]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
intel-iommu: replace more vtd_err_* traces
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
39
40 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
41 uint64_t wmask, uint64_t w1cmask)
42 {
43 stq_le_p(&s->csr[addr], val);
44 stq_le_p(&s->wmask[addr], wmask);
45 stq_le_p(&s->w1cmask[addr], w1cmask);
46 }
47
48 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
49 {
50 stq_le_p(&s->womask[addr], mask);
51 }
52
53 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
54 uint32_t wmask, uint32_t w1cmask)
55 {
56 stl_le_p(&s->csr[addr], val);
57 stl_le_p(&s->wmask[addr], wmask);
58 stl_le_p(&s->w1cmask[addr], w1cmask);
59 }
60
61 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
62 {
63 stl_le_p(&s->womask[addr], mask);
64 }
65
66 /* "External" get/set operations */
67 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
68 {
69 uint64_t oldval = ldq_le_p(&s->csr[addr]);
70 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
71 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
72 stq_le_p(&s->csr[addr],
73 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
74 }
75
76 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
77 {
78 uint32_t oldval = ldl_le_p(&s->csr[addr]);
79 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
80 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
81 stl_le_p(&s->csr[addr],
82 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
83 }
84
85 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
86 {
87 uint64_t val = ldq_le_p(&s->csr[addr]);
88 uint64_t womask = ldq_le_p(&s->womask[addr]);
89 return val & ~womask;
90 }
91
92 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
93 {
94 uint32_t val = ldl_le_p(&s->csr[addr]);
95 uint32_t womask = ldl_le_p(&s->womask[addr]);
96 return val & ~womask;
97 }
98
99 /* "Internal" get/set operations */
100 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
101 {
102 return ldq_le_p(&s->csr[addr]);
103 }
104
105 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
106 {
107 return ldl_le_p(&s->csr[addr]);
108 }
109
110 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
111 {
112 stq_le_p(&s->csr[addr], val);
113 }
114
115 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
116 uint32_t clear, uint32_t mask)
117 {
118 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
119 stl_le_p(&s->csr[addr], new_val);
120 return new_val;
121 }
122
123 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
124 uint64_t clear, uint64_t mask)
125 {
126 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
127 stq_le_p(&s->csr[addr], new_val);
128 return new_val;
129 }
130
131 static inline void vtd_iommu_lock(IntelIOMMUState *s)
132 {
133 qemu_mutex_lock(&s->iommu_lock);
134 }
135
136 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
137 {
138 qemu_mutex_unlock(&s->iommu_lock);
139 }
140
141 /* Whether the address space needs to notify new mappings */
142 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
143 {
144 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
145 }
146
147 /* GHashTable functions */
148 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
149 {
150 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
151 }
152
153 static guint vtd_uint64_hash(gconstpointer v)
154 {
155 return (guint)*(const uint64_t *)v;
156 }
157
158 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
159 gpointer user_data)
160 {
161 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
162 uint16_t domain_id = *(uint16_t *)user_data;
163 return entry->domain_id == domain_id;
164 }
165
166 /* The shift of an addr for a certain level of paging structure */
167 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
168 {
169 assert(level != 0);
170 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
171 }
172
173 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
174 {
175 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
176 }
177
178 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
179 gpointer user_data)
180 {
181 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
182 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
183 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
184 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
185 return (entry->domain_id == info->domain_id) &&
186 (((entry->gfn & info->mask) == gfn) ||
187 (entry->gfn == gfn_tlb));
188 }
189
190 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
191 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
192 */
193 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
194 {
195 VTDAddressSpace *vtd_as;
196 VTDBus *vtd_bus;
197 GHashTableIter bus_it;
198 uint32_t devfn_it;
199
200 trace_vtd_context_cache_reset();
201
202 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
203
204 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
205 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
206 vtd_as = vtd_bus->dev_as[devfn_it];
207 if (!vtd_as) {
208 continue;
209 }
210 vtd_as->context_cache_entry.context_cache_gen = 0;
211 }
212 }
213 s->context_cache_gen = 1;
214 }
215
216 /* Must be called with IOMMU lock held. */
217 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
218 {
219 assert(s->iotlb);
220 g_hash_table_remove_all(s->iotlb);
221 }
222
223 static void vtd_reset_iotlb(IntelIOMMUState *s)
224 {
225 vtd_iommu_lock(s);
226 vtd_reset_iotlb_locked(s);
227 vtd_iommu_unlock(s);
228 }
229
230 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
231 uint32_t level)
232 {
233 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
234 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
235 }
236
237 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
238 {
239 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
240 }
241
242 /* Must be called with IOMMU lock held */
243 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
244 hwaddr addr)
245 {
246 VTDIOTLBEntry *entry;
247 uint64_t key;
248 int level;
249
250 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
251 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
252 source_id, level);
253 entry = g_hash_table_lookup(s->iotlb, &key);
254 if (entry) {
255 goto out;
256 }
257 }
258
259 out:
260 return entry;
261 }
262
263 /* Must be with IOMMU lock held */
264 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
265 uint16_t domain_id, hwaddr addr, uint64_t slpte,
266 uint8_t access_flags, uint32_t level)
267 {
268 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
269 uint64_t *key = g_malloc(sizeof(*key));
270 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
271
272 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
273 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
274 trace_vtd_iotlb_reset("iotlb exceeds size limit");
275 vtd_reset_iotlb_locked(s);
276 }
277
278 entry->gfn = gfn;
279 entry->domain_id = domain_id;
280 entry->slpte = slpte;
281 entry->access_flags = access_flags;
282 entry->mask = vtd_slpt_level_page_mask(level);
283 *key = vtd_get_iotlb_key(gfn, source_id, level);
284 g_hash_table_replace(s->iotlb, key, entry);
285 }
286
287 /* Given the reg addr of both the message data and address, generate an
288 * interrupt via MSI.
