]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
intel_iommu: Fix root_scalable migration breakage
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
39
40 /* context entry operations */
41 #define VTD_CE_GET_RID2PASID(ce) \
42 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
43 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
44 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
45
46 /* pe operations */
47 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
48 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
49 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
50 if (ret_fr) { \
51 ret_fr = -ret_fr; \
52 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
53 trace_vtd_fault_disabled(); \
54 } else { \
55 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
56 } \
57 goto error; \
58 } \
59 }
60
61 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
62 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
63
64 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
65 uint64_t wmask, uint64_t w1cmask)
66 {
67 stq_le_p(&s->csr[addr], val);
68 stq_le_p(&s->wmask[addr], wmask);
69 stq_le_p(&s->w1cmask[addr], w1cmask);
70 }
71
72 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
73 {
74 stq_le_p(&s->womask[addr], mask);
75 }
76
77 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
78 uint32_t wmask, uint32_t w1cmask)
79 {
80 stl_le_p(&s->csr[addr], val);
81 stl_le_p(&s->wmask[addr], wmask);
82 stl_le_p(&s->w1cmask[addr], w1cmask);
83 }
84
85 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
86 {
87 stl_le_p(&s->womask[addr], mask);
88 }
89
90 /* "External" get/set operations */
91 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
92 {
93 uint64_t oldval = ldq_le_p(&s->csr[addr]);
94 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
95 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
96 stq_le_p(&s->csr[addr],
97 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
98 }
99
100 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
101 {
102 uint32_t oldval = ldl_le_p(&s->csr[addr]);
103 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
104 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
105 stl_le_p(&s->csr[addr],
106 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
107 }
108
109 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
110 {
111 uint64_t val = ldq_le_p(&s->csr[addr]);
112 uint64_t womask = ldq_le_p(&s->womask[addr]);
113 return val & ~womask;
114 }
115
116 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
117 {
118 uint32_t val = ldl_le_p(&s->csr[addr]);
119 uint32_t womask = ldl_le_p(&s->womask[addr]);
120 return val & ~womask;
121 }
122
123 /* "Internal" get/set operations */
124 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
125 {
126 return ldq_le_p(&s->csr[addr]);
127 }
128
129 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
130 {
131 return ldl_le_p(&s->csr[addr]);
132 }
133
134 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
135 {
136 stq_le_p(&s->csr[addr], val);
137 }
138
139 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
140 uint32_t clear, uint32_t mask)
141 {
142 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
143 stl_le_p(&s->csr[addr], new_val);
144 return new_val;
145 }
146
147 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
148 uint64_t clear, uint64_t mask)
149 {
150 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
151 stq_le_p(&s->csr[addr], new_val);
152 return new_val;
153 }
154
155 static inline void vtd_iommu_lock(IntelIOMMUState *s)
156 {
157 qemu_mutex_lock(&s->iommu_lock);
158 }
159
160 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
161 {
162 qemu_mutex_unlock(&s->iommu_lock);
163 }
164
165 static void vtd_update_scalable_state(IntelIOMMUState *s)
166 {
167 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
168
169 if (s->scalable_mode) {
170 s->root_scalable = val & VTD_RTADDR_SMT;
171 }
172 }
173
174 /* Whether the address space needs to notify new mappings */
175 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
176 {
177 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
178 }
179
180 /* GHashTable functions */
181 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
182 {
183 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
184 }
185
186 static guint vtd_uint64_hash(gconstpointer v)
187 {
188 return (guint)*(const uint64_t *)v;
189 }
190
191 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
192 gpointer user_data)
193 {
194 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
195 uint16_t domain_id = *(uint16_t *)user_data;
196 return entry->domain_id == domain_id;
197 }
198
199 /* The shift of an addr for a certain level of paging structure */
200 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
201 {
202 assert(level != 0);
203 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
204 }
205
206 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
207 {
208 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
209 }
210
211 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
212 gpointer user_data)
213 {
214 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
215 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
216 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
217 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
218 return (entry->domain_id == info->domain_id) &&
219 (((entry->gfn & info->mask) == gfn) ||
220 (entry->gfn == gfn_tlb));
221 }
222
223 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
224 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
225 */
226 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
227 {
228 VTDAddressSpace *vtd_as;
229 VTDBus *vtd_bus;
230 GHashTableIter bus_it;
231 uint32_t devfn_it;
232
233 trace_vtd_context_cache_reset();
234
235 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
236
237 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
238 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
239 vtd_as = vtd_bus->dev_as[devfn_it];
240 if (!vtd_as) {
241 continue;
242 }
243 vtd_as->context_cache_entry.context_cache_gen = 0;
244 }
245 }
246 s->context_cache_gen = 1;
247 }
248
249 /* Must be called with IOMMU lock held. */
250 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
251 {
252 assert(s->iotlb);
253 g_hash_table_remove_all(s->iotlb);
254 }
255
256 static void vtd_reset_iotlb(IntelIOMMUState *s)
257 {
258 vtd_iommu_lock(s);
259 vtd_reset_iotlb_locked(s);
260 vtd_iommu_unlock(s);
261 }
262
263 static void vtd_reset_caches(IntelIOMMUState *s)
264 {
265 vtd_iommu_lock(s);
266 vtd_reset_iotlb_locked(s);
267 vtd_reset_context_cache_locked(s);
268 vtd_iommu_unlock(s);
269 }
270
271 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
272 uint32_t level)
273 {
274 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
275 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
276 }
277
278 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
279 {
280 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
281 }
282
283 /* Must be called with IOMMU lock held */
284 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
285 hwaddr addr)
286 {
287 VTDIOTLBEntry *entry;
288 uint64_t key;
289 int level;
290
291 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
292 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
293 source_id, level);
294 entry = g_hash_table_lookup(s->iotlb, &key);
295 if (entry) {
296 goto out;
297 }
298 }
299
300 out:
301 return entry;
302 }
303
304 /* Must be with IOMMU lock held */
305 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
306 uint16_t domain_id, hwaddr addr, uint64_t slpte,
307 uint8_t access_flags, uint32_t level)
308 {
309 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
310 uint64_t *key = g_malloc(sizeof(*key));
311 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
312
313 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
314 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
315 trace_vtd_iotlb_reset("iotlb exceeds size limit");
316 vtd_reset_iotlb_locked(s);
317 }
318
319 entry->gfn = gfn;
320 entry->domain_id = domain_id;
321 entry->slpte = slpte;
322 entry->access_flags = access_flags;
323 entry->mask = vtd_slpt_level_page_mask(level);
324 *key = vtd_get_iotlb_key(gfn, source_id, level);
325 g_hash_table_replace(s->iotlb, key, entry);
326 }
327
328 /* Given the reg addr of both the message data and address, generate an
329 * interrupt via MSI.
330 */
331 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
332 hwaddr mesg_data_reg)
333 {
334 MSIMessage msi;
335
336 assert(mesg_data_reg < DMAR_REG_SIZE);
337 assert(mesg_addr_reg < DMAR_REG_SIZE);
338
339 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
340 msi.data = vtd_get_long_raw(s, mesg_data_reg);
341
342 trace_vtd_irq_generate(msi.address, msi.data);
343
344 apic_get_class()->send_msi(&msi);
345 }
346
347 /* Generate a fault event to software via MSI if conditions are met.
348 * Notice that the value of FSTS_REG being passed to it should be the one
349 * before any update.
350 */
351 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
352 {
353 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
354 pre_fsts & VTD_FSTS_IQE) {
355 error_report_once("There are previous interrupt conditions "
356 "to be serviced by software, fault event "
357 "is not generated");
358 return;
359 }
360 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
361 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
362 error_report_once("Interrupt Mask set, irq is not generated");
363 } else {
364 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
365 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
366 }
367 }
368
369 /* Check if the Fault (F) field of the Fault Recording Register referenced by
370 * @index is Set.
371 */
372 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
373 {
374 /* Each reg is 128-bit */
375 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
376 addr += 8; /* Access the high 64-bit half */
377
378 assert(index < DMAR_FRCD_REG_NR);
379
380 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
381 }
382
383 /* Update the PPF field of Fault Status Register.
384 * Should be called whenever change the F field of any fault recording
385 * registers.
386 */
387 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
388 {
389 uint32_t i;
390 uint32_t ppf_mask = 0;
391
392 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
393 if (vtd_is_frcd_set(s, i)) {
394 ppf_mask = VTD_FSTS_PPF;
395 break;
396 }
397 }
398 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
399 trace_vtd_fsts_ppf(!!ppf_mask);
400 }
401
402 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
403 {
404 /* Each reg is 128-bit */
405 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
406 addr += 8; /* Access the high 64-bit half */
407
408 assert(index < DMAR_FRCD_REG_NR);
409
410 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
411 vtd_update_fsts_ppf(s);
412 }
413
414 /* Must not update F field now, should be done later */
415 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
416 uint16_t source_id, hwaddr addr,
417 VTDFaultReason fault, bool is_write)
418 {
419 uint64_t hi = 0, lo;
420 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
421
422 assert(index < DMAR_FRCD_REG_NR);
423
424 lo = VTD_FRCD_FI(addr);
425 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
426 if (!is_write) {
427 hi |= VTD_FRCD_T;
428 }
429 vtd_set_quad_raw(s, frcd_reg_addr, lo);
430 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
431
432 trace_vtd_frr_new(index, hi, lo);
433 }
434
435 /* Try to collapse multiple pending faults from the same requester */
436 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
437 {
438 uint32_t i;
439 uint64_t frcd_reg;
440 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
441
442 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
443 frcd_reg = vtd_get_quad_raw(s, addr);
444 if ((frcd_reg & VTD_FRCD_F) &&
445 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
446 return true;
447 }
448 addr += 16; /* 128-bit for each */
449 }
450 return false;
451 }
452
453 /* Log and report an DMAR (address translation) fault to software */
454 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
455 hwaddr addr, VTDFaultReason fault,
456 bool is_write)
457 {
458 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
459
460 assert(fault < VTD_FR_MAX);
461
462 if (fault == VTD_FR_RESERVED_ERR) {
463 /* This is not a normal fault reason case. Drop it. */
464 return;
465 }
466
467 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
468
469 if (fsts_reg & VTD_FSTS_PFO) {
470 error_report_once("New fault is not recorded due to "
471 "Primary Fault Overflow");
472 return;
473 }
474
475 if (vtd_try_collapse_fault(s, source_id)) {
476 error_report_once("New fault is not recorded due to "
477 "compression of faults");
478 return;
479 }
480
481 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
482 error_report_once("Next Fault Recording Reg is used, "
483 "new fault is not recorded, set PFO field");
484 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
485 return;
486 }
487
488 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
489
490 if (fsts_reg & VTD_FSTS_PPF) {
491 error_report_once("There are pending faults already, "
492 "fault event is not generated");
493 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
494 s->next_frcd_reg++;
495 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
496 s->next_frcd_reg = 0;
497 }
498 } else {
499 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
500 VTD_FSTS_FRI(s->next_frcd_reg));
501 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
502 s->next_frcd_reg++;
503 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
504 s->next_frcd_reg = 0;
505 }
506 /* This case actually cause the PPF to be Set.
507 * So generate fault event (interrupt).
508 */
509 vtd_generate_fault_event(s, fsts_reg);
510 }
511 }
512
513 /* Handle Invalidation Queue Errors of queued invalidation interface error
514 * conditions.
