]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
intel_iommu: convert invalid traces into error reports
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
39
40 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
41 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
42
43 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
44 uint64_t wmask, uint64_t w1cmask)
45 {
46 stq_le_p(&s->csr[addr], val);
47 stq_le_p(&s->wmask[addr], wmask);
48 stq_le_p(&s->w1cmask[addr], w1cmask);
49 }
50
51 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
52 {
53 stq_le_p(&s->womask[addr], mask);
54 }
55
56 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
57 uint32_t wmask, uint32_t w1cmask)
58 {
59 stl_le_p(&s->csr[addr], val);
60 stl_le_p(&s->wmask[addr], wmask);
61 stl_le_p(&s->w1cmask[addr], w1cmask);
62 }
63
64 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
65 {
66 stl_le_p(&s->womask[addr], mask);
67 }
68
69 /* "External" get/set operations */
70 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
71 {
72 uint64_t oldval = ldq_le_p(&s->csr[addr]);
73 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
74 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
75 stq_le_p(&s->csr[addr],
76 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
77 }
78
79 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
80 {
81 uint32_t oldval = ldl_le_p(&s->csr[addr]);
82 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
83 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
84 stl_le_p(&s->csr[addr],
85 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
86 }
87
88 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
89 {
90 uint64_t val = ldq_le_p(&s->csr[addr]);
91 uint64_t womask = ldq_le_p(&s->womask[addr]);
92 return val & ~womask;
93 }
94
95 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
96 {
97 uint32_t val = ldl_le_p(&s->csr[addr]);
98 uint32_t womask = ldl_le_p(&s->womask[addr]);
99 return val & ~womask;
100 }
101
102 /* "Internal" get/set operations */
103 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
104 {
105 return ldq_le_p(&s->csr[addr]);
106 }
107
108 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
109 {
110 return ldl_le_p(&s->csr[addr]);
111 }
112
113 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
114 {
115 stq_le_p(&s->csr[addr], val);
116 }
117
118 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
119 uint32_t clear, uint32_t mask)
120 {
121 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
122 stl_le_p(&s->csr[addr], new_val);
123 return new_val;
124 }
125
126 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
127 uint64_t clear, uint64_t mask)
128 {
129 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
130 stq_le_p(&s->csr[addr], new_val);
131 return new_val;
132 }
133
134 static inline void vtd_iommu_lock(IntelIOMMUState *s)
135 {
136 qemu_mutex_lock(&s->iommu_lock);
137 }
138
139 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
140 {
141 qemu_mutex_unlock(&s->iommu_lock);
142 }
143
144 /* Whether the address space needs to notify new mappings */
145 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
146 {
147 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
148 }
149
150 /* GHashTable functions */
151 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
152 {
153 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
154 }
155
156 static guint vtd_uint64_hash(gconstpointer v)
157 {
158 return (guint)*(const uint64_t *)v;
159 }
160
161 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
162 gpointer user_data)
163 {
164 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
165 uint16_t domain_id = *(uint16_t *)user_data;
166 return entry->domain_id == domain_id;
167 }
168
169 /* The shift of an addr for a certain level of paging structure */
170 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
171 {
172 assert(level != 0);
173 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
174 }
175
176 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
177 {
178 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
179 }
180
181 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
182 gpointer user_data)
183 {
184 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
185 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
186 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
187 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
188 return (entry->domain_id == info->domain_id) &&
189 (((entry->gfn & info->mask) == gfn) ||
190 (entry->gfn == gfn_tlb));
191 }
192
193 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
194 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
195 */
196 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
197 {
198 VTDAddressSpace *vtd_as;
199 VTDBus *vtd_bus;
200 GHashTableIter bus_it;
201 uint32_t devfn_it;
202
203 trace_vtd_context_cache_reset();
204
205 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
206
207 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
208 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
209 vtd_as = vtd_bus->dev_as[devfn_it];
210 if (!vtd_as) {
211 continue;
212 }
213 vtd_as->context_cache_entry.context_cache_gen = 0;
214 }
215 }
216 s->context_cache_gen = 1;
217 }
218
219 /* Must be called with IOMMU lock held. */
220 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
221 {
222 assert(s->iotlb);
223 g_hash_table_remove_all(s->iotlb);
224 }
225
226 static void vtd_reset_iotlb(IntelIOMMUState *s)
227 {
228 vtd_iommu_lock(s);
229 vtd_reset_iotlb_locked(s);
230 vtd_iommu_unlock(s);
231 }
232
233 static void vtd_reset_caches(IntelIOMMUState *s)
234 {
235 vtd_iommu_lock(s);
236 vtd_reset_iotlb_locked(s);
237 vtd_reset_context_cache_locked(s);
238 vtd_iommu_unlock(s);
239 }
240
241 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
242 uint32_t level)
243 {
244 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
245 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
246 }
247
248 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
249 {
250 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
251 }
252
253 /* Must be called with IOMMU lock held */
254 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
255 hwaddr addr)
256 {
257 VTDIOTLBEntry *entry;
258 uint64_t key;
259 int level;
260
261 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
262 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
263 source_id, level);
264 entry = g_hash_table_lookup(s->iotlb, &key);
265 if (entry) {
266 goto out;
267 }
268 }
269
270 out:
271 return entry;
272 }
273
274 /* Must be with IOMMU lock held */
275 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
276 uint16_t domain_id, hwaddr addr, uint64_t slpte,
277 uint8_t access_flags, uint32_t level)
278 {
279 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
280 uint64_t *key = g_malloc(sizeof(*key));
281 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
282
283 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
284 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
285 trace_vtd_iotlb_reset("iotlb exceeds size limit");
286 vtd_reset_iotlb_locked(s);
287 }
288
289 entry->gfn = gfn;
290 entry->domain_id = domain_id;
291 entry->slpte = slpte;
292 entry->access_flags = access_flags;
293 entry->mask = vtd_slpt_level_page_mask(level);
294 *key = vtd_get_iotlb_key(gfn, source_id, level);
295 g_hash_table_replace(s->iotlb, key, entry);
296 }
297
298 /* Given the reg addr of both the message data and address, generate an
299 * interrupt via MSI.
300 */
301 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
302 hwaddr mesg_data_reg)
303 {
304 MSIMessage msi;
305
306 assert(mesg_data_reg < DMAR_REG_SIZE);
307 assert(mesg_addr_reg < DMAR_REG_SIZE);
308
309 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
310 msi.data = vtd_get_long_raw(s, mesg_data_reg);
311
312 trace_vtd_irq_generate(msi.address, msi.data);
313
314 apic_get_class()->send_msi(&msi);
315 }
316
317 /* Generate a fault event to software via MSI if conditions are met.
318 * Notice that the value of FSTS_REG being passed to it should be the one
319 * before any update.
320 */
321 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
322 {
323 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
324 pre_fsts & VTD_FSTS_IQE) {
325 error_report_once("There are previous interrupt conditions "
326 "to be serviced by software, fault event "
327 "is not generated");
328 return;
329 }
330 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
331 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
332 error_report_once("Interrupt Mask set, irq is not generated");
333 } else {
334 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
335 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
336 }
337 }
338
339 /* Check if the Fault (F) field of the Fault Recording Register referenced by
340 * @index is Set.
341 */
342 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
343 {
344 /* Each reg is 128-bit */
345 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
346 addr += 8; /* Access the high 64-bit half */
347
348 assert(index < DMAR_FRCD_REG_NR);
349
350 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
351 }
352
353 /* Update the PPF field of Fault Status Register.
354 * Should be called whenever change the F field of any fault recording
355 * registers.
356 */
357 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
358 {
359 uint32_t i;
360 uint32_t ppf_mask = 0;
361
362 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
363 if (vtd_is_frcd_set(s, i)) {
364 ppf_mask = VTD_FSTS_PPF;
365 break;
366 }
367 }
368 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
369 trace_vtd_fsts_ppf(!!ppf_mask);
370 }
371
372 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
373 {
374 /* Each reg is 128-bit */
375 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
376 addr += 8; /* Access the high 64-bit half */
377
378 assert(index < DMAR_FRCD_REG_NR);
379
380 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
381 vtd_update_fsts_ppf(s);
382 }
383
384 /* Must not update F field now, should be done later */
385 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
386 uint16_t source_id, hwaddr addr,
387 VTDFaultReason fault, bool is_write)
388 {
389 uint64_t hi = 0, lo;
390 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
391
392 assert(index < DMAR_FRCD_REG_NR);
393
394 lo = VTD_FRCD_FI(addr);
395 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
396 if (!is_write) {
397 hi |= VTD_FRCD_T;
398 }
399 vtd_set_quad_raw(s, frcd_reg_addr, lo);
400 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
401
402 trace_vtd_frr_new(index, hi, lo);
403 }
404
405 /* Try to collapse multiple pending faults from the same requester */
406 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
407 {
408 uint32_t i;
409 uint64_t frcd_reg;
410 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
411
412 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
413 frcd_reg = vtd_get_quad_raw(s, addr);
414 if ((frcd_reg & VTD_FRCD_F) &&
415 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
416 return true;
417 }
418 addr += 16; /* 128-bit for each */
419 }
420 return false;
421 }
422
423 /* Log and report an DMAR (address translation) fault to software */
424 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
425 hwaddr addr, VTDFaultReason fault,
426 bool is_write)
427 {
428 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
429
430 assert(fault < VTD_FR_MAX);
431
432 if (fault == VTD_FR_RESERVED_ERR) {
433 /* This is not a normal fault reason case. Drop it. */
434 return;
435 }
436
437 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
438
439 if (fsts_reg & VTD_FSTS_PFO) {
440 error_report_once("New fault is not recorded due to "
441 "Primary Fault Overflow");
442 return;
443 }
444
445 if (vtd_try_collapse_fault(s, source_id)) {
446 error_report_once("New fault is not recorded due to "
447 "compression of faults");
448 return;
449 }
450
451 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
452 error_report_once("Next Fault Recording Reg is used, "
453 "new fault is not recorded, set PFO field");
454 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
455 return;
456 }
457
458 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
459
460 if (fsts_reg & VTD_FSTS_PPF) {
461 error_report_once("There are pending faults already, "
462 "fault event is not generated");
463 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
464 s->next_frcd_reg++;
465 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
466 s->next_frcd_reg = 0;
467 }
468 } else {
469 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
470 VTD_FSTS_FRI(s->next_frcd_reg));
471 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
472 s->next_frcd_reg++;
473 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
474 s->next_frcd_reg = 0;
475 }
476 /* This case actually cause the PPF to be Set.
477 * So generate fault event (interrupt).
478 */
479 vtd_generate_fault_event(s, fsts_reg);
480 }
481 }
482
483 /* Handle Invalidation Queue Errors of queued invalidation interface error
484 * conditions.
