]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
39
40 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
41 uint64_t wmask, uint64_t w1cmask)
42 {
43 stq_le_p(&s->csr[addr], val);
44 stq_le_p(&s->wmask[addr], wmask);
45 stq_le_p(&s->w1cmask[addr], w1cmask);
46 }
47
48 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
49 {
50 stq_le_p(&s->womask[addr], mask);
51 }
52
53 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
54 uint32_t wmask, uint32_t w1cmask)
55 {
56 stl_le_p(&s->csr[addr], val);
57 stl_le_p(&s->wmask[addr], wmask);
58 stl_le_p(&s->w1cmask[addr], w1cmask);
59 }
60
61 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
62 {
63 stl_le_p(&s->womask[addr], mask);
64 }
65
66 /* "External" get/set operations */
67 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
68 {
69 uint64_t oldval = ldq_le_p(&s->csr[addr]);
70 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
71 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
72 stq_le_p(&s->csr[addr],
73 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
74 }
75
76 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
77 {
78 uint32_t oldval = ldl_le_p(&s->csr[addr]);
79 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
80 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
81 stl_le_p(&s->csr[addr],
82 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
83 }
84
85 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
86 {
87 uint64_t val = ldq_le_p(&s->csr[addr]);
88 uint64_t womask = ldq_le_p(&s->womask[addr]);
89 return val & ~womask;
90 }
91
92 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
93 {
94 uint32_t val = ldl_le_p(&s->csr[addr]);
95 uint32_t womask = ldl_le_p(&s->womask[addr]);
96 return val & ~womask;
97 }
98
99 /* "Internal" get/set operations */
100 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
101 {
102 return ldq_le_p(&s->csr[addr]);
103 }
104
105 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
106 {
107 return ldl_le_p(&s->csr[addr]);
108 }
109
110 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
111 {
112 stq_le_p(&s->csr[addr], val);
113 }
114
115 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
116 uint32_t clear, uint32_t mask)
117 {
118 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
119 stl_le_p(&s->csr[addr], new_val);
120 return new_val;
121 }
122
123 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
124 uint64_t clear, uint64_t mask)
125 {
126 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
127 stq_le_p(&s->csr[addr], new_val);
128 return new_val;
129 }
130
131 /* GHashTable functions */
132 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
133 {
134 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
135 }
136
137 static guint vtd_uint64_hash(gconstpointer v)
138 {
139 return (guint)*(const uint64_t *)v;
140 }
141
142 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
143 gpointer user_data)
144 {
145 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
146 uint16_t domain_id = *(uint16_t *)user_data;
147 return entry->domain_id == domain_id;
148 }
149
150 /* The shift of an addr for a certain level of paging structure */
151 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
152 {
153 assert(level != 0);
154 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
155 }
156
157 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
158 {
159 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
160 }
161
162 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
163 gpointer user_data)
164 {
165 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
166 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
167 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
168 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
169 return (entry->domain_id == info->domain_id) &&
170 (((entry->gfn & info->mask) == gfn) ||
171 (entry->gfn == gfn_tlb));
172 }
173
174 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
175 * IntelIOMMUState to 1.
176 */
177 static void vtd_reset_context_cache(IntelIOMMUState *s)
178 {
179 VTDAddressSpace *vtd_as;
180 VTDBus *vtd_bus;
181 GHashTableIter bus_it;
182 uint32_t devfn_it;
183
184 trace_vtd_context_cache_reset();
185
186 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
187
188 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
189 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
190 vtd_as = vtd_bus->dev_as[devfn_it];
191 if (!vtd_as) {
192 continue;
193 }
194 vtd_as->context_cache_entry.context_cache_gen = 0;
195 }
196 }
197 s->context_cache_gen = 1;
198 }
199
200 static void vtd_reset_iotlb(IntelIOMMUState *s)
201 {
202 assert(s->iotlb);
203 g_hash_table_remove_all(s->iotlb);
204 }
205
206 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
207 uint32_t level)
208 {
209 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
210 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
211 }
212
213 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
214 {
215 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
216 }
217
218 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
219 hwaddr addr)
220 {
221 VTDIOTLBEntry *entry;
222 uint64_t key;
223 int level;
224
225 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
226 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
227 source_id, level);
228 entry = g_hash_table_lookup(s->iotlb, &key);
229 if (entry) {
230 goto out;
231 }
232 }
233
234 out:
235 return entry;
236 }
237
238 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
239 uint16_t domain_id, hwaddr addr, uint64_t slpte,
240 uint8_t access_flags, uint32_t level)
241 {
242 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
243 uint64_t *key = g_malloc(sizeof(*key));
244 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
245
246 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
247 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
248 trace_vtd_iotlb_reset("iotlb exceeds size limit");
249 vtd_reset_iotlb(s);
250 }
251
252 entry->gfn = gfn;
253 entry->domain_id = domain_id;
254 entry->slpte = slpte;
255 entry->access_flags = access_flags;
256 entry->mask = vtd_slpt_level_page_mask(level);
257 *key = vtd_get_iotlb_key(gfn, source_id, level);
258 g_hash_table_replace(s->iotlb, key, entry);
259 }
260
261 /* Given the reg addr of both the message data and address, generate an
262 * interrupt via MSI.
263 */
264 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
265 hwaddr mesg_data_reg)
266 {
267 MSIMessage msi;
268
269 assert(mesg_data_reg < DMAR_REG_SIZE);
270 assert(mesg_addr_reg < DMAR_REG_SIZE);
271
272 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
273 msi.data = vtd_get_long_raw(s, mesg_data_reg);
274
275 trace_vtd_irq_generate(msi.address, msi.data);
276
277 apic_get_class()->send_msi(&msi);
278 }
279
280 /* Generate a fault event to software via MSI if conditions are met.
281 * Notice that the value of FSTS_REG being passed to it should be the one
282 * before any update.
283 */
284 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
285 {
286 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
287 pre_fsts & VTD_FSTS_IQE) {
288 trace_vtd_err("There are previous interrupt conditions "
289 "to be serviced by software, fault event "
290 "is not generated.");
291 return;
292 }
293 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
294 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
295 trace_vtd_err("Interrupt Mask set, irq is not generated.");
296 } else {
297 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
298 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
299 }
300 }
301
302 /* Check if the Fault (F) field of the Fault Recording Register referenced by
303 * @index is Set.
304 */
305 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
306 {
307 /* Each reg is 128-bit */
308 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
309 addr += 8; /* Access the high 64-bit half */
310
311 assert(index < DMAR_FRCD_REG_NR);
312
313 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
314 }
315
316 /* Update the PPF field of Fault Status Register.
317 * Should be called whenever change the F field of any fault recording
318 * registers.
319 */
320 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
321 {
322 uint32_t i;
323 uint32_t ppf_mask = 0;
324
325 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
326 if (vtd_is_frcd_set(s, i)) {
327 ppf_mask = VTD_FSTS_PPF;
328 break;
329 }
330 }
331 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
332 trace_vtd_fsts_ppf(!!ppf_mask);
333 }
334
335 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
336 {
337 /* Each reg is 128-bit */
338 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
339 addr += 8; /* Access the high 64-bit half */
340
341 assert(index < DMAR_FRCD_REG_NR);
342
343 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
344 vtd_update_fsts_ppf(s);
345 }
346
347 /* Must not update F field now, should be done later */
348 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
349 uint16_t source_id, hwaddr addr,
350 VTDFaultReason fault, bool is_write)
351 {
352 uint64_t hi = 0, lo;
353 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
354
355 assert(index < DMAR_FRCD_REG_NR);
356
357 lo = VTD_FRCD_FI(addr);
358 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
359 if (!is_write) {
360 hi |= VTD_FRCD_T;
361 }
362 vtd_set_quad_raw(s, frcd_reg_addr, lo);
363 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
364
365 trace_vtd_frr_new(index, hi, lo);
366 }
367
368 /* Try to collapse multiple pending faults from the same requester */
369 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
370 {
371 uint32_t i;
372 uint64_t frcd_reg;
373 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
374
375 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
376 frcd_reg = vtd_get_quad_raw(s, addr);
377 if ((frcd_reg & VTD_FRCD_F) &&
378 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
379 return true;
380 }
381 addr += 16; /* 128-bit for each */
382 }
383 return false;
384 }
385
386 /* Log and report an DMAR (address translation) fault to software */
387 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
388 hwaddr addr, VTDFaultReason fault,
389 bool is_write)
390 {
391 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
392
393 assert(fault < VTD_FR_MAX);
394
395 if (fault == VTD_FR_RESERVED_ERR) {
396 /* This is not a normal fault reason case. Drop it. */
397 return;
398 }
399
400 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
401
402 if (fsts_reg & VTD_FSTS_PFO) {
403 trace_vtd_err("New fault is not recorded due to "
404 "Primary Fault Overflow.");
405 return;
406 }
407
408 if (vtd_try_collapse_fault(s, source_id)) {
409 trace_vtd_err("New fault is not recorded due to "
410 "compression of faults.");
411 return;
412 }
413
414 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
415 trace_vtd_err("Next Fault Recording Reg is used, "
416 "new fault is not recorded, set PFO field.");
417 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
418 return;
419 }
420
421 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
422
423 if (fsts_reg & VTD_FSTS_PPF) {
424 trace_vtd_err("There are pending faults already, "
425 "fault event is not generated.");
426 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
427 s->next_frcd_reg++;
428 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
429 s->next_frcd_reg = 0;
430 }
431 } else {
432 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
433 VTD_FSTS_FRI(s->next_frcd_reg));
434 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
435 s->next_frcd_reg++;
436 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
437 s->next_frcd_reg = 0;
438 }
439 /* This case actually cause the PPF to be Set.
440 * So generate fault event (interrupt).
441 */
442 vtd_generate_fault_event(s, fsts_reg);
443 }
444 }
445
446 /* Handle Invalidation Queue Errors of queued invalidation interface error
447 * conditions.