515 */
516 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
517 {
518 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
519
520 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
521 vtd_generate_fault_event(s, fsts_reg);
522 }
523
524 /* Set the IWC field and try to generate an invalidation completion interrupt */
525 static void vtd_generate_completion_event(IntelIOMMUState *s)
526 {
527 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
528 trace_vtd_inv_desc_wait_irq("One pending, skip current");
529 return;
530 }
531 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
532 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
533 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
534 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
535 "new event not generated");
536 return;
537 } else {
538 /* Generate the interrupt event */
539 trace_vtd_inv_desc_wait_irq("Generating complete event");
540 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
541 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
542 }
543 }
544
545 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
546 VTDRootEntry *re,
547 uint8_t devfn)
548 {
549 if (s->root_scalable && devfn > UINT8_MAX / 2) {
550 return re->hi & VTD_ROOT_ENTRY_P;
551 }
552
553 return re->lo & VTD_ROOT_ENTRY_P;
554 }
555
556 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
557 VTDRootEntry *re)
558 {
559 dma_addr_t addr;
560
561 addr = s->root + index * sizeof(*re);
562 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
563 re->lo = 0;
564 return -VTD_FR_ROOT_TABLE_INV;
565 }
566 re->lo = le64_to_cpu(re->lo);
567 re->hi = le64_to_cpu(re->hi);
568 return 0;
569 }
570
571 static inline bool vtd_ce_present(VTDContextEntry *context)
572 {
573 return context->lo & VTD_CONTEXT_ENTRY_P;
574 }
575
576 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
577 VTDRootEntry *re,
578 uint8_t index,
579 VTDContextEntry *ce)
580 {
581 dma_addr_t addr, ce_size;
582
583 /* we have checked that root entry is present */
584 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
585 VTD_CTX_ENTRY_LEGACY_SIZE;
586
587 if (s->root_scalable && index > UINT8_MAX / 2) {
588 index = index & (~VTD_DEVFN_CHECK_MASK);
589 addr = re->hi & VTD_ROOT_ENTRY_CTP;
590 } else {
591 addr = re->lo & VTD_ROOT_ENTRY_CTP;
592 }
593
594 addr = addr + index * ce_size;
595 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
596 return -VTD_FR_CONTEXT_TABLE_INV;
597 }
598
599 ce->lo = le64_to_cpu(ce->lo);
600 ce->hi = le64_to_cpu(ce->hi);
601 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
602 ce->val[2] = le64_to_cpu(ce->val[2]);
603 ce->val[3] = le64_to_cpu(ce->val[3]);
604 }
605 return 0;
606 }
607
608 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
609 {
610 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
611 }
612
613 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
614 {
615 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
616 }
617
618 /* Whether the pte indicates the address of the page frame */
619 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
620 {
621 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
622 }
623
624 /* Get the content of a spte located in @base_addr[@index] */
625 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
626 {
627 uint64_t slpte;
628
629 assert(index < VTD_SL_PT_ENTRY_NR);
630
631 if (dma_memory_read(&address_space_memory,
632 base_addr + index * sizeof(slpte), &slpte,
633 sizeof(slpte))) {
634 slpte = (uint64_t)-1;
635 return slpte;
636 }
637 slpte = le64_to_cpu(slpte);
638 return slpte;
639 }
640
641 /* Given an iova and the level of paging structure, return the offset
642 * of current level.
643 */
644 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
645 {
646 return (iova >> vtd_slpt_level_shift(level)) &
647 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
648 }
649
650 /* Check Capability Register to see if the @level of page-table is supported */
651 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
652 {
653 return VTD_CAP_SAGAW_MASK & s->cap &
654 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
655 }
656
657 /* Return true if check passed, otherwise false */
658 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
659 VTDPASIDEntry *pe)
660 {
661 switch (VTD_PE_GET_TYPE(pe)) {
662 case VTD_SM_PASID_ENTRY_FLT:
663 case VTD_SM_PASID_ENTRY_SLT:
664 case VTD_SM_PASID_ENTRY_NESTED:
665 break;
666 case VTD_SM_PASID_ENTRY_PT:
667 if (!x86_iommu->pt_supported) {
668 return false;
669 }
670 break;
671 default:
672 /* Unknwon type */
673 return false;
674 }
675 return true;
676 }
677
678 static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base,
679 uint32_t pasid,
680 VTDPASIDDirEntry *pdire)
681 {
682 uint32_t index;
683 dma_addr_t addr, entry_size;
684
685 index = VTD_PASID_DIR_INDEX(pasid);
686 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
687 addr = pasid_dir_base + index * entry_size;
688 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
689 return -VTD_FR_PASID_TABLE_INV;
690 }
691
692 return 0;
693 }
694
695 static int vtd_get_pasid_entry(IntelIOMMUState *s,
696 uint32_t pasid,
697 VTDPASIDDirEntry *pdire,
698 VTDPASIDEntry *pe)
699 {
700 uint32_t index;
701 dma_addr_t addr, entry_size;
702 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
703
704 index = VTD_PASID_TABLE_INDEX(pasid);
705 entry_size = VTD_PASID_ENTRY_SIZE;
706 addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
707 addr = addr + index * entry_size;
708 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
709 return -VTD_FR_PASID_TABLE_INV;
710 }
711
712 /* Do translation type check */
713 if (!vtd_pe_type_check(x86_iommu, pe)) {
714 return -VTD_FR_PASID_TABLE_INV;
715 }
716
717 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
718 return -VTD_FR_PASID_TABLE_INV;
719 }
720
721 return 0;
722 }
723
724 static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s,
725 dma_addr_t pasid_dir_base,
726 uint32_t pasid,
727 VTDPASIDEntry *pe)
728 {
729 int ret;
730 VTDPASIDDirEntry pdire;
731
732 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
733 if (ret) {
734 return ret;
735 }
736
737 ret = vtd_get_pasid_entry(s, pasid, &pdire, pe);
738 if (ret) {
739 return ret;
740 }
741
742 return ret;
743 }
744
745 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
746 VTDContextEntry *ce,
747 VTDPASIDEntry *pe)
748 {
749 uint32_t pasid;
750 dma_addr_t pasid_dir_base;
751 int ret = 0;
752
753 pasid = VTD_CE_GET_RID2PASID(ce);
754 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
755 ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe);
756
757 return ret;
758 }
759
760 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
761 VTDContextEntry *ce,
762 bool *pe_fpd_set)
763 {
764 int ret;
765 uint32_t pasid;
766 dma_addr_t pasid_dir_base;
767 VTDPASIDDirEntry pdire;
768 VTDPASIDEntry pe;
769
770 pasid = VTD_CE_GET_RID2PASID(ce);
771 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
772
773 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
774 if (ret) {
775 return ret;
776 }
777
778 if (pdire.val & VTD_PASID_DIR_FPD) {
779 *pe_fpd_set = true;
780 return 0;
781 }
782
783 ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe);
784 if (ret) {
785 return ret;
786 }
787
788 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
789 *pe_fpd_set = true;
790 }
791
792 return 0;
793 }
794
795 /* Get the page-table level that hardware should use for the second-level
796 * page-table walk from the Address Width field of context-entry.
797 */
798 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
799 {
800 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
801 }
802
803 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
804 VTDContextEntry *ce)
805 {
806 VTDPASIDEntry pe;
807
808 if (s->root_scalable) {
809 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
810 return VTD_PE_GET_LEVEL(&pe);
811 }
812
813 return vtd_ce_get_level(ce);
814 }
815
816 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
817 {
818 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
819 }
820
821 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
822 VTDContextEntry *ce)
823 {
824 VTDPASIDEntry pe;
825
826 if (s->root_scalable) {
827 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
828 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
829 }
830
831 return vtd_ce_get_agaw(ce);
832 }
833
834 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
835 {
836 return ce->lo & VTD_CONTEXT_ENTRY_TT;
837 }
838
839 /* Only for Legacy Mode. Return true if check passed, otherwise false */
840 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
841 VTDContextEntry *ce)
842 {
843 switch (vtd_ce_get_type(ce)) {
844 case VTD_CONTEXT_TT_MULTI_LEVEL:
845 /* Always supported */
846 break;
847 case VTD_CONTEXT_TT_DEV_IOTLB:
848 if (!x86_iommu->dt_supported) {
849 error_report_once("%s: DT specified but not supported", __func__);
850 return false;
851 }
852 break;
853 case VTD_CONTEXT_TT_PASS_THROUGH:
854 if (!x86_iommu->pt_supported) {
855 error_report_once("%s: PT specified but not supported", __func__);
856 return false;
857 }
858 break;
859 default:
860 /* Unknown type */
861 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
862 vtd_ce_get_type(ce));
863 return false;
864 }
865 return true;
866 }
867
868 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
869 VTDContextEntry *ce, uint8_t aw)
870 {
871 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
872 return 1ULL << MIN(ce_agaw, aw);
873 }
874
875 /* Return true if IOVA passes range check, otherwise false. */
876 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
877 uint64_t iova, VTDContextEntry *ce,
878 uint8_t aw)
879 {
880 /*
881 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
882 * in CAP_REG and AW in context-entry.
883 */
884 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
885 }
886
887 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
888 VTDContextEntry *ce)
889 {
890 VTDPASIDEntry pe;
891
892 if (s->root_scalable) {
893 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
894 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
895 }
896
897 return vtd_ce_get_slpt_base(ce);
898 }
899
900 /*
901 * Rsvd field masks for spte:
902 * Index [1] to [4] 4k pages
903 * Index [5] to [8] large pages
904 */
905 static uint64_t vtd_paging_entry_rsvd_field[9];
906
907 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
908 {
909 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
910 /* Maybe large page */
911 return slpte & vtd_paging_entry_rsvd_field[level + 4];
912 } else {
913 return slpte & vtd_paging_entry_rsvd_field[level];
914 }
915 }
916
917 /* Find the VTD address space associated with a given bus number */
918 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
919 {
920 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
921 if (!vtd_bus) {
922 /*
923 * Iterate over the registered buses to find the one which
924 * currently hold this bus number, and update the bus_num
925 * lookup table:
926 */
927 GHashTableIter iter;
928
929 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
930 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
931 if (pci_bus_num(vtd_bus->bus) == bus_num) {
932 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
933 return vtd_bus;
934 }
935 }
936 }
937 return vtd_bus;
938 }
939
940 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
941 * of the translation, can be used for deciding the size of large page.
942 */
943 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
944 uint64_t iova, bool is_write,
945 uint64_t *slptep, uint32_t *slpte_level,
946 bool *reads, bool *writes, uint8_t aw_bits)
947 {
948 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
949 uint32_t level = vtd_get_iova_level(s, ce);
950 uint32_t offset;
951 uint64_t slpte;
952 uint64_t access_right_check;
953
954 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
955 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
956 __func__, iova);
957 return -VTD_FR_ADDR_BEYOND_MGAW;
958 }
959
960 /* FIXME: what is the Atomics request here? */
961 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
962
963 while (true) {
964 offset = vtd_iova_level_offset(iova, level);
965 slpte = vtd_get_slpte(addr, offset);
966
967 if (slpte == (uint64_t)-1) {
968 error_report_once("%s: detected read error on DMAR slpte "
969 "(iova=0x%" PRIx64 ")", __func__, iova);
970 if (level == vtd_get_iova_level(s, ce)) {
971 /* Invalid programming of context-entry */
972 return -VTD_FR_CONTEXT_ENTRY_INV;
973 } else {
974 return -VTD_FR_PAGING_ENTRY_INV;
975 }
976 }
977 *reads = (*reads) && (slpte & VTD_SL_R);
978 *writes = (*writes) && (slpte & VTD_SL_W);
979 if (!(slpte & access_right_check)) {
980 error_report_once("%s: detected slpte permission error "
981 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
982 "slpte=0x%" PRIx64 ", write=%d)", __func__,
983 iova, level, slpte, is_write);
984 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
985 }
986 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
987 error_report_once("%s: detected splte reserve non-zero "
988 "iova=0x%" PRIx64 ", level=0x%" PRIx32
989 "slpte=0x%" PRIx64 ")", __func__, iova,
990 level, slpte);
991 return -VTD_FR_PAGING_ENTRY_RSVD;
992 }
993
994 if (vtd_is_last_slpte(slpte, level)) {
995 *slptep = slpte;
996 *slpte_level = level;
997 return 0;
998 }
999 addr = vtd_get_slpte_addr(slpte, aw_bits);
1000 level--;
1001 }
1002 }
1003
1004 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
1005
1006 /**
1007 * Constant information used during page walking
1008 *
1009 * @hook_fn: hook func to be called when detected page
1010 * @private: private data to be passed into hook func
1011 * @notify_unmap: whether we should notify invalid entries
1012 * @as: VT-d address space of the device
1013 * @aw: maximum address width
1014 * @domain: domain ID of the page walk
1015 */
1016 typedef struct {
1017 VTDAddressSpace *as;
1018 vtd_page_walk_hook hook_fn;
1019 void *private;
1020 bool notify_unmap;
1021 uint8_t aw;
1022 uint16_t domain_id;
1023 } vtd_page_walk_info;
1024
1025 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
1026 {
1027 VTDAddressSpace *as = info->as;
1028 vtd_page_walk_hook hook_fn = info->hook_fn;
1029 void *private = info->private;
1030 DMAMap target = {
1031 .iova = entry->iova,
1032 .size = entry->addr_mask,
1033 .translated_addr = entry->translated_addr,
1034 .perm = entry->perm,
1035 };
1036 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1037
1038 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
1039 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1040 return 0;
1041 }
1042
1043 assert(hook_fn);
1044
1045 /* Update local IOVA mapped ranges */
1046 if (entry->perm) {
1047 if (mapped) {
1048 /* If it's exactly the same translation, skip */
1049 if (!memcmp(mapped, &target, sizeof(target))) {
1050 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1051 entry->translated_addr);
1052 return 0;
1053 } else {
1054 /*
1055 * Translation changed. Normally this should not
1056 * happen, but it can happen when with buggy guest
1057 * OSes. Note that there will be a small window that
1058 * we don't have map at all. But that's the best
1059 * effort we can do. The ideal way to emulate this is
1060 * atomically modify the PTE to follow what has
1061 * changed, but we can't. One example is that vfio
1062 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1063 * interface to modify a mapping (meanwhile it seems
1064 * meaningless to even provide one). Anyway, let's
1065 * mark this as a TODO in case one day we'll have
1066 * a better solution.
