 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3582 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3583 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3584 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3585 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3586 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3587 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3588 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3589 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3590
3591 /* IOTLB registers */
3592 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3593 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3594 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3595
3596 /* Fault Recording Registers, 128-bit */
3597 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3598 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3599
3600 /*
3601 * Interrupt remapping registers.
3602 */
3603 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3604 }
3605
3606 /* Should not reset address_spaces when reset because devices will still use
3607 * the address space they got at first (won't ask the bus again).
3608 */
3609 static void vtd_reset(DeviceState *dev)
3610 {
3611 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3612
3613 vtd_init(s);
3614 vtd_address_space_refresh_all(s);
3615 }
3616
3617 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3618 {
3619 IntelIOMMUState *s = opaque;
3620 VTDAddressSpace *vtd_as;
3621
3622 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3623
3624 vtd_as = vtd_find_add_as(s, bus, devfn);
3625 return &vtd_as->as;
3626 }
3627
3628 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3629 {
3630 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3631
3632 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3633 error_setg(errp, "eim=on cannot be selected without intremap=on");
3634 return false;
3635 }
3636
3637 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3638 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3639 && x86_iommu_ir_supported(x86_iommu) ?
3640 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3641 }
3642 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3643 if (!kvm_irqchip_in_kernel()) {
3644 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3645 return false;
3646 }
3647 if (!kvm_enable_x2apic()) {
3648 error_setg(errp, "eim=on requires support on the KVM side"
3649 "(X2APIC_API, first shipped in v4.7)");
3650 return false;
3651 }
3652 }
3653
3654 /* Currently only address widths supported are 39 and 48 bits */
3655 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3656 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3657 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3658 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3659 return false;
3660 }
3661
3662 if (s->scalable_mode && !s->dma_drain) {
3663 error_setg(errp, "Need to set dma_drain for scalable mode");
3664 return false;
3665 }
3666
3667 return true;
3668 }
3669
3670 static void vtd_realize(DeviceState *dev, Error **errp)
3671 {
3672 MachineState *ms = MACHINE(qdev_get_machine());
3673 PCMachineState *pcms = PC_MACHINE(ms);
3674 PCIBus *bus = pcms->bus;
3675 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3676 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3677
3678 x86_iommu->type = TYPE_INTEL;
3679
3680 if (!vtd_decide_config(s, errp)) {
3681 return;
3682 }
3683
3684 QLIST_INIT(&s->vtd_as_with_notifiers);
3685 qemu_mutex_init(&s->iommu_lock);
3686 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3687 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3688 "intel_iommu", DMAR_REG_SIZE);
3689
3690 /* Create the shared memory regions by all devices */
3691 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3692 UINT64_MAX);
3693 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3694 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3695 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3696 "vtd-sys-alias", get_system_memory(), 0,
3697 memory_region_size(get_system_memory()));
3698 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3699 &s->mr_sys_alias, 0);
3700 memory_region_add_subregion_overlap(&s->mr_nodmar,
3701 VTD_INTERRUPT_ADDR_FIRST,
3702 &s->mr_ir, 1);
3703
3704 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3705 /* No corresponding destroy */
3706 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3707 g_free, g_free);
3708 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3709 g_free, g_free);
3710 vtd_init(s);
3711 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3712 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3713 /* Pseudo address space under root PCI bus. */
3714 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3715 }
3716
3717 static void vtd_class_init(ObjectClass *klass, void *data)
3718 {
3719 DeviceClass *dc = DEVICE_CLASS(klass);
3720 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3721
3722 dc->reset = vtd_reset;
3723 dc->vmsd = &vtd_vmstate;
3724 dc->props = vtd_properties;
3725 dc->hotpluggable = false;
3726 x86_class->realize = vtd_realize;
3727 x86_class->int_remap = vtd_int_remap;
3728 /* Supported by the pc-q35-* machine types */
3729 dc->user_creatable = true;
3730 }
3731
3732 static const TypeInfo vtd_info = {
3733 .name = TYPE_INTEL_IOMMU_DEVICE,
3734 .parent = TYPE_X86_IOMMU_DEVICE,
3735 .instance_size = sizeof(IntelIOMMUState),
3736 .class_init = vtd_class_init,
3737 };
3738
3739 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3740 void *data)
3741 {
3742 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3743
3744 imrc->translate = vtd_iommu_translate;
3745 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3746 imrc->replay = vtd_iommu_replay;
3747 }
3748
3749 static const TypeInfo vtd_iommu_memory_region_info = {
3750 .parent = TYPE_IOMMU_MEMORY_REGION,
3751 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3752 .class_init = vtd_iommu_memory_region_class_init,
3753 };
3754
3755 static void vtd_register_types(void)
3756 {
3757 type_register_static(&vtd_info);
3758 type_register_static(&vtd_iommu_memory_region_info);
3759 }
3760
3761 type_init(vtd_register_types)