485 */
486 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
487 {
488 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
489
490 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
491 vtd_generate_fault_event(s, fsts_reg);
492 }
493
494 /* Set the IWC field and try to generate an invalidation completion interrupt */
495 static void vtd_generate_completion_event(IntelIOMMUState *s)
496 {
497 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
498 trace_vtd_inv_desc_wait_irq("One pending, skip current");
499 return;
500 }
501 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
502 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
503 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
504 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
505 "new event not generated");
506 return;
507 } else {
508 /* Generate the interrupt event */
509 trace_vtd_inv_desc_wait_irq("Generating complete event");
510 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
511 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
512 }
513 }
514
515 static inline bool vtd_root_entry_present(VTDRootEntry *root)
516 {
517 return root->val & VTD_ROOT_ENTRY_P;
518 }
519
520 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
521 VTDRootEntry *re)
522 {
523 dma_addr_t addr;
524
525 addr = s->root + index * sizeof(*re);
526 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
527 re->val = 0;
528 return -VTD_FR_ROOT_TABLE_INV;
529 }
530 re->val = le64_to_cpu(re->val);
531 return 0;
532 }
533
534 static inline bool vtd_ce_present(VTDContextEntry *context)
535 {
536 return context->lo & VTD_CONTEXT_ENTRY_P;
537 }
538
539 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
540 VTDContextEntry *ce)
541 {
542 dma_addr_t addr;
543
544 /* we have checked that root entry is present */
545 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
546 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
547 return -VTD_FR_CONTEXT_TABLE_INV;
548 }
549 ce->lo = le64_to_cpu(ce->lo);
550 ce->hi = le64_to_cpu(ce->hi);
551 return 0;
552 }
553
554 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
555 {
556 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
557 }
558
559 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
560 {
561 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
562 }
563
564 /* Whether the pte indicates the address of the page frame */
565 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
566 {
567 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
568 }
569
570 /* Get the content of a spte located in @base_addr[@index] */
571 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
572 {
573 uint64_t slpte;
574
575 assert(index < VTD_SL_PT_ENTRY_NR);
576
577 if (dma_memory_read(&address_space_memory,
578 base_addr + index * sizeof(slpte), &slpte,
579 sizeof(slpte))) {
580 slpte = (uint64_t)-1;
581 return slpte;
582 }
583 slpte = le64_to_cpu(slpte);
584 return slpte;
585 }
586
587 /* Given an iova and the level of paging structure, return the offset
588 * of current level.
589 */
590 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
591 {
592 return (iova >> vtd_slpt_level_shift(level)) &
593 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
594 }
595
596 /* Check Capability Register to see if the @level of page-table is supported */
597 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
598 {
599 return VTD_CAP_SAGAW_MASK & s->cap &
600 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
601 }
602
603 /* Get the page-table level that hardware should use for the second-level
604 * page-table walk from the Address Width field of context-entry.
605 */
606 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
607 {
608 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
609 }
610
611 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
612 {
613 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
614 }
615
616 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
617 {
618 return ce->lo & VTD_CONTEXT_ENTRY_TT;
619 }
620
621 /* Return true if check passed, otherwise false */
622 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
623 VTDContextEntry *ce)
624 {
625 switch (vtd_ce_get_type(ce)) {
626 case VTD_CONTEXT_TT_MULTI_LEVEL:
627 /* Always supported */
628 break;
629 case VTD_CONTEXT_TT_DEV_IOTLB:
630 if (!x86_iommu->dt_supported) {
631 error_report_once("%s: DT specified but not supported", __func__);
632 return false;
633 }
634 break;
635 case VTD_CONTEXT_TT_PASS_THROUGH:
636 if (!x86_iommu->pt_supported) {
637 error_report_once("%s: PT specified but not supported", __func__);
638 return false;
639 }
640 break;
641 default:
642 /* Unknwon type */
643 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
644 vtd_ce_get_type(ce));
645 return false;
646 }
647 return true;
648 }
649
650 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
651 {
652 uint32_t ce_agaw = vtd_ce_get_agaw(ce);
653 return 1ULL << MIN(ce_agaw, aw);
654 }
655
656 /* Return true if IOVA passes range check, otherwise false. */
657 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
658 uint8_t aw)
659 {
660 /*
661 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
662 * in CAP_REG and AW in context-entry.
663 */
664 return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
665 }
666
667 /*
668 * Rsvd field masks for spte:
669 * Index [1] to [4] 4k pages
670 * Index [5] to [8] large pages
671 */
672 static uint64_t vtd_paging_entry_rsvd_field[9];
673
674 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
675 {
676 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
677 /* Maybe large page */
678 return slpte & vtd_paging_entry_rsvd_field[level + 4];
679 } else {
680 return slpte & vtd_paging_entry_rsvd_field[level];
681 }
682 }
683
684 /* Find the VTD address space associated with a given bus number */
685 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
686 {
687 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
688 if (!vtd_bus) {
689 /*
690 * Iterate over the registered buses to find the one which
691 * currently hold this bus number, and update the bus_num
692 * lookup table:
693 */
694 GHashTableIter iter;
695
696 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
697 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
698 if (pci_bus_num(vtd_bus->bus) == bus_num) {
699 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
700 return vtd_bus;
701 }
702 }
703 }
704 return vtd_bus;
705 }
706
707 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
708 * of the translation, can be used for deciding the size of large page.
709 */
710 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
711 uint64_t *slptep, uint32_t *slpte_level,
712 bool *reads, bool *writes, uint8_t aw_bits)
713 {
714 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
715 uint32_t level = vtd_ce_get_level(ce);
716 uint32_t offset;
717 uint64_t slpte;
718 uint64_t access_right_check;
719
720 if (!vtd_iova_range_check(iova, ce, aw_bits)) {
721 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
722 __func__, iova);
723 return -VTD_FR_ADDR_BEYOND_MGAW;
724 }
725
726 /* FIXME: what is the Atomics request here? */
727 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
728
729 while (true) {
730 offset = vtd_iova_level_offset(iova, level);
731 slpte = vtd_get_slpte(addr, offset);
732
733 if (slpte == (uint64_t)-1) {
734 error_report_once("%s: detected read error on DMAR slpte "
735 "(iova=0x%" PRIx64 ")", __func__, iova);
736 if (level == vtd_ce_get_level(ce)) {
737 /* Invalid programming of context-entry */
738 return -VTD_FR_CONTEXT_ENTRY_INV;
739 } else {
740 return -VTD_FR_PAGING_ENTRY_INV;
741 }
742 }
743 *reads = (*reads) && (slpte & VTD_SL_R);
744 *writes = (*writes) && (slpte & VTD_SL_W);
745 if (!(slpte & access_right_check)) {
746 error_report_once("%s: detected slpte permission error "
747 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
748 "slpte=0x%" PRIx64 ", write=%d)", __func__,
749 iova, level, slpte, is_write);
750 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
751 }
752 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
753 error_report_once("%s: detected splte reserve non-zero "
754 "iova=0x%" PRIx64 ", level=0x%" PRIx32
755 "slpte=0x%" PRIx64 ")", __func__, iova,
756 level, slpte);
757 return -VTD_FR_PAGING_ENTRY_RSVD;
758 }
759
760 if (vtd_is_last_slpte(slpte, level)) {
761 *slptep = slpte;
762 *slpte_level = level;
763 return 0;
764 }
765 addr = vtd_get_slpte_addr(slpte, aw_bits);
766 level--;
767 }
768 }
769
770 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
771
772 /**
773 * Constant information used during page walking
774 *
775 * @hook_fn: hook func to be called when detected page
776 * @private: private data to be passed into hook func
777 * @notify_unmap: whether we should notify invalid entries
778 * @as: VT-d address space of the device
779 * @aw: maximum address width
780 * @domain: domain ID of the page walk
781 */
782 typedef struct {
783 VTDAddressSpace *as;
784 vtd_page_walk_hook hook_fn;
785 void *private;
786 bool notify_unmap;
787 uint8_t aw;
788 uint16_t domain_id;
789 } vtd_page_walk_info;
790
791 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
792 {
793 VTDAddressSpace *as = info->as;
794 vtd_page_walk_hook hook_fn = info->hook_fn;
795 void *private = info->private;
796 DMAMap target = {
797 .iova = entry->iova,
798 .size = entry->addr_mask,
799 .translated_addr = entry->translated_addr,
800 .perm = entry->perm,
801 };
802 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
803
804 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
805 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
806 return 0;
807 }
808
809 assert(hook_fn);
810
811 /* Update local IOVA mapped ranges */
812 if (entry->perm) {
813 if (mapped) {
814 /* If it's exactly the same translation, skip */
815 if (!memcmp(mapped, &target, sizeof(target))) {
816 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
817 entry->translated_addr);
818 return 0;
819 } else {
820 /*
821 * Translation changed. Normally this should not
822 * happen, but it can happen when with buggy guest
823 * OSes. Note that there will be a small window that
824 * we don't have map at all. But that's the best
825 * effort we can do. The ideal way to emulate this is
826 * atomically modify the PTE to follow what has
827 * changed, but we can't. One example is that vfio
828 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
829 * interface to modify a mapping (meanwhile it seems
830 * meaningless to even provide one). Anyway, let's
831 * mark this as a TODO in case one day we'll have
832 * a better solution.
833 */
834 IOMMUAccessFlags cache_perm = entry->perm;
835 int ret;
836
837 /* Emulate an UNMAP */
838 entry->perm = IOMMU_NONE;
839 trace_vtd_page_walk_one(info->domain_id,
840 entry->iova,
841 entry->translated_addr,
842 entry->addr_mask,
843 entry->perm);
844 ret = hook_fn(entry, private);
845 if (ret) {
846 return ret;
847 }
848 /* Drop any existing mapping */
849 iova_tree_remove(as->iova_tree, &target);
850 /* Recover the correct permission */
851 entry->perm = cache_perm;
852 }
853 }
854 iova_tree_insert(as->iova_tree, &target);
855 } else {
856 if (!mapped) {
857 /* Skip since we didn't map this range at all */
858 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
859 return 0;
860 }
861 iova_tree_remove(as->iova_tree, &target);
862 }
863
864 trace_vtd_page_walk_one(info->domain_id, entry->iova,
865 entry->translated_addr, entry->addr_mask,
866 entry->perm);
867 return hook_fn(entry, private);
868 }
869
870 /**
871 * vtd_page_walk_level - walk over specific level for IOVA range
872 *
873 * @addr: base GPA addr to start the walk
874 * @start: IOVA range start address
875 * @end: IOVA range end address (start <= addr < end)
876 * @read: whether parent level has read permission
877 * @write: whether parent level has write permission
878 * @info: constant information for the page walk
879 */
880 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
881 uint64_t end, uint32_t level, bool read,
882 bool write, vtd_page_walk_info *info)
883 {
884 bool read_cur, write_cur, entry_valid;
885 uint32_t offset;
886 uint64_t slpte;
887 uint64_t subpage_size, subpage_mask;
888 IOMMUTLBEntry entry;
889 uint64_t iova = start;
890 uint64_t iova_next;
891 int ret = 0;
892
893 trace_vtd_page_walk_level(addr, level, start, end);
894
895 subpage_size = 1ULL << vtd_slpt_level_shift(level);
896 subpage_mask = vtd_slpt_level_page_mask(level);
897
898 while (iova < end) {
899 iova_next = (iova & subpage_mask) + subpage_size;
900
901 offset = vtd_iova_level_offset(iova, level);
902 slpte = vtd_get_slpte(addr, offset);
903
904 if (slpte == (uint64_t)-1) {
905 trace_vtd_page_walk_skip_read(iova, iova_next);
906 goto next;
907 }
908
909 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
910 trace_vtd_page_walk_skip_reserve(iova, iova_next);
911 goto next;
912 }
913
914 /* Permissions are stacked with parents' */
915 read_cur = read && (slpte & VTD_SL_R);
916 write_cur = write && (slpte & VTD_SL_W);
917
918 /*
919 * As long as we have either read/write permission, this is a
920 * valid entry. The rule works for both page entries and page
921 * table entries.
922 */
923 entry_valid = read_cur | write_cur;
924
925 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
926 /*
927 * This is a valid PDE (or even bigger than PDE). We need
928 * to walk one further level.
929 */
930 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
931 iova, MIN(iova_next, end), level - 1,
932 read_cur, write_cur, info);
933 } else {
934 /*
935 * This means we are either:
936 *
937 * (1) the real page entry (either 4K page, or huge page)
938 * (2) the whole range is invalid
939 *
940 * In either case, we send an IOTLB notification down.