448 */
449 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
450 {
451 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
452
453 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
454 vtd_generate_fault_event(s, fsts_reg);
455 }
456
457 /* Set the IWC field and try to generate an invalidation completion interrupt */
458 static void vtd_generate_completion_event(IntelIOMMUState *s)
459 {
460 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
461 trace_vtd_inv_desc_wait_irq("One pending, skip current");
462 return;
463 }
464 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
465 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
466 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
467 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
468 "new event not generated");
469 return;
470 } else {
471 /* Generate the interrupt event */
472 trace_vtd_inv_desc_wait_irq("Generating complete event");
473 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
474 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
475 }
476 }
477
478 static inline bool vtd_root_entry_present(VTDRootEntry *root)
479 {
480 return root->val & VTD_ROOT_ENTRY_P;
481 }
482
483 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
484 VTDRootEntry *re)
485 {
486 dma_addr_t addr;
487
488 addr = s->root + index * sizeof(*re);
489 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
490 trace_vtd_re_invalid(re->rsvd, re->val);
491 re->val = 0;
492 return -VTD_FR_ROOT_TABLE_INV;
493 }
494 re->val = le64_to_cpu(re->val);
495 return 0;
496 }
497
498 static inline bool vtd_ce_present(VTDContextEntry *context)
499 {
500 return context->lo & VTD_CONTEXT_ENTRY_P;
501 }
502
503 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
504 VTDContextEntry *ce)
505 {
506 dma_addr_t addr;
507
508 /* we have checked that root entry is present */
509 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
510 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
511 trace_vtd_re_invalid(root->rsvd, root->val);
512 return -VTD_FR_CONTEXT_TABLE_INV;
513 }
514 ce->lo = le64_to_cpu(ce->lo);
515 ce->hi = le64_to_cpu(ce->hi);
516 return 0;
517 }
518
519 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
520 {
521 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
522 }
523
524 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
525 {
526 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
527 }
528
529 /* Whether the pte indicates the address of the page frame */
530 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
531 {
532 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
533 }
534
535 /* Get the content of a spte located in @base_addr[@index] */
536 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
537 {
538 uint64_t slpte;
539
540 assert(index < VTD_SL_PT_ENTRY_NR);
541
542 if (dma_memory_read(&address_space_memory,
543 base_addr + index * sizeof(slpte), &slpte,
544 sizeof(slpte))) {
545 slpte = (uint64_t)-1;
546 return slpte;
547 }
548 slpte = le64_to_cpu(slpte);
549 return slpte;
550 }
551
552 /* Given an iova and the level of paging structure, return the offset
553 * of current level.
554 */
555 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
556 {
557 return (iova >> vtd_slpt_level_shift(level)) &
558 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
559 }
560
561 /* Check Capability Register to see if the @level of page-table is supported */
562 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
563 {
564 return VTD_CAP_SAGAW_MASK & s->cap &
565 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
566 }
567
568 /* Get the page-table level that hardware should use for the second-level
569 * page-table walk from the Address Width field of context-entry.
570 */
571 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
572 {
573 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
574 }
575
576 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
577 {
578 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
579 }
580
581 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
582 {
583 return ce->lo & VTD_CONTEXT_ENTRY_TT;
584 }
585
586 /* Return true if check passed, otherwise false */
587 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
588 VTDContextEntry *ce)
589 {
590 switch (vtd_ce_get_type(ce)) {
591 case VTD_CONTEXT_TT_MULTI_LEVEL:
592 /* Always supported */
593 break;
594 case VTD_CONTEXT_TT_DEV_IOTLB:
595 if (!x86_iommu->dt_supported) {
596 return false;
597 }
598 break;
599 case VTD_CONTEXT_TT_PASS_THROUGH:
600 if (!x86_iommu->pt_supported) {
601 return false;
602 }
603 break;
604 default:
605 /* Unknwon type */
606 return false;
607 }
608 return true;
609 }
610
611 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
612 {
613 uint32_t ce_agaw = vtd_ce_get_agaw(ce);
614 return 1ULL << MIN(ce_agaw, aw);
615 }
616
617 /* Return true if IOVA passes range check, otherwise false. */
618 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
619 uint8_t aw)
620 {
621 /*
622 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
623 * in CAP_REG and AW in context-entry.
624 */
625 return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
626 }
627
628 /*
629 * Rsvd field masks for spte:
630 * Index [1] to [4] 4k pages
631 * Index [5] to [8] large pages
632 */
633 static uint64_t vtd_paging_entry_rsvd_field[9];
634
635 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
636 {
637 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
638 /* Maybe large page */
639 return slpte & vtd_paging_entry_rsvd_field[level + 4];
640 } else {
641 return slpte & vtd_paging_entry_rsvd_field[level];
642 }
643 }
644
645 /* Find the VTD address space associated with a given bus number */
646 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
647 {
648 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
649 if (!vtd_bus) {
650 /*
651 * Iterate over the registered buses to find the one which
652 * currently hold this bus number, and update the bus_num
653 * lookup table:
654 */
655 GHashTableIter iter;
656
657 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
658 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
659 if (pci_bus_num(vtd_bus->bus) == bus_num) {
660 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
661 return vtd_bus;
662 }
663 }
664 }
665 return vtd_bus;
666 }
667
668 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
669 * of the translation, can be used for deciding the size of large page.
670 */
671 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
672 uint64_t *slptep, uint32_t *slpte_level,
673 bool *reads, bool *writes, uint8_t aw_bits)
674 {
675 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
676 uint32_t level = vtd_ce_get_level(ce);
677 uint32_t offset;
678 uint64_t slpte;
679 uint64_t access_right_check;
680
681 if (!vtd_iova_range_check(iova, ce, aw_bits)) {
682 trace_vtd_err_dmar_iova_overflow(iova);
683 return -VTD_FR_ADDR_BEYOND_MGAW;
684 }
685
686 /* FIXME: what is the Atomics request here? */
687 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
688
689 while (true) {
690 offset = vtd_iova_level_offset(iova, level);
691 slpte = vtd_get_slpte(addr, offset);
692
693 if (slpte == (uint64_t)-1) {
694 trace_vtd_err_dmar_slpte_read_error(iova, level);
695 if (level == vtd_ce_get_level(ce)) {
696 /* Invalid programming of context-entry */
697 return -VTD_FR_CONTEXT_ENTRY_INV;
698 } else {
699 return -VTD_FR_PAGING_ENTRY_INV;
700 }
701 }
702 *reads = (*reads) && (slpte & VTD_SL_R);
703 *writes = (*writes) && (slpte & VTD_SL_W);
704 if (!(slpte & access_right_check)) {
705 trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
706 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
707 }
708 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
709 trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
710 return -VTD_FR_PAGING_ENTRY_RSVD;
711 }
712
713 if (vtd_is_last_slpte(slpte, level)) {
714 *slptep = slpte;
715 *slpte_level = level;
716 return 0;
717 }
718 addr = vtd_get_slpte_addr(slpte, aw_bits);
719 level--;
720 }
721 }
722
723 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
724
725 /**
726 * vtd_page_walk_level - walk over specific level for IOVA range
727 *
728 * @addr: base GPA addr to start the walk
729 * @start: IOVA range start address
730 * @end: IOVA range end address (start <= addr < end)
731 * @hook_fn: hook func to be called when detected page
732 * @private: private data to be passed into hook func
733 * @read: whether parent level has read permission
734 * @write: whether parent level has write permission
735 * @notify_unmap: whether we should notify invalid entries
736 * @aw: maximum address width
737 */
738 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
739 uint64_t end, vtd_page_walk_hook hook_fn,
740 void *private, uint32_t level, bool read,
741 bool write, bool notify_unmap, uint8_t aw)
742 {
743 bool read_cur, write_cur, entry_valid;
744 uint32_t offset;
745 uint64_t slpte;
746 uint64_t subpage_size, subpage_mask;
747 IOMMUTLBEntry entry;
748 uint64_t iova = start;
749 uint64_t iova_next;
750 int ret = 0;
751
752 trace_vtd_page_walk_level(addr, level, start, end);
753
754 subpage_size = 1ULL << vtd_slpt_level_shift(level);
755 subpage_mask = vtd_slpt_level_page_mask(level);
756
757 while (iova < end) {
758 iova_next = (iova & subpage_mask) + subpage_size;
759
760 offset = vtd_iova_level_offset(iova, level);
761 slpte = vtd_get_slpte(addr, offset);
762
763 if (slpte == (uint64_t)-1) {
764 trace_vtd_page_walk_skip_read(iova, iova_next);
765 goto next;
766 }
767
768 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
769 trace_vtd_page_walk_skip_reserve(iova, iova_next);
770 goto next;
771 }
772
773 /* Permissions are stacked with parents' */
774 read_cur = read && (slpte & VTD_SL_R);
775 write_cur = write && (slpte & VTD_SL_W);
776
777 /*
778 * As long as we have either read/write permission, this is a
779 * valid entry. The rule works for both page entries and page
780 * table entries.
781 */
782 entry_valid = read_cur | write_cur;
783
784 if (vtd_is_last_slpte(slpte, level)) {
785 entry.target_as = &address_space_memory;
786 entry.iova = iova & subpage_mask;
787 /* NOTE: this is only meaningful if entry_valid == true */
788 entry.translated_addr = vtd_get_slpte_addr(slpte, aw);
789 entry.addr_mask = ~subpage_mask;
790 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
791 if (!entry_valid && !notify_unmap) {
792 trace_vtd_page_walk_skip_perm(iova, iova_next);
793 goto next;
794 }
795 trace_vtd_page_walk_one(level, entry.iova, entry.translated_addr,
796 entry.addr_mask, entry.perm);
797 if (hook_fn) {
798 ret = hook_fn(&entry, private);
799 if (ret < 0) {
800 return ret;
801 }
802 }
803 } else {
804 if (!entry_valid) {
805 trace_vtd_page_walk_skip_perm(iova, iova_next);
806 goto next;
807 }
808 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, aw), iova,
809 MIN(iova_next, end), hook_fn, private,
810 level - 1, read_cur, write_cur,
811 notify_unmap, aw);
812 if (ret < 0) {
813 return ret;
814 }
815 }
816
817 next:
818 iova = iova_next;
819 }
820
821 return 0;
822 }
823
824 /**
825 * vtd_page_walk - walk specific IOVA range, and call the hook
826 *
827 * @ce: context entry to walk upon
828 * @start: IOVA address to start the walk
829 * @end: IOVA range end address (start <= addr < end)
830 * @hook_fn: the hook that to be called for each detected area
831 * @private: private data for the hook function
832 * @aw: maximum address width
833 */
834 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
835 vtd_page_walk_hook hook_fn, void *private,
836 bool notify_unmap, uint8_t aw)
837 {
838 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
839 uint32_t level = vtd_ce_get_level(ce);
840
841 if (!vtd_iova_range_check(start, ce, aw)) {
842 return -VTD_FR_ADDR_BEYOND_MGAW;
843 }
844
845 if (!vtd_iova_range_check(end, ce, aw)) {
846 /* Fix end so that it reaches the maximum */
847 end = vtd_iova_limit(ce, aw);
848 }
849
850 return vtd_page_walk_level(addr, start, end, hook_fn, private,
851 level, true, true, notify_unmap, aw);
852 }
853
854 /* Map a device to its corresponding domain (context-entry) */
855 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
856 uint8_t devfn, VTDContextEntry *ce)
857 {
858 VTDRootEntry re;
859 int ret_fr;
860 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
861
862 ret_fr = vtd_get_root_entry(s, bus_num, &re);
863 if (ret_fr) {
864 return ret_fr;
865 }
866
867 if (!vtd_root_entry_present(&re)) {
868 /* Not error - it's okay we don't have root entry. */
869 trace_vtd_re_not_present(bus_num);
870 return -VTD_FR_ROOT_ENTRY_P;
871 }
872
873 if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
874 trace_vtd_re_invalid(re.rsvd, re.val);
875 return -VTD_FR_ROOT_ENTRY_RSVD;
876 }
877
878 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
879 if (ret_fr) {
880 return ret_fr;
881 }
882
883 if (!vtd_ce_present(ce)) {
884 /* Not error - it's okay we don't have context entry. */
885 trace_vtd_ce_not_present(bus_num, devfn);
886 return -VTD_FR_CONTEXT_ENTRY_P;
887 }
888
889 if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
890 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
891 trace_vtd_ce_invalid(ce->hi, ce->lo);
892 return -VTD_FR_CONTEXT_ENTRY_RSVD;
893 }
894
895 /* Check if the programming of context-entry is valid */
896 if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
897 trace_vtd_ce_invalid(ce->hi, ce->lo);
898 return -VTD_FR_CONTEXT_ENTRY_INV;
899 }
900
901 /* Do translation type check */
902 if (!vtd_ce_type_check(x86_iommu, ce)) {
903 trace_vtd_ce_invalid(ce->hi, ce->lo);
904 return -VTD_FR_CONTEXT_ENTRY_INV;
905 }
906
907 return 0;
908 }
909
910 /*
911 * Fetch translation type for specific device. Returns <0 if error
912 * happens, otherwise return the shifted type to check against
913 * VTD_CONTEXT_TT_*.