1067 */
1068 IOMMUAccessFlags cache_perm = entry->perm;
1069 int ret;
1070
1071 /* Emulate an UNMAP */
1072 entry->perm = IOMMU_NONE;
1073 trace_vtd_page_walk_one(info->domain_id,
1074 entry->iova,
1075 entry->translated_addr,
1076 entry->addr_mask,
1077 entry->perm);
1078 ret = hook_fn(entry, private);
1079 if (ret) {
1080 return ret;
1081 }
1082 /* Drop any existing mapping */
1083 iova_tree_remove(as->iova_tree, &target);
1084 /* Recover the correct permission */
1085 entry->perm = cache_perm;
1086 }
1087 }
1088 iova_tree_insert(as->iova_tree, &target);
1089 } else {
1090 if (!mapped) {
1091 /* Skip since we didn't map this range at all */
1092 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1093 return 0;
1094 }
1095 iova_tree_remove(as->iova_tree, &target);
1096 }
1097
1098 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1099 entry->translated_addr, entry->addr_mask,
1100 entry->perm);
1101 return hook_fn(entry, private);
1102 }
1103
1104 /**
1105 * vtd_page_walk_level - walk over specific level for IOVA range
1106 *
1107 * @addr: base GPA addr to start the walk
1108 * @start: IOVA range start address
1109 * @end: IOVA range end address (start <= addr < end)
1110 * @read: whether parent level has read permission
1111 * @write: whether parent level has write permission
1112 * @info: constant information for the page walk
1113 */
1114 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1115 uint64_t end, uint32_t level, bool read,
1116 bool write, vtd_page_walk_info *info)
1117 {
1118 bool read_cur, write_cur, entry_valid;
1119 uint32_t offset;
1120 uint64_t slpte;
1121 uint64_t subpage_size, subpage_mask;
1122 IOMMUTLBEntry entry;
1123 uint64_t iova = start;
1124 uint64_t iova_next;
1125 int ret = 0;
1126
1127 trace_vtd_page_walk_level(addr, level, start, end);
1128
1129 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1130 subpage_mask = vtd_slpt_level_page_mask(level);
1131
1132 while (iova < end) {
1133 iova_next = (iova & subpage_mask) + subpage_size;
1134
1135 offset = vtd_iova_level_offset(iova, level);
1136 slpte = vtd_get_slpte(addr, offset);
1137
1138 if (slpte == (uint64_t)-1) {
1139 trace_vtd_page_walk_skip_read(iova, iova_next);
1140 goto next;
1141 }
1142
1143 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1144 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1145 goto next;
1146 }
1147
1148 /* Permissions are stacked with parents' */
1149 read_cur = read && (slpte & VTD_SL_R);
1150 write_cur = write && (slpte & VTD_SL_W);
1151
1152 /*
1153 * As long as we have either read/write permission, this is a
1154 * valid entry. The rule works for both page entries and page
1155 * table entries.
1156 */
1157 entry_valid = read_cur | write_cur;
1158
1159 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1160 /*
1161 * This is a valid PDE (or even bigger than PDE). We need
1162 * to walk one further level.
1163 */
1164 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1165 iova, MIN(iova_next, end), level - 1,
1166 read_cur, write_cur, info);
1167 } else {
1168 /*
1169 * This means we are either:
1170 *
1171 * (1) the real page entry (either 4K page, or huge page)
1172 * (2) the whole range is invalid
1173 *
1174 * In either case, we send an IOTLB notification down.
1175 */
1176 entry.target_as = &address_space_memory;
1177 entry.iova = iova & subpage_mask;
1178 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1179 entry.addr_mask = ~subpage_mask;
1180 /* NOTE: this is only meaningful if entry_valid == true */
1181 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1182 ret = vtd_page_walk_one(&entry, info);
1183 }
1184
1185 if (ret < 0) {
1186 return ret;
1187 }
1188
1189 next:
1190 iova = iova_next;
1191 }
1192
1193 return 0;
1194 }
1195
1196 /**
1197 * vtd_page_walk - walk specific IOVA range, and call the hook
1198 *
1199 * @s: intel iommu state
1200 * @ce: context entry to walk upon
1201 * @start: IOVA address to start the walk
1202 * @end: IOVA range end address (start <= addr < end)
1203 * @info: page walking information struct
1204 */
1205 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1206 uint64_t start, uint64_t end,
1207 vtd_page_walk_info *info)
1208 {
1209 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1210 uint32_t level = vtd_get_iova_level(s, ce);
1211
1212 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1213 return -VTD_FR_ADDR_BEYOND_MGAW;
1214 }
1215
1216 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1217 /* Fix end so that it reaches the maximum */
1218 end = vtd_iova_limit(s, ce, info->aw);
1219 }
1220
1221 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1222 }
1223
1224 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1225 VTDRootEntry *re)
1226 {
1227 /* Legacy Mode reserved bits check */
1228 if (!s->root_scalable &&
1229 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1230 goto rsvd_err;
1231
1232 /* Scalable Mode reserved bits check */
1233 if (s->root_scalable &&
1234 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1235 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1236 goto rsvd_err;
1237
1238 return 0;
1239
1240 rsvd_err:
1241 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1242 ", lo=0x%"PRIx64,
1243 __func__, re->hi, re->lo);
1244 return -VTD_FR_ROOT_ENTRY_RSVD;
1245 }
1246
1247 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1248 VTDContextEntry *ce)
1249 {
1250 if (!s->root_scalable &&
1251 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1252 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1253 error_report_once("%s: invalid context entry: hi=%"PRIx64
1254 ", lo=%"PRIx64" (reserved nonzero)",
1255 __func__, ce->hi, ce->lo);
1256 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1257 }
1258
1259 if (s->root_scalable &&
1260 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1261 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1262 ce->val[2] ||
1263 ce->val[3])) {
1264 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1265 ", val[2]=%"PRIx64
1266 ", val[1]=%"PRIx64
1267 ", val[0]=%"PRIx64" (reserved nonzero)",
1268 __func__, ce->val[3], ce->val[2],
1269 ce->val[1], ce->val[0]);
1270 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1271 }
1272
1273 return 0;
1274 }
1275
1276 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1277 VTDContextEntry *ce)
1278 {
1279 VTDPASIDEntry pe;
1280
1281 /*
1282 * Make sure in Scalable Mode, a present context entry
1283 * has valid rid2pasid setting, which includes valid
1284 * rid2pasid field and corresponding pasid entry setting
1285 */
1286 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1287 }
1288
1289 /* Map a device to its corresponding domain (context-entry) */
1290 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1291 uint8_t devfn, VTDContextEntry *ce)
1292 {
1293 VTDRootEntry re;
1294 int ret_fr;
1295 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1296
1297 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1298 if (ret_fr) {
1299 return ret_fr;
1300 }
1301
1302 if (!vtd_root_entry_present(s, &re, devfn)) {
1303 /* Not error - it's okay we don't have root entry. */
1304 trace_vtd_re_not_present(bus_num);
1305 return -VTD_FR_ROOT_ENTRY_P;
1306 }
1307
1308 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1309 if (ret_fr) {
1310 return ret_fr;
1311 }
1312
1313 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1314 if (ret_fr) {
1315 return ret_fr;
1316 }
1317
1318 if (!vtd_ce_present(ce)) {
1319 /* Not error - it's okay we don't have context entry. */
1320 trace_vtd_ce_not_present(bus_num, devfn);
1321 return -VTD_FR_CONTEXT_ENTRY_P;
1322 }
1323
1324 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1325 if (ret_fr) {
1326 return ret_fr;
1327 }
1328
1329 /* Check if the programming of context-entry is valid */
1330 if (!s->root_scalable &&
1331 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1332 error_report_once("%s: invalid context entry: hi=%"PRIx64
1333 ", lo=%"PRIx64" (level %d not supported)",
1334 __func__, ce->hi, ce->lo,
1335 vtd_ce_get_level(ce));
1336 return -VTD_FR_CONTEXT_ENTRY_INV;
1337 }
1338
1339 if (!s->root_scalable) {
1340 /* Do translation type check */
1341 if (!vtd_ce_type_check(x86_iommu, ce)) {
1342 /* Errors dumped in vtd_ce_type_check() */
1343 return -VTD_FR_CONTEXT_ENTRY_INV;
1344 }
1345 } else {
1346 /*
1347 * Check if the programming of context-entry.rid2pasid
1348 * and corresponding pasid setting is valid, and thus
1349 * avoids to check pasid entry fetching result in future
1350 * helper function calling.
1351 */
1352 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1353 if (ret_fr) {
1354 return ret_fr;
1355 }
1356 }
1357
1358 return 0;
1359 }
1360
1361 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1362 void *private)
1363 {
1364 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1365 return 0;
1366 }
1367
1368 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1369 VTDContextEntry *ce)
1370 {
1371 VTDPASIDEntry pe;
1372
1373 if (s->root_scalable) {
1374 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1375 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1376 }
1377
1378 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1379 }
1380
1381 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1382 VTDContextEntry *ce,
1383 hwaddr addr, hwaddr size)
1384 {
1385 IntelIOMMUState *s = vtd_as->iommu_state;
1386 vtd_page_walk_info info = {
1387 .hook_fn = vtd_sync_shadow_page_hook,
1388 .private = (void *)&vtd_as->iommu,
1389 .notify_unmap = true,
1390 .aw = s->aw_bits,
1391 .as = vtd_as,
1392 .domain_id = vtd_get_domain_id(s, ce),
1393 };
1394
1395 return vtd_page_walk(s, ce, addr, addr + size, &info);
1396 }
1397
1398 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1399 {
1400 int ret;
1401 VTDContextEntry ce;
1402 IOMMUNotifier *n;
1403
1404 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1405 pci_bus_num(vtd_as->bus),
1406 vtd_as->devfn, &ce);
1407 if (ret) {
1408 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1409 /*
1410 * It's a valid scenario to have a context entry that is
1411 * not present. For example, when a device is removed
1412 * from an existing domain then the context entry will be
1413 * zeroed by the guest before it was put into another
1414 * domain. When this happens, instead of synchronizing
1415 * the shadow pages we should invalidate all existing
1416 * mappings and notify the backends.
1417 */
1418 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1419 vtd_address_space_unmap(vtd_as, n);
1420 }
1421 ret = 0;
1422 }
1423 return ret;
1424 }
1425
1426 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1427 }
1428
1429 /*
1430 * Check if specific device is configed to bypass address
1431 * translation for DMA requests. In Scalable Mode, bypass
1432 * 1st-level translation or 2nd-level translation, it depends
1433 * on PGTT setting.
1434 */
1435 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1436 {
1437 IntelIOMMUState *s;
1438 VTDContextEntry ce;
1439 VTDPASIDEntry pe;
1440 int ret;
1441
1442 assert(as);
1443
1444 s = as->iommu_state;
1445 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1446 as->devfn, &ce);
1447 if (ret) {
1448 /*
1449 * Possibly failed to parse the context entry for some reason
1450 * (e.g., during init, or any guest configuration errors on
1451 * context entries). We should assume PT not enabled for
1452 * safety.
1453 */
1454 return false;
1455 }
1456
1457 if (s->root_scalable) {
1458 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1459 if (ret) {
1460 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1461 __func__, ret);
1462 return false;
1463 }
1464 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1465 }
1466
1467 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1468 }
1469
1470 /* Return whether the device is using IOMMU translation. */
1471 static bool vtd_switch_address_space(VTDAddressSpace *as)
1472 {
1473 bool use_iommu;
1474 /* Whether we need to take the BQL on our own */
1475 bool take_bql = !qemu_mutex_iothread_locked();
1476
1477 assert(as);
1478
1479 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1480
1481 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1482 VTD_PCI_SLOT(as->devfn),
1483 VTD_PCI_FUNC(as->devfn),
1484 use_iommu);
1485
1486 /*
1487 * It's possible that we reach here without BQL, e.g., when called
1488 * from vtd_pt_enable_fast_path(). However the memory APIs need
1489 * it. We'd better make sure we have had it already, or, take it.