289 */
290 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
291 hwaddr mesg_data_reg)
292 {
293 MSIMessage msi;
294
295 assert(mesg_data_reg < DMAR_REG_SIZE);
296 assert(mesg_addr_reg < DMAR_REG_SIZE);
297
298 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
299 msi.data = vtd_get_long_raw(s, mesg_data_reg);
300
301 trace_vtd_irq_generate(msi.address, msi.data);
302
303 apic_get_class()->send_msi(&msi);
304 }
305
306 /* Generate a fault event to software via MSI if conditions are met.
307 * Notice that the value of FSTS_REG being passed to it should be the one
308 * before any update.
309 */
310 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
311 {
312 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
313 pre_fsts & VTD_FSTS_IQE) {
314 error_report_once("There are previous interrupt conditions "
315 "to be serviced by software, fault event "
316 "is not generated");
317 return;
318 }
319 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
320 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
321 error_report_once("Interrupt Mask set, irq is not generated");
322 } else {
323 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
324 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
325 }
326 }
327
328 /* Check if the Fault (F) field of the Fault Recording Register referenced by
329 * @index is Set.
330 */
331 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
332 {
333 /* Each reg is 128-bit */
334 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
335 addr += 8; /* Access the high 64-bit half */
336
337 assert(index < DMAR_FRCD_REG_NR);
338
339 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
340 }
341
342 /* Update the PPF field of Fault Status Register.
343 * Should be called whenever change the F field of any fault recording
344 * registers.
345 */
346 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
347 {
348 uint32_t i;
349 uint32_t ppf_mask = 0;
350
351 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
352 if (vtd_is_frcd_set(s, i)) {
353 ppf_mask = VTD_FSTS_PPF;
354 break;
355 }
356 }
357 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
358 trace_vtd_fsts_ppf(!!ppf_mask);
359 }
360
361 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
362 {
363 /* Each reg is 128-bit */
364 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
365 addr += 8; /* Access the high 64-bit half */
366
367 assert(index < DMAR_FRCD_REG_NR);
368
369 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
370 vtd_update_fsts_ppf(s);
371 }
372
373 /* Must not update F field now, should be done later */
374 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
375 uint16_t source_id, hwaddr addr,
376 VTDFaultReason fault, bool is_write)
377 {
378 uint64_t hi = 0, lo;
379 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
380
381 assert(index < DMAR_FRCD_REG_NR);
382
383 lo = VTD_FRCD_FI(addr);
384 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
385 if (!is_write) {
386 hi |= VTD_FRCD_T;
387 }
388 vtd_set_quad_raw(s, frcd_reg_addr, lo);
389 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
390
391 trace_vtd_frr_new(index, hi, lo);
392 }
393
394 /* Try to collapse multiple pending faults from the same requester */
395 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
396 {
397 uint32_t i;
398 uint64_t frcd_reg;
399 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
400
401 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
402 frcd_reg = vtd_get_quad_raw(s, addr);
403 if ((frcd_reg & VTD_FRCD_F) &&
404 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
405 return true;
406 }
407 addr += 16; /* 128-bit for each */
408 }
409 return false;
410 }
411
412 /* Log and report an DMAR (address translation) fault to software */
413 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
414 hwaddr addr, VTDFaultReason fault,
415 bool is_write)
416 {
417 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
418
419 assert(fault < VTD_FR_MAX);
420
421 if (fault == VTD_FR_RESERVED_ERR) {
422 /* This is not a normal fault reason case. Drop it. */
423 return;
424 }
425
426 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
427
428 if (fsts_reg & VTD_FSTS_PFO) {
429 error_report_once("New fault is not recorded due to "
430 "Primary Fault Overflow");
431 return;
432 }
433
434 if (vtd_try_collapse_fault(s, source_id)) {
435 error_report_once("New fault is not recorded due to "
436 "compression of faults");
437 return;
438 }
439
440 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
441 error_report_once("Next Fault Recording Reg is used, "
442 "new fault is not recorded, set PFO field");
443 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
444 return;
445 }
446
447 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
448
449 if (fsts_reg & VTD_FSTS_PPF) {
450 error_report_once("There are pending faults already, "
451 "fault event is not generated");
452 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
453 s->next_frcd_reg++;
454 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
455 s->next_frcd_reg = 0;
456 }
457 } else {
458 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
459 VTD_FSTS_FRI(s->next_frcd_reg));
460 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
461 s->next_frcd_reg++;
462 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
463 s->next_frcd_reg = 0;
464 }
465 /* This case actually cause the PPF to be Set.