914 */
915 static int vtd_dev_get_trans_type(VTDAddressSpace *as)
916 {
917 IntelIOMMUState *s;
918 VTDContextEntry ce;
919 int ret;
920
921 s = as->iommu_state;
922
923 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
924 as->devfn, &ce);
925 if (ret) {
926 return ret;
927 }
928
929 return vtd_ce_get_type(&ce);
930 }
931
932 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
933 {
934 int ret;
935
936 assert(as);
937
938 ret = vtd_dev_get_trans_type(as);
939 if (ret < 0) {
940 /*
941 * Possibly failed to parse the context entry for some reason
942 * (e.g., during init, or any guest configuration errors on
943 * context entries). We should assume PT not enabled for
944 * safety.
945 */
946 return false;
947 }
948
949 return ret == VTD_CONTEXT_TT_PASS_THROUGH;
950 }
951
952 /* Return whether the device is using IOMMU translation. */
953 static bool vtd_switch_address_space(VTDAddressSpace *as)
954 {
955 bool use_iommu;
956 /* Whether we need to take the BQL on our own */
957 bool take_bql = !qemu_mutex_iothread_locked();
958
959 assert(as);
960
961 use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
962
963 trace_vtd_switch_address_space(pci_bus_num(as->bus),
964 VTD_PCI_SLOT(as->devfn),
965 VTD_PCI_FUNC(as->devfn),
966 use_iommu);
967
968 /*
969 * It's possible that we reach here without BQL, e.g., when called
970 * from vtd_pt_enable_fast_path(). However the memory APIs need
971 * it. We'd better make sure we have had it already, or, take it.
972 */
973 if (take_bql) {
974 qemu_mutex_lock_iothread();
975 }
976
977 /* Turn off first then on the other */
978 if (use_iommu) {
979 memory_region_set_enabled(&as->sys_alias, false);
980 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
981 } else {
982 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
983 memory_region_set_enabled(&as->sys_alias, true);
984 }
985
986 if (take_bql) {
987 qemu_mutex_unlock_iothread();
988 }
989
990 return use_iommu;
991 }
992
993 static void vtd_switch_address_space_all(IntelIOMMUState *s)
994 {
995 GHashTableIter iter;
996 VTDBus *vtd_bus;
997 int i;
998
999 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1000 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1001 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1002 if (!vtd_bus->dev_as[i]) {
1003 continue;
1004 }
1005 vtd_switch_address_space(vtd_bus->dev_as[i]);
1006 }
1007 }
1008 }
1009
1010 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1011 {
1012 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1013 }
1014
1015 static const bool vtd_qualified_faults[] = {
1016 [VTD_FR_RESERVED] = false,
1017 [VTD_FR_ROOT_ENTRY_P] = false,
1018 [VTD_FR_CONTEXT_ENTRY_P] = true,
1019 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1020 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1021 [VTD_FR_WRITE] = true,
1022 [VTD_FR_READ] = true,
1023 [VTD_FR_PAGING_ENTRY_INV] = true,
1024 [VTD_FR_ROOT_TABLE_INV] = false,
1025 [VTD_FR_CONTEXT_TABLE_INV] = false,
1026 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1027 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1028 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1029 [VTD_FR_RESERVED_ERR] = false,
1030 [VTD_FR_MAX] = false,
1031 };
1032
1033 /* To see if a fault condition is "qualified", which is reported to software
1034 * only if the FPD field in the context-entry used to process the faulting
1035 * request is 0.
1036 */
1037 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1038 {
1039 return vtd_qualified_faults[fault];
1040 }
1041
1042 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1043 {
1044 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1045 }
1046
1047 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1048 {
1049 VTDBus *vtd_bus;
1050 VTDAddressSpace *vtd_as;
1051 bool success = false;
1052
1053 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1054 if (!vtd_bus) {
1055 goto out;
1056 }
1057
1058 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1059 if (!vtd_as) {
1060 goto out;
1061 }
1062
1063 if (vtd_switch_address_space(vtd_as) == false) {
1064 /* We switched off IOMMU region successfully. */
1065 success = true;
1066 }
1067
1068 out:
1069 trace_vtd_pt_enable_fast_path(source_id, success);
1070 }
1071
1072 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1073 * translation.
1074 *
1075 * Called from RCU critical section.
1076 *
1077 * @bus_num: The bus number
1078 * @devfn: The devfn, which is the combined of device and function number
1079 * @is_write: The access is a write operation
1080 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1081 *
1082 * Returns true if translation is successful, otherwise false.
1083 */
1084 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1085 uint8_t devfn, hwaddr addr, bool is_write,
1086 IOMMUTLBEntry *entry)
1087 {
1088 IntelIOMMUState *s = vtd_as->iommu_state;
1089 VTDContextEntry ce;
1090 uint8_t bus_num = pci_bus_num(bus);
1091 VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
1092 uint64_t slpte, page_mask;
1093 uint32_t level;
1094 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1095 int ret_fr;
1096 bool is_fpd_set = false;
1097 bool reads = true;
1098 bool writes = true;
1099 uint8_t access_flags;
1100 VTDIOTLBEntry *iotlb_entry;
1101
1102 /*
1103 * We have standalone memory region for interrupt addresses, we
1104 * should never receive translation requests in this region.
1105 */
1106 assert(!vtd_is_interrupt_addr(addr));
1107
1108 /* Try to fetch slpte form IOTLB */
1109 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1110 if (iotlb_entry) {
1111 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1112 iotlb_entry->domain_id);
1113 slpte = iotlb_entry->slpte;
1114 access_flags = iotlb_entry->access_flags;
1115 page_mask = iotlb_entry->mask;
1116 goto out;
1117 }
1118
1119 /* Try to fetch context-entry from cache first */
1120 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1121 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1122 cc_entry->context_entry.lo,
1123 cc_entry->context_cache_gen);
1124 ce = cc_entry->context_entry;
1125 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1126 } else {
1127 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1128 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1129 if (ret_fr) {
1130 ret_fr = -ret_fr;
1131 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1132 trace_vtd_fault_disabled();
1133 } else {
1134 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1135 }
1136 goto error;
1137 }
1138 /* Update context-cache */
1139 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1140 cc_entry->context_cache_gen,
1141 s->context_cache_gen);
1142 cc_entry->context_entry = ce;
1143 cc_entry->context_cache_gen = s->context_cache_gen;
1144 }
1145
1146 /*
1147 * We don't need to translate for pass-through context entries.
1148 * Also, let's ignore IOTLB caching as well for PT devices.
1149 */
1150 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1151 entry->iova = addr & VTD_PAGE_MASK_4K;
1152 entry->translated_addr = entry->iova;
1153 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1154 entry->perm = IOMMU_RW;
1155 trace_vtd_translate_pt(source_id, entry->iova);
1156
1157 /*
1158 * When this happens, it means firstly caching-mode is not
1159 * enabled, and this is the first passthrough translation for
1160 * the device. Let's enable the fast path for passthrough.
1161 *
1162 * When passthrough is disabled again for the device, we can
1163 * capture it via the context entry invalidation, then the
1164 * IOMMU region can be swapped back.
1165 */
1166 vtd_pt_enable_fast_path(s, source_id);
1167
1168 return true;
1169 }
1170
1171 ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1172 &reads, &writes, s->aw_bits);
1173 if (ret_fr) {
1174 ret_fr = -ret_fr;
1175 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1176 trace_vtd_fault_disabled();
1177 } else {
1178 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1179 }
1180 goto error;
1181 }
1182
1183 page_mask = vtd_slpt_level_page_mask(level);
1184 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1185 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1186 access_flags, level);
1187 out:
1188 entry->iova = addr & page_mask;
1189 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1190 entry->addr_mask = ~page_mask;
1191 entry->perm = access_flags;
1192 return true;
1193
1194 error:
1195 entry->iova = 0;
1196 entry->translated_addr = 0;
1197 entry->addr_mask = 0;
1198 entry->perm = IOMMU_NONE;
1199 return false;
1200 }
1201
1202 static void vtd_root_table_setup(IntelIOMMUState *s)
1203 {
1204 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1205 s->root_extended = s->root & VTD_RTADDR_RTT;
1206 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1207
1208 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1209 }
1210
1211 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1212 uint32_t index, uint32_t mask)
1213 {
1214 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1215 }
1216
1217 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1218 {
1219 uint64_t value = 0;
1220 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1221 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1222 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1223 s->intr_eime = value & VTD_IRTA_EIME;
1224
1225 /* Notify global invalidation */
1226 vtd_iec_notify_all(s, true, 0, 0);
1227
1228 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1229 }
1230
1231 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1232 {
1233 IntelIOMMUNotifierNode *node;
1234
1235 QLIST_FOREACH(node, &s->notifiers_list, next) {
1236 memory_region_iommu_replay_all(&node->vtd_as->iommu);
1237 }
1238 }
1239
1240 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1241 {
1242 trace_vtd_inv_desc_cc_global();
1243 s->context_cache_gen++;
1244 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1245 vtd_reset_context_cache(s);
1246 }
1247 vtd_switch_address_space_all(s);
1248 /*
1249 * From VT-d spec 6.5.2.1, a global context entry invalidation
1250 * should be followed by a IOTLB global invalidation, so we should
1251 * be safe even without this. Hoewever, let's replay the region as
1252 * well to be safer, and go back here when we need finer tunes for
1253 * VT-d emulation codes.