941 */
942 entry.target_as = &address_space_memory;
943 entry.iova = iova & subpage_mask;
944 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
945 entry.addr_mask = ~subpage_mask;
946 /* NOTE: this is only meaningful if entry_valid == true */
947 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
948 ret = vtd_page_walk_one(&entry, info);
949 }
950
951 if (ret < 0) {
952 return ret;
953 }
954
955 next:
956 iova = iova_next;
957 }
958
959 return 0;
960 }
961
962 /**
963 * vtd_page_walk - walk specific IOVA range, and call the hook
964 *
965 * @ce: context entry to walk upon
966 * @start: IOVA address to start the walk
967 * @end: IOVA range end address (start <= addr < end)
968 * @info: page walking information struct
969 */
970 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
971 vtd_page_walk_info *info)
972 {
973 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
974 uint32_t level = vtd_ce_get_level(ce);
975
976 if (!vtd_iova_range_check(start, ce, info->aw)) {
977 return -VTD_FR_ADDR_BEYOND_MGAW;
978 }
979
980 if (!vtd_iova_range_check(end, ce, info->aw)) {
981 /* Fix end so that it reaches the maximum */
982 end = vtd_iova_limit(ce, info->aw);
983 }
984
985 return vtd_page_walk_level(addr, start, end, level, true, true, info);
986 }
987
988 /* Map a device to its corresponding domain (context-entry) */
989 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
990 uint8_t devfn, VTDContextEntry *ce)
991 {
992 VTDRootEntry re;
993 int ret_fr;
994 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
995
996 ret_fr = vtd_get_root_entry(s, bus_num, &re);
997 if (ret_fr) {
998 return ret_fr;
999 }
1000
1001 if (!vtd_root_entry_present(&re)) {
1002 /* Not error - it's okay we don't have root entry. */
1003 trace_vtd_re_not_present(bus_num);
1004 return -VTD_FR_ROOT_ENTRY_P;
1005 }
1006
1007 if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
1008 error_report_once("%s: invalid root entry: rsvd=0x%"PRIx64
1009 ", val=0x%"PRIx64" (reserved nonzero)",
1010 __func__, re.rsvd, re.val);
1011 return -VTD_FR_ROOT_ENTRY_RSVD;
1012 }
1013
1014 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
1015 if (ret_fr) {
1016 return ret_fr;
1017 }
1018
1019 if (!vtd_ce_present(ce)) {
1020 /* Not error - it's okay we don't have context entry. */
1021 trace_vtd_ce_not_present(bus_num, devfn);
1022 return -VTD_FR_CONTEXT_ENTRY_P;
1023 }
1024
1025 if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
1026 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1027 error_report_once("%s: invalid context entry: hi=%"PRIx64
1028 ", lo=%"PRIx64" (reserved nonzero)",
1029 __func__, ce->hi, ce->lo);
1030 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1031 }
1032
1033 /* Check if the programming of context-entry is valid */
1034 if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1035 error_report_once("%s: invalid context entry: hi=%"PRIx64
1036 ", lo=%"PRIx64" (level %d not supported)",
1037 __func__, ce->hi, ce->lo, vtd_ce_get_level(ce));
1038 return -VTD_FR_CONTEXT_ENTRY_INV;
1039 }
1040
1041 /* Do translation type check */
1042 if (!vtd_ce_type_check(x86_iommu, ce)) {
1043 /* Errors dumped in vtd_ce_type_check() */
1044 return -VTD_FR_CONTEXT_ENTRY_INV;
1045 }
1046
1047 return 0;
1048 }
1049
1050 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1051 void *private)
1052 {
1053 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1054 return 0;
1055 }
1056
1057 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1058 VTDContextEntry *ce,
1059 hwaddr addr, hwaddr size)
1060 {
1061 IntelIOMMUState *s = vtd_as->iommu_state;
1062 vtd_page_walk_info info = {
1063 .hook_fn = vtd_sync_shadow_page_hook,
1064 .private = (void *)&vtd_as->iommu,
1065 .notify_unmap = true,
1066 .aw = s->aw_bits,
1067 .as = vtd_as,
1068 .domain_id = VTD_CONTEXT_ENTRY_DID(ce->hi),
1069 };
1070
1071 return vtd_page_walk(ce, addr, addr + size, &info);
1072 }
1073
1074 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1075 {
1076 int ret;
1077 VTDContextEntry ce;
1078 IOMMUNotifier *n;
1079
1080 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1081 pci_bus_num(vtd_as->bus),
1082 vtd_as->devfn, &ce);
1083 if (ret) {
1084 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1085 /*
1086 * It's a valid scenario to have a context entry that is
1087 * not present. For example, when a device is removed
1088 * from an existing domain then the context entry will be
1089 * zeroed by the guest before it was put into another
1090 * domain. When this happens, instead of synchronizing
1091 * the shadow pages we should invalidate all existing
1092 * mappings and notify the backends.
1093 */
1094 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1095 vtd_address_space_unmap(vtd_as, n);
1096 }
1097 ret = 0;
1098 }
1099 return ret;
1100 }
1101
1102 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1103 }
1104
1105 /*
1106 * Fetch translation type for specific device. Returns <0 if error
1107 * happens, otherwise return the shifted type to check against
1108 * VTD_CONTEXT_TT_*.
1109 */
1110 static int vtd_dev_get_trans_type(VTDAddressSpace *as)
1111 {
1112 IntelIOMMUState *s;
1113 VTDContextEntry ce;
1114 int ret;
1115
1116 s = as->iommu_state;
1117
1118 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1119 as->devfn, &ce);
1120 if (ret) {
1121 return ret;
1122 }
1123
1124 return vtd_ce_get_type(&ce);
1125 }
1126
1127 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1128 {
1129 int ret;
1130
1131 assert(as);
1132
1133 ret = vtd_dev_get_trans_type(as);
1134 if (ret < 0) {
1135 /*
1136 * Possibly failed to parse the context entry for some reason
1137 * (e.g., during init, or any guest configuration errors on
1138 * context entries). We should assume PT not enabled for
1139 * safety.
1140 */
1141 return false;
1142 }
1143
1144 return ret == VTD_CONTEXT_TT_PASS_THROUGH;
1145 }
1146
1147 /* Return whether the device is using IOMMU translation. */
1148 static bool vtd_switch_address_space(VTDAddressSpace *as)
1149 {
1150 bool use_iommu;
1151 /* Whether we need to take the BQL on our own */
1152 bool take_bql = !qemu_mutex_iothread_locked();
1153
1154 assert(as);
1155
1156 use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
1157
1158 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1159 VTD_PCI_SLOT(as->devfn),
1160 VTD_PCI_FUNC(as->devfn),
1161 use_iommu);
1162
1163 /*
1164 * It's possible that we reach here without BQL, e.g., when called
1165 * from vtd_pt_enable_fast_path(). However the memory APIs need
1166 * it. We'd better make sure we have had it already, or, take it.
1167 */
1168 if (take_bql) {
1169 qemu_mutex_lock_iothread();
1170 }
1171
1172 /* Turn off first then on the other */
1173 if (use_iommu) {
1174 memory_region_set_enabled(&as->sys_alias, false);
1175 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1176 } else {
1177 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1178 memory_region_set_enabled(&as->sys_alias, true);
1179 }
1180
1181 if (take_bql) {
1182 qemu_mutex_unlock_iothread();
1183 }
1184
1185 return use_iommu;
1186 }
1187
1188 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1189 {
1190 GHashTableIter iter;
1191 VTDBus *vtd_bus;
1192 int i;
1193
1194 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1195 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1196 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1197 if (!vtd_bus->dev_as[i]) {
1198 continue;
1199 }
1200 vtd_switch_address_space(vtd_bus->dev_as[i]);
1201 }
1202 }
1203 }
1204
1205 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1206 {
1207 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1208 }
1209
1210 static const bool vtd_qualified_faults[] = {
1211 [VTD_FR_RESERVED] = false,
1212 [VTD_FR_ROOT_ENTRY_P] = false,
1213 [VTD_FR_CONTEXT_ENTRY_P] = true,
1214 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1215 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1216 [VTD_FR_WRITE] = true,
1217 [VTD_FR_READ] = true,
1218 [VTD_FR_PAGING_ENTRY_INV] = true,
1219 [VTD_FR_ROOT_TABLE_INV] = false,
1220 [VTD_FR_CONTEXT_TABLE_INV] = false,
1221 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1222 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1223 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1224 [VTD_FR_RESERVED_ERR] = false,
1225 [VTD_FR_MAX] = false,
1226 };
1227
1228 /* To see if a fault condition is "qualified", which is reported to software
1229 * only if the FPD field in the context-entry used to process the faulting
1230 * request is 0.
1231 */
1232 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1233 {
1234 return vtd_qualified_faults[fault];
1235 }
1236
1237 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1238 {
1239 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1240 }
1241
1242 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1243 {
1244 VTDBus *vtd_bus;
1245 VTDAddressSpace *vtd_as;
1246 bool success = false;
1247
1248 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1249 if (!vtd_bus) {
1250 goto out;
1251 }
1252
1253 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1254 if (!vtd_as) {
1255 goto out;
1256 }
1257
1258 if (vtd_switch_address_space(vtd_as) == false) {
1259 /* We switched off IOMMU region successfully. */
1260 success = true;
1261 }
1262
1263 out:
1264 trace_vtd_pt_enable_fast_path(source_id, success);
1265 }
1266
1267 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1268 * translation.
1269 *
1270 * Called from RCU critical section.
1271 *
1272 * @bus_num: The bus number
1273 * @devfn: The devfn, which is the combined of device and function number
1274 * @is_write: The access is a write operation
1275 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1276 *
1277 * Returns true if translation is successful, otherwise false.
1278 */
1279 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1280 uint8_t devfn, hwaddr addr, bool is_write,
1281 IOMMUTLBEntry *entry)
1282 {
1283 IntelIOMMUState *s = vtd_as->iommu_state;
1284 VTDContextEntry ce;
1285 uint8_t bus_num = pci_bus_num(bus);
1286 VTDContextCacheEntry *cc_entry;
1287 uint64_t slpte, page_mask;
1288 uint32_t level;
1289 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1290 int ret_fr;
1291 bool is_fpd_set = false;
1292 bool reads = true;
1293 bool writes = true;
1294 uint8_t access_flags;
1295 VTDIOTLBEntry *iotlb_entry;
1296
1297 /*
1298 * We have standalone memory region for interrupt addresses, we
1299 * should never receive translation requests in this region.
1300 */
1301 assert(!vtd_is_interrupt_addr(addr));
1302
1303 vtd_iommu_lock(s);
1304
1305 cc_entry = &vtd_as->context_cache_entry;
1306
1307 /* Try to fetch slpte form IOTLB */
1308 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1309 if (iotlb_entry) {
1310 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1311 iotlb_entry->domain_id);
1312 slpte = iotlb_entry->slpte;
1313 access_flags = iotlb_entry->access_flags;
1314 page_mask = iotlb_entry->mask;
1315 goto out;
1316 }
1317
1318 /* Try to fetch context-entry from cache first */
1319 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1320 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1321 cc_entry->context_entry.lo,
1322 cc_entry->context_cache_gen);
1323 ce = cc_entry->context_entry;
1324 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1325 } else {
1326 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1327 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1328 if (ret_fr) {
1329 ret_fr = -ret_fr;
1330 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1331 trace_vtd_fault_disabled();
1332 } else {
1333 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1334 }
1335 goto error;
1336 }
1337 /* Update context-cache */
1338 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1339 cc_entry->context_cache_gen,
1340 s->context_cache_gen);
1341 cc_entry->context_entry = ce;
1342 cc_entry->context_cache_gen = s->context_cache_gen;
1343 }
1344
1345 /*
1346 * We don't need to translate for pass-through context entries.