466 * So generate fault event (interrupt).
467 */
468 vtd_generate_fault_event(s, fsts_reg);
469 }
470 }
471
472 /* Handle Invalidation Queue Errors of queued invalidation interface error
473 * conditions.
474 */
475 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
476 {
477 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
478
479 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
480 vtd_generate_fault_event(s, fsts_reg);
481 }
482
483 /* Set the IWC field and try to generate an invalidation completion interrupt */
484 static void vtd_generate_completion_event(IntelIOMMUState *s)
485 {
486 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
487 trace_vtd_inv_desc_wait_irq("One pending, skip current");
488 return;
489 }
490 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
491 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
492 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
493 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
494 "new event not generated");
495 return;
496 } else {
497 /* Generate the interrupt event */
498 trace_vtd_inv_desc_wait_irq("Generating complete event");
499 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
500 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
501 }
502 }
503
504 static inline bool vtd_root_entry_present(VTDRootEntry *root)
505 {
506 return root->val & VTD_ROOT_ENTRY_P;
507 }
508
509 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
510 VTDRootEntry *re)
511 {
512 dma_addr_t addr;
513
514 addr = s->root + index * sizeof(*re);
515 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
516 trace_vtd_re_invalid(re->rsvd, re->val);
517 re->val = 0;
518 return -VTD_FR_ROOT_TABLE_INV;
519 }
520 re->val = le64_to_cpu(re->val);
521 return 0;
522 }
523
524 static inline bool vtd_ce_present(VTDContextEntry *context)
525 {
526 return context->lo & VTD_CONTEXT_ENTRY_P;
527 }
528
529 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
530 VTDContextEntry *ce)
531 {
532 dma_addr_t addr;
533
534 /* we have checked that root entry is present */
535 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
536 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
537 trace_vtd_re_invalid(root->rsvd, root->val);
538 return -VTD_FR_CONTEXT_TABLE_INV;
539 }
540 ce->lo = le64_to_cpu(ce->lo);
541 ce->hi = le64_to_cpu(ce->hi);
542 return 0;
543 }
544
545 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
546 {
547 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
548 }
549
550 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
551 {
552 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
553 }
554
555 /* Whether the pte indicates the address of the page frame */
556 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
557 {
558 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
559 }
560
561 /* Get the content of a spte located in @base_addr[@index] */
562 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
563 {
564 uint64_t slpte;
565
566 assert(index < VTD_SL_PT_ENTRY_NR);
567
568 if (dma_memory_read(&address_space_memory,
569 base_addr + index * sizeof(slpte), &slpte,
570 sizeof(slpte))) {
571 slpte = (uint64_t)-1;
572 return slpte;
573 }
574 slpte = le64_to_cpu(slpte);
575 return slpte;
576 }
577
578 /* Given an iova and the level of paging structure, return the offset
579 * of current level.
580 */
581 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
582 {
583 return (iova >> vtd_slpt_level_shift(level)) &
584 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
585 }
586
587 /* Check Capability Register to see if the @level of page-table is supported */
588 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
589 {
590 return VTD_CAP_SAGAW_MASK & s->cap &
591 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
592 }
593
594 /* Get the page-table level that hardware should use for the second-level
595 * page-table walk from the Address Width field of context-entry.