1254 */
1255 vtd_iommu_replay_all(s);
1256 }
1257
1258 /* Do a context-cache device-selective invalidation.
1259 * @func_mask: FM field after shifting
1260 */
1261 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1262 uint16_t source_id,
1263 uint16_t func_mask)
1264 {
1265 uint16_t mask;
1266 VTDBus *vtd_bus;
1267 VTDAddressSpace *vtd_as;
1268 uint8_t bus_n, devfn;
1269 uint16_t devfn_it;
1270
1271 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1272
1273 switch (func_mask & 3) {
1274 case 0:
1275 mask = 0; /* No bits in the SID field masked */
1276 break;
1277 case 1:
1278 mask = 4; /* Mask bit 2 in the SID field */
1279 break;
1280 case 2:
1281 mask = 6; /* Mask bit 2:1 in the SID field */
1282 break;
1283 case 3:
1284 mask = 7; /* Mask bit 2:0 in the SID field */
1285 break;
1286 }
1287 mask = ~mask;
1288
1289 bus_n = VTD_SID_TO_BUS(source_id);
1290 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1291 if (vtd_bus) {
1292 devfn = VTD_SID_TO_DEVFN(source_id);
1293 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1294 vtd_as = vtd_bus->dev_as[devfn_it];
1295 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1296 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1297 VTD_PCI_FUNC(devfn_it));
1298 vtd_as->context_cache_entry.context_cache_gen = 0;
1299 /*
1300 * Do switch address space when needed, in case if the
1301 * device passthrough bit is switched.
1302 */
1303 vtd_switch_address_space(vtd_as);
1304 /*
1305 * So a device is moving out of (or moving into) a
1306 * domain, a replay() suites here to notify all the
1307 * IOMMU_NOTIFIER_MAP registers about this change.
1308 * This won't bring bad even if we have no such
1309 * notifier registered - the IOMMU notification
1310 * framework will skip MAP notifications if that
1311 * happened.
1312 */
1313 memory_region_iommu_replay_all(&vtd_as->iommu);
1314 }
1315 }
1316 }
1317 }
1318
1319 /* Context-cache invalidation
1320 * Returns the Context Actual Invalidation Granularity.
1321 * @val: the content of the CCMD_REG
1322 */
1323 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1324 {
1325 uint64_t caig;
1326 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1327
1328 switch (type) {
1329 case VTD_CCMD_DOMAIN_INVL:
1330 /* Fall through */
1331 case VTD_CCMD_GLOBAL_INVL:
1332 caig = VTD_CCMD_GLOBAL_INVL_A;
1333 vtd_context_global_invalidate(s);
1334 break;
1335
1336 case VTD_CCMD_DEVICE_INVL:
1337 caig = VTD_CCMD_DEVICE_INVL_A;
1338 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1339 break;
1340
1341 default:
1342 trace_vtd_err("Context cache invalidate type error.");
1343 caig = 0;
1344 }
1345 return caig;
1346 }
1347
1348 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1349 {
1350 trace_vtd_inv_desc_iotlb_global();
1351 vtd_reset_iotlb(s);
1352 vtd_iommu_replay_all(s);
1353 }
1354
1355 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1356 {
1357 IntelIOMMUNotifierNode *node;
1358 VTDContextEntry ce;
1359 VTDAddressSpace *vtd_as;
1360
1361 trace_vtd_inv_desc_iotlb_domain(domain_id);
1362
1363 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1364 &domain_id);
1365
1366 QLIST_FOREACH(node, &s->notifiers_list, next) {
1367 vtd_as = node->vtd_as;
1368 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1369 vtd_as->devfn, &ce) &&
1370 domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1371 memory_region_iommu_replay_all(&vtd_as->iommu);
1372 }
1373 }
1374 }
1375
1376 static int vtd_page_invalidate_notify_hook(IOMMUTLBEntry *entry,
1377 void *private)
1378 {
1379 memory_region_notify_iommu((IOMMUMemoryRegion *)private, *entry);
1380 return 0;
1381 }
1382
1383 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1384 uint16_t domain_id, hwaddr addr,
1385 uint8_t am)
1386 {
1387 IntelIOMMUNotifierNode *node;
1388 VTDContextEntry ce;
1389 int ret;
1390
1391 QLIST_FOREACH(node, &(s->notifiers_list), next) {
1392 VTDAddressSpace *vtd_as = node->vtd_as;
1393 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1394 vtd_as->devfn, &ce);
1395 if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1396 vtd_page_walk(&ce, addr, addr + (1 << am) * VTD_PAGE_SIZE,
1397 vtd_page_invalidate_notify_hook,
1398 (void *)&vtd_as->iommu, true, s->aw_bits);
1399 }
1400 }
1401 }
1402
1403 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1404 hwaddr addr, uint8_t am)
1405 {
1406 VTDIOTLBPageInvInfo info;
1407
1408 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1409
1410 assert(am <= VTD_MAMV);
1411 info.domain_id = domain_id;
1412 info.addr = addr;
1413 info.mask = ~((1 << am) - 1);
1414 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1415 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1416 }
1417
1418 /* Flush IOTLB
1419 * Returns the IOTLB Actual Invalidation Granularity.
1420 * @val: the content of the IOTLB_REG
1421 */
1422 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1423 {
1424 uint64_t iaig;
1425 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1426 uint16_t domain_id;
1427 hwaddr addr;
1428 uint8_t am;
1429
1430 switch (type) {
1431 case VTD_TLB_GLOBAL_FLUSH:
1432 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1433 vtd_iotlb_global_invalidate(s);
1434 break;
1435
1436 case VTD_TLB_DSI_FLUSH:
1437 domain_id = VTD_TLB_DID(val);
1438 iaig = VTD_TLB_DSI_FLUSH_A;
1439 vtd_iotlb_domain_invalidate(s, domain_id);
1440 break;
1441
1442 case VTD_TLB_PSI_FLUSH:
1443 domain_id = VTD_TLB_DID(val);
1444 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1445 am = VTD_IVA_AM(addr);
1446 addr = VTD_IVA_ADDR(addr);
1447 if (am > VTD_MAMV) {
1448 trace_vtd_err("IOTLB PSI flush: address mask overflow.");
1449 iaig = 0;
1450 break;
1451 }
1452 iaig = VTD_TLB_PSI_FLUSH_A;
1453 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1454 break;
1455
1456 default:
1457 trace_vtd_err("IOTLB flush: invalid granularity.");
1458 iaig = 0;
1459 }
1460 return iaig;
1461 }
1462
1463 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1464
1465 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1466 {
1467 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1468 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1469 }
1470
1471 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1472 {
1473 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1474
1475 trace_vtd_inv_qi_enable(en);
1476
1477 if (en) {
1478 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
1479 /* 2^(x+8) entries */
1480 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1481 s->qi_enabled = true;
1482 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1483 /* Ok - report back to driver */
1484 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1485
1486 if (s->iq_tail != 0) {
1487 /*
1488 * This is a spec violation but Windows guests are known to set up
1489 * Queued Invalidation this way so we allow the write and process
1490 * Invalidation Descriptors right away.
1491 */
1492 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1493 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1494 vtd_fetch_inv_desc(s);
1495 }
1496 }
1497 } else {
1498 if (vtd_queued_inv_disable_check(s)) {
1499 /* disable Queued Invalidation */
1500 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1501 s->iq_head = 0;
1502 s->qi_enabled = false;
1503 /* Ok - report back to driver */
1504 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1505 } else {
1506 trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
1507 }
1508 }
1509 }
1510
1511 /* Set Root Table Pointer */
1512 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1513 {
1514 vtd_root_table_setup(s);
1515 /* Ok - report back to driver */
1516 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1517 }
1518
1519 /* Set Interrupt Remap Table Pointer */
1520 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1521 {
1522 vtd_interrupt_remap_table_setup(s);
1523 /* Ok - report back to driver */
1524 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1525 }
1526
1527 /* Handle Translation Enable/Disable */
1528 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1529 {
1530 if (s->dmar_enabled == en) {
1531 return;
1532 }
1533
1534 trace_vtd_dmar_enable(en);
1535
1536 if (en) {
1537 s->dmar_enabled = true;
1538 /* Ok - report back to driver */
1539 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1540 } else {
1541 s->dmar_enabled = false;
1542
1543 /* Clear the index of Fault Recording Register */
1544 s->next_frcd_reg = 0;
1545 /* Ok - report back to driver */
1546 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1547 }
1548
1549 vtd_switch_address_space_all(s);
1550 }
1551
1552 /* Handle Interrupt Remap Enable/Disable */
1553 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1554 {
1555 trace_vtd_ir_enable(en);
1556
1557 if (en) {
1558 s->intr_enabled = true;
1559 /* Ok - report back to driver */
1560 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1561 } else {
1562 s->intr_enabled = false;
1563 /* Ok - report back to driver */
1564 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1565 }
1566 }
1567
1568 /* Handle write to Global Command Register */
1569 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1570 {
1571 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1572 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1573 uint32_t changed = status ^ val;
1574
1575 trace_vtd_reg_write_gcmd(status, val);
1576 if (changed & VTD_GCMD_TE) {
1577 /* Translation enable/disable */
1578 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1579 }
1580 if (val & VTD_GCMD_SRTP) {
1581 /* Set/update the root-table pointer */
1582 vtd_handle_gcmd_srtp(s);
1583 }
1584 if (changed & VTD_GCMD_QIE) {
1585 /* Queued Invalidation Enable */
1586 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1587 }
1588 if (val & VTD_GCMD_SIRTP) {
1589 /* Set/update the interrupt remapping root-table pointer */
1590 vtd_handle_gcmd_sirtp(s);
1591 }
1592 if (changed & VTD_GCMD_IRE) {
1593 /* Interrupt remap enable/disable */
1594 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1595 }
1596 }
1597
1598 /* Handle write to Context Command Register */
1599 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1600 {
1601 uint64_t ret;
1602 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1603
1604 /* Context-cache invalidation request */
1605 if (val & VTD_CCMD_ICC) {
1606 if (s->qi_enabled) {
1607 trace_vtd_err("Queued Invalidation enabled, "
1608 "should not use register-based invalidation");
1609 return;
1610 }
1611 ret = vtd_context_cache_invalidate(s, val);
1612 /* Invalidation completed. Change something to show */
1613 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1614 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1615 ret);
1616 }
1617 }
1618
1619 /* Handle write to IOTLB Invalidation Register */
1620 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1621 {
1622 uint64_t ret;
1623 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1624