1347 * Also, let's ignore IOTLB caching as well for PT devices.
1348 */
1349 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1350 entry->iova = addr & VTD_PAGE_MASK_4K;
1351 entry->translated_addr = entry->iova;
1352 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1353 entry->perm = IOMMU_RW;
1354 trace_vtd_translate_pt(source_id, entry->iova);
1355
1356 /*
1357 * When this happens, it means firstly caching-mode is not
1358 * enabled, and this is the first passthrough translation for
1359 * the device. Let's enable the fast path for passthrough.
1360 *
1361 * When passthrough is disabled again for the device, we can
1362 * capture it via the context entry invalidation, then the
1363 * IOMMU region can be swapped back.
1364 */
1365 vtd_pt_enable_fast_path(s, source_id);
1366 vtd_iommu_unlock(s);
1367 return true;
1368 }
1369
1370 ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1371 &reads, &writes, s->aw_bits);
1372 if (ret_fr) {
1373 ret_fr = -ret_fr;
1374 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1375 trace_vtd_fault_disabled();
1376 } else {
1377 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1378 }
1379 goto error;
1380 }
1381
1382 page_mask = vtd_slpt_level_page_mask(level);
1383 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1384 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1385 access_flags, level);
1386 out:
1387 vtd_iommu_unlock(s);
1388 entry->iova = addr & page_mask;
1389 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1390 entry->addr_mask = ~page_mask;
1391 entry->perm = access_flags;
1392 return true;
1393
1394 error:
1395 vtd_iommu_unlock(s);
1396 entry->iova = 0;
1397 entry->translated_addr = 0;
1398 entry->addr_mask = 0;
1399 entry->perm = IOMMU_NONE;
1400 return false;
1401 }
1402
1403 static void vtd_root_table_setup(IntelIOMMUState *s)
1404 {
1405 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1406 s->root_extended = s->root & VTD_RTADDR_RTT;
1407 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1408
1409 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1410 }
1411
1412 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1413 uint32_t index, uint32_t mask)
1414 {
1415 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1416 }
1417
1418 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1419 {
1420 uint64_t value = 0;
1421 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1422 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1423 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1424 s->intr_eime = value & VTD_IRTA_EIME;
1425
1426 /* Notify global invalidation */
1427 vtd_iec_notify_all(s, true, 0, 0);
1428
1429 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1430 }
1431
1432 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1433 {
1434 VTDAddressSpace *vtd_as;
1435
1436 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1437 vtd_sync_shadow_page_table(vtd_as);
1438 }
1439 }
1440
1441 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1442 {
1443 trace_vtd_inv_desc_cc_global();
1444 /* Protects context cache */
1445 vtd_iommu_lock(s);
1446 s->context_cache_gen++;
1447 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1448 vtd_reset_context_cache_locked(s);
1449 }
1450 vtd_iommu_unlock(s);
1451 vtd_address_space_refresh_all(s);
1452 /*
1453 * From VT-d spec 6.5.2.1, a global context entry invalidation
1454 * should be followed by a IOTLB global invalidation, so we should
1455 * be safe even without this. Hoewever, let's replay the region as
1456 * well to be safer, and go back here when we need finer tunes for
1457 * VT-d emulation codes.
1458 */
1459 vtd_iommu_replay_all(s);
1460 }
1461
1462 /* Do a context-cache device-selective invalidation.
1463 * @func_mask: FM field after shifting
1464 */
1465 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1466 uint16_t source_id,
1467 uint16_t func_mask)
1468 {
1469 uint16_t mask;
1470 VTDBus *vtd_bus;
1471 VTDAddressSpace *vtd_as;
1472 uint8_t bus_n, devfn;
1473 uint16_t devfn_it;
1474
1475 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1476
1477 switch (func_mask & 3) {
1478 case 0:
1479 mask = 0; /* No bits in the SID field masked */
1480 break;
1481 case 1:
1482 mask = 4; /* Mask bit 2 in the SID field */
1483 break;
1484 case 2:
1485 mask = 6; /* Mask bit 2:1 in the SID field */
1486 break;
1487 case 3:
1488 mask = 7; /* Mask bit 2:0 in the SID field */
1489 break;
1490 }
1491 mask = ~mask;
1492
1493 bus_n = VTD_SID_TO_BUS(source_id);
1494 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1495 if (vtd_bus) {
1496 devfn = VTD_SID_TO_DEVFN(source_id);
1497 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1498 vtd_as = vtd_bus->dev_as[devfn_it];
1499 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1500 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1501 VTD_PCI_FUNC(devfn_it));
1502 vtd_iommu_lock(s);
1503 vtd_as->context_cache_entry.context_cache_gen = 0;
1504 vtd_iommu_unlock(s);
1505 /*
1506 * Do switch address space when needed, in case if the
1507 * device passthrough bit is switched.
1508 */
1509 vtd_switch_address_space(vtd_as);
1510 /*
1511 * So a device is moving out of (or moving into) a
1512 * domain, resync the shadow page table.
1513 * This won't bring bad even if we have no such
1514 * notifier registered - the IOMMU notification
1515 * framework will skip MAP notifications if that
1516 * happened.
1517 */
1518 vtd_sync_shadow_page_table(vtd_as);
1519 }
1520 }
1521 }
1522 }
1523
1524 /* Context-cache invalidation
1525 * Returns the Context Actual Invalidation Granularity.
1526 * @val: the content of the CCMD_REG
1527 */
1528 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1529 {
1530 uint64_t caig;
1531 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1532
1533 switch (type) {
1534 case VTD_CCMD_DOMAIN_INVL:
1535 /* Fall through */
1536 case VTD_CCMD_GLOBAL_INVL:
1537 caig = VTD_CCMD_GLOBAL_INVL_A;
1538 vtd_context_global_invalidate(s);
1539 break;
1540
1541 case VTD_CCMD_DEVICE_INVL:
1542 caig = VTD_CCMD_DEVICE_INVL_A;
1543 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1544 break;
1545
1546 default:
1547 error_report_once("%s: invalid context: 0x%" PRIx64,
1548 __func__, val);
1549 caig = 0;
1550 }
1551 return caig;
1552 }
1553
1554 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1555 {
1556 trace_vtd_inv_desc_iotlb_global();
1557 vtd_reset_iotlb(s);
1558 vtd_iommu_replay_all(s);
1559 }
1560
1561 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1562 {
1563 VTDContextEntry ce;
1564 VTDAddressSpace *vtd_as;
1565
1566 trace_vtd_inv_desc_iotlb_domain(domain_id);
1567
1568 vtd_iommu_lock(s);
1569 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1570 &domain_id);
1571 vtd_iommu_unlock(s);
1572
1573 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1574 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1575 vtd_as->devfn, &ce) &&
1576 domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1577 vtd_sync_shadow_page_table(vtd_as);
1578 }
1579 }
1580 }
1581
1582 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1583 uint16_t domain_id, hwaddr addr,
1584 uint8_t am)
1585 {
1586 VTDAddressSpace *vtd_as;
1587 VTDContextEntry ce;
1588 int ret;
1589 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1590
1591 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1592 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1593 vtd_as->devfn, &ce);
1594 if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1595 if (vtd_as_has_map_notifier(vtd_as)) {
1596 /*
1597 * As long as we have MAP notifications registered in
1598 * any of our IOMMU notifiers, we need to sync the
1599 * shadow page table.
1600 */
1601 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1602 } else {
1603 /*
1604 * For UNMAP-only notifiers, we don't need to walk the
1605 * page tables. We just deliver the PSI down to
1606 * invalidate caches.
1607 */
1608 IOMMUTLBEntry entry = {
1609 .target_as = &address_space_memory,
1610 .iova = addr,
1611 .translated_addr = 0,
1612 .addr_mask = size - 1,
1613 .perm = IOMMU_NONE,
1614 };
1615 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1616 }
1617 }
1618 }
1619 }
1620
1621 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1622 hwaddr addr, uint8_t am)
1623 {
1624 VTDIOTLBPageInvInfo info;
1625
1626 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1627
1628 assert(am <= VTD_MAMV);
1629 info.domain_id = domain_id;
1630 info.addr = addr;
1631 info.mask = ~((1 << am) - 1);
1632 vtd_iommu_lock(s);
1633 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1634 vtd_iommu_unlock(s);
1635 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1636 }
1637
1638 /* Flush IOTLB
1639 * Returns the IOTLB Actual Invalidation Granularity.
1640 * @val: the content of the IOTLB_REG
1641 */
1642 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1643 {
1644 uint64_t iaig;
1645 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1646 uint16_t domain_id;
1647 hwaddr addr;
1648 uint8_t am;
1649
1650 switch (type) {
1651 case VTD_TLB_GLOBAL_FLUSH:
1652 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1653 vtd_iotlb_global_invalidate(s);
1654 break;
1655
1656 case VTD_TLB_DSI_FLUSH:
1657 domain_id = VTD_TLB_DID(val);
1658 iaig = VTD_TLB_DSI_FLUSH_A;
1659 vtd_iotlb_domain_invalidate(s, domain_id);
1660 break;
1661
1662 case VTD_TLB_PSI_FLUSH:
1663 domain_id = VTD_TLB_DID(val);
1664 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1665 am = VTD_IVA_AM(addr);
1666 addr = VTD_IVA_ADDR(addr);
1667 if (am > VTD_MAMV) {
1668 error_report_once("%s: address mask overflow: 0x%" PRIx64,
1669 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
1670 iaig = 0;
1671 break;
1672 }
1673 iaig = VTD_TLB_PSI_FLUSH_A;
1674 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1675 break;
1676
1677 default:
1678 error_report_once("%s: invalid granularity: 0x%" PRIx64,
1679 __func__, val);
1680 iaig = 0;
1681 }
1682 return iaig;
1683 }
1684
1685 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1686
1687 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1688 {
1689 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1690 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1691 }
1692
1693 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1694 {
1695 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1696
1697 trace_vtd_inv_qi_enable(en);
1698
1699 if (en) {
1700 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
1701 /* 2^(x+8) entries */
1702 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1703 s->qi_enabled = true;
1704 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1705 /* Ok - report back to driver */
1706 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1707
1708 if (s->iq_tail != 0) {
1709 /*
1710 * This is a spec violation but Windows guests are known to set up
1711 * Queued Invalidation this way so we allow the write and process
1712 * Invalidation Descriptors right away.