596 */
597 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
598 {
599 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
600 }
601
602 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
603 {
604 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
605 }
606
607 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
608 {
609 return ce->lo & VTD_CONTEXT_ENTRY_TT;
610 }
611
612 /* Return true if check passed, otherwise false */
613 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
614 VTDContextEntry *ce)
615 {
616 switch (vtd_ce_get_type(ce)) {
617 case VTD_CONTEXT_TT_MULTI_LEVEL:
618 /* Always supported */
619 break;
620 case VTD_CONTEXT_TT_DEV_IOTLB:
621 if (!x86_iommu->dt_supported) {
622 return false;
623 }
624 break;
625 case VTD_CONTEXT_TT_PASS_THROUGH:
626 if (!x86_iommu->pt_supported) {
627 return false;
628 }
629 break;
630 default:
631 /* Unknwon type */
632 return false;
633 }
634 return true;
635 }
636
637 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
638 {
639 uint32_t ce_agaw = vtd_ce_get_agaw(ce);
640 return 1ULL << MIN(ce_agaw, aw);
641 }
642
643 /* Return true if IOVA passes range check, otherwise false. */
644 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
645 uint8_t aw)
646 {
647 /*
648 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
649 * in CAP_REG and AW in context-entry.
650 */
651 return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
652 }
653
654 /*
655 * Rsvd field masks for spte:
656 * Index [1] to [4] 4k pages
657 * Index [5] to [8] large pages
658 */
659 static uint64_t vtd_paging_entry_rsvd_field[9];
660
661 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
662 {
663 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
664 /* Maybe large page */
665 return slpte & vtd_paging_entry_rsvd_field[level + 4];
666 } else {
667 return slpte & vtd_paging_entry_rsvd_field[level];
668 }
669 }
670
671 /* Find the VTD address space associated with a given bus number */
672 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
673 {
674 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
675 if (!vtd_bus) {
676 /*
677 * Iterate over the registered buses to find the one which
678 * currently hold this bus number, and update the bus_num
679 * lookup table:
680 */
681 GHashTableIter iter;
682
683 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
684 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
685 if (pci_bus_num(vtd_bus->bus) == bus_num) {
686 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
687 return vtd_bus;
688 }
689 }
690 }
691 return vtd_bus;
692 }
693
694 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
695 * of the translation, can be used for deciding the size of large page.
696 */
697 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
698 uint64_t *slptep, uint32_t *slpte_level,
699 bool *reads, bool *writes, uint8_t aw_bits)
700 {
701 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
702 uint32_t level = vtd_ce_get_level(ce);
703 uint32_t offset;
704 uint64_t slpte;
705 uint64_t access_right_check;
706
707 if (!vtd_iova_range_check(iova, ce, aw_bits)) {
708 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
709 __func__, iova);
710 return -VTD_FR_ADDR_BEYOND_MGAW;
711 }
712
713 /* FIXME: what is the Atomics request here? */
714 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
715
716 while (true) {
717 offset = vtd_iova_level_offset(iova, level);
718 slpte = vtd_get_slpte(addr, offset);
719
720 if (slpte == (uint64_t)-1) {
721 error_report_once("%s: detected read error on DMAR slpte "
722 "(iova=0x%" PRIx64 ")", __func__, iova);
723 if (level == vtd_ce_get_level(ce)) {
724 /* Invalid programming of context-entry */
725 return -VTD_FR_CONTEXT_ENTRY_INV;
726 } else {
727 return -VTD_FR_PAGING_ENTRY_INV;
728 }
729 }
730 *reads = (*reads) && (slpte & VTD_SL_R);
731 *writes = (*writes) && (slpte & VTD_SL_W);
732 if (!(slpte & access_right_check)) {
733 error_report_once("%s: detected slpte permission error "
734 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
735 "slpte=0x%" PRIx64 ", write=%d)", __func__,
736 iova, level, slpte, is_write);
737 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
738 }
739 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
740 error_report_once("%s: detected splte reserve non-zero "
741 "iova=0x%" PRIx64 ", level=0x%" PRIx32
742 "slpte=0x%" PRIx64 ")", __func__, iova,
743 level, slpte);
744 return -VTD_FR_PAGING_ENTRY_RSVD;
745 }
746
747 if (vtd_is_last_slpte(slpte, level)) {
748 *slptep = slpte;
749 *slpte_level = level;
750 return 0;
751 }
752 addr = vtd_get_slpte_addr(slpte, aw_bits);
753 level--;
754 }
755 }
756
757 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
758
759 /**
760 * Constant information used during page walking
761 *
762 * @hook_fn: hook func to be called when detected page
763 * @private: private data to be passed into hook func
764 * @notify_unmap: whether we should notify invalid entries
765 * @as: VT-d address space of the device
766 * @aw: maximum address width
767 * @domain: domain ID of the page walk
768 */
769 typedef struct {
770 VTDAddressSpace *as;
771 vtd_page_walk_hook hook_fn;
772 void *private;
773 bool notify_unmap;
774 uint8_t aw;
775 uint16_t domain_id;
776 } vtd_page_walk_info;
777
778 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
779 {
780 VTDAddressSpace *as = info->as;
781 vtd_page_walk_hook hook_fn = info->hook_fn;
782 void *private = info->private;
783 DMAMap target = {
784 .iova = entry->iova,
785 .size = entry->addr_mask,
786 .translated_addr = entry->translated_addr,
787 .perm = entry->perm,
788 };
789 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
790
791 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
792 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
793 return 0;
794 }
795
796 assert(hook_fn);
797
798 /* Update local IOVA mapped ranges */
799 if (entry->perm) {
800 if (mapped) {
801 /* If it's exactly the same translation, skip */
802 if (!memcmp(mapped, &target, sizeof(target))) {
803 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
804 entry->translated_addr);
805 return 0;
806 } else {
807 /*
808 * Translation changed. Normally this should not
809 * happen, but it can happen when with buggy guest
810 * OSes. Note that there will be a small window that
811 * we don't have map at all. But that's the best
812 * effort we can do. The ideal way to emulate this is
813 * atomically modify the PTE to follow what has
814 * changed, but we can't. One example is that vfio
815 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
816 * interface to modify a mapping (meanwhile it seems
817 * meaningless to even provide one). Anyway, let's
818 * mark this as a TODO in case one day we'll have
819 * a better solution.