1625 /* IOTLB invalidation request */
1626 if (val & VTD_TLB_IVT) {
1627 if (s->qi_enabled) {
1628 trace_vtd_err("Queued Invalidation enabled, "
1629 "should not use register-based invalidation.");
1630 return;
1631 }
1632 ret = vtd_iotlb_flush(s, val);
1633 /* Invalidation completed. Change something to show */
1634 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1635 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1636 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1637 }
1638 }
1639
1640 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1641 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1642 VTDInvDesc *inv_desc)
1643 {
1644 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1645 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1646 sizeof(*inv_desc))) {
1647 trace_vtd_err("Read INV DESC failed.");
1648 inv_desc->lo = 0;
1649 inv_desc->hi = 0;
1650 return false;
1651 }
1652 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1653 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1654 return true;
1655 }
1656
1657 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1658 {
1659 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1660 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1661 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1662 return false;
1663 }
1664 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1665 /* Status Write */
1666 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1667 VTD_INV_DESC_WAIT_DATA_SHIFT);
1668
1669 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1670
1671 /* FIXME: need to be masked with HAW? */
1672 dma_addr_t status_addr = inv_desc->hi;
1673 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1674 status_data = cpu_to_le32(status_data);
1675 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1676 sizeof(status_data))) {
1677 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1678 return false;
1679 }
1680 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1681 /* Interrupt flag */
1682 vtd_generate_completion_event(s);
1683 } else {
1684 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1685 return false;
1686 }
1687 return true;
1688 }
1689
1690 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1691 VTDInvDesc *inv_desc)
1692 {
1693 uint16_t sid, fmask;
1694
1695 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1696 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1697 return false;
1698 }
1699 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1700 case VTD_INV_DESC_CC_DOMAIN:
1701 trace_vtd_inv_desc_cc_domain(
1702 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1703 /* Fall through */
1704 case VTD_INV_DESC_CC_GLOBAL:
1705 vtd_context_global_invalidate(s);
1706 break;
1707
1708 case VTD_INV_DESC_CC_DEVICE:
1709 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1710 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1711 vtd_context_device_invalidate(s, sid, fmask);
1712 break;
1713
1714 default:
1715 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1716 return false;
1717 }
1718 return true;
1719 }
1720
1721 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1722 {
1723 uint16_t domain_id;
1724 uint8_t am;
1725 hwaddr addr;
1726
1727 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1728 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1729 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1730 return false;
1731 }
1732
1733 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1734 case VTD_INV_DESC_IOTLB_GLOBAL:
1735 vtd_iotlb_global_invalidate(s);
1736 break;
1737
1738 case VTD_INV_DESC_IOTLB_DOMAIN:
1739 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1740 vtd_iotlb_domain_invalidate(s, domain_id);
1741 break;
1742
1743 case VTD_INV_DESC_IOTLB_PAGE:
1744 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1745 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1746 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1747 if (am > VTD_MAMV) {
1748 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1749 return false;
1750 }
1751 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1752 break;
1753
1754 default:
1755 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1756 return false;
1757 }
1758 return true;
1759 }
1760
1761 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1762 VTDInvDesc *inv_desc)
1763 {
1764 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1765 inv_desc->iec.index,
1766 inv_desc->iec.index_mask);
1767
1768 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1769 inv_desc->iec.index,
1770 inv_desc->iec.index_mask);
1771 return true;
1772 }
1773
1774 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1775 VTDInvDesc *inv_desc)
1776 {
1777 VTDAddressSpace *vtd_dev_as;
1778 IOMMUTLBEntry entry;
1779 struct VTDBus *vtd_bus;
1780 hwaddr addr;
1781 uint64_t sz;
1782 uint16_t sid;
1783 uint8_t devfn;
1784 bool size;
1785 uint8_t bus_num;
1786
1787 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1788 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1789 devfn = sid & 0xff;
1790 bus_num = sid >> 8;
1791 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1792
1793 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1794 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
1795 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1796 return false;
1797 }
1798
1799 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1800 if (!vtd_bus) {
1801 goto done;
1802 }
1803
1804 vtd_dev_as = vtd_bus->dev_as[devfn];
1805 if (!vtd_dev_as) {
1806 goto done;
1807 }
1808
1809 /* According to ATS spec table 2.4:
1810 * S = 0, bits 15:12 = xxxx range size: 4K
1811 * S = 1, bits 15:12 = xxx0 range size: 8K
1812 * S = 1, bits 15:12 = xx01 range size: 16K
1813 * S = 1, bits 15:12 = x011 range size: 32K
1814 * S = 1, bits 15:12 = 0111 range size: 64K
1815 * ...
1816 */
1817 if (size) {
1818 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
1819 addr &= ~(sz - 1);
1820 } else {
1821 sz = VTD_PAGE_SIZE;
1822 }
1823
1824 entry.target_as = &vtd_dev_as->as;
1825 entry.addr_mask = sz - 1;
1826 entry.iova = addr;
1827 entry.perm = IOMMU_NONE;
1828 entry.translated_addr = 0;
1829 memory_region_notify_iommu(&vtd_dev_as->iommu, entry);
1830
1831 done:
1832 return true;
1833 }
1834
1835 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1836 {
1837 VTDInvDesc inv_desc;
1838 uint8_t desc_type;
1839
1840 trace_vtd_inv_qi_head(s->iq_head);
1841 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1842 s->iq_last_desc_type = VTD_INV_DESC_NONE;
1843 return false;
1844 }
1845 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1846 /* FIXME: should update at first or at last? */
1847 s->iq_last_desc_type = desc_type;
1848
1849 switch (desc_type) {
1850 case VTD_INV_DESC_CC:
1851 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
1852 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1853 return false;
1854 }
1855 break;
1856
1857 case VTD_INV_DESC_IOTLB:
1858 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
1859 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1860 return false;
1861 }
1862 break;
1863
1864 case VTD_INV_DESC_WAIT:
1865 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
1866 if (!vtd_process_wait_desc(s, &inv_desc)) {
1867 return false;
1868 }
1869 break;
1870
1871 case VTD_INV_DESC_IEC:
1872 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
1873 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1874 return false;
1875 }
1876 break;
1877
1878 case VTD_INV_DESC_DEVICE:
1879 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
1880 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
1881 return false;
1882 }
1883 break;
1884
1885 default:
1886 trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
1887 return false;
1888 }
1889 s->iq_head++;
1890 if (s->iq_head == s->iq_size) {
1891 s->iq_head = 0;
1892 }
1893 return true;
1894 }
1895
1896 /* Try to fetch and process more Invalidation Descriptors */
1897 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1898 {
1899 trace_vtd_inv_qi_fetch();
1900
1901 if (s->iq_tail >= s->iq_size) {
1902 /* Detects an invalid Tail pointer */
1903 trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
1904 vtd_handle_inv_queue_error(s);
1905 return;
1906 }
1907 while (s->iq_head != s->iq_tail) {
1908 if (!vtd_process_inv_desc(s)) {
1909 /* Invalidation Queue Errors */
1910 vtd_handle_inv_queue_error(s);
1911 break;
1912 }
1913 /* Must update the IQH_REG in time */
1914 vtd_set_quad_raw(s, DMAR_IQH_REG,
1915 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1916 VTD_IQH_QH_MASK);
1917 }
1918 }
1919
1920 /* Handle write to Invalidation Queue Tail Register */
1921 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1922 {
1923 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1924
1925 s->iq_tail = VTD_IQT_QT(val);
1926 trace_vtd_inv_qi_tail(s->iq_tail);
1927
1928 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1929 /* Process Invalidation Queue here */
1930 vtd_fetch_inv_desc(s);
1931 }
1932 }
1933
1934 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1935 {
1936 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1937 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1938 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1939
1940 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1941 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1942 trace_vtd_fsts_clear_ip();
1943 }
1944 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1945 * Descriptors if there are any when Queued Invalidation is enabled?
1946 */
1947 }
1948
1949 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1950 {
1951 uint32_t fectl_reg;
1952 /* FIXME: when software clears the IM field, check the IP field. But do we
1953 * need to compare the old value and the new value to conclude that
1954 * software clears the IM field? Or just check if the IM field is zero?
1955 */
1956 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1957
1958 trace_vtd_reg_write_fectl(fectl_reg);
1959
1960 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1961 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1962 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1963 }
1964 }
1965
1966 static void vtd_handle_ics_write(IntelIOMMUState *s)
1967 {
1968 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1969 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1970
1971 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1972 trace_vtd_reg_ics_clear_ip();
1973 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1974 }
1975 }
1976
1977 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1978 {
1979 uint32_t iectl_reg;
1980 /* FIXME: when software clears the IM field, check the IP field. But do we
1981 * need to compare the old value and the new value to conclude that
1982 * software clears the IM field? Or just check if the IM field is zero?