1490 */
1491 if (take_bql) {
1492 qemu_mutex_lock_iothread();
1493 }
1494
1495 /* Turn off first then on the other */
1496 if (use_iommu) {
1497 memory_region_set_enabled(&as->nodmar, false);
1498 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1499 } else {
1500 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1501 memory_region_set_enabled(&as->nodmar, true);
1502 }
1503
1504 if (take_bql) {
1505 qemu_mutex_unlock_iothread();
1506 }
1507
1508 return use_iommu;
1509 }
1510
1511 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1512 {
1513 GHashTableIter iter;
1514 VTDBus *vtd_bus;
1515 int i;
1516
1517 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1518 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1519 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1520 if (!vtd_bus->dev_as[i]) {
1521 continue;
1522 }
1523 vtd_switch_address_space(vtd_bus->dev_as[i]);
1524 }
1525 }
1526 }
1527
1528 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1529 {
1530 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1531 }
1532
1533 static const bool vtd_qualified_faults[] = {
1534 [VTD_FR_RESERVED] = false,
1535 [VTD_FR_ROOT_ENTRY_P] = false,
1536 [VTD_FR_CONTEXT_ENTRY_P] = true,
1537 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1538 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1539 [VTD_FR_WRITE] = true,
1540 [VTD_FR_READ] = true,
1541 [VTD_FR_PAGING_ENTRY_INV] = true,
1542 [VTD_FR_ROOT_TABLE_INV] = false,
1543 [VTD_FR_CONTEXT_TABLE_INV] = false,
1544 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1545 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1546 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1547 [VTD_FR_PASID_TABLE_INV] = false,
1548 [VTD_FR_RESERVED_ERR] = false,
1549 [VTD_FR_MAX] = false,
1550 };
1551
1552 /* To see if a fault condition is "qualified", which is reported to software
1553 * only if the FPD field in the context-entry used to process the faulting
1554 * request is 0.
1555 */
1556 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1557 {
1558 return vtd_qualified_faults[fault];
1559 }
1560
1561 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1562 {
1563 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1564 }
1565
1566 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1567 {
1568 VTDBus *vtd_bus;
1569 VTDAddressSpace *vtd_as;
1570 bool success = false;
1571
1572 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1573 if (!vtd_bus) {
1574 goto out;
1575 }
1576
1577 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1578 if (!vtd_as) {
1579 goto out;
1580 }
1581
1582 if (vtd_switch_address_space(vtd_as) == false) {
1583 /* We switched off IOMMU region successfully. */
1584 success = true;
1585 }
1586
1587 out:
1588 trace_vtd_pt_enable_fast_path(source_id, success);
1589 }
1590
1591 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1592 * translation.
1593 *
1594 * Called from RCU critical section.
1595 *
1596 * @bus_num: The bus number
1597 * @devfn: The devfn, which is the combined of device and function number
1598 * @is_write: The access is a write operation
1599 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1600 *
1601 * Returns true if translation is successful, otherwise false.
1602 */
1603 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1604 uint8_t devfn, hwaddr addr, bool is_write,
1605 IOMMUTLBEntry *entry)
1606 {
1607 IntelIOMMUState *s = vtd_as->iommu_state;
1608 VTDContextEntry ce;
1609 uint8_t bus_num = pci_bus_num(bus);
1610 VTDContextCacheEntry *cc_entry;
1611 uint64_t slpte, page_mask;
1612 uint32_t level;
1613 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1614 int ret_fr;
1615 bool is_fpd_set = false;
1616 bool reads = true;
1617 bool writes = true;
1618 uint8_t access_flags;
1619 VTDIOTLBEntry *iotlb_entry;
1620
1621 /*
1622 * We have standalone memory region for interrupt addresses, we
1623 * should never receive translation requests in this region.
1624 */
1625 assert(!vtd_is_interrupt_addr(addr));
1626
1627 vtd_iommu_lock(s);
1628
1629 cc_entry = &vtd_as->context_cache_entry;
1630
1631 /* Try to fetch slpte form IOTLB */
1632 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1633 if (iotlb_entry) {
1634 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1635 iotlb_entry->domain_id);
1636 slpte = iotlb_entry->slpte;
1637 access_flags = iotlb_entry->access_flags;
1638 page_mask = iotlb_entry->mask;
1639 goto out;
1640 }
1641
1642 /* Try to fetch context-entry from cache first */
1643 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1644 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1645 cc_entry->context_entry.lo,
1646 cc_entry->context_cache_gen);
1647 ce = cc_entry->context_entry;
1648 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1649 if (!is_fpd_set && s->root_scalable) {
1650 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1651 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1652 }
1653 } else {
1654 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1655 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1656 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1657 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1658 }
1659 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1660 /* Update context-cache */
1661 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1662 cc_entry->context_cache_gen,
1663 s->context_cache_gen);
1664 cc_entry->context_entry = ce;
1665 cc_entry->context_cache_gen = s->context_cache_gen;
1666 }
1667
1668 /*
1669 * We don't need to translate for pass-through context entries.
1670 * Also, let's ignore IOTLB caching as well for PT devices.
1671 */
1672 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1673 entry->iova = addr & VTD_PAGE_MASK_4K;
1674 entry->translated_addr = entry->iova;
1675 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1676 entry->perm = IOMMU_RW;
1677 trace_vtd_translate_pt(source_id, entry->iova);
1678
1679 /*
1680 * When this happens, it means firstly caching-mode is not
1681 * enabled, and this is the first passthrough translation for
1682 * the device. Let's enable the fast path for passthrough.
1683 *
1684 * When passthrough is disabled again for the device, we can
1685 * capture it via the context entry invalidation, then the
1686 * IOMMU region can be swapped back.
1687 */
1688 vtd_pt_enable_fast_path(s, source_id);
1689 vtd_iommu_unlock(s);
1690 return true;
1691 }
1692
1693 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1694 &reads, &writes, s->aw_bits);
1695 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1696
1697 page_mask = vtd_slpt_level_page_mask(level);
1698 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1699 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1700 access_flags, level);
1701 out:
1702 vtd_iommu_unlock(s);
1703 entry->iova = addr & page_mask;
1704 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1705 entry->addr_mask = ~page_mask;
1706 entry->perm = access_flags;
1707 return true;
1708
1709 error:
1710 vtd_iommu_unlock(s);
1711 entry->iova = 0;
1712 entry->translated_addr = 0;
1713 entry->addr_mask = 0;
1714 entry->perm = IOMMU_NONE;
1715 return false;
1716 }
1717
1718 static void vtd_root_table_setup(IntelIOMMUState *s)
1719 {
1720 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1721 s->root_extended = s->root & VTD_RTADDR_RTT;
1722 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1723
1724 vtd_update_scalable_state(s);
1725
1726 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1727 }
1728
1729 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1730 uint32_t index, uint32_t mask)
1731 {
1732 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1733 }
1734
1735 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1736 {
1737 uint64_t value = 0;
1738 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1739 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1740 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1741 s->intr_eime = value & VTD_IRTA_EIME;
1742
1743 /* Notify global invalidation */
1744 vtd_iec_notify_all(s, true, 0, 0);
1745
1746 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1747 }
1748
1749 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1750 {
1751 VTDAddressSpace *vtd_as;
1752
1753 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1754 vtd_sync_shadow_page_table(vtd_as);
1755 }
1756 }
1757
1758 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1759 {
1760 trace_vtd_inv_desc_cc_global();
1761 /* Protects context cache */
1762 vtd_iommu_lock(s);
1763 s->context_cache_gen++;
1764 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1765 vtd_reset_context_cache_locked(s);
1766 }
1767 vtd_iommu_unlock(s);
1768 vtd_address_space_refresh_all(s);
1769 /*
1770 * From VT-d spec 6.5.2.1, a global context entry invalidation
1771 * should be followed by a IOTLB global invalidation, so we should
1772 * be safe even without this. Hoewever, let's replay the region as
1773 * well to be safer, and go back here when we need finer tunes for
1774 * VT-d emulation codes.
1775 */
1776 vtd_iommu_replay_all(s);
1777 }
1778
1779 /* Do a context-cache device-selective invalidation.
1780 * @func_mask: FM field after shifting
1781 */
1782 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1783 uint16_t source_id,
1784 uint16_t func_mask)
1785 {
1786 uint16_t mask;
1787 VTDBus *vtd_bus;
1788 VTDAddressSpace *vtd_as;
1789 uint8_t bus_n, devfn;
1790 uint16_t devfn_it;
1791
1792 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1793
1794 switch (func_mask & 3) {
1795 case 0:
1796 mask = 0; /* No bits in the SID field masked */
1797 break;
1798 case 1:
1799 mask = 4; /* Mask bit 2 in the SID field */
1800 break;
1801 case 2:
1802 mask = 6; /* Mask bit 2:1 in the SID field */
1803 break;
1804 case 3:
1805 mask = 7; /* Mask bit 2:0 in the SID field */
1806 break;
1807 }
1808 mask = ~mask;
1809
1810 bus_n = VTD_SID_TO_BUS(source_id);
1811 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1812 if (vtd_bus) {
1813 devfn = VTD_SID_TO_DEVFN(source_id);
1814 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1815 vtd_as = vtd_bus->dev_as[devfn_it];
1816 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1817 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1818 VTD_PCI_FUNC(devfn_it));
1819 vtd_iommu_lock(s);
1820 vtd_as->context_cache_entry.context_cache_gen = 0;
1821 vtd_iommu_unlock(s);
1822 /*
1823 * Do switch address space when needed, in case if the
1824 * device passthrough bit is switched.
1825 */
1826 vtd_switch_address_space(vtd_as);
1827 /*
1828 * So a device is moving out of (or moving into) a
1829 * domain, resync the shadow page table.
1830 * This won't bring bad even if we have no such
1831 * notifier registered - the IOMMU notification
1832 * framework will skip MAP notifications if that
1833 * happened.
1834 */
1835 vtd_sync_shadow_page_table(vtd_as);
1836 }
1837 }
1838 }
1839 }
1840
1841 /* Context-cache invalidation
1842 * Returns the Context Actual Invalidation Granularity.
1843 * @val: the content of the CCMD_REG
1844 */
1845 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1846 {
1847 uint64_t caig;
1848 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1849
1850 switch (type) {
1851 case VTD_CCMD_DOMAIN_INVL:
1852 /* Fall through */
1853 case VTD_CCMD_GLOBAL_INVL:
1854 caig = VTD_CCMD_GLOBAL_INVL_A;
1855 vtd_context_global_invalidate(s);
1856 break;
1857
1858 case VTD_CCMD_DEVICE_INVL:
1859 caig = VTD_CCMD_DEVICE_INVL_A;
1860 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1861 break;
1862
1863 default:
1864 error_report_once("%s: invalid context: 0x%" PRIx64,
1865 __func__, val);
1866 caig = 0;
1867 }
1868 return caig;
1869 }
1870
1871 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1872 {
1873 trace_vtd_inv_desc_iotlb_global();
1874 vtd_reset_iotlb(s);
1875 vtd_iommu_replay_all(s);
1876 }
1877
1878 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1879 {
1880 VTDContextEntry ce;
1881 VTDAddressSpace *vtd_as;
1882
1883 trace_vtd_inv_desc_iotlb_domain(domain_id);
1884
1885 vtd_iommu_lock(s);
1886 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1887 &domain_id);
1888 vtd_iommu_unlock(s);
1889
1890 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1891 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1892 vtd_as->devfn, &ce) &&
1893 domain_id == vtd_get_domain_id(s, &ce)) {
1894 vtd_sync_shadow_page_table(vtd_as);
1895 }
1896 }
1897 }
1898
1899 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1900 uint16_t domain_id, hwaddr addr,
1901 uint8_t am)
1902 {
1903 VTDAddressSpace *vtd_as;
1904 VTDContextEntry ce;
1905 int ret;
1906 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1907
1908 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1909 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1910 vtd_as->devfn, &ce);
1911 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1912 if (vtd_as_has_map_notifier(vtd_as)) {
1913 /*
1914 * As long as we have MAP notifications registered in
1915 * any of our IOMMU notifiers, we need to sync the
1916 * shadow page table.
1917 */
1918 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1919 } else {
1920 /*
1921 * For UNMAP-only notifiers, we don't need to walk the
1922 * page tables. We just deliver the PSI down to
1923 * invalidate caches.
1924 */
1925 IOMMUTLBEntry entry = {
1926 .target_as = &address_space_memory,
1927 .iova = addr,
1928 .translated_addr = 0,
1929 .addr_mask = size - 1,
1930 .perm = IOMMU_NONE,
1931 };
1932 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1933 }
1934 }
1935 }
1936 }
1937
1938 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1939 hwaddr addr, uint8_t am)
1940 {
1941 VTDIOTLBPageInvInfo info;
1942
1943 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1944
1945 assert(am <= VTD_MAMV);
1946 info.domain_id = domain_id;
1947 info.addr = addr;
1948 info.mask = ~((1 << am) - 1);
1949 vtd_iommu_lock(s);
1950 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1951 vtd_iommu_unlock(s);
1952 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1953 }
1954
1955 /* Flush IOTLB
1956 * Returns the IOTLB Actual Invalidation Granularity.