820 */
821 IOMMUAccessFlags cache_perm = entry->perm;
822 int ret;
823
824 /* Emulate an UNMAP */
825 entry->perm = IOMMU_NONE;
826 trace_vtd_page_walk_one(info->domain_id,
827 entry->iova,
828 entry->translated_addr,
829 entry->addr_mask,
830 entry->perm);
831 ret = hook_fn(entry, private);
832 if (ret) {
833 return ret;
834 }
835 /* Drop any existing mapping */
836 iova_tree_remove(as->iova_tree, &target);
837 /* Recover the correct permission */
838 entry->perm = cache_perm;
839 }
840 }
841 iova_tree_insert(as->iova_tree, &target);
842 } else {
843 if (!mapped) {
844 /* Skip since we didn't map this range at all */
845 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
846 return 0;
847 }
848 iova_tree_remove(as->iova_tree, &target);
849 }
850
851 trace_vtd_page_walk_one(info->domain_id, entry->iova,
852 entry->translated_addr, entry->addr_mask,
853 entry->perm);
854 return hook_fn(entry, private);
855 }
856
857 /**
858 * vtd_page_walk_level - walk over specific level for IOVA range
859 *
860 * @addr: base GPA addr to start the walk
861 * @start: IOVA range start address
862 * @end: IOVA range end address (start <= addr < end)
863 * @read: whether parent level has read permission
864 * @write: whether parent level has write permission
865 * @info: constant information for the page walk
866 */
867 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
868 uint64_t end, uint32_t level, bool read,
869 bool write, vtd_page_walk_info *info)
870 {
871 bool read_cur, write_cur, entry_valid;
872 uint32_t offset;
873 uint64_t slpte;
874 uint64_t subpage_size, subpage_mask;
875 IOMMUTLBEntry entry;
876 uint64_t iova = start;
877 uint64_t iova_next;
878 int ret = 0;
879
880 trace_vtd_page_walk_level(addr, level, start, end);
881
882 subpage_size = 1ULL << vtd_slpt_level_shift(level);
883 subpage_mask = vtd_slpt_level_page_mask(level);
884
885 while (iova < end) {
886 iova_next = (iova & subpage_mask) + subpage_size;
887
888 offset = vtd_iova_level_offset(iova, level);
889 slpte = vtd_get_slpte(addr, offset);
890
891 if (slpte == (uint64_t)-1) {
892 trace_vtd_page_walk_skip_read(iova, iova_next);
893 goto next;
894 }
895
896 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
897 trace_vtd_page_walk_skip_reserve(iova, iova_next);
898 goto next;
899 }
900
901 /* Permissions are stacked with parents' */
902 read_cur = read && (slpte & VTD_SL_R);
903 write_cur = write && (slpte & VTD_SL_W);
904
905 /*
906 * As long as we have either read/write permission, this is a
907 * valid entry. The rule works for both page entries and page
908 * table entries.
909 */
910 entry_valid = read_cur | write_cur;
911
912 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
913 /*
914 * This is a valid PDE (or even bigger than PDE). We need
915 * to walk one further level.
916 */
917 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
918 iova, MIN(iova_next, end), level - 1,
919 read_cur, write_cur, info);
920 } else {
921 /*
922 * This means we are either:
923 *
924 * (1) the real page entry (either 4K page, or huge page)
925 * (2) the whole range is invalid
926 *
927 * In either case, we send an IOTLB notification down.