1713 */
1714 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1715 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1716 vtd_fetch_inv_desc(s);
1717 }
1718 }
1719 } else {
1720 if (vtd_queued_inv_disable_check(s)) {
1721 /* disable Queued Invalidation */
1722 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1723 s->iq_head = 0;
1724 s->qi_enabled = false;
1725 /* Ok - report back to driver */
1726 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1727 } else {
1728 error_report_once("%s: detected improper state when disable QI "
1729 "(head=0x%x, tail=0x%x, last_type=%d)",
1730 __func__,
1731 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1732 }
1733 }
1734 }
1735
1736 /* Set Root Table Pointer */
1737 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1738 {
1739 vtd_root_table_setup(s);
1740 /* Ok - report back to driver */
1741 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1742 vtd_reset_caches(s);
1743 vtd_address_space_refresh_all(s);
1744 }
1745
1746 /* Set Interrupt Remap Table Pointer */
1747 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1748 {
1749 vtd_interrupt_remap_table_setup(s);
1750 /* Ok - report back to driver */
1751 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1752 }
1753
1754 /* Handle Translation Enable/Disable */
1755 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1756 {
1757 if (s->dmar_enabled == en) {
1758 return;
1759 }
1760
1761 trace_vtd_dmar_enable(en);
1762
1763 if (en) {
1764 s->dmar_enabled = true;
1765 /* Ok - report back to driver */
1766 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1767 } else {
1768 s->dmar_enabled = false;
1769
1770 /* Clear the index of Fault Recording Register */
1771 s->next_frcd_reg = 0;
1772 /* Ok - report back to driver */
1773 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1774 }
1775
1776 vtd_reset_caches(s);
1777 vtd_address_space_refresh_all(s);
1778 }
1779
1780 /* Handle Interrupt Remap Enable/Disable */
1781 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1782 {
1783 trace_vtd_ir_enable(en);
1784
1785 if (en) {
1786 s->intr_enabled = true;
1787 /* Ok - report back to driver */
1788 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1789 } else {
1790 s->intr_enabled = false;
1791 /* Ok - report back to driver */
1792 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1793 }
1794 }
1795
1796 /* Handle write to Global Command Register */
1797 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1798 {
1799 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1800 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1801 uint32_t changed = status ^ val;
1802
1803 trace_vtd_reg_write_gcmd(status, val);
1804 if (changed & VTD_GCMD_TE) {
1805 /* Translation enable/disable */
1806 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1807 }
1808 if (val & VTD_GCMD_SRTP) {
1809 /* Set/update the root-table pointer */
1810 vtd_handle_gcmd_srtp(s);
1811 }
1812 if (changed & VTD_GCMD_QIE) {
1813 /* Queued Invalidation Enable */
1814 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1815 }
1816 if (val & VTD_GCMD_SIRTP) {
1817 /* Set/update the interrupt remapping root-table pointer */
1818 vtd_handle_gcmd_sirtp(s);
1819 }
1820 if (changed & VTD_GCMD_IRE) {
1821 /* Interrupt remap enable/disable */
1822 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1823 }
1824 }
1825
1826 /* Handle write to Context Command Register */
1827 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1828 {
1829 uint64_t ret;
1830 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1831
1832 /* Context-cache invalidation request */
1833 if (val & VTD_CCMD_ICC) {
1834 if (s->qi_enabled) {
1835 error_report_once("Queued Invalidation enabled, "
1836 "should not use register-based invalidation");
1837 return;
1838 }
1839 ret = vtd_context_cache_invalidate(s, val);
1840 /* Invalidation completed. Change something to show */
1841 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1842 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1843 ret);
1844 }
1845 }
1846
1847 /* Handle write to IOTLB Invalidation Register */
1848 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1849 {
1850 uint64_t ret;
1851 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1852
1853 /* IOTLB invalidation request */
1854 if (val & VTD_TLB_IVT) {
1855 if (s->qi_enabled) {
1856 error_report_once("Queued Invalidation enabled, "
1857 "should not use register-based invalidation");
1858 return;
1859 }
1860 ret = vtd_iotlb_flush(s, val);
1861 /* Invalidation completed. Change something to show */
1862 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1863 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1864 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1865 }
1866 }
1867
1868 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1869 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1870 VTDInvDesc *inv_desc)
1871 {
1872 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1873 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1874 sizeof(*inv_desc))) {
1875 error_report_once("Read INV DESC failed");
1876 inv_desc->lo = 0;
1877 inv_desc->hi = 0;
1878 return false;
1879 }
1880 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1881 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1882 return true;
1883 }
1884
1885 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1886 {
1887 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1888 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1889 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
1890 " (reserved nonzero)", __func__, inv_desc->hi,
1891 inv_desc->lo);
1892 return false;
1893 }
1894 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1895 /* Status Write */
1896 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1897 VTD_INV_DESC_WAIT_DATA_SHIFT);
1898
1899 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1900
1901 /* FIXME: need to be masked with HAW? */
1902 dma_addr_t status_addr = inv_desc->hi;
1903 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1904 status_data = cpu_to_le32(status_data);
1905 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1906 sizeof(status_data))) {
1907 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1908 return false;
1909 }
1910 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1911 /* Interrupt flag */
1912 vtd_generate_completion_event(s);
1913 } else {
1914 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
1915 " (unknown type)", __func__, inv_desc->hi,
1916 inv_desc->lo);
1917 return false;
1918 }
1919 return true;
1920 }
1921
1922 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1923 VTDInvDesc *inv_desc)
1924 {
1925 uint16_t sid, fmask;
1926
1927 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1928 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
1929 " (reserved nonzero)", __func__, inv_desc->hi,
1930 inv_desc->lo);
1931 return false;
1932 }
1933 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1934 case VTD_INV_DESC_CC_DOMAIN:
1935 trace_vtd_inv_desc_cc_domain(
1936 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1937 /* Fall through */
1938 case VTD_INV_DESC_CC_GLOBAL:
1939 vtd_context_global_invalidate(s);
1940 break;
1941
1942 case VTD_INV_DESC_CC_DEVICE:
1943 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1944 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1945 vtd_context_device_invalidate(s, sid, fmask);
1946 break;
1947
1948 default:
1949 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
1950 " (invalid type)", __func__, inv_desc->hi,
1951 inv_desc->lo);
1952 return false;
1953 }
1954 return true;
1955 }
1956
1957 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1958 {
1959 uint16_t domain_id;
1960 uint8_t am;
1961 hwaddr addr;
1962
1963 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1964 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1965 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
1966 ", lo=0x%"PRIx64" (reserved bits unzero)\n",
1967 __func__, inv_desc->hi, inv_desc->lo);
1968 return false;
1969 }
1970
1971 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1972 case VTD_INV_DESC_IOTLB_GLOBAL:
1973 vtd_iotlb_global_invalidate(s);
1974 break;
1975
1976 case VTD_INV_DESC_IOTLB_DOMAIN:
1977 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1978 vtd_iotlb_domain_invalidate(s, domain_id);
1979 break;
1980
1981 case VTD_INV_DESC_IOTLB_PAGE:
1982 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1983 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1984 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1985 if (am > VTD_MAMV) {
1986 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
1987 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
1988 __func__, inv_desc->hi, inv_desc->lo,
1989 am, (unsigned)VTD_MAMV);
1990 return false;
1991 }
1992 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1993 break;
1994
1995 default:
1996 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
1997 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
1998 __func__, inv_desc->hi, inv_desc->lo,
1999 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2000 return false;
2001 }
2002 return true;
2003 }
2004
2005 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2006 VTDInvDesc *inv_desc)
2007 {
2008 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2009 inv_desc->iec.index,
2010 inv_desc->iec.index_mask);
2011
2012 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2013 inv_desc->iec.index,
2014 inv_desc->iec.index_mask);
2015 return true;
2016 }
2017
2018 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2019 VTDInvDesc *inv_desc)
2020 {
2021 VTDAddressSpace *vtd_dev_as;
2022 IOMMUTLBEntry entry;
2023 struct VTDBus *vtd_bus;
2024 hwaddr addr;
2025 uint64_t sz;
2026 uint16_t sid;
2027 uint8_t devfn;
2028 bool size;
2029 uint8_t bus_num;
2030
2031 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2032 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2033 devfn = sid & 0xff;
2034 bus_num = sid >> 8;
2035 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2036
2037 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2038 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2039 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2040 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2041 inv_desc->hi, inv_desc->lo);
2042 return false;
2043 }
2044
2045 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2046 if (!vtd_bus) {
2047 goto done;
2048 }
2049
2050 vtd_dev_as = vtd_bus->dev_as[devfn];
2051 if (!vtd_dev_as) {
2052 goto done;
2053 }
2054
2055 /* According to ATS spec table 2.4:
2056 * S = 0, bits 15:12 = xxxx range size: 4K
2057 * S = 1, bits 15:12 = xxx0 range size: 8K
2058 * S = 1, bits 15:12 = xx01 range size: 16K
2059 * S = 1, bits 15:12 = x011 range size: 32K
2060 * S = 1, bits 15:12 = 0111 range size: 64K
2061 * ...
2062 */
2063 if (size) {
2064 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2065 addr &= ~(sz - 1);
2066 } else {
2067 sz = VTD_PAGE_SIZE;
2068 }
2069
2070 entry.target_as = &vtd_dev_as->as;
2071 entry.addr_mask = sz - 1;
2072 entry.iova = addr;
2073 entry.perm = IOMMU_NONE;
2074 entry.translated_addr = 0;
2075 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2076
2077 done:
2078 return true;
2079 }
2080
2081 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2082 {
2083 VTDInvDesc inv_desc;
2084 uint8_t desc_type;
2085
2086 trace_vtd_inv_qi_head(s->iq_head);
2087 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
2088 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2089 return false;
2090 }
2091 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2092 /* FIXME: should update at first or at last? */
2093 s->iq_last_desc_type = desc_type;
2094
2095 switch (desc_type) {
2096 case VTD_INV_DESC_CC:
2097 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2098 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2099 return false;
2100 }
2101 break;
2102
2103 case VTD_INV_DESC_IOTLB:
2104 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2105 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2106 return false;
2107 }
2108 break;
2109
2110 case VTD_INV_DESC_WAIT:
2111 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2112 if (!vtd_process_wait_desc(s, &inv_desc)) {
2113 return false;
2114 }
2115 break;
2116
2117 case VTD_INV_DESC_IEC:
2118 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2119 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2120 return false;
2121 }
2122 break;
2123
2124 case VTD_INV_DESC_DEVICE:
2125 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2126 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2127 return false;
2128 }
2129 break;
2130
2131 default:
2132 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2133 " (unknown type)", __func__, inv_desc.hi,
2134 inv_desc.lo);
2135 return false;
2136 }
2137 s->iq_head++;
2138 if (s->iq_head == s->iq_size) {
2139 s->iq_head = 0;
2140 }
2141 return true;
2142 }
2143
2144 /* Try to fetch and process more Invalidation Descriptors */
2145 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2146 {
2147 trace_vtd_inv_qi_fetch();
2148
2149 if (s->iq_tail >= s->iq_size) {
2150 /* Detects an invalid Tail pointer */
2151 error_report_once("%s: detected invalid QI tail "
2152 "(tail=0x%x, size=0x%x)",
2153 __func__, s->iq_tail, s->iq_size);
2154 vtd_handle_inv_queue_error(s);
2155 return;
2156 }
2157 while (s->iq_head != s->iq_tail) {
2158 if (!vtd_process_inv_desc(s)) {
2159 /* Invalidation Queue Errors */
2160 vtd_handle_inv_queue_error(s);
2161 break;
2162 }
2163 /* Must update the IQH_REG in time */
2164 vtd_set_quad_raw(s, DMAR_IQH_REG,
2165 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2166 VTD_IQH_QH_MASK);
2167 }
2168 }
2169
2170 /* Handle write to Invalidation Queue Tail Register */
2171 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2172 {
2173 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2174
2175 s->iq_tail = VTD_IQT_QT(val);
2176 trace_vtd_inv_qi_tail(s->iq_tail);
2177
2178 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2179 /* Process Invalidation Queue here */
2180 vtd_fetch_inv_desc(s);
2181 }
2182 }
2183
2184 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2185 {
2186 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2187 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2188 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2189
2190 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2191 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2192 trace_vtd_fsts_clear_ip();
2193 }
2194 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2195 * Descriptors if there are any when Queued Invalidation is enabled?