1957 * @val: the content of the IOTLB_REG
1958 */
1959 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1960 {
1961 uint64_t iaig;
1962 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1963 uint16_t domain_id;
1964 hwaddr addr;
1965 uint8_t am;
1966
1967 switch (type) {
1968 case VTD_TLB_GLOBAL_FLUSH:
1969 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1970 vtd_iotlb_global_invalidate(s);
1971 break;
1972
1973 case VTD_TLB_DSI_FLUSH:
1974 domain_id = VTD_TLB_DID(val);
1975 iaig = VTD_TLB_DSI_FLUSH_A;
1976 vtd_iotlb_domain_invalidate(s, domain_id);
1977 break;
1978
1979 case VTD_TLB_PSI_FLUSH:
1980 domain_id = VTD_TLB_DID(val);
1981 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1982 am = VTD_IVA_AM(addr);
1983 addr = VTD_IVA_ADDR(addr);
1984 if (am > VTD_MAMV) {
1985 error_report_once("%s: address mask overflow: 0x%" PRIx64,
1986 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
1987 iaig = 0;
1988 break;
1989 }
1990 iaig = VTD_TLB_PSI_FLUSH_A;
1991 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1992 break;
1993
1994 default:
1995 error_report_once("%s: invalid granularity: 0x%" PRIx64,
1996 __func__, val);
1997 iaig = 0;
1998 }
1999 return iaig;
2000 }
2001
2002 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2003
2004 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2005 {
2006 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2007 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2008 }
2009
2010 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2011 {
2012 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2013
2014 trace_vtd_inv_qi_enable(en);
2015
2016 if (en) {
2017 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2018 /* 2^(x+8) entries */
2019 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2020 s->qi_enabled = true;
2021 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2022 /* Ok - report back to driver */
2023 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2024
2025 if (s->iq_tail != 0) {
2026 /*
2027 * This is a spec violation but Windows guests are known to set up
2028 * Queued Invalidation this way so we allow the write and process
2029 * Invalidation Descriptors right away.
2030 */
2031 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2032 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2033 vtd_fetch_inv_desc(s);
2034 }
2035 }
2036 } else {
2037 if (vtd_queued_inv_disable_check(s)) {
2038 /* disable Queued Invalidation */
2039 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2040 s->iq_head = 0;
2041 s->qi_enabled = false;
2042 /* Ok - report back to driver */
2043 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2044 } else {
2045 error_report_once("%s: detected improper state when disable QI "
2046 "(head=0x%x, tail=0x%x, last_type=%d)",
2047 __func__,
2048 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2049 }
2050 }
2051 }
2052
2053 /* Set Root Table Pointer */
2054 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2055 {
2056 vtd_root_table_setup(s);
2057 /* Ok - report back to driver */
2058 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2059 vtd_reset_caches(s);
2060 vtd_address_space_refresh_all(s);
2061 }
2062
2063 /* Set Interrupt Remap Table Pointer */
2064 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2065 {
2066 vtd_interrupt_remap_table_setup(s);
2067 /* Ok - report back to driver */
2068 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2069 }
2070
2071 /* Handle Translation Enable/Disable */
2072 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2073 {
2074 if (s->dmar_enabled == en) {
2075 return;
2076 }
2077
2078 trace_vtd_dmar_enable(en);
2079
2080 if (en) {
2081 s->dmar_enabled = true;
2082 /* Ok - report back to driver */
2083 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2084 } else {
2085 s->dmar_enabled = false;
2086
2087 /* Clear the index of Fault Recording Register */
2088 s->next_frcd_reg = 0;
2089 /* Ok - report back to driver */
2090 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2091 }
2092
2093 vtd_reset_caches(s);
2094 vtd_address_space_refresh_all(s);
2095 }
2096
2097 /* Handle Interrupt Remap Enable/Disable */
2098 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2099 {
2100 trace_vtd_ir_enable(en);
2101
2102 if (en) {
2103 s->intr_enabled = true;
2104 /* Ok - report back to driver */
2105 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2106 } else {
2107 s->intr_enabled = false;
2108 /* Ok - report back to driver */
2109 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2110 }
2111 }
2112
2113 /* Handle write to Global Command Register */
2114 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2115 {
2116 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2117 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2118 uint32_t changed = status ^ val;
2119
2120 trace_vtd_reg_write_gcmd(status, val);
2121 if (changed & VTD_GCMD_TE) {
2122 /* Translation enable/disable */
2123 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2124 }
2125 if (val & VTD_GCMD_SRTP) {
2126 /* Set/update the root-table pointer */
2127 vtd_handle_gcmd_srtp(s);
2128 }
2129 if (changed & VTD_GCMD_QIE) {
2130 /* Queued Invalidation Enable */
2131 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2132 }
2133 if (val & VTD_GCMD_SIRTP) {
2134 /* Set/update the interrupt remapping root-table pointer */
2135 vtd_handle_gcmd_sirtp(s);
2136 }
2137 if (changed & VTD_GCMD_IRE) {
2138 /* Interrupt remap enable/disable */
2139 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2140 }
2141 }
2142
2143 /* Handle write to Context Command Register */
2144 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2145 {
2146 uint64_t ret;
2147 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2148
2149 /* Context-cache invalidation request */
2150 if (val & VTD_CCMD_ICC) {
2151 if (s->qi_enabled) {
2152 error_report_once("Queued Invalidation enabled, "
2153 "should not use register-based invalidation");
2154 return;
2155 }
2156 ret = vtd_context_cache_invalidate(s, val);
2157 /* Invalidation completed. Change something to show */
2158 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2159 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2160 ret);
2161 }
2162 }
2163
2164 /* Handle write to IOTLB Invalidation Register */
2165 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2166 {
2167 uint64_t ret;
2168 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2169
2170 /* IOTLB invalidation request */
2171 if (val & VTD_TLB_IVT) {
2172 if (s->qi_enabled) {
2173 error_report_once("Queued Invalidation enabled, "
2174 "should not use register-based invalidation");
2175 return;
2176 }
2177 ret = vtd_iotlb_flush(s, val);
2178 /* Invalidation completed. Change something to show */
2179 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2180 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2181 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2182 }
2183 }
2184
2185 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2186 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2187 VTDInvDesc *inv_desc)
2188 {
2189 dma_addr_t base_addr = s->iq;
2190 uint32_t offset = s->iq_head;
2191 uint32_t dw = s->iq_dw ? 32 : 16;
2192 dma_addr_t addr = base_addr + offset * dw;
2193
2194 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2195 error_report_once("Read INV DESC failed.");
2196 return false;
2197 }
2198 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2199 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2200 if (dw == 32) {
2201 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2202 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2203 }
2204 return true;
2205 }
2206
2207 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2208 {
2209 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2210 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2211 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2212 " (reserved nonzero)", __func__, inv_desc->hi,
2213 inv_desc->lo);
2214 return false;
2215 }
2216 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2217 /* Status Write */
2218 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2219 VTD_INV_DESC_WAIT_DATA_SHIFT);
2220
2221 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2222
2223 /* FIXME: need to be masked with HAW? */
2224 dma_addr_t status_addr = inv_desc->hi;
2225 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2226 status_data = cpu_to_le32(status_data);
2227 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2228 sizeof(status_data))) {
2229 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2230 return false;
2231 }
2232 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2233 /* Interrupt flag */
2234 vtd_generate_completion_event(s);
2235 } else {
2236 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2237 " (unknown type)", __func__, inv_desc->hi,
2238 inv_desc->lo);
2239 return false;
2240 }
2241 return true;
2242 }
2243
2244 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2245 VTDInvDesc *inv_desc)
2246 {
2247 uint16_t sid, fmask;
2248
2249 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2250 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2251 " (reserved nonzero)", __func__, inv_desc->hi,
2252 inv_desc->lo);
2253 return false;
2254 }
2255 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2256 case VTD_INV_DESC_CC_DOMAIN:
2257 trace_vtd_inv_desc_cc_domain(
2258 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2259 /* Fall through */
2260 case VTD_INV_DESC_CC_GLOBAL:
2261 vtd_context_global_invalidate(s);
2262 break;
2263
2264 case VTD_INV_DESC_CC_DEVICE:
2265 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2266 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2267 vtd_context_device_invalidate(s, sid, fmask);
2268 break;
2269
2270 default:
2271 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2272 " (invalid type)", __func__, inv_desc->hi,
2273 inv_desc->lo);
2274 return false;
2275 }
2276 return true;
2277 }
2278
2279 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2280 {
2281 uint16_t domain_id;
2282 uint8_t am;
2283 hwaddr addr;
2284
2285 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2286 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2287 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2288 ", lo=0x%"PRIx64" (reserved bits unzero)\n",
2289 __func__, inv_desc->hi, inv_desc->lo);
2290 return false;
2291 }
2292
2293 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2294 case VTD_INV_DESC_IOTLB_GLOBAL:
2295 vtd_iotlb_global_invalidate(s);
2296 break;
2297
2298 case VTD_INV_DESC_IOTLB_DOMAIN:
2299 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2300 vtd_iotlb_domain_invalidate(s, domain_id);
2301 break;
2302
2303 case VTD_INV_DESC_IOTLB_PAGE:
2304 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2305 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2306 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2307 if (am > VTD_MAMV) {
2308 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2309 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
2310 __func__, inv_desc->hi, inv_desc->lo,
2311 am, (unsigned)VTD_MAMV);
2312 return false;
2313 }
2314 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2315 break;
2316
2317 default:
2318 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2319 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
2320 __func__, inv_desc->hi, inv_desc->lo,
2321 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2322 return false;
2323 }
2324 return true;
2325 }
2326
2327 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2328 VTDInvDesc *inv_desc)
2329 {
2330 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2331 inv_desc->iec.index,
2332 inv_desc->iec.index_mask);
2333
2334 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2335 inv_desc->iec.index,
2336 inv_desc->iec.index_mask);
2337 return true;
2338 }
2339
2340 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2341 VTDInvDesc *inv_desc)
2342 {
2343 VTDAddressSpace *vtd_dev_as;
2344 IOMMUTLBEntry entry;
2345 struct VTDBus *vtd_bus;
2346 hwaddr addr;
2347 uint64_t sz;
2348 uint16_t sid;
2349 uint8_t devfn;
2350 bool size;
2351 uint8_t bus_num;
2352
2353 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2354 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2355 devfn = sid & 0xff;
2356 bus_num = sid >> 8;
2357 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2358
2359 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2360 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2361 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2362 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2363 inv_desc->hi, inv_desc->lo);
2364 return false;
2365 }
2366
2367 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2368 if (!vtd_bus) {
2369 goto done;
2370 }
2371
2372 vtd_dev_as = vtd_bus->dev_as[devfn];
2373 if (!vtd_dev_as) {
2374 goto done;
2375 }
2376
2377 /* According to ATS spec table 2.4:
2378 * S = 0, bits 15:12 = xxxx range size: 4K
2379 * S = 1, bits 15:12 = xxx0 range size: 8K
2380 * S = 1, bits 15:12 = xx01 range size: 16K
2381 * S = 1, bits 15:12 = x011 range size: 32K
2382 * S = 1, bits 15:12 = 0111 range size: 64K
2383 * ...
2384 */
2385 if (size) {
2386 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2387 addr &= ~(sz - 1);
2388 } else {
2389 sz = VTD_PAGE_SIZE;
2390 }
2391
2392 entry.target_as = &vtd_dev_as->as;
2393 entry.addr_mask = sz - 1;
2394 entry.iova = addr;
2395 entry.perm = IOMMU_NONE;
2396 entry.translated_addr = 0;
2397 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2398
2399 done:
2400 return true;
2401 }
2402
2403 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2404 {
2405 VTDInvDesc inv_desc;
2406 uint8_t desc_type;
2407
2408 trace_vtd_inv_qi_head(s->iq_head);
2409 if (!vtd_get_inv_desc(s, &inv_desc)) {
2410 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2411 return false;
2412 }
2413
2414 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2415 /* FIXME: should update at first or at last? */
2416 s->iq_last_desc_type = desc_type;
2417
2418 switch (desc_type) {
2419 case VTD_INV_DESC_CC:
2420 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2421 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2422 return false;
2423 }
2424 break;
2425
2426 case VTD_INV_DESC_IOTLB:
2427 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2428 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2429 return false;
2430 }
2431 break;
2432
2433 /*
2434 * TODO: the entity of below two cases will be implemented in future series.
2435 * To make guest (which integrates scalable mode support patch set in
2436 * iommu driver) work, just return true is enough so far.