928 */
929 entry.target_as = &address_space_memory;
930 entry.iova = iova & subpage_mask;
931 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
932 entry.addr_mask = ~subpage_mask;
933 /* NOTE: this is only meaningful if entry_valid == true */
934 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
935 ret = vtd_page_walk_one(&entry, info);
936 }
937
938 if (ret < 0) {
939 return ret;
940 }
941
942 next:
943 iova = iova_next;
944 }
945
946 return 0;
947 }
948
949 /**
950 * vtd_page_walk - walk specific IOVA range, and call the hook
951 *
952 * @ce: context entry to walk upon
953 * @start: IOVA address to start the walk
954 * @end: IOVA range end address (start <= addr < end)
955 * @info: page walking information struct
956 */
957 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
958 vtd_page_walk_info *info)
959 {
960 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
961 uint32_t level = vtd_ce_get_level(ce);
962
963 if (!vtd_iova_range_check(start, ce, info->aw)) {
964 return -VTD_FR_ADDR_BEYOND_MGAW;
965 }
966
967 if (!vtd_iova_range_check(end, ce, info->aw)) {
968 /* Fix end so that it reaches the maximum */
969 end = vtd_iova_limit(ce, info->aw);
970 }
971
972 return vtd_page_walk_level(addr, start, end, level, true, true, info);
973 }
974
975 /* Map a device to its corresponding domain (context-entry) */
976 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
977 uint8_t devfn, VTDContextEntry *ce)
978 {
979 VTDRootEntry re;
980 int ret_fr;
981 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
982
983 ret_fr = vtd_get_root_entry(s, bus_num, &re);
984 if (ret_fr) {
985 return ret_fr;
986 }
987
988 if (!vtd_root_entry_present(&re)) {
989 /* Not error - it's okay we don't have root entry. */
990 trace_vtd_re_not_present(bus_num);
991 return -VTD_FR_ROOT_ENTRY_P;
992 }
993
994 if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
995 trace_vtd_re_invalid(re.rsvd, re.val);
996 return -VTD_FR_ROOT_ENTRY_RSVD;
997 }
998
999 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
1000 if (ret_fr) {
1001 return ret_fr;
1002 }
1003
1004 if (!vtd_ce_present(ce)) {
1005 /* Not error - it's okay we don't have context entry. */
1006 trace_vtd_ce_not_present(bus_num, devfn);
1007 return -VTD_FR_CONTEXT_ENTRY_P;
1008 }
1009
1010 if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
1011 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1012 trace_vtd_ce_invalid(ce->hi, ce->lo);
1013 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1014 }
1015
1016 /* Check if the programming of context-entry is valid */
1017 if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1018 trace_vtd_ce_invalid(ce->hi, ce->lo);
1019 return -VTD_FR_CONTEXT_ENTRY_INV;
1020 }
1021
1022 /* Do translation type check */
1023 if (!vtd_ce_type_check(x86_iommu, ce)) {
1024 trace_vtd_ce_invalid(ce->hi, ce->lo);
1025 return -VTD_FR_CONTEXT_ENTRY_INV;
1026 }
1027
1028 return 0;
1029 }
1030
1031 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1032 void *private)
1033 {
1034 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1035 return 0;
1036 }
1037
1038 /* If context entry is NULL, we'll try to fetch it on our own. */
1039 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1040 VTDContextEntry *ce,
1041 hwaddr addr, hwaddr size)
1042 {
1043 IntelIOMMUState *s = vtd_as->iommu_state;
1044 vtd_page_walk_info info = {
1045 .hook_fn = vtd_sync_shadow_page_hook,
1046 .private = (void *)&vtd_as->iommu,
1047 .notify_unmap = true,
1048 .aw = s->aw_bits,
1049 .as = vtd_as,
1050 };
1051 VTDContextEntry ce_cache;
1052 int ret;
1053
1054 if (ce) {
1055 /* If the caller provided context entry, use it */
1056 ce_cache = *ce;
1057 } else {
1058 /* If the caller didn't provide ce, try to fetch */
1059 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1060 vtd_as->devfn, &ce_cache);
1061 if (ret) {
1062 /*
1063 * This should not really happen, but in case it happens,
1064 * we just skip the sync for this time. After all we even
1065 * don't have the root table pointer!
1066 */
1067 error_report_once("%s: invalid context entry for bus 0x%x"
1068 " devfn 0x%x",
1069 __func__, pci_bus_num(vtd_as->bus),
1070 vtd_as->devfn);
1071 return 0;
1072 }
1073 }
1074
1075 info.domain_id = VTD_CONTEXT_ENTRY_DID(ce_cache.hi);
1076
1077 return vtd_page_walk(&ce_cache, addr, addr + size, &info);
1078 }
1079
1080 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1081 {
1082 return vtd_sync_shadow_page_table_range(vtd_as, NULL, 0, UINT64_MAX);
1083 }
1084
1085 /*
1086 * Fetch translation type for specific device. Returns <0 if error
1087 * happens, otherwise return the shifted type to check against
1088 * VTD_CONTEXT_TT_*.