2196 */
2197 }
2198
2199 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2200 {
2201 uint32_t fectl_reg;
2202 /* FIXME: when software clears the IM field, check the IP field. But do we
2203 * need to compare the old value and the new value to conclude that
2204 * software clears the IM field? Or just check if the IM field is zero?
2205 */
2206 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2207
2208 trace_vtd_reg_write_fectl(fectl_reg);
2209
2210 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2211 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2212 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2213 }
2214 }
2215
2216 static void vtd_handle_ics_write(IntelIOMMUState *s)
2217 {
2218 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2219 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2220
2221 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2222 trace_vtd_reg_ics_clear_ip();
2223 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2224 }
2225 }
2226
2227 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2228 {
2229 uint32_t iectl_reg;
2230 /* FIXME: when software clears the IM field, check the IP field. But do we
2231 * need to compare the old value and the new value to conclude that
2232 * software clears the IM field? Or just check if the IM field is zero?
2233 */
2234 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2235
2236 trace_vtd_reg_write_iectl(iectl_reg);
2237
2238 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2239 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2240 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2241 }
2242 }
2243
2244 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2245 {
2246 IntelIOMMUState *s = opaque;
2247 uint64_t val;
2248
2249 trace_vtd_reg_read(addr, size);
2250
2251 if (addr + size > DMAR_REG_SIZE) {
2252 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2253 " size=0x%u", __func__, addr, size);
2254 return (uint64_t)-1;
2255 }
2256
2257 switch (addr) {
2258 /* Root Table Address Register, 64-bit */
2259 case DMAR_RTADDR_REG:
2260 if (size == 4) {
2261 val = s->root & ((1ULL << 32) - 1);
2262 } else {
2263 val = s->root;
2264 }
2265 break;
2266
2267 case DMAR_RTADDR_REG_HI:
2268 assert(size == 4);
2269 val = s->root >> 32;
2270 break;
2271
2272 /* Invalidation Queue Address Register, 64-bit */
2273 case DMAR_IQA_REG:
2274 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2275 if (size == 4) {
2276 val = val & ((1ULL << 32) - 1);
2277 }
2278 break;
2279
2280 case DMAR_IQA_REG_HI:
2281 assert(size == 4);
2282 val = s->iq >> 32;
2283 break;
2284
2285 default:
2286 if (size == 4) {
2287 val = vtd_get_long(s, addr);
2288 } else {
2289 val = vtd_get_quad(s, addr);
2290 }
2291 }
2292
2293 return val;
2294 }
2295
2296 static void vtd_mem_write(void *opaque, hwaddr addr,
2297 uint64_t val, unsigned size)
2298 {
2299 IntelIOMMUState *s = opaque;
2300
2301 trace_vtd_reg_write(addr, size, val);
2302
2303 if (addr + size > DMAR_REG_SIZE) {
2304 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2305 " size=0x%u", __func__, addr, size);
2306 return;
2307 }
2308
2309 switch (addr) {
2310 /* Global Command Register, 32-bit */
2311 case DMAR_GCMD_REG:
2312 vtd_set_long(s, addr, val);
2313 vtd_handle_gcmd_write(s);
2314 break;
2315
2316 /* Context Command Register, 64-bit */
2317 case DMAR_CCMD_REG:
2318 if (size == 4) {
2319 vtd_set_long(s, addr, val);
2320 } else {
2321 vtd_set_quad(s, addr, val);
2322 vtd_handle_ccmd_write(s);
2323 }
2324 break;
2325
2326 case DMAR_CCMD_REG_HI:
2327 assert(size == 4);
2328 vtd_set_long(s, addr, val);
2329 vtd_handle_ccmd_write(s);
2330 break;
2331
2332 /* IOTLB Invalidation Register, 64-bit */
2333 case DMAR_IOTLB_REG:
2334 if (size == 4) {
2335 vtd_set_long(s, addr, val);
2336 } else {
2337 vtd_set_quad(s, addr, val);
2338 vtd_handle_iotlb_write(s);
2339 }
2340 break;
2341
2342 case DMAR_IOTLB_REG_HI:
2343 assert(size == 4);
2344 vtd_set_long(s, addr, val);
2345 vtd_handle_iotlb_write(s);
2346 break;
2347
2348 /* Invalidate Address Register, 64-bit */
2349 case DMAR_IVA_REG:
2350 if (size == 4) {
2351 vtd_set_long(s, addr, val);
2352 } else {
2353 vtd_set_quad(s, addr, val);
2354 }
2355 break;
2356
2357 case DMAR_IVA_REG_HI:
2358 assert(size == 4);
2359 vtd_set_long(s, addr, val);
2360 break;
2361
2362 /* Fault Status Register, 32-bit */
2363 case DMAR_FSTS_REG:
2364 assert(size == 4);
2365 vtd_set_long(s, addr, val);
2366 vtd_handle_fsts_write(s);
2367 break;
2368
2369 /* Fault Event Control Register, 32-bit */
2370 case DMAR_FECTL_REG:
2371 assert(size == 4);
2372 vtd_set_long(s, addr, val);
2373 vtd_handle_fectl_write(s);
2374 break;
2375
2376 /* Fault Event Data Register, 32-bit */
2377 case DMAR_FEDATA_REG:
2378 assert(size == 4);
2379 vtd_set_long(s, addr, val);
2380 break;
2381
2382 /* Fault Event Address Register, 32-bit */
2383 case DMAR_FEADDR_REG:
2384 if (size == 4) {
2385 vtd_set_long(s, addr, val);
2386 } else {
2387 /*
2388 * While the register is 32-bit only, some guests (Xen...) write to
2389 * it with 64-bit.
2390 */
2391 vtd_set_quad(s, addr, val);
2392 }
2393 break;
2394
2395 /* Fault Event Upper Address Register, 32-bit */
2396 case DMAR_FEUADDR_REG:
2397 assert(size == 4);
2398 vtd_set_long(s, addr, val);
2399 break;
2400
2401 /* Protected Memory Enable Register, 32-bit */
2402 case DMAR_PMEN_REG:
2403 assert(size == 4);
2404 vtd_set_long(s, addr, val);
2405 break;
2406
2407 /* Root Table Address Register, 64-bit */
2408 case DMAR_RTADDR_REG:
2409 if (size == 4) {
2410 vtd_set_long(s, addr, val);
2411 } else {
2412 vtd_set_quad(s, addr, val);
2413 }
2414 break;
2415
2416 case DMAR_RTADDR_REG_HI:
2417 assert(size == 4);
2418 vtd_set_long(s, addr, val);
2419 break;
2420
2421 /* Invalidation Queue Tail Register, 64-bit */
2422 case DMAR_IQT_REG:
2423 if (size == 4) {
2424 vtd_set_long(s, addr, val);
2425 } else {
2426 vtd_set_quad(s, addr, val);
2427 }
2428 vtd_handle_iqt_write(s);
2429 break;
2430
2431 case DMAR_IQT_REG_HI:
2432 assert(size == 4);
2433 vtd_set_long(s, addr, val);
2434 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2435 break;
2436
2437 /* Invalidation Queue Address Register, 64-bit */
2438 case DMAR_IQA_REG:
2439 if (size == 4) {
2440 vtd_set_long(s, addr, val);
2441 } else {
2442 vtd_set_quad(s, addr, val);
2443 }
2444 break;
2445
2446 case DMAR_IQA_REG_HI:
2447 assert(size == 4);
2448 vtd_set_long(s, addr, val);
2449 break;
2450
2451 /* Invalidation Completion Status Register, 32-bit */
2452 case DMAR_ICS_REG:
2453 assert(size == 4);
2454 vtd_set_long(s, addr, val);
2455 vtd_handle_ics_write(s);
2456 break;
2457
2458 /* Invalidation Event Control Register, 32-bit */
2459 case DMAR_IECTL_REG:
2460 assert(size == 4);
2461 vtd_set_long(s, addr, val);
2462 vtd_handle_iectl_write(s);
2463 break;
2464
2465 /* Invalidation Event Data Register, 32-bit */
2466 case DMAR_IEDATA_REG:
2467 assert(size == 4);
2468 vtd_set_long(s, addr, val);
2469 break;
2470
2471 /* Invalidation Event Address Register, 32-bit */
2472 case DMAR_IEADDR_REG:
2473 assert(size == 4);
2474 vtd_set_long(s, addr, val);
2475 break;
2476
2477 /* Invalidation Event Upper Address Register, 32-bit */
2478 case DMAR_IEUADDR_REG:
2479 assert(size == 4);
2480 vtd_set_long(s, addr, val);
2481 break;
2482
2483 /* Fault Recording Registers, 128-bit */
2484 case DMAR_FRCD_REG_0_0:
2485 if (size == 4) {
2486 vtd_set_long(s, addr, val);
2487 } else {
2488 vtd_set_quad(s, addr, val);
2489 }
2490 break;
2491
2492 case DMAR_FRCD_REG_0_1:
2493 assert(size == 4);
2494 vtd_set_long(s, addr, val);
2495 break;
2496
2497 case DMAR_FRCD_REG_0_2:
2498 if (size == 4) {
2499 vtd_set_long(s, addr, val);
2500 } else {
2501 vtd_set_quad(s, addr, val);
2502 /* May clear bit 127 (Fault), update PPF */
2503 vtd_update_fsts_ppf(s);
2504 }
2505 break;
2506
2507 case DMAR_FRCD_REG_0_3:
2508 assert(size == 4);
2509 vtd_set_long(s, addr, val);
2510 /* May clear bit 127 (Fault), update PPF */
2511 vtd_update_fsts_ppf(s);
2512 break;
2513
2514 case DMAR_IRTA_REG:
2515 if (size == 4) {
2516 vtd_set_long(s, addr, val);
2517 } else {
2518 vtd_set_quad(s, addr, val);
2519 }
2520 break;
2521
2522 case DMAR_IRTA_REG_HI:
2523 assert(size == 4);
2524 vtd_set_long(s, addr, val);
2525 break;
2526
2527 default:
2528 if (size == 4) {
2529 vtd_set_long(s, addr, val);
2530 } else {
2531 vtd_set_quad(s, addr, val);
2532 }
2533 }
2534 }
2535
2536 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2537 IOMMUAccessFlags flag, int iommu_idx)
2538 {
2539 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2540 IntelIOMMUState *s = vtd_as->iommu_state;
2541 IOMMUTLBEntry iotlb = {
2542 /* We'll fill in the rest later. */
2543 .target_as = &address_space_memory,
2544 };
2545 bool success;
2546
2547 if (likely(s->dmar_enabled)) {
2548 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2549 addr, flag & IOMMU_WO, &iotlb);
2550 } else {
2551 /* DMAR disabled, passthrough, use 4k-page*/
2552 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2553 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2554 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2555 iotlb.perm = IOMMU_RW;
2556 success = true;
2557 }
2558
2559 if (likely(success)) {
2560 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2561 VTD_PCI_SLOT(vtd_as->devfn),
2562 VTD_PCI_FUNC(vtd_as->devfn),
2563 iotlb.iova, iotlb.translated_addr,
2564 iotlb.addr_mask);
2565 } else {
2566 error_report_once("%s: detected translation failure "
2567 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2568 __func__, pci_bus_num(vtd_as->bus),
2569 VTD_PCI_SLOT(vtd_as->devfn),
2570 VTD_PCI_FUNC(vtd_as->devfn),
2571 addr);
2572 }
2573
2574 return iotlb;
2575 }
2576
2577 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2578 IOMMUNotifierFlag old,
2579 IOMMUNotifierFlag new)
2580 {
2581 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2582 IntelIOMMUState *s = vtd_as->iommu_state;
2583
2584 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2585 error_report("We need to set caching-mode=1 for intel-iommu to enable "
2586 "device assignment with IOMMU protection.");
2587 exit(1);
2588 }
2589
2590 /* Update per-address-space notifier flags */
2591 vtd_as->notifier_flags = new;
2592
2593 if (old == IOMMU_NOTIFIER_NONE) {
2594 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2595 } else if (new == IOMMU_NOTIFIER_NONE) {
2596 QLIST_REMOVE(vtd_as, next);
2597 }
2598 }
2599
2600 static int vtd_post_load(void *opaque, int version_id)
2601 {
2602 IntelIOMMUState *iommu = opaque;
2603
2604 /*
2605 * Memory regions are dynamically turned on/off depending on
2606 * context entry configurations from the guest. After migration,
2607 * we need to make sure the memory regions are still correct.