2437 */
2438 case VTD_INV_DESC_PC:
2439 break;
2440
2441 case VTD_INV_DESC_PIOTLB:
2442 break;
2443
2444 case VTD_INV_DESC_WAIT:
2445 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2446 if (!vtd_process_wait_desc(s, &inv_desc)) {
2447 return false;
2448 }
2449 break;
2450
2451 case VTD_INV_DESC_IEC:
2452 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2453 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2454 return false;
2455 }
2456 break;
2457
2458 case VTD_INV_DESC_DEVICE:
2459 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2460 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2461 return false;
2462 }
2463 break;
2464
2465 default:
2466 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2467 " (unknown type)", __func__, inv_desc.hi,
2468 inv_desc.lo);
2469 return false;
2470 }
2471 s->iq_head++;
2472 if (s->iq_head == s->iq_size) {
2473 s->iq_head = 0;
2474 }
2475 return true;
2476 }
2477
2478 /* Try to fetch and process more Invalidation Descriptors */
2479 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2480 {
2481 trace_vtd_inv_qi_fetch();
2482
2483 if (s->iq_tail >= s->iq_size) {
2484 /* Detects an invalid Tail pointer */
2485 error_report_once("%s: detected invalid QI tail "
2486 "(tail=0x%x, size=0x%x)",
2487 __func__, s->iq_tail, s->iq_size);
2488 vtd_handle_inv_queue_error(s);
2489 return;
2490 }
2491 while (s->iq_head != s->iq_tail) {
2492 if (!vtd_process_inv_desc(s)) {
2493 /* Invalidation Queue Errors */
2494 vtd_handle_inv_queue_error(s);
2495 break;
2496 }
2497 /* Must update the IQH_REG in time */
2498 vtd_set_quad_raw(s, DMAR_IQH_REG,
2499 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2500 VTD_IQH_QH_MASK);
2501 }
2502 }
2503
2504 /* Handle write to Invalidation Queue Tail Register */
2505 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2506 {
2507 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2508
2509 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2510 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2511 __func__, val);
2512 return;
2513 }
2514 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2515 trace_vtd_inv_qi_tail(s->iq_tail);
2516
2517 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2518 /* Process Invalidation Queue here */
2519 vtd_fetch_inv_desc(s);
2520 }
2521 }
2522
2523 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2524 {
2525 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2526 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2527 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2528
2529 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2530 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2531 trace_vtd_fsts_clear_ip();
2532 }
2533 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2534 * Descriptors if there are any when Queued Invalidation is enabled?
2535 */
2536 }
2537
2538 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2539 {
2540 uint32_t fectl_reg;
2541 /* FIXME: when software clears the IM field, check the IP field. But do we
2542 * need to compare the old value and the new value to conclude that
2543 * software clears the IM field? Or just check if the IM field is zero?
2544 */
2545 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2546
2547 trace_vtd_reg_write_fectl(fectl_reg);
2548
2549 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2550 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2551 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2552 }
2553 }
2554
2555 static void vtd_handle_ics_write(IntelIOMMUState *s)
2556 {
2557 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2558 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2559
2560 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2561 trace_vtd_reg_ics_clear_ip();
2562 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2563 }
2564 }
2565
2566 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2567 {
2568 uint32_t iectl_reg;
2569 /* FIXME: when software clears the IM field, check the IP field. But do we
2570 * need to compare the old value and the new value to conclude that
2571 * software clears the IM field? Or just check if the IM field is zero?
2572 */
2573 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2574
2575 trace_vtd_reg_write_iectl(iectl_reg);
2576
2577 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2578 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2579 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2580 }
2581 }
2582
2583 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2584 {
2585 IntelIOMMUState *s = opaque;
2586 uint64_t val;
2587
2588 trace_vtd_reg_read(addr, size);
2589
2590 if (addr + size > DMAR_REG_SIZE) {
2591 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2592 " size=0x%u", __func__, addr, size);
2593 return (uint64_t)-1;
2594 }
2595
2596 switch (addr) {
2597 /* Root Table Address Register, 64-bit */
2598 case DMAR_RTADDR_REG:
2599 if (size == 4) {
2600 val = s->root & ((1ULL << 32) - 1);
2601 } else {
2602 val = s->root;
2603 }
2604 break;
2605
2606 case DMAR_RTADDR_REG_HI:
2607 assert(size == 4);
2608 val = s->root >> 32;
2609 break;
2610
2611 /* Invalidation Queue Address Register, 64-bit */
2612 case DMAR_IQA_REG:
2613 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2614 if (size == 4) {
2615 val = val & ((1ULL << 32) - 1);
2616 }
2617 break;
2618
2619 case DMAR_IQA_REG_HI:
2620 assert(size == 4);
2621 val = s->iq >> 32;
2622 break;
2623
2624 default:
2625 if (size == 4) {
2626 val = vtd_get_long(s, addr);
2627 } else {
2628 val = vtd_get_quad(s, addr);
2629 }
2630 }
2631
2632 return val;
2633 }
2634
2635 static void vtd_mem_write(void *opaque, hwaddr addr,
2636 uint64_t val, unsigned size)
2637 {
2638 IntelIOMMUState *s = opaque;
2639
2640 trace_vtd_reg_write(addr, size, val);
2641
2642 if (addr + size > DMAR_REG_SIZE) {
2643 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2644 " size=0x%u", __func__, addr, size);
2645 return;
2646 }
2647
2648 switch (addr) {
2649 /* Global Command Register, 32-bit */
2650 case DMAR_GCMD_REG:
2651 vtd_set_long(s, addr, val);
2652 vtd_handle_gcmd_write(s);
2653 break;
2654
2655 /* Context Command Register, 64-bit */
2656 case DMAR_CCMD_REG:
2657 if (size == 4) {
2658 vtd_set_long(s, addr, val);
2659 } else {
2660 vtd_set_quad(s, addr, val);
2661 vtd_handle_ccmd_write(s);
2662 }
2663 break;
2664
2665 case DMAR_CCMD_REG_HI:
2666 assert(size == 4);
2667 vtd_set_long(s, addr, val);
2668 vtd_handle_ccmd_write(s);
2669 break;
2670
2671 /* IOTLB Invalidation Register, 64-bit */
2672 case DMAR_IOTLB_REG:
2673 if (size == 4) {
2674 vtd_set_long(s, addr, val);
2675 } else {
2676 vtd_set_quad(s, addr, val);
2677 vtd_handle_iotlb_write(s);
2678 }
2679 break;
2680
2681 case DMAR_IOTLB_REG_HI:
2682 assert(size == 4);
2683 vtd_set_long(s, addr, val);
2684 vtd_handle_iotlb_write(s);
2685 break;
2686
2687 /* Invalidate Address Register, 64-bit */
2688 case DMAR_IVA_REG:
2689 if (size == 4) {
2690 vtd_set_long(s, addr, val);
2691 } else {
2692 vtd_set_quad(s, addr, val);
2693 }
2694 break;
2695
2696 case DMAR_IVA_REG_HI:
2697 assert(size == 4);
2698 vtd_set_long(s, addr, val);
2699 break;
2700
2701 /* Fault Status Register, 32-bit */
2702 case DMAR_FSTS_REG:
2703 assert(size == 4);
2704 vtd_set_long(s, addr, val);
2705 vtd_handle_fsts_write(s);
2706 break;
2707
2708 /* Fault Event Control Register, 32-bit */
2709 case DMAR_FECTL_REG:
2710 assert(size == 4);
2711 vtd_set_long(s, addr, val);
2712 vtd_handle_fectl_write(s);
2713 break;
2714
2715 /* Fault Event Data Register, 32-bit */
2716 case DMAR_FEDATA_REG:
2717 assert(size == 4);
2718 vtd_set_long(s, addr, val);
2719 break;
2720
2721 /* Fault Event Address Register, 32-bit */
2722 case DMAR_FEADDR_REG:
2723 if (size == 4) {
2724 vtd_set_long(s, addr, val);
2725 } else {
2726 /*
2727 * While the register is 32-bit only, some guests (Xen...) write to
2728 * it with 64-bit.
2729 */
2730 vtd_set_quad(s, addr, val);
2731 }
2732 break;
2733
2734 /* Fault Event Upper Address Register, 32-bit */
2735 case DMAR_FEUADDR_REG:
2736 assert(size == 4);
2737 vtd_set_long(s, addr, val);
2738 break;
2739
2740 /* Protected Memory Enable Register, 32-bit */
2741 case DMAR_PMEN_REG:
2742 assert(size == 4);
2743 vtd_set_long(s, addr, val);
2744 break;
2745
2746 /* Root Table Address Register, 64-bit */
2747 case DMAR_RTADDR_REG:
2748 if (size == 4) {
2749 vtd_set_long(s, addr, val);
2750 } else {
2751 vtd_set_quad(s, addr, val);
2752 }
2753 break;
2754
2755 case DMAR_RTADDR_REG_HI:
2756 assert(size == 4);
2757 vtd_set_long(s, addr, val);
2758 break;
2759
2760 /* Invalidation Queue Tail Register, 64-bit */
2761 case DMAR_IQT_REG:
2762 if (size == 4) {
2763 vtd_set_long(s, addr, val);
2764 } else {
2765 vtd_set_quad(s, addr, val);
2766 }
2767 vtd_handle_iqt_write(s);
2768 break;
2769
2770 case DMAR_IQT_REG_HI:
2771 assert(size == 4);
2772 vtd_set_long(s, addr, val);
2773 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2774 break;
2775
2776 /* Invalidation Queue Address Register, 64-bit */
2777 case DMAR_IQA_REG:
2778 if (size == 4) {
2779 vtd_set_long(s, addr, val);
2780 } else {
2781 vtd_set_quad(s, addr, val);
2782 }
2783 if (s->ecap & VTD_ECAP_SMTS &&
2784 val & VTD_IQA_DW_MASK) {
2785 s->iq_dw = true;
2786 } else {
2787 s->iq_dw = false;
2788 }
2789 break;
2790
2791 case DMAR_IQA_REG_HI:
2792 assert(size == 4);
2793 vtd_set_long(s, addr, val);
2794 break;
2795
2796 /* Invalidation Completion Status Register, 32-bit */
2797 case DMAR_ICS_REG:
2798 assert(size == 4);
2799 vtd_set_long(s, addr, val);
2800 vtd_handle_ics_write(s);
2801 break;
2802
2803 /* Invalidation Event Control Register, 32-bit */
2804 case DMAR_IECTL_REG:
2805 assert(size == 4);
2806 vtd_set_long(s, addr, val);
2807 vtd_handle_iectl_write(s);
2808 break;
2809
2810 /* Invalidation Event Data Register, 32-bit */
2811 case DMAR_IEDATA_REG:
2812 assert(size == 4);
2813 vtd_set_long(s, addr, val);
2814 break;
2815
2816 /* Invalidation Event Address Register, 32-bit */
2817 case DMAR_IEADDR_REG:
2818 assert(size == 4);
2819 vtd_set_long(s, addr, val);
2820 break;
2821
2822 /* Invalidation Event Upper Address Register, 32-bit */
2823 case DMAR_IEUADDR_REG:
2824 assert(size == 4);
2825 vtd_set_long(s, addr, val);
2826 break;
2827
2828 /* Fault Recording Registers, 128-bit */
2829 case DMAR_FRCD_REG_0_0:
2830 if (size == 4) {
2831 vtd_set_long(s, addr, val);
2832 } else {
2833 vtd_set_quad(s, addr, val);
2834 }
2835 break;
2836
2837 case DMAR_FRCD_REG_0_1:
2838 assert(size == 4);
2839 vtd_set_long(s, addr, val);
2840 break;
2841
2842 case DMAR_FRCD_REG_0_2:
2843 if (size == 4) {
2844 vtd_set_long(s, addr, val);
2845 } else {
2846 vtd_set_quad(s, addr, val);
2847 /* May clear bit 127 (Fault), update PPF */
2848 vtd_update_fsts_ppf(s);
2849 }
2850 break;
2851
2852 case DMAR_FRCD_REG_0_3:
2853 assert(size == 4);
2854 vtd_set_long(s, addr, val);
2855 /* May clear bit 127 (Fault), update PPF */
2856 vtd_update_fsts_ppf(s);
2857 break;
2858
2859 case DMAR_IRTA_REG:
2860 if (size == 4) {
2861 vtd_set_long(s, addr, val);
2862 } else {
2863 vtd_set_quad(s, addr, val);
2864 }
2865 break;
2866
2867 case DMAR_IRTA_REG_HI:
2868 assert(size == 4);
2869 vtd_set_long(s, addr, val);
2870 break;
2871
2872 default:
2873 if (size == 4) {
2874 vtd_set_long(s, addr, val);
2875 } else {
2876 vtd_set_quad(s, addr, val);
2877 }
2878 }
2879 }
2880
2881 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2882 IOMMUAccessFlags flag, int iommu_idx)
2883 {
2884 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2885 IntelIOMMUState *s = vtd_as->iommu_state;
2886 IOMMUTLBEntry iotlb = {
2887 /* We'll fill in the rest later. */
2888 .target_as = &address_space_memory,
2889 };
2890 bool success;
2891
2892 if (likely(s->dmar_enabled)) {
2893 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2894 addr, flag & IOMMU_WO, &iotlb);
2895 } else {
2896 /* DMAR disabled, passthrough, use 4k-page*/
2897 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2898 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2899 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2900 iotlb.perm = IOMMU_RW;
2901 success = true;
2902 }
2903
2904 if (likely(success)) {
2905 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2906 VTD_PCI_SLOT(vtd_as->devfn),
2907 VTD_PCI_FUNC(vtd_as->devfn),
2908 iotlb.iova, iotlb.translated_addr,
2909 iotlb.addr_mask);
2910 } else {
2911 error_report_once("%s: detected translation failure "
2912 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2913 __func__, pci_bus_num(vtd_as->bus),
2914 VTD_PCI_SLOT(vtd_as->devfn),
2915 VTD_PCI_FUNC(vtd_as->devfn),
2916 addr);
2917 }
2918
2919 return iotlb;
2920 }
2921
2922 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2923 IOMMUNotifierFlag old,
2924 IOMMUNotifierFlag new)
2925 {
2926 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2927 IntelIOMMUState *s = vtd_as->iommu_state;
2928
2929 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2930 error_report("We need to set caching-mode=on for intel-iommu to enable "
2931 "device assignment with IOMMU protection.");
2932 exit(1);
2933 }
2934
2935 /* Update per-address-space notifier flags */
2936 vtd_as->notifier_flags = new;
2937
2938 if (old == IOMMU_NOTIFIER_NONE) {
2939 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2940 } else if (new == IOMMU_NOTIFIER_NONE) {
2941 QLIST_REMOVE(vtd_as, next);
2942 }
2943 }
2944
2945 static int vtd_post_load(void *opaque, int version_id)
2946 {
2947 IntelIOMMUState *iommu = opaque;
2948
2949 /*
2950 * Memory regions are dynamically turned on/off depending on
2951 * context entry configurations from the guest. After migration,
2952 * we need to make sure the memory regions are still correct.