1983 */
1984 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1985
1986 trace_vtd_reg_write_iectl(iectl_reg);
1987
1988 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1989 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1990 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1991 }
1992 }
1993
1994 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1995 {
1996 IntelIOMMUState *s = opaque;
1997 uint64_t val;
1998
1999 trace_vtd_reg_read(addr, size);
2000
2001 if (addr + size > DMAR_REG_SIZE) {
2002 trace_vtd_err("Read MMIO over range.");
2003 return (uint64_t)-1;
2004 }
2005
2006 switch (addr) {
2007 /* Root Table Address Register, 64-bit */
2008 case DMAR_RTADDR_REG:
2009 if (size == 4) {
2010 val = s->root & ((1ULL << 32) - 1);
2011 } else {
2012 val = s->root;
2013 }
2014 break;
2015
2016 case DMAR_RTADDR_REG_HI:
2017 assert(size == 4);
2018 val = s->root >> 32;
2019 break;
2020
2021 /* Invalidation Queue Address Register, 64-bit */
2022 case DMAR_IQA_REG:
2023 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2024 if (size == 4) {
2025 val = val & ((1ULL << 32) - 1);
2026 }
2027 break;
2028
2029 case DMAR_IQA_REG_HI:
2030 assert(size == 4);
2031 val = s->iq >> 32;
2032 break;
2033
2034 default:
2035 if (size == 4) {
2036 val = vtd_get_long(s, addr);
2037 } else {
2038 val = vtd_get_quad(s, addr);
2039 }
2040 }
2041
2042 return val;
2043 }
2044
2045 static void vtd_mem_write(void *opaque, hwaddr addr,
2046 uint64_t val, unsigned size)
2047 {
2048 IntelIOMMUState *s = opaque;
2049
2050 trace_vtd_reg_write(addr, size, val);
2051
2052 if (addr + size > DMAR_REG_SIZE) {
2053 trace_vtd_err("Write MMIO over range.");
2054 return;
2055 }
2056
2057 switch (addr) {
2058 /* Global Command Register, 32-bit */
2059 case DMAR_GCMD_REG:
2060 vtd_set_long(s, addr, val);
2061 vtd_handle_gcmd_write(s);
2062 break;
2063
2064 /* Context Command Register, 64-bit */
2065 case DMAR_CCMD_REG:
2066 if (size == 4) {
2067 vtd_set_long(s, addr, val);
2068 } else {
2069 vtd_set_quad(s, addr, val);
2070 vtd_handle_ccmd_write(s);
2071 }
2072 break;
2073
2074 case DMAR_CCMD_REG_HI:
2075 assert(size == 4);
2076 vtd_set_long(s, addr, val);
2077 vtd_handle_ccmd_write(s);
2078 break;
2079
2080 /* IOTLB Invalidation Register, 64-bit */
2081 case DMAR_IOTLB_REG:
2082 if (size == 4) {
2083 vtd_set_long(s, addr, val);
2084 } else {
2085 vtd_set_quad(s, addr, val);
2086 vtd_handle_iotlb_write(s);
2087 }
2088 break;
2089
2090 case DMAR_IOTLB_REG_HI:
2091 assert(size == 4);
2092 vtd_set_long(s, addr, val);
2093 vtd_handle_iotlb_write(s);
2094 break;
2095
2096 /* Invalidate Address Register, 64-bit */
2097 case DMAR_IVA_REG:
2098 if (size == 4) {
2099 vtd_set_long(s, addr, val);
2100 } else {
2101 vtd_set_quad(s, addr, val);
2102 }
2103 break;
2104
2105 case DMAR_IVA_REG_HI:
2106 assert(size == 4);
2107 vtd_set_long(s, addr, val);
2108 break;
2109
2110 /* Fault Status Register, 32-bit */
2111 case DMAR_FSTS_REG:
2112 assert(size == 4);
2113 vtd_set_long(s, addr, val);
2114 vtd_handle_fsts_write(s);
2115 break;
2116
2117 /* Fault Event Control Register, 32-bit */
2118 case DMAR_FECTL_REG:
2119 assert(size == 4);
2120 vtd_set_long(s, addr, val);
2121 vtd_handle_fectl_write(s);
2122 break;
2123
2124 /* Fault Event Data Register, 32-bit */
2125 case DMAR_FEDATA_REG:
2126 assert(size == 4);
2127 vtd_set_long(s, addr, val);
2128 break;
2129
2130 /* Fault Event Address Register, 32-bit */
2131 case DMAR_FEADDR_REG:
2132 assert(size == 4);
2133 vtd_set_long(s, addr, val);
2134 break;
2135
2136 /* Fault Event Upper Address Register, 32-bit */
2137 case DMAR_FEUADDR_REG:
2138 assert(size == 4);
2139 vtd_set_long(s, addr, val);
2140 break;
2141
2142 /* Protected Memory Enable Register, 32-bit */
2143 case DMAR_PMEN_REG:
2144 assert(size == 4);
2145 vtd_set_long(s, addr, val);
2146 break;
2147
2148 /* Root Table Address Register, 64-bit */
2149 case DMAR_RTADDR_REG:
2150 if (size == 4) {
2151 vtd_set_long(s, addr, val);
2152 } else {
2153 vtd_set_quad(s, addr, val);
2154 }
2155 break;
2156
2157 case DMAR_RTADDR_REG_HI:
2158 assert(size == 4);
2159 vtd_set_long(s, addr, val);
2160 break;
2161
2162 /* Invalidation Queue Tail Register, 64-bit */
2163 case DMAR_IQT_REG:
2164 if (size == 4) {
2165 vtd_set_long(s, addr, val);
2166 } else {
2167 vtd_set_quad(s, addr, val);
2168 }
2169 vtd_handle_iqt_write(s);
2170 break;
2171
2172 case DMAR_IQT_REG_HI:
2173 assert(size == 4);
2174 vtd_set_long(s, addr, val);
2175 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2176 break;
2177
2178 /* Invalidation Queue Address Register, 64-bit */
2179 case DMAR_IQA_REG:
2180 if (size == 4) {
2181 vtd_set_long(s, addr, val);
2182 } else {
2183 vtd_set_quad(s, addr, val);
2184 }
2185 break;
2186
2187 case DMAR_IQA_REG_HI:
2188 assert(size == 4);
2189 vtd_set_long(s, addr, val);
2190 break;
2191
2192 /* Invalidation Completion Status Register, 32-bit */
2193 case DMAR_ICS_REG:
2194 assert(size == 4);
2195 vtd_set_long(s, addr, val);
2196 vtd_handle_ics_write(s);
2197 break;
2198
2199 /* Invalidation Event Control Register, 32-bit */
2200 case DMAR_IECTL_REG:
2201 assert(size == 4);
2202 vtd_set_long(s, addr, val);
2203 vtd_handle_iectl_write(s);
2204 break;
2205
2206 /* Invalidation Event Data Register, 32-bit */
2207 case DMAR_IEDATA_REG:
2208 assert(size == 4);
2209 vtd_set_long(s, addr, val);
2210 break;
2211
2212 /* Invalidation Event Address Register, 32-bit */
2213 case DMAR_IEADDR_REG:
2214 assert(size == 4);
2215 vtd_set_long(s, addr, val);
2216 break;
2217
2218 /* Invalidation Event Upper Address Register, 32-bit */
2219 case DMAR_IEUADDR_REG:
2220 assert(size == 4);
2221 vtd_set_long(s, addr, val);
2222 break;
2223
2224 /* Fault Recording Registers, 128-bit */
2225 case DMAR_FRCD_REG_0_0:
2226 if (size == 4) {
2227 vtd_set_long(s, addr, val);
2228 } else {
2229 vtd_set_quad(s, addr, val);
2230 }
2231 break;
2232
2233 case DMAR_FRCD_REG_0_1:
2234 assert(size == 4);
2235 vtd_set_long(s, addr, val);
2236 break;
2237
2238 case DMAR_FRCD_REG_0_2:
2239 if (size == 4) {
2240 vtd_set_long(s, addr, val);
2241 } else {
2242 vtd_set_quad(s, addr, val);
2243 /* May clear bit 127 (Fault), update PPF */
2244 vtd_update_fsts_ppf(s);
2245 }
2246 break;
2247
2248 case DMAR_FRCD_REG_0_3:
2249 assert(size == 4);
2250 vtd_set_long(s, addr, val);
2251 /* May clear bit 127 (Fault), update PPF */
2252 vtd_update_fsts_ppf(s);
2253 break;
2254
2255 case DMAR_IRTA_REG:
2256 if (size == 4) {
2257 vtd_set_long(s, addr, val);
2258 } else {
2259 vtd_set_quad(s, addr, val);
2260 }
2261 break;
2262
2263 case DMAR_IRTA_REG_HI:
2264 assert(size == 4);
2265 vtd_set_long(s, addr, val);
2266 break;
2267
2268 default:
2269 if (size == 4) {
2270 vtd_set_long(s, addr, val);
2271 } else {
2272 vtd_set_quad(s, addr, val);
2273 }
2274 }
2275 }
2276
2277 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2278 IOMMUAccessFlags flag)
2279 {
2280 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2281 IntelIOMMUState *s = vtd_as->iommu_state;
2282 IOMMUTLBEntry iotlb = {
2283 /* We'll fill in the rest later. */
2284 .target_as = &address_space_memory,
2285 };
2286 bool success;
2287
2288 if (likely(s->dmar_enabled)) {
2289 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2290 addr, flag & IOMMU_WO, &iotlb);
2291 } else {
2292 /* DMAR disabled, passthrough, use 4k-page*/
2293 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2294 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2295 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2296 iotlb.perm = IOMMU_RW;
2297 success = true;
2298 }
2299
2300 if (likely(success)) {
2301 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2302 VTD_PCI_SLOT(vtd_as->devfn),
2303 VTD_PCI_FUNC(vtd_as->devfn),
2304 iotlb.iova, iotlb.translated_addr,
2305 iotlb.addr_mask);
2306 } else {
2307 trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
2308 VTD_PCI_SLOT(vtd_as->devfn),
2309 VTD_PCI_FUNC(vtd_as->devfn),
2310 iotlb.iova);
2311 }
2312
2313 return iotlb;
2314 }
2315
2316 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2317 IOMMUNotifierFlag old,
2318 IOMMUNotifierFlag new)
2319 {
2320 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2321 IntelIOMMUState *s = vtd_as->iommu_state;
2322 IntelIOMMUNotifierNode *node = NULL;
2323 IntelIOMMUNotifierNode *next_node = NULL;
2324
2325 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2326 error_report("We need to set caching-mode=1 for intel-iommu to enable "
2327 "device assignment with IOMMU protection.");
2328 exit(1);
2329 }
2330
2331 if (old == IOMMU_NOTIFIER_NONE) {
2332 node = g_malloc0(sizeof(*node));
2333 node->vtd_as = vtd_as;
2334 QLIST_INSERT_HEAD(&s->notifiers_list, node, next);
2335 return;
2336 }
2337
2338 /* update notifier node with new flags */
2339 QLIST_FOREACH_SAFE(node, &s->notifiers_list, next, next_node) {
2340 if (node->vtd_as == vtd_as) {
2341 if (new == IOMMU_NOTIFIER_NONE) {
2342 QLIST_REMOVE(node, next);
2343 g_free(node);
2344 }
2345 return;
2346 }
2347 }
2348 }
2349
2350 static int vtd_post_load(void *opaque, int version_id)
2351 {
2352 IntelIOMMUState *iommu = opaque;
2353
2354 /*
2355 * Memory regions are dynamically turned on/off depending on
2356 * context entry configurations from the guest. After migration,
2357 * we need to make sure the memory regions are still correct.