1089 */
1090 static int vtd_dev_get_trans_type(VTDAddressSpace *as)
1091 {
1092 IntelIOMMUState *s;
1093 VTDContextEntry ce;
1094 int ret;
1095
1096 s = as->iommu_state;
1097
1098 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1099 as->devfn, &ce);
1100 if (ret) {
1101 return ret;
1102 }
1103
1104 return vtd_ce_get_type(&ce);
1105 }
1106
1107 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1108 {
1109 int ret;
1110
1111 assert(as);
1112
1113 ret = vtd_dev_get_trans_type(as);
1114 if (ret < 0) {
1115 /*
1116 * Possibly failed to parse the context entry for some reason
1117 * (e.g., during init, or any guest configuration errors on
1118 * context entries). We should assume PT not enabled for
1119 * safety.
1120 */
1121 return false;
1122 }
1123
1124 return ret == VTD_CONTEXT_TT_PASS_THROUGH;
1125 }
1126
1127 /* Return whether the device is using IOMMU translation. */
1128 static bool vtd_switch_address_space(VTDAddressSpace *as)
1129 {
1130 bool use_iommu;
1131 /* Whether we need to take the BQL on our own */
1132 bool take_bql = !qemu_mutex_iothread_locked();
1133
1134 assert(as);
1135
1136 use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
1137
1138 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1139 VTD_PCI_SLOT(as->devfn),
1140 VTD_PCI_FUNC(as->devfn),
1141 use_iommu);
1142
1143 /*
1144 * It's possible that we reach here without BQL, e.g., when called
1145 * from vtd_pt_enable_fast_path(). However the memory APIs need
1146 * it. We'd better make sure we have had it already, or, take it.
1147 */
1148 if (take_bql) {
1149 qemu_mutex_lock_iothread();
1150 }
1151
1152 /* Turn off first then on the other */
1153 if (use_iommu) {
1154 memory_region_set_enabled(&as->sys_alias, false);
1155 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1156 } else {
1157 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1158 memory_region_set_enabled(&as->sys_alias, true);
1159 }
1160
1161 if (take_bql) {
1162 qemu_mutex_unlock_iothread();
1163 }
1164
1165 return use_iommu;
1166 }
1167
1168 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1169 {
1170 GHashTableIter iter;
1171 VTDBus *vtd_bus;
1172 int i;
1173
1174 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1175 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1176 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1177 if (!vtd_bus->dev_as[i]) {
1178 continue;
1179 }
1180 vtd_switch_address_space(vtd_bus->dev_as[i]);
1181 }
1182 }
1183 }
1184
1185 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1186 {
1187 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1188 }
1189
1190 static const bool vtd_qualified_faults[] = {
1191 [VTD_FR_RESERVED] = false,
1192 [VTD_FR_ROOT_ENTRY_P] = false,
1193 [VTD_FR_CONTEXT_ENTRY_P] = true,
1194 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1195 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1196 [VTD_FR_WRITE] = true,
1197 [VTD_FR_READ] = true,
1198 [VTD_FR_PAGING_ENTRY_INV] = true,
1199 [VTD_FR_ROOT_TABLE_INV] = false,
1200 [VTD_FR_CONTEXT_TABLE_INV] = false,
1201 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1202 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1203 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1204 [VTD_FR_RESERVED_ERR] = false,
1205 [VTD_FR_MAX] = false,
1206 };
1207
1208 /* To see if a fault condition is "qualified", which is reported to software
1209 * only if the FPD field in the context-entry used to process the faulting
1210 * request is 0.
1211 */
1212 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1213 {
1214 return vtd_qualified_faults[fault];
1215 }
1216
1217 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1218 {
1219 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1220 }
1221
1222 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1223 {
1224 VTDBus *vtd_bus;
1225 VTDAddressSpace *vtd_as;
1226 bool success = false;
1227
1228 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1229 if (!vtd_bus) {
1230 goto out;
1231 }
1232
1233 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1234 if (!vtd_as) {
1235 goto out;
1236 }
1237
1238 if (vtd_switch_address_space(vtd_as) == false) {
1239 /* We switched off IOMMU region successfully. */
1240 success = true;
1241 }
1242
1243 out:
1244 trace_vtd_pt_enable_fast_path(source_id, success);
1245 }
1246
1247 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1248 * translation.
1249 *
1250 * Called from RCU critical section.
1251 *
1252 * @bus_num: The bus number
1253 * @devfn: The devfn, which is the combined of device and function number
1254 * @is_write: The access is a write operation
1255 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1256 *
1257 * Returns true if translation is successful, otherwise false.