2953 */
2954 vtd_switch_address_space_all(iommu);
2955
2956 /*
2957 * We don't need to migrate the root_scalable because we can
2958 * simply do the calculation after the loading is complete. We
2959 * can actually do similar things with root, dmar_enabled, etc.
2960 * however since we've had them already so we'd better keep them
2961 * for compatibility of migration.
2962 */
2963 vtd_update_scalable_state(iommu);
2964
2965 return 0;
2966 }
2967
2968 static const VMStateDescription vtd_vmstate = {
2969 .name = "iommu-intel",
2970 .version_id = 1,
2971 .minimum_version_id = 1,
2972 .priority = MIG_PRI_IOMMU,
2973 .post_load = vtd_post_load,
2974 .fields = (VMStateField[]) {
2975 VMSTATE_UINT64(root, IntelIOMMUState),
2976 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2977 VMSTATE_UINT64(iq, IntelIOMMUState),
2978 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2979 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2980 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2981 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2982 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2983 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2984 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2985 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2986 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2987 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2988 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2989 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2990 VMSTATE_END_OF_LIST()
2991 }
2992 };
2993
2994 static const MemoryRegionOps vtd_mem_ops = {
2995 .read = vtd_mem_read,
2996 .write = vtd_mem_write,
2997 .endianness = DEVICE_LITTLE_ENDIAN,
2998 .impl = {
2999 .min_access_size = 4,
3000 .max_access_size = 8,
3001 },
3002 .valid = {
3003 .min_access_size = 4,
3004 .max_access_size = 8,
3005 },
3006 };
3007
3008 static Property vtd_properties[] = {
3009 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3010 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3011 ON_OFF_AUTO_AUTO),
3012 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3013 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3014 VTD_HOST_ADDRESS_WIDTH),
3015 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3016 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3017 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3018 DEFINE_PROP_END_OF_LIST(),
3019 };
3020
3021 /* Read IRTE entry with specific index */
3022 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3023 VTD_IR_TableEntry *entry, uint16_t sid)
3024 {
3025 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3026 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3027 dma_addr_t addr = 0x00;
3028 uint16_t mask, source_id;
3029 uint8_t bus, bus_max, bus_min;
3030
3031 addr = iommu->intr_root + index * sizeof(*entry);
3032 if (dma_memory_read(&address_space_memory, addr, entry,
3033 sizeof(*entry))) {
3034 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3035 __func__, index, addr);
3036 return -VTD_FR_IR_ROOT_INVAL;
3037 }
3038
3039 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3040 le64_to_cpu(entry->data[0]));
3041
3042 if (!entry->irte.present) {
3043 error_report_once("%s: detected non-present IRTE "
3044 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3045 __func__, index, le64_to_cpu(entry->data[1]),
3046 le64_to_cpu(entry->data[0]));
3047 return -VTD_FR_IR_ENTRY_P;
3048 }
3049
3050 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3051 entry->irte.__reserved_2) {
3052 error_report_once("%s: detected non-zero reserved IRTE "
3053 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3054 __func__, index, le64_to_cpu(entry->data[1]),
3055 le64_to_cpu(entry->data[0]));
3056 return -VTD_FR_IR_IRTE_RSVD;
3057 }
3058
3059 if (sid != X86_IOMMU_SID_INVALID) {
3060 /* Validate IRTE SID */
3061 source_id = le32_to_cpu(entry->irte.source_id);
3062 switch (entry->irte.sid_vtype) {
3063 case VTD_SVT_NONE:
3064 break;
3065
3066 case VTD_SVT_ALL:
3067 mask = vtd_svt_mask[entry->irte.sid_q];
3068 if ((source_id & mask) != (sid & mask)) {
3069 error_report_once("%s: invalid IRTE SID "
3070 "(index=%u, sid=%u, source_id=%u)",
3071 __func__, index, sid, source_id);
3072 return -VTD_FR_IR_SID_ERR;
3073 }
3074 break;
3075
3076 case VTD_SVT_BUS:
3077 bus_max = source_id >> 8;
3078 bus_min = source_id & 0xff;
3079 bus = sid >> 8;
3080 if (bus > bus_max || bus < bus_min) {
3081 error_report_once("%s: invalid SVT_BUS "
3082 "(index=%u, bus=%u, min=%u, max=%u)",
3083 __func__, index, bus, bus_min, bus_max);
3084 return -VTD_FR_IR_SID_ERR;
3085 }
3086 break;
3087
3088 default:
3089 error_report_once("%s: detected invalid IRTE SVT "
3090 "(index=%u, type=%d)", __func__,
3091 index, entry->irte.sid_vtype);
3092 /* Take this as verification failure. */
3093 return -VTD_FR_IR_SID_ERR;
3094 break;
3095 }
3096 }
3097
3098 return 0;
3099 }
3100
3101 /* Fetch IRQ information of specific IR index */
3102 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3103 X86IOMMUIrq *irq, uint16_t sid)
3104 {
3105 VTD_IR_TableEntry irte = {};
3106 int ret = 0;
3107
3108 ret = vtd_irte_get(iommu, index, &irte, sid);
3109 if (ret) {
3110 return ret;
3111 }
3112
3113 irq->trigger_mode = irte.irte.trigger_mode;
3114 irq->vector = irte.irte.vector;
3115 irq->delivery_mode = irte.irte.delivery_mode;
3116 irq->dest = le32_to_cpu(irte.irte.dest_id);
3117 if (!iommu->intr_eime) {
3118 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3119 #define VTD_IR_APIC_DEST_SHIFT (8)
3120 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3121 VTD_IR_APIC_DEST_SHIFT;
3122 }
3123 irq->dest_mode = irte.irte.dest_mode;
3124 irq->redir_hint = irte.irte.redir_hint;
3125
3126 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3127 irq->delivery_mode, irq->dest, irq->dest_mode);
3128
3129 return 0;
3130 }
3131
3132 /* Interrupt remapping for MSI/MSI-X entry */
3133 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3134 MSIMessage *origin,
3135 MSIMessage *translated,
3136 uint16_t sid)
3137 {
3138 int ret = 0;
3139 VTD_IR_MSIAddress addr;
3140 uint16_t index;
3141 X86IOMMUIrq irq = {};
3142
3143 assert(origin && translated);
3144
3145 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3146
3147 if (!iommu || !iommu->intr_enabled) {
3148 memcpy(translated, origin, sizeof(*origin));
3149 goto out;
3150 }
3151
3152 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3153 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3154 "address=0x%" PRIx64, __func__, origin->address);
3155 return -VTD_FR_IR_REQ_RSVD;
3156 }
3157
3158 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3159 if (addr.addr.__head != 0xfee) {
3160 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3161 __func__, addr.data);
3162 return -VTD_FR_IR_REQ_RSVD;
3163 }
3164
3165 /* This is compatible mode. */
3166 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3167 memcpy(translated, origin, sizeof(*origin));
3168 goto out;
3169 }
3170
3171 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3172
3173 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3174 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3175
3176 if (addr.addr.sub_valid) {
3177 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3178 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3179 }
3180
3181 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3182 if (ret) {
3183 return ret;
3184 }
3185
3186 if (addr.addr.sub_valid) {
3187 trace_vtd_ir_remap_type("MSI");
3188 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3189 error_report_once("%s: invalid IR MSI "
3190 "(sid=%u, address=0x%" PRIx64
3191 ", data=0x%" PRIx32 ")",
3192 __func__, sid, origin->address, origin->data);
3193 return -VTD_FR_IR_REQ_RSVD;
3194 }
3195 } else {
3196 uint8_t vector = origin->data & 0xff;
3197 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3198
3199 trace_vtd_ir_remap_type("IOAPIC");
3200 /* IOAPIC entry vector should be aligned with IRTE vector
3201 * (see vt-d spec 5.1.5.1). */
3202 if (vector != irq.vector) {
3203 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3204 }
3205
3206 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3207 * (see vt-d spec 5.1.5.1). */
3208 if (trigger_mode != irq.trigger_mode) {
3209 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3210 irq.trigger_mode);
3211 }
3212 }
3213
3214 /*
3215 * We'd better keep the last two bits, assuming that guest OS
3216 * might modify it. Keep it does not hurt after all.
3217 */
3218 irq.msi_addr_last_bits = addr.addr.__not_care;
3219
3220 /* Translate X86IOMMUIrq to MSI message */
3221 x86_iommu_irq_to_msi_message(&irq, translated);
3222
3223 out:
3224 trace_vtd_ir_remap_msi(origin->address, origin->data,
3225 translated->address, translated->data);
3226 return 0;
3227 }
3228
3229 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3230 MSIMessage *dst, uint16_t sid)
3231 {
3232 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3233 src, dst, sid);
3234 }
3235
3236 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3237 uint64_t *data, unsigned size,
3238 MemTxAttrs attrs)
3239 {
3240 return MEMTX_OK;
3241 }
3242
3243 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3244 uint64_t value, unsigned size,
3245 MemTxAttrs attrs)
3246 {
3247 int ret = 0;
3248 MSIMessage from = {}, to = {};
3249 uint16_t sid = X86_IOMMU_SID_INVALID;
3250
3251 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3252 from.data = (uint32_t) value;
3253
3254 if (!attrs.unspecified) {
3255 /* We have explicit Source ID */
3256 sid = attrs.requester_id;
3257 }
3258
3259 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3260 if (ret) {
3261 /* TODO: report error */
3262 /* Drop this interrupt */
3263 return MEMTX_ERROR;
3264 }
3265
3266 apic_get_class()->send_msi(&to);
3267
3268 return MEMTX_OK;
3269 }
3270
3271 static const MemoryRegionOps vtd_mem_ir_ops = {
3272 .read_with_attrs = vtd_mem_ir_read,
3273 .write_with_attrs = vtd_mem_ir_write,
3274 .endianness = DEVICE_LITTLE_ENDIAN,
3275 .impl = {
3276 .min_access_size = 4,
3277 .max_access_size = 4,
3278 },
3279 .valid = {
3280 .min_access_size = 4,
3281 .max_access_size = 4,
3282 },
3283 };
3284
3285 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3286 {
3287 uintptr_t key = (uintptr_t)bus;
3288 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3289 VTDAddressSpace *vtd_dev_as;
3290 char name[128];
3291
3292 if (!vtd_bus) {
3293 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3294 *new_key = (uintptr_t)bus;
3295 /* No corresponding free() */
3296 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3297 PCI_DEVFN_MAX);
3298 vtd_bus->bus = bus;
3299 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3300 }
3301
3302 vtd_dev_as = vtd_bus->dev_as[devfn];
3303
3304 if (!vtd_dev_as) {
3305 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3306 PCI_FUNC(devfn));
3307 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3308
3309 vtd_dev_as->bus = bus;
3310 vtd_dev_as->devfn = (uint8_t)devfn;
3311 vtd_dev_as->iommu_state = s;
3312 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3313 vtd_dev_as->iova_tree = iova_tree_new();
3314
3315 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3316 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3317
3318 /*
3319 * Build the DMAR-disabled container with aliases to the
3320 * shared MRs. Note that aliasing to a shared memory region
3321 * could help the memory API to detect same FlatViews so we
3322 * can have devices to share the same FlatView when DMAR is
3323 * disabled (either by not providing "intel_iommu=on" or with
3324 * "iommu=pt"). It will greatly reduce the total number of
3325 * FlatViews of the system hence VM runs faster.