2358 */
2359 vtd_switch_address_space_all(iommu);
2360
2361 return 0;
2362 }
2363
2364 static const VMStateDescription vtd_vmstate = {
2365 .name = "iommu-intel",
2366 .version_id = 1,
2367 .minimum_version_id = 1,
2368 .priority = MIG_PRI_IOMMU,
2369 .post_load = vtd_post_load,
2370 .fields = (VMStateField[]) {
2371 VMSTATE_UINT64(root, IntelIOMMUState),
2372 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2373 VMSTATE_UINT64(iq, IntelIOMMUState),
2374 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2375 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2376 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2377 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2378 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2379 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2380 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2381 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2382 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2383 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2384 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2385 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2386 VMSTATE_END_OF_LIST()
2387 }
2388 };
2389
2390 static const MemoryRegionOps vtd_mem_ops = {
2391 .read = vtd_mem_read,
2392 .write = vtd_mem_write,
2393 .endianness = DEVICE_LITTLE_ENDIAN,
2394 .impl = {
2395 .min_access_size = 4,
2396 .max_access_size = 8,
2397 },
2398 .valid = {
2399 .min_access_size = 4,
2400 .max_access_size = 8,
2401 },
2402 };
2403
2404 static Property vtd_properties[] = {
2405 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2406 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2407 ON_OFF_AUTO_AUTO),
2408 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2409 DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
2410 VTD_HOST_ADDRESS_WIDTH),
2411 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2412 DEFINE_PROP_END_OF_LIST(),
2413 };
2414
2415 /* Read IRTE entry with specific index */
2416 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2417 VTD_IR_TableEntry *entry, uint16_t sid)
2418 {
2419 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2420 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2421 dma_addr_t addr = 0x00;
2422 uint16_t mask, source_id;
2423 uint8_t bus, bus_max, bus_min;
2424
2425 addr = iommu->intr_root + index * sizeof(*entry);
2426 if (dma_memory_read(&address_space_memory, addr, entry,
2427 sizeof(*entry))) {
2428 trace_vtd_err("Memory read failed for IRTE.");
2429 return -VTD_FR_IR_ROOT_INVAL;
2430 }
2431
2432 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2433 le64_to_cpu(entry->data[0]));
2434
2435 if (!entry->irte.present) {
2436 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2437 le64_to_cpu(entry->data[0]));
2438 return -VTD_FR_IR_ENTRY_P;
2439 }
2440
2441 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2442 entry->irte.__reserved_2) {
2443 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2444 le64_to_cpu(entry->data[0]));
2445 return -VTD_FR_IR_IRTE_RSVD;
2446 }
2447
2448 if (sid != X86_IOMMU_SID_INVALID) {
2449 /* Validate IRTE SID */
2450 source_id = le32_to_cpu(entry->irte.source_id);
2451 switch (entry->irte.sid_vtype) {
2452 case VTD_SVT_NONE:
2453 break;
2454
2455 case VTD_SVT_ALL:
2456 mask = vtd_svt_mask[entry->irte.sid_q];
2457 if ((source_id & mask) != (sid & mask)) {
2458 trace_vtd_err_irte_sid(index, sid, source_id);
2459 return -VTD_FR_IR_SID_ERR;
2460 }
2461 break;
2462
2463 case VTD_SVT_BUS:
2464 bus_max = source_id >> 8;
2465 bus_min = source_id & 0xff;
2466 bus = sid >> 8;
2467 if (bus > bus_max || bus < bus_min) {
2468 trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
2469 return -VTD_FR_IR_SID_ERR;
2470 }
2471 break;
2472
2473 default:
2474 trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
2475 /* Take this as verification failure. */
2476 return -VTD_FR_IR_SID_ERR;
2477 break;
2478 }
2479 }
2480
2481 return 0;
2482 }
2483
2484 /* Fetch IRQ information of specific IR index */
2485 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2486 VTDIrq *irq, uint16_t sid)
2487 {
2488 VTD_IR_TableEntry irte = {};
2489 int ret = 0;
2490
2491 ret = vtd_irte_get(iommu, index, &irte, sid);
2492 if (ret) {
2493 return ret;
2494 }
2495
2496 irq->trigger_mode = irte.irte.trigger_mode;
2497 irq->vector = irte.irte.vector;
2498 irq->delivery_mode = irte.irte.delivery_mode;
2499 irq->dest = le32_to_cpu(irte.irte.dest_id);
2500 if (!iommu->intr_eime) {
2501 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2502 #define VTD_IR_APIC_DEST_SHIFT (8)
2503 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2504 VTD_IR_APIC_DEST_SHIFT;
2505 }
2506 irq->dest_mode = irte.irte.dest_mode;
2507 irq->redir_hint = irte.irte.redir_hint;
2508
2509 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2510 irq->delivery_mode, irq->dest, irq->dest_mode);
2511
2512 return 0;
2513 }
2514
2515 /* Generate one MSI message from VTDIrq info */
2516 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2517 {
2518 VTD_MSIMessage msg = {};
2519
2520 /* Generate address bits */
2521 msg.dest_mode = irq->dest_mode;
2522 msg.redir_hint = irq->redir_hint;
2523 msg.dest = irq->dest;
2524 msg.__addr_hi = irq->dest & 0xffffff00;
2525 msg.__addr_head = cpu_to_le32(0xfee);
2526 /* Keep this from original MSI address bits */
2527 msg.__not_used = irq->msi_addr_last_bits;
2528
2529 /* Generate data bits */
2530 msg.vector = irq->vector;
2531 msg.delivery_mode = irq->delivery_mode;
2532 msg.level = 1;
2533 msg.trigger_mode = irq->trigger_mode;
2534
2535 msg_out->address = msg.msi_addr;
2536 msg_out->data = msg.msi_data;
2537 }
2538
2539 /* Interrupt remapping for MSI/MSI-X entry */
2540 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2541 MSIMessage *origin,
2542 MSIMessage *translated,
2543 uint16_t sid)
2544 {
2545 int ret = 0;
2546 VTD_IR_MSIAddress addr;
2547 uint16_t index;
2548 VTDIrq irq = {};
2549
2550 assert(origin && translated);
2551
2552 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2553
2554 if (!iommu || !iommu->intr_enabled) {
2555 memcpy(translated, origin, sizeof(*origin));
2556 goto out;
2557 }
2558
2559 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2560 trace_vtd_err("MSI address high 32 bits non-zero when "
2561 "Interrupt Remapping enabled.");
2562 return -VTD_FR_IR_REQ_RSVD;
2563 }
2564
2565 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2566 if (addr.addr.__head != 0xfee) {
2567 trace_vtd_err("MSI addr low 32 bit invalid.");
2568 return -VTD_FR_IR_REQ_RSVD;
2569 }
2570
2571 /* This is compatible mode. */
2572 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2573 memcpy(translated, origin, sizeof(*origin));
2574 goto out;
2575 }
2576
2577 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2578
2579 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2580 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2581
2582 if (addr.addr.sub_valid) {
2583 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2584 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2585 }
2586
2587 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2588 if (ret) {
2589 return ret;
2590 }
2591
2592 if (addr.addr.sub_valid) {
2593 trace_vtd_ir_remap_type("MSI");
2594 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2595 trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
2596 return -VTD_FR_IR_REQ_RSVD;
2597 }
2598 } else {
2599 uint8_t vector = origin->data & 0xff;
2600 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2601
2602 trace_vtd_ir_remap_type("IOAPIC");
2603 /* IOAPIC entry vector should be aligned with IRTE vector
2604 * (see vt-d spec 5.1.5.1). */
2605 if (vector != irq.vector) {
2606 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2607 }
2608
2609 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2610 * (see vt-d spec 5.1.5.1). */
2611 if (trigger_mode != irq.trigger_mode) {
2612 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2613 irq.trigger_mode);
2614 }
2615 }
2616
2617 /*
2618 * We'd better keep the last two bits, assuming that guest OS
2619 * might modify it. Keep it does not hurt after all.
2620 */
2621 irq.msi_addr_last_bits = addr.addr.__not_care;
2622
2623 /* Translate VTDIrq to MSI message */
2624 vtd_generate_msi_message(&irq, translated);
2625
2626 out:
2627 trace_vtd_ir_remap_msi(origin->address, origin->data,
2628 translated->address, translated->data);
2629 return 0;
2630 }
2631
2632 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2633 MSIMessage *dst, uint16_t sid)
2634 {
2635 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2636 src, dst, sid);
2637 }
2638
2639 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2640 uint64_t *data, unsigned size,
2641 MemTxAttrs attrs)
2642 {
2643 return MEMTX_OK;
2644 }
2645
2646 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2647 uint64_t value, unsigned size,
2648 MemTxAttrs attrs)
2649 {
2650 int ret = 0;
2651 MSIMessage from = {}, to = {};
2652 uint16_t sid = X86_IOMMU_SID_INVALID;
2653
2654 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2655 from.data = (uint32_t) value;
2656
2657 if (!attrs.unspecified) {
2658 /* We have explicit Source ID */
2659 sid = attrs.requester_id;
2660 }
2661
2662 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2663 if (ret) {
2664 /* TODO: report error */
2665 /* Drop this interrupt */
2666 return MEMTX_ERROR;
2667 }
2668
2669 apic_get_class()->send_msi(&to);
2670
2671 return MEMTX_OK;
2672 }
2673
2674 static const MemoryRegionOps vtd_mem_ir_ops = {
2675 .read_with_attrs = vtd_mem_ir_read,
2676 .write_with_attrs = vtd_mem_ir_write,
2677 .endianness = DEVICE_LITTLE_ENDIAN,
2678 .impl = {
2679 .min_access_size = 4,
2680 .max_access_size = 4,
2681 },
2682 .valid = {
2683 .min_access_size = 4,
2684 .max_access_size = 4,
2685 },
2686 };
2687
2688 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2689 {
2690 uintptr_t key = (uintptr_t)bus;
2691 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2692 VTDAddressSpace *vtd_dev_as;
2693 char name[128];
2694
2695 if (!vtd_bus) {
2696 uintptr_t *new_key = g_malloc(sizeof(*new_key));
2697 *new_key = (uintptr_t)bus;
2698 /* No corresponding free() */
2699 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2700 PCI_DEVFN_MAX);
2701 vtd_bus->bus = bus;
2702 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2703 }
2704
2705 vtd_dev_as = vtd_bus->dev_as[devfn];
2706
2707 if (!vtd_dev_as) {
2708 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2709 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2710
2711 vtd_dev_as->bus = bus;
2712 vtd_dev_as->devfn = (uint8_t)devfn;
2713 vtd_dev_as->iommu_state = s;
2714 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2715
2716 /*
2717 * Memory region relationships looks like (Address range shows
2718 * only lower 32 bits to make it short in length...):
2719 *
2720 * |-----------------+-------------------+----------|
2721 * | Name | Address range | Priority |
2722 * |-----------------+-------------------+----------+
2723 * | vtd_root | 00000000-ffffffff | 0 |
2724 * | intel_iommu | 00000000-ffffffff | 1 |
2725 * | vtd_sys_alias | 00000000-ffffffff | 1 |
2726 * | intel_iommu_ir | fee00000-feefffff | 64 |
2727 * |-----------------+-------------------+----------|
2728 *
2729 * We enable/disable DMAR by switching enablement for
2730 * vtd_sys_alias and intel_iommu regions. IR region is always
2731 * enabled.