1258 */
1259 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1260 uint8_t devfn, hwaddr addr, bool is_write,
1261 IOMMUTLBEntry *entry)
1262 {
1263 IntelIOMMUState *s = vtd_as->iommu_state;
1264 VTDContextEntry ce;
1265 uint8_t bus_num = pci_bus_num(bus);
1266 VTDContextCacheEntry *cc_entry;
1267 uint64_t slpte, page_mask;
1268 uint32_t level;
1269 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1270 int ret_fr;
1271 bool is_fpd_set = false;
1272 bool reads = true;
1273 bool writes = true;
1274 uint8_t access_flags;
1275 VTDIOTLBEntry *iotlb_entry;
1276
1277 /*
1278 * We have standalone memory region for interrupt addresses, we
1279 * should never receive translation requests in this region.
1280 */
1281 assert(!vtd_is_interrupt_addr(addr));
1282
1283 vtd_iommu_lock(s);
1284
1285 cc_entry = &vtd_as->context_cache_entry;
1286
1287 /* Try to fetch slpte form IOTLB */
1288 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1289 if (iotlb_entry) {
1290 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1291 iotlb_entry->domain_id);
1292 slpte = iotlb_entry->slpte;
1293 access_flags = iotlb_entry->access_flags;
1294 page_mask = iotlb_entry->mask;
1295 goto out;
1296 }
1297
1298 /* Try to fetch context-entry from cache first */
1299 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1300 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1301 cc_entry->context_entry.lo,
1302 cc_entry->context_cache_gen);
1303 ce = cc_entry->context_entry;
1304 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1305 } else {
1306 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1307 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1308 if (ret_fr) {
1309 ret_fr = -ret_fr;
1310 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1311 trace_vtd_fault_disabled();
1312 } else {
1313 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1314 }
1315 goto error;
1316 }
1317 /* Update context-cache */
1318 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1319 cc_entry->context_cache_gen,
1320 s->context_cache_gen);
1321 cc_entry->context_entry = ce;
1322 cc_entry->context_cache_gen = s->context_cache_gen;
1323 }
1324
1325 /*
1326 * We don't need to translate for pass-through context entries.
1327 * Also, let's ignore IOTLB caching as well for PT devices.
1328 */
1329 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1330 entry->iova = addr & VTD_PAGE_MASK_4K;
1331 entry->translated_addr = entry->iova;
1332 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1333 entry->perm = IOMMU_RW;
1334 trace_vtd_translate_pt(source_id, entry->iova);
1335
1336 /*
1337 * When this happens, it means firstly caching-mode is not
1338 * enabled, and this is the first passthrough translation for
1339 * the device. Let's enable the fast path for passthrough.
1340 *
1341 * When passthrough is disabled again for the device, we can
1342 * capture it via the context entry invalidation, then the
1343 * IOMMU region can be swapped back.
1344 */
1345 vtd_pt_enable_fast_path(s, source_id);
1346 vtd_iommu_unlock(s);
1347 return true;
1348 }
1349
1350 ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1351 &reads, &writes, s->aw_bits);
1352 if (ret_fr) {
1353 ret_fr = -ret_fr;
1354 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1355 trace_vtd_fault_disabled();
1356 } else {
1357 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1358 }
1359 goto error;
1360 }
1361
1362 page_mask = vtd_slpt_level_page_mask(level);
1363 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1364 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1365 access_flags, level);
1366 out:
1367 vtd_iommu_unlock(s);
1368 entry->iova = addr & page_mask;
1369 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1370 entry->addr_mask = ~page_mask;
1371 entry->perm = access_flags;
1372 return true;
1373
1374 error:
1375 vtd_iommu_unlock(s);
1376 entry->iova = 0;
1377 entry->translated_addr = 0;
1378 entry->addr_mask = 0;
1379 entry->perm = IOMMU_NONE;
1380 return false;
1381 }
1382
1383 static void vtd_root_table_setup(IntelIOMMUState *s)
1384 {
1385 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1386 s->root_extended = s->root & VTD_RTADDR_RTT;
1387 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1388
1389 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1390 }
1391
1392 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1393 uint32_t index, uint32_t mask)
1394 {
1395 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1396 }
1397
1398 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1399 {
1400 uint64_t value = 0;
1401 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1402 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1403 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1404 s->intr_eime = value & VTD_IRTA_EIME;
1405
1406 /* Notify global invalidation */
1407 vtd_iec_notify_all(s, true, 0, 0);
1408
1409 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1410 }
1411
1412 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1413 {
1414 VTDAddressSpace *vtd_as;
1415
1416 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1417 vtd_sync_shadow_page_table(vtd_as);
1418 }
1419 }
1420
1421 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1422 {
1423 trace_vtd_inv_desc_cc_global();
1424 /* Protects context cache */
1425 vtd_iommu_lock(s);
1426 s->context_cache_gen++;
1427 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1428 vtd_reset_context_cache_locked(s);
1429 }
1430 vtd_iommu_unlock(s