2608 */
2609 vtd_switch_address_space_all(iommu);
2610
2611 return 0;
2612 }
2613
2614 static const VMStateDescription vtd_vmstate = {
2615 .name = "iommu-intel",
2616 .version_id = 1,
2617 .minimum_version_id = 1,
2618 .priority = MIG_PRI_IOMMU,
2619 .post_load = vtd_post_load,
2620 .fields = (VMStateField[]) {
2621 VMSTATE_UINT64(root, IntelIOMMUState),
2622 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2623 VMSTATE_UINT64(iq, IntelIOMMUState),
2624 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2625 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2626 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2627 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2628 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2629 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2630 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2631 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2632 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2633 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2634 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2635 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2636 VMSTATE_END_OF_LIST()
2637 }
2638 };
2639
2640 static const MemoryRegionOps vtd_mem_ops = {
2641 .read = vtd_mem_read,
2642 .write = vtd_mem_write,
2643 .endianness = DEVICE_LITTLE_ENDIAN,
2644 .impl = {
2645 .min_access_size = 4,
2646 .max_access_size = 8,
2647 },
2648 .valid = {
2649 .min_access_size = 4,
2650 .max_access_size = 8,
2651 },
2652 };
2653
2654 static Property vtd_properties[] = {
2655 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2656 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2657 ON_OFF_AUTO_AUTO),
2658 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2659 DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
2660 VTD_HOST_ADDRESS_WIDTH),
2661 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2662 DEFINE_PROP_END_OF_LIST(),
2663 };
2664
2665 /* Read IRTE entry with specific index */
2666 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2667 VTD_IR_TableEntry *entry, uint16_t sid)
2668 {
2669 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2670 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2671 dma_addr_t addr = 0x00;
2672 uint16_t mask, source_id;
2673 uint8_t bus, bus_max, bus_min;
2674
2675 addr = iommu->intr_root + index * sizeof(*entry);
2676 if (dma_memory_read(&address_space_memory, addr, entry,
2677 sizeof(*entry))) {
2678 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
2679 __func__, index, addr);
2680 return -VTD_FR_IR_ROOT_INVAL;
2681 }
2682
2683 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2684 le64_to_cpu(entry->data[0]));
2685
2686 if (!entry->irte.present) {
2687 error_report_once("%s: detected non-present IRTE "
2688 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
2689 __func__, index, le64_to_cpu(entry->data[1]),
2690 le64_to_cpu(entry->data[0]));
2691 return -VTD_FR_IR_ENTRY_P;
2692 }
2693
2694 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2695 entry->irte.__reserved_2) {
2696 error_report_once("%s: detected non-zero reserved IRTE "
2697 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
2698 __func__, index, le64_to_cpu(entry->data[1]),
2699 le64_to_cpu(entry->data[0]));
2700 return -VTD_FR_IR_IRTE_RSVD;
2701 }
2702
2703 if (sid != X86_IOMMU_SID_INVALID) {
2704 /* Validate IRTE SID */
2705 source_id = le32_to_cpu(entry->irte.source_id);
2706 switch (entry->irte.sid_vtype) {
2707 case VTD_SVT_NONE:
2708 break;
2709
2710 case VTD_SVT_ALL:
2711 mask = vtd_svt_mask[entry->irte.sid_q];
2712 if ((source_id & mask) != (sid & mask)) {
2713 error_report_once("%s: invalid IRTE SID "
2714 "(index=%u, sid=%u, source_id=%u)",
2715 __func__, index, sid, source_id);
2716 return -VTD_FR_IR_SID_ERR;
2717 }
2718 break;
2719
2720 case VTD_SVT_BUS:
2721 bus_max = source_id >> 8;
2722 bus_min = source_id & 0xff;
2723 bus = sid >> 8;
2724 if (bus > bus_max || bus < bus_min) {
2725 error_report_once("%s: invalid SVT_BUS "
2726 "(index=%u, bus=%u, min=%u, max=%u)",
2727 __func__, index, bus, bus_min, bus_max);
2728 return -VTD_FR_IR_SID_ERR;
2729 }
2730 break;
2731
2732 default:
2733 error_report_once("%s: detected invalid IRTE SVT "
2734 "(index=%u, type=%d)", __func__,
2735 index, entry->irte.sid_vtype);
2736 /* Take this as verification failure. */
2737 return -VTD_FR_IR_SID_ERR;
2738 break;
2739 }
2740 }
2741
2742 return 0;
2743 }
2744
2745 /* Fetch IRQ information of specific IR index */
2746 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2747 X86IOMMUIrq *irq, uint16_t sid)
2748 {
2749 VTD_IR_TableEntry irte = {};
2750 int ret = 0;
2751
2752 ret = vtd_irte_get(iommu, index, &irte, sid);
2753 if (ret) {
2754 return ret;
2755 }
2756
2757 irq->trigger_mode = irte.irte.trigger_mode;
2758 irq->vector = irte.irte.vector;
2759 irq->delivery_mode = irte.irte.delivery_mode;
2760 irq->dest = le32_to_cpu(irte.irte.dest_id);
2761 if (!iommu->intr_eime) {
2762 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2763 #define VTD_IR_APIC_DEST_SHIFT (8)
2764 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2765 VTD_IR_APIC_DEST_SHIFT;
2766 }
2767 irq->dest_mode = irte.irte.dest_mode;
2768 irq->redir_hint = irte.irte.redir_hint;
2769
2770 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2771 irq->delivery_mode, irq->dest, irq->dest_mode);
2772
2773 return 0;
2774 }
2775
2776 /* Interrupt remapping for MSI/MSI-X entry */
2777 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2778 MSIMessage *origin,
2779 MSIMessage *translated,
2780 uint16_t sid)
2781 {
2782 int ret = 0;
2783 VTD_IR_MSIAddress addr;
2784 uint16_t index;
2785 X86IOMMUIrq irq = {};
2786
2787 assert(origin && translated);
2788
2789 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2790
2791 if (!iommu || !iommu->intr_enabled) {
2792 memcpy(translated, origin, sizeof(*origin));
2793 goto out;
2794 }
2795
2796 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2797 error_report_once("%s: MSI address high 32 bits non-zero detected: "
2798 "address=0x%" PRIx64, __func__, origin->address);
2799 return -VTD_FR_IR_REQ_RSVD;
2800 }
2801
2802 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2803 if (addr.addr.__head != 0xfee) {
2804 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
2805 __func__, addr.data);
2806 return -VTD_FR_IR_REQ_RSVD;
2807 }
2808
2809 /* This is compatible mode. */
2810 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2811 memcpy(translated, origin, sizeof(*origin));
2812 goto out;
2813 }
2814
2815 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2816
2817 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2818 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2819
2820 if (addr.addr.sub_valid) {
2821 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2822 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2823 }
2824
2825 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2826 if (ret) {
2827 return ret;
2828 }
2829
2830 if (addr.addr.sub_valid) {
2831 trace_vtd_ir_remap_type("MSI");
2832 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2833 error_report_once("%s: invalid IR MSI "
2834 "(sid=%u, address=0x%" PRIx64
2835 ", data=0x%" PRIx32 ")",
2836 __func__, sid, origin->address, origin->data);
2837 return -VTD_FR_IR_REQ_RSVD;
2838 }
2839 } else {
2840 uint8_t vector = origin->data & 0xff;
2841 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2842
2843 trace_vtd_ir_remap_type("IOAPIC");
2844 /* IOAPIC entry vector should be aligned with IRTE vector
2845 * (see vt-d spec 5.1.5.1). */
2846 if (vector != irq.vector) {
2847 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2848 }
2849
2850 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2851 * (see vt-d spec 5.1.5.1). */
2852 if (trigger_mode != irq.trigger_mode) {
2853 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2854 irq.trigger_mode);
2855 }
2856 }
2857
2858 /*
2859 * We'd better keep the last two bits, assuming that guest OS
2860 * might modify it. Keep it does not hurt after all.
2861 */
2862 irq.msi_addr_last_bits = addr.addr.__not_care;
2863
2864 /* Translate X86IOMMUIrq to MSI message */
2865 x86_iommu_irq_to_msi_message(&irq, translated);
2866
2867 out:
2868 trace_vtd_ir_remap_msi(origin->address, origin->data,
2869 translated->address, translated->data);
2870 return 0;
2871 }
2872
2873 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2874 MSIMessage *dst, uint16_t sid)
2875 {
2876 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2877 src, dst, sid);
2878 }
2879
2880 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2881 uint64_t *data, unsigned size,
2882 MemTxAttrs attrs)
2883 {
2884 return MEMTX_OK;
2885 }
2886
2887 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2888 uint64_t value, unsigned size,
2889 MemTxAttrs attrs)
2890 {
2891 int ret = 0;
2892 MSIMessage from = {}, to = {};
2893 uint16_t sid = X86_IOMMU_SID_INVALID;
2894
2895 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2896 from.data = (uint32_t) value;
2897
2898 if (!attrs.unspecified) {
2899 /* We have explicit Source ID */
2900 sid = attrs.requester_id;
2901 }
2902
2903 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2904 if (ret) {
2905 /* TODO: report error */
2906 /* Drop this interrupt */
2907 return MEMTX_ERROR;
2908 }
2909
2910 apic_get_class()->send_msi(&to);
2911
2912 return MEMTX_OK;
2913 }
2914
2915 static const MemoryRegionOps vtd_mem_ir_ops = {
2916 .read_with_attrs = vtd_mem_ir_read,
2917 .write_with_attrs = vtd_mem_ir_write,
2918 .endianness = DEVICE_LITTLE_ENDIAN,
2919 .impl = {
2920 .min_access_size = 4,
2921 .max_access_size = 4,
2922 },
2923 .valid = {
2924 .min_access_size = 4,
2925 .max_access_size = 4,
2926 },
2927 };
2928
2929 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2930 {
2931 uintptr_t key = (uintptr_t)bus;
2932 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2933 VTDAddressSpace *vtd_dev_as;
2934 char name[128];
2935
2936 if (!vtd_bus) {
2937 uintptr_t *new_key = g_malloc(sizeof(*new_key));
2938 *new_key = (uintptr_t)bus;
2939 /* No corresponding free() */
2940 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2941 PCI_DEVFN_MAX);
2942 vtd_bus->bus = bus;
2943 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2944 }
2945
2946 vtd_dev_as = vtd_bus->dev_as[devfn];
2947
2948 if (!vtd_dev_as) {
2949 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2950 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2951
2952 vtd_dev_as->bus = bus;
2953 vtd_dev_as->devfn = (uint8_t)devfn;
2954 vtd_dev_as->iommu_state = s;
2955 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2956 vtd_dev_as->iova_tree = iova_tree_new();
2957
2958 /*
2959 * Memory region relationships looks like (Address range shows
2960 * only lower 32 bits to make it short in length...):
2961 *
2962 * |-----------------+-------------------+----------|
2963 * | Name | Address range | Priority |
2964 * |-----------------+-------------------+----------+
2965 * | vtd_root | 00000000-ffffffff | 0 |
2966 * | intel_iommu | 00000000-ffffffff | 1 |
2967 * | vtd_sys_alias | 00000000-ffffffff | 1 |
2968 * | intel_iommu_ir | fee00000-feefffff | 64 |
2969 * |-----------------+-------------------+----------|
2970 *
2971 * We enable/disable DMAR by switching enablement for
2972 * vtd_sys_alias and intel_iommu regions. IR region is always
2973 * enabled.