2732 */
2733 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2734 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2735 "intel_iommu_dmar",
2736 UINT64_MAX);
2737 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2738 "vtd_sys_alias", get_system_memory(),
2739 0, memory_region_size(get_system_memory()));
2740 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2741 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2742 VTD_INTERRUPT_ADDR_SIZE);
2743 memory_region_init(&vtd_dev_as->root, OBJECT(s),
2744 "vtd_root", UINT64_MAX);
2745 memory_region_add_subregion_overlap(&vtd_dev_as->root,
2746 VTD_INTERRUPT_ADDR_FIRST,
2747 &vtd_dev_as->iommu_ir, 64);
2748 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2749 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2750 &vtd_dev_as->sys_alias, 1);
2751 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2752 MEMORY_REGION(&vtd_dev_as->iommu),
2753 1);
2754 vtd_switch_address_space(vtd_dev_as);
2755 }
2756 return vtd_dev_as;
2757 }
2758
2759 /* Unmap the whole range in the notifier's scope. */
2760 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2761 {
2762 IOMMUTLBEntry entry;
2763 hwaddr size;
2764 hwaddr start = n->start;
2765 hwaddr end = n->end;
2766 IntelIOMMUState *s = as->iommu_state;
2767
2768 /*
2769 * Note: all the codes in this function has a assumption that IOVA
2770 * bits are no more than VTD_MGAW bits (which is restricted by
2771 * VT-d spec), otherwise we need to consider overflow of 64 bits.
2772 */
2773
2774 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
2775 /*
2776 * Don't need to unmap regions that is bigger than the whole
2777 * VT-d supported address space size
2778 */
2779 end = VTD_ADDRESS_SIZE(s->aw_bits);
2780 }
2781
2782 assert(start <= end);
2783 size = end - start;
2784
2785 if (ctpop64(size) != 1) {
2786 /*
2787 * This size cannot format a correct mask. Let's enlarge it to
2788 * suite the minimum available mask.
2789 */
2790 int n = 64 - clz64(size);
2791 if (n > s->aw_bits) {
2792 /* should not happen, but in case it happens, limit it */
2793 n = s->aw_bits;
2794 }
2795 size = 1ULL << n;
2796 }
2797
2798 entry.target_as = &address_space_memory;
2799 /* Adjust iova for the size */
2800 entry.iova = n->start & ~(size - 1);
2801 /* This field is meaningless for unmap */
2802 entry.translated_addr = 0;
2803 entry.perm = IOMMU_NONE;
2804 entry.addr_mask = size - 1;
2805
2806 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
2807 VTD_PCI_SLOT(as->devfn),
2808 VTD_PCI_FUNC(as->devfn),
2809 entry.iova, size);
2810
2811 memory_region_notify_one(n, &entry);
2812 }
2813
2814 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
2815 {
2816 IntelIOMMUNotifierNode *node;
2817 VTDAddressSpace *vtd_as;
2818 IOMMUNotifier *n;
2819
2820 QLIST_FOREACH(node, &s->notifiers_list, next) {
2821 vtd_as = node->vtd_as;
2822 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
2823 vtd_address_space_unmap(vtd_as, n);
2824 }
2825 }
2826 }
2827
2828 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
2829 {
2830 memory_region_notify_one((IOMMUNotifier *)private, entry);
2831 return 0;
2832 }
2833
2834 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
2835 {
2836 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
2837 IntelIOMMUState *s = vtd_as->iommu_state;
2838 uint8_t bus_n = pci_bus_num(vtd_as->bus);
2839 VTDContextEntry ce;
2840
2841 /*
2842 * The replay can be triggered by either a invalidation or a newly
2843 * created entry. No matter what, we release existing mappings
2844 * (it means flushing caches for UNMAP-only registers).
2845 */
2846 vtd_address_space_unmap(vtd_as, n);
2847
2848 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
2849 trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
2850 PCI_FUNC(vtd_as->devfn),
2851 VTD_CONTEXT_ENTRY_DID(ce.hi),
2852 ce.hi, ce.lo);
2853 vtd_page_walk(&ce, 0, ~0ULL, vtd_replay_hook, (void *)n, false,
2854 s->aw_bits);
2855 } else {
2856 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
2857 PCI_FUNC(vtd_as->devfn));
2858 }
2859
2860 return;
2861 }
2862
2863 /* Do the initialization. It will also be called when reset, so pay
2864 * attention when adding new initialization stuff.
2865 */
2866 static void vtd_init(IntelIOMMUState *s)
2867 {
2868 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2869
2870 memset(s->csr, 0, DMAR_REG_SIZE);
2871 memset(s->wmask, 0, DMAR_REG_SIZE);
2872 memset(s->w1cmask, 0, DMAR_REG_SIZE);
2873 memset(s->womask, 0, DMAR_REG_SIZE);
2874
2875 s->root = 0;
2876 s->root_extended = false;
2877 s->dmar_enabled = false;
2878 s->iq_head = 0;
2879 s->iq_tail = 0;
2880 s->iq = 0;
2881 s->iq_size = 0;
2882 s->qi_enabled = false;
2883 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2884 s->next_frcd_reg = 0;
2885 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
2886 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
2887 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
2888 if (s->aw_bits == VTD_HOST_AW_48BIT) {
2889 s->cap |= VTD_CAP_SAGAW_48bit;
2890 }
2891 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2892
2893 /*
2894 * Rsvd field masks for spte
2895 */
2896 vtd_paging_entry_rsvd_field[0] = ~0ULL;
2897 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
2898 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
2899 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
2900 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
2901 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
2902 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
2903 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
2904 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
2905
2906 if (x86_iommu->intr_supported) {
2907 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
2908 if (s->intr_eim == ON_OFF_AUTO_ON) {
2909 s->ecap |= VTD_ECAP_EIM;
2910 }
2911 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
2912 }
2913
2914 if (x86_iommu->dt_supported) {
2915 s->ecap |= VTD_ECAP_DT;
2916 }
2917
2918 if (x86_iommu->pt_supported) {
2919 s->ecap |= VTD_ECAP_PT;
2920 }
2921
2922 if (s->caching_mode) {
2923 s->cap |= VTD_CAP_CM;
2924 }
2925
2926 vtd_reset_context_cache(s);
2927 vtd_reset_iotlb(s);
2928
2929 /* Define registers with default values and bit semantics */
2930 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2931 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2932 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2933 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2934 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2935 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2936 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2937 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2938 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2939
2940 /* Advanced Fault Logging not supported */
2941 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2942 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2943 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2944 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2945
2946 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2947 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2948 */
2949 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2950
2951 /* Treated as RO for implementations that PLMR and PHMR fields reported
2952 * as Clear in the CAP_REG.
2953 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2954 */
2955 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2956
2957 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2958 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2959 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2960 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2961 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2962 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2963 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2964 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2965 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2966
2967 /* IOTLB registers */
2968 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2969 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2970 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2971
2972 /* Fault Recording Registers, 128-bit */
2973 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2974 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2975
2976 /*
2977 * Interrupt remapping registers.
2978 */
2979 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
2980 }
2981
2982 /* Should not reset address_spaces when reset because devices will still use
2983 * the address space they got at first (won't ask the bus again).
2984 */
2985 static void vtd_reset(DeviceState *dev)
2986 {
2987 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2988
2989 vtd_init(s);
2990
2991 /*
2992 * When device reset, throw away all mappings and external caches
2993 */
2994 vtd_address_space_unmap_all(s);
2995 }
2996
2997 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2998 {
2999 IntelIOMMUState *s = opaque;
3000 VTDAddressSpace *vtd_as;
3001
3002 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3003
3004 vtd_as = vtd_find_add_as(s, bus, devfn);
3005 return &vtd_as->as;
3006 }
3007
3008 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3009 {
3010 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3011
3012 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
3013 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
3014 !kvm_irqchip_is_split()) {
3015 error_setg(errp, "Intel Interrupt Remapping cannot work with "
3016 "kernel-irqchip=on, please use 'split|off'.");
3017 return false;
3018 }
3019 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3020 error_setg(errp, "eim=on cannot be selected without intremap=on");
3021 return false;
3022 }
3023
3024 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3025 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3026 && x86_iommu->intr_supported ?
3027 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3028 }
3029 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3030 if (!kvm_irqchip_in_kernel()) {
3031 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3032 return false;
3033 }
3034 if (!kvm_enable_x2apic()) {
3035 error_setg(errp, "eim=on requires support on the KVM side"
3036 "(X2APIC_API, first shipped in v4.7)");
3037 return false;
3038 }
3039 }
3040
3041 /* Currently only address widths supported are 39 and 48 bits */
3042 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3043 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3044 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3045 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3046 return false;
3047 }
3048
3049 return true;
3050 }
3051
3052 static void vtd_realize(DeviceState *dev, Error **errp)
3053 {
3054 MachineState *ms = MACHINE(qdev_get_machine());
3055 PCMachineState *pcms = PC_MACHINE(ms);
3056 PCIBus *bus = pcms->bus;
3057 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3058 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3059
3060 x86_iommu->type = TYPE_INTEL;
3061
3062 if (!vtd_decide_config(s, errp)) {
3063 return;
3064 }
3065
3066 QLIST_INIT(&s->notifiers_list);
3067 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3068 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3069 "intel_iommu", DMAR_REG_SIZE);
3070 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3071 /* No corresponding destroy */
3072 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3073 g_free, g_free);
3074 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3075 g_free, g_free);
3076 vtd_init(s);
3077 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3078 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3079 /* Pseudo address space under root PCI bus. */
3080 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3081 }
3082
3083 static void vtd_class_init(ObjectClass *klass, void *data)
3084 {
3085 DeviceClass *dc = DEVICE_CLASS(klass);
3086 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3087
3088 dc->reset = vtd_reset;
3089 dc->vmsd = &vtd_vmstate;
3090 dc->props = vtd_properties;
3091 dc->hotpluggable = false;
3092 x86_class->realize = vtd_realize;
3093 x86_class->int_remap = vtd_int_remap;
3094 /* Supported by the pc-q35-* machine types */
3095 dc->user_creatable = true;
3096 }
3097
3098 static const TypeInfo vtd_info = {
3099 .name = TYPE_INTEL_IOMMU_DEVICE,
3100 .parent = TYPE_X86_IOMMU_DEVICE,
3101 .instance_size = sizeof(IntelIOMMUState),
3102 .class_init = vtd_class_init,
3103 };
3104
3105 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3106 void *data)
3107 {
3108 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3109
3110 imrc->translate = vtd_iommu_translate;
3111 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3112 imrc->replay = vtd_iommu_replay;
3113 }
3114
3115 static const TypeInfo vtd_iommu_memory_region_info = {
3116 .parent = TYPE_IOMMU_MEMORY_REGION,
3117 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3118 .class_init = vtd_iommu_memory_region_class_init,
3119 };
3120
3121 static void vtd_register_types(void)
3122 {
3123 type_register_static(&vtd_info);
3124 type_register_static(&vtd_iommu_memory_region_info);
3125 }
3126
3127 type_init(vtd_register_types)