3326 */
3327 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3328 "vtd-nodmar", &s->mr_nodmar, 0,
3329 memory_region_size(&s->mr_nodmar));
3330
3331 /*
3332 * Build the per-device DMAR-enabled container.
3333 *
3334 * TODO: currently we have per-device IOMMU memory region only
3335 * because we have per-device IOMMU notifiers for devices. If
3336 * one day we can abstract the IOMMU notifiers out of the
3337 * memory regions then we can also share the same memory
3338 * region here just like what we've done above with the nodmar
3339 * region.
3340 */
3341 strcat(name, "-dmar");
3342 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3343 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3344 name, UINT64_MAX);
3345 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3346 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3347 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3348 VTD_INTERRUPT_ADDR_FIRST,
3349 &vtd_dev_as->iommu_ir, 1);
3350
3351 /*
3352 * Hook both the containers under the root container, we
3353 * switch between DMAR & noDMAR by enable/disable
3354 * corresponding sub-containers
3355 */
3356 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3357 MEMORY_REGION(&vtd_dev_as->iommu),
3358 0);
3359 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3360 &vtd_dev_as->nodmar, 0);
3361
3362 vtd_switch_address_space(vtd_dev_as);
3363 }
3364 return vtd_dev_as;
3365 }
3366
3367 /* Unmap the whole range in the notifier's scope. */
3368 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3369 {
3370 IOMMUTLBEntry entry;
3371 hwaddr size;
3372 hwaddr start = n->start;
3373 hwaddr end = n->end;
3374 IntelIOMMUState *s = as->iommu_state;
3375 DMAMap map;
3376
3377 /*
3378 * Note: all the codes in this function has a assumption that IOVA
3379 * bits are no more than VTD_MGAW bits (which is restricted by
3380 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3381 */
3382
3383 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
3384 /*
3385 * Don't need to unmap regions that is bigger than the whole
3386 * VT-d supported address space size
3387 */
3388 end = VTD_ADDRESS_SIZE(s->aw_bits);
3389 }
3390
3391 assert(start <= end);
3392 size = end - start;
3393
3394 if (ctpop64(size) != 1) {
3395 /*
3396 * This size cannot format a correct mask. Let's enlarge it to
3397 * suite the minimum available mask.
3398 */
3399 int n = 64 - clz64(size);
3400 if (n > s->aw_bits) {
3401 /* should not happen, but in case it happens, limit it */
3402 n = s->aw_bits;
3403 }
3404 size = 1ULL << n;
3405 }
3406
3407 entry.target_as = &address_space_memory;
3408 /* Adjust iova for the size */
3409 entry.iova = n->start & ~(size - 1);
3410 /* This field is meaningless for unmap */
3411 entry.translated_addr = 0;
3412 entry.perm = IOMMU_NONE;
3413 entry.addr_mask = size - 1;
3414
3415 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3416 VTD_PCI_SLOT(as->devfn),
3417 VTD_PCI_FUNC(as->devfn),
3418 entry.iova, size);
3419
3420 map.iova = entry.iova;
3421 map.size = entry.addr_mask;
3422 iova_tree_remove(as->iova_tree, &map);
3423
3424 memory_region_notify_one(n, &entry);
3425 }
3426
3427 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3428 {
3429 VTDAddressSpace *vtd_as;
3430 IOMMUNotifier *n;
3431
3432 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3433 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3434 vtd_address_space_unmap(vtd_as, n);
3435 }
3436 }
3437 }
3438
3439 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3440 {
3441 vtd_address_space_unmap_all(s);
3442 vtd_switch_address_space_all(s);
3443 }
3444
3445 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3446 {
3447 memory_region_notify_one((IOMMUNotifier *)private, entry);
3448 return 0;
3449 }
3450
3451 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3452 {
3453 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3454 IntelIOMMUState *s = vtd_as->iommu_state;
3455 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3456 VTDContextEntry ce;
3457
3458 /*
3459 * The replay can be triggered by either a invalidation or a newly
3460 * created entry. No matter what, we release existing mappings
3461 * (it means flushing caches for UNMAP-only registers).
3462 */
3463 vtd_address_space_unmap(vtd_as, n);
3464
3465 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3466 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3467 "legacy mode",
3468 bus_n, PCI_SLOT(vtd_as->devfn),
3469 PCI_FUNC(vtd_as->devfn),
3470 vtd_get_domain_id(s, &ce),
3471 ce.hi, ce.lo);
3472 if (vtd_as_has_map_notifier(vtd_as)) {
3473 /* This is required only for MAP typed notifiers */
3474 vtd_page_walk_info info = {
3475 .hook_fn = vtd_replay_hook,
3476 .private = (void *)n,
3477 .notify_unmap = false,
3478 .aw = s->aw_bits,
3479 .as = vtd_as,
3480 .domain_id = vtd_get_domain_id(s, &ce),
3481 };
3482
3483 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3484 }
3485 } else {
3486 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3487 PCI_FUNC(vtd_as->devfn));
3488 }
3489
3490 return;
3491 }
3492
3493 /* Do the initialization. It will also be called when reset, so pay
3494 * attention when adding new initialization stuff.
3495 */
3496 static void vtd_init(IntelIOMMUState *s)
3497 {
3498 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3499
3500 memset(s->csr, 0, DMAR_REG_SIZE);
3501 memset(s->wmask, 0, DMAR_REG_SIZE);
3502 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3503 memset(s->womask, 0, DMAR_REG_SIZE);
3504
3505 s->root = 0;
3506 s->root_extended = false;
3507 s->root_scalable = false;
3508 s->dmar_enabled = false;
3509 s->intr_enabled = false;
3510 s->iq_head = 0;
3511 s->iq_tail = 0;
3512 s->iq = 0;
3513 s->iq_size = 0;
3514 s->qi_enabled = false;
3515 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3516 s->iq_dw = false;
3517 s->next_frcd_reg = 0;
3518 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3519 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3520 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3521 if (s->dma_drain) {
3522 s->cap |= VTD_CAP_DRAIN;
3523 }
3524 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3525 s->cap |= VTD_CAP_SAGAW_48bit;
3526 }
3527 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3528
3529 /*
3530 * Rsvd field masks for spte
3531 */
3532 vtd_paging_entry_rsvd_field[0] = ~0ULL;
3533 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3534 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3535 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3536 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3537 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3538 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3539 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3540 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3541
3542 if (x86_iommu_ir_supported(x86_iommu)) {
3543 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3544 if (s->intr_eim == ON_OFF_AUTO_ON) {
3545 s->ecap |= VTD_ECAP_EIM;
3546 }
3547 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3548 }
3549
3550 if (x86_iommu->dt_supported) {
3551 s->ecap |= VTD_ECAP_DT;
3552 }
3553
3554 if (x86_iommu->pt_supported) {
3555 s->ecap |= VTD_ECAP_PT;
3556 }
3557
3558 if (s->caching_mode) {
3559 s->cap |= VTD_CAP_CM;
3560 }
3561
3562 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3563 if (s->scalable_mode) {
3564 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3565 }
3566
3567 vtd_reset_caches(s);
3568
3569 /* Define registers with default values and bit semantics */
3570 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3571 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3572 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3573 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3574 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3575 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3576 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3577 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3578 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3579
3580 /* Advanced Fault Logging not supported */
3581 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3582 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3583 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3584 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3585
3586 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3587 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3588 */
3589 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3590
3591 /* Treated as RO for implementations that PLMR and PHMR fields reported
3592 * as Clear in the CAP_REG.
3593 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3594 */
3595 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3596
3597 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3598 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3599 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3600 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3601 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3602 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3603 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3604 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3605 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3606
3607 /* IOTLB registers */
3608 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3609 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3610 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3611
3612 /* Fault Recording Registers, 128-bit */
3613 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3614 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3615
3616 /*
3617 * Interrupt remapping registers.
3618 */
3619 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3620 }
3621
3622 /* Should not reset address_spaces when reset because devices will still use
3623 * the address space they got at first (won't ask the bus again).
3624 */
3625 static void vtd_reset(DeviceState *dev)
3626 {
3627 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3628
3629 vtd_init(s);
3630 vtd_address_space_refresh_all(s);
3631 }
3632
3633 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3634 {
3635 IntelIOMMUState *s = opaque;
3636 VTDAddressSpace *vtd_as;
3637
3638 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3639
3640 vtd_as = vtd_find_add_as(s, bus, devfn);
3641 return &vtd_as->as;
3642 }
3643
3644 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3645 {
3646 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3647
3648 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3649 error_setg(errp, "eim=on cannot be selected without intremap=on");
3650 return false;
3651 }
3652
3653 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3654 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3655 && x86_iommu_ir_supported(x86_iommu) ?
3656 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3657 }
3658 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3659 if (!kvm_irqchip_in_kernel()) {
3660 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3661 return false;
3662 }
3663 if (!kvm_enable_x2apic()) {
3664 error_setg(errp, "eim=on requires support on the KVM side"
3665 "(X2APIC_API, first shipped in v4.7)");
3666 return false;
3667 }
3668 }
3669
3670 /* Currently only address widths supported are 39 and 48 bits */
3671 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3672 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3673 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3674 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3675 return false;
3676 }
3677
3678 if (s->scalable_mode && !s->dma_drain) {
3679 error_setg(errp, "Need to set dma_drain for scalable mode");
3680 return false;
3681 }
3682
3683 return true;
3684 }
3685
3686 static void vtd_realize(DeviceState *dev, Error **errp)
3687 {
3688 MachineState *ms = MACHINE(qdev_get_machine());
3689 PCMachineState *pcms = PC_MACHINE(ms);
3690 PCIBus *bus = pcms->bus;
3691 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3692 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3693
3694 x86_iommu->type = TYPE_INTEL;
3695
3696 if (!vtd_decide_config(s, errp)) {
3697 return;
3698 }
3699
3700 QLIST_INIT(&s->vtd_as_with_notifiers);
3701 qemu_mutex_init(&s->iommu_lock);
3702 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3703 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3704 "intel_iommu", DMAR_REG_SIZE);
3705
3706 /* Create the shared memory regions by all devices */
3707 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3708 UINT64_MAX);
3709 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3710 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3711 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3712 "vtd-sys-alias", get_system_memory(), 0,
3713 memory_region_size(get_system_memory()));
3714 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3715 &s->mr_sys_alias, 0);
3716 memory_region_add_subregion_overlap(&s->mr_nodmar,
3717 VTD_INTERRUPT_ADDR_FIRST,
3718 &s->mr_ir, 1);
3719
3720 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3721 /* No corresponding destroy */
3722 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3723 g_free, g_free);
3724 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3725 g_free, g_free);
3726 vtd_init(s);
3727 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3728 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3729 /* Pseudo address space under root PCI bus. */
3730 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3731 }
3732
3733 static void vtd_class_init(ObjectClass *klass, void *data)
3734 {
3735 DeviceClass *dc = DEVICE_CLASS(klass);
3736 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3737
3738 dc->reset = vtd_reset;
3739 dc->vmsd = &vtd_vmstate;
3740 dc->props = vtd_properties;
3741 dc->hotpluggable = false;
3742 x86_class->realize = vtd_realize;
3743 x86_class->int_remap = vtd_int_remap;
3744 /* Supported by the pc-q35-* machine types */
3745 dc->user_creatable = true;
3746 }
3747
3748 static const TypeInfo vtd_info = {
3749 .name = TYPE_INTEL_IOMMU_DEVICE,
3750 .parent = TYPE_X86_IOMMU_DEVICE,
3751 .instance_size = sizeof(IntelIOMMUState),
3752 .class_init = vtd_class_init,
3753 };
3754
3755 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3756 void *data)
3757 {
3758 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3759
3760 imrc->translate = vtd_iommu_translate;
3761 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3762 imrc->replay = vtd_iommu_replay;
3763 }
3764
3765 static const TypeInfo vtd_iommu_memory_region_info = {
3766 .parent = TYPE_IOMMU_MEMORY_REGION,
3767 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3768 .class_init = vtd_iommu_memory_region_class_init,
3769 };
3770
3771 static void vtd_register_types(void)
3772 {
3773 type_register_static(&vtd_info);
3774 type_register_static(&vtd_iommu_memory_region_info);
3775 }
3776
3777 type_init(vtd_register_types)