2974 */
2975 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2976 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2977 "intel_iommu_dmar",
2978 UINT64_MAX);
2979 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2980 "vtd_sys_alias", get_system_memory(),
2981 0, memory_region_size(get_system_memory()));
2982 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2983 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2984 VTD_INTERRUPT_ADDR_SIZE);
2985 memory_region_init(&vtd_dev_as->root, OBJECT(s),
2986 "vtd_root", UINT64_MAX);
2987 memory_region_add_subregion_overlap(&vtd_dev_as->root,
2988 VTD_INTERRUPT_ADDR_FIRST,
2989 &vtd_dev_as->iommu_ir, 64);
2990 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2991 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2992 &vtd_dev_as->sys_alias, 1);
2993 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2994 MEMORY_REGION(&vtd_dev_as->iommu),
2995 1);
2996 vtd_switch_address_space(vtd_dev_as);
2997 }
2998 return vtd_dev_as;
2999 }
3000
3001 /* Unmap the whole range in the notifier's scope. */
3002 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3003 {
3004 IOMMUTLBEntry entry;
3005 hwaddr size;
3006 hwaddr start = n->start;
3007 hwaddr end = n->end;
3008 IntelIOMMUState *s = as->iommu_state;
3009 DMAMap map;
3010
3011 /*
3012 * Note: all the codes in this function has a assumption that IOVA
3013 * bits are no more than VTD_MGAW bits (which is restricted by
3014 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3015 */
3016
3017 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
3018 /*
3019 * Don't need to unmap regions that is bigger than the whole
3020 * VT-d supported address space size
3021 */
3022 end = VTD_ADDRESS_SIZE(s->aw_bits);
3023 }
3024
3025 assert(start <= end);
3026 size = end - start;
3027
3028 if (ctpop64(size) != 1) {
3029 /*
3030 * This size cannot format a correct mask. Let's enlarge it to
3031 * suite the minimum available mask.
3032 */
3033 int n = 64 - clz64(size);
3034 if (n > s->aw_bits) {
3035 /* should not happen, but in case it happens, limit it */
3036 n = s->aw_bits;
3037 }
3038 size = 1ULL << n;
3039 }
3040
3041 entry.target_as = &address_space_memory;
3042 /* Adjust iova for the size */
3043 entry.iova = n->start & ~(size - 1);
3044 /* This field is meaningless for unmap */
3045 entry.translated_addr = 0;
3046 entry.perm = IOMMU_NONE;
3047 entry.addr_mask = size - 1;
3048
3049 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3050 VTD_PCI_SLOT(as->devfn),
3051 VTD_PCI_FUNC(as->devfn),
3052 entry.iova, size);
3053
3054 map.iova = entry.iova;
3055 map.size = entry.addr_mask;
3056 iova_tree_remove(as->iova_tree, &map);
3057
3058 memory_region_notify_one(n, &entry);
3059 }
3060
3061 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3062 {
3063 VTDAddressSpace *vtd_as;
3064 IOMMUNotifier *n;
3065
3066 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3067 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3068 vtd_address_space_unmap(vtd_as, n);
3069 }
3070 }
3071 }
3072
3073 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3074 {
3075 vtd_address_space_unmap_all(s);
3076 vtd_switch_address_space_all(s);
3077 }
3078
3079 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3080 {
3081 memory_region_notify_one((IOMMUNotifier *)private, entry);
3082 return 0;
3083 }
3084
3085 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3086 {
3087 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3088 IntelIOMMUState *s = vtd_as->iommu_state;
3089 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3090 VTDContextEntry ce;
3091
3092 /*
3093 * The replay can be triggered by either a invalidation or a newly
3094 * created entry. No matter what, we release existing mappings
3095 * (it means flushing caches for UNMAP-only registers).
3096 */
3097 vtd_address_space_unmap(vtd_as, n);
3098
3099 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3100 trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
3101 PCI_FUNC(vtd_as->devfn),
3102 VTD_CONTEXT_ENTRY_DID(ce.hi),
3103 ce.hi, ce.lo);
3104 if (vtd_as_has_map_notifier(vtd_as)) {
3105 /* This is required only for MAP typed notifiers */
3106 vtd_page_walk_info info = {
3107 .hook_fn = vtd_replay_hook,
3108 .private = (void *)n,
3109 .notify_unmap = false,
3110 .aw = s->aw_bits,
3111 .as = vtd_as,
3112 .domain_id = VTD_CONTEXT_ENTRY_DID(ce.hi),
3113 };
3114
3115 vtd_page_walk(&ce, 0, ~0ULL, &info);
3116 }
3117 } else {
3118 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3119 PCI_FUNC(vtd_as->devfn));
3120 }
3121
3122 return;
3123 }
3124
3125 /* Do the initialization. It will also be called when reset, so pay
3126 * attention when adding new initialization stuff.
3127 */
3128 static void vtd_init(IntelIOMMUState *s)
3129 {
3130 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3131
3132 memset(s->csr, 0, DMAR_REG_SIZE);
3133 memset(s->wmask, 0, DMAR_REG_SIZE);
3134 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3135 memset(s->womask, 0, DMAR_REG_SIZE);
3136
3137 s->root = 0;
3138 s->root_extended = false;
3139 s->dmar_enabled = false;
3140 s->iq_head = 0;
3141 s->iq_tail = 0;
3142 s->iq = 0;
3143 s->iq_size = 0;
3144 s->qi_enabled = false;
3145 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3146 s->next_frcd_reg = 0;
3147 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3148 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3149 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3150 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3151 s->cap |= VTD_CAP_SAGAW_48bit;
3152 }
3153 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3154
3155 /*
3156 * Rsvd field masks for spte
3157 */
3158 vtd_paging_entry_rsvd_field[0] = ~0ULL;
3159 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3160 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3161 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3162 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3163 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3164 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3165 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3166 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3167
3168 if (x86_iommu->intr_supported) {
3169 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3170 if (s->intr_eim == ON_OFF_AUTO_ON) {
3171 s->ecap |= VTD_ECAP_EIM;
3172 }
3173 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3174 }
3175
3176 if (x86_iommu->dt_supported) {
3177 s->ecap |= VTD_ECAP_DT;
3178 }
3179
3180 if (x86_iommu->pt_supported) {
3181 s->ecap |= VTD_ECAP_PT;
3182 }
3183
3184 if (s->caching_mode) {
3185 s->cap |= VTD_CAP_CM;
3186 }
3187
3188 vtd_reset_caches(s);
3189
3190 /* Define registers with default values and bit semantics */
3191 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3192 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3193 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3194 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3195 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3196 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3197 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
3198 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3199 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3200
3201 /* Advanced Fault Logging not supported */
3202 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3203 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3204 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3205 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3206
3207 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3208 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3209 */
3210 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3211
3212 /* Treated as RO for implementations that PLMR and PHMR fields reported
3213 * as Clear in the CAP_REG.
3214 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3215 */
3216 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3217
3218 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3219 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3220 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
3221 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3222 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3223 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3224 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3225 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3226 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3227
3228 /* IOTLB registers */
3229 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3230 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3231 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3232
3233 /* Fault Recording Registers, 128-bit */
3234 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3235 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3236
3237 /*
3238 * Interrupt remapping registers.
3239 */
3240 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3241 }
3242
3243 /* Should not reset address_spaces when reset because devices will still use
3244 * the address space they got at first (won't ask the bus again).
3245 */
3246 static void vtd_reset(DeviceState *dev)
3247 {
3248 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3249
3250 vtd_init(s);
3251 vtd_address_space_refresh_all(s);
3252 }
3253
3254 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3255 {
3256 IntelIOMMUState *s = opaque;
3257 VTDAddressSpace *vtd_as;
3258
3259 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3260
3261 vtd_as = vtd_find_add_as(s, bus, devfn);
3262 return &vtd_as->as;
3263 }
3264
3265 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3266 {
3267 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3268
3269 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3270 error_setg(errp, "eim=on cannot be selected without intremap=on");
3271 return false;
3272 }
3273
3274 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3275 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3276 && x86_iommu->intr_supported ?
3277 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3278 }
3279 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3280 if (!kvm_irqchip_in_kernel()) {
3281 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3282 return false;
3283 }
3284 if (!kvm_enable_x2apic()) {
3285 error_setg(errp, "eim=on requires support on the KVM side"
3286 "(X2APIC_API, first shipped in v4.7)");
3287 return false;
3288 }
3289 }
3290
3291 /* Currently only address widths supported are 39 and 48 bits */
3292 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3293 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3294 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3295 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3296 return false;
3297 }
3298
3299 return true;
3300 }
3301
3302 static void vtd_realize(DeviceState *dev, Error **errp)
3303 {
3304 MachineState *ms = MACHINE(qdev_get_machine());
3305 PCMachineState *pcms = PC_MACHINE(ms);
3306 PCIBus *bus = pcms->bus;
3307 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3308 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3309
3310 x86_iommu->type = TYPE_INTEL;
3311
3312 if (!vtd_decide_config(s, errp)) {
3313 return;
3314 }
3315
3316 QLIST_INIT(&s->vtd_as_with_notifiers);
3317 qemu_mutex_init(&s->iommu_lock);
3318 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3319 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3320 "intel_iommu", DMAR_REG_SIZE);
3321 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3322 /* No corresponding destroy */
3323 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3324 g_free, g_free);
3325 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3326 g_free, g_free);
3327 vtd_init(s);
3328 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3329 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3330 /* Pseudo address space under root PCI bus. */
3331 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3332 }
3333
3334 static void vtd_class_init(ObjectClass *klass, void *data)
3335 {
3336 DeviceClass *dc = DEVICE_CLASS(klass);
3337 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3338
3339 dc->reset = vtd_reset;
3340 dc->vmsd = &vtd_vmstate;
3341 dc->props = vtd_properties;
3342 dc->hotpluggable = false;
3343 x86_class->realize = vtd_realize;
3344 x86_class->int_remap = vtd_int_remap;
3345 /* Supported by the pc-q35-* machine types */
3346 dc->user_creatable = true;
3347 }
3348
3349 static const TypeInfo vtd_info = {
3350 .name = TYPE_INTEL_IOMMU_DEVICE,
3351 .parent = TYPE_X86_IOMMU_DEVICE,
3352 .instance_size = sizeof(IntelIOMMUState),
3353 .class_init = vtd_class_init,
3354 };
3355
3356 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3357 void *data)
3358 {
3359 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3360
3361 imrc->translate = vtd_iommu_translate;
3362 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3363 imrc->replay = vtd_iommu_replay;
3364 }
3365
3366 static const TypeInfo vtd_iommu_memory_region_info = {
3367 .parent = TYPE_IOMMU_MEMORY_REGION,
3368 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3369 .class_init = vtd_iommu_memory_region_class_init,
3370 };
3371
3372 static void vtd_register_types(void)
3373 {
3374 type_register_static(&vtd_info);
3375 type_register_static(&vtd_iommu_memory_region_info);
3376 }
3377
3378 type_init(vtd_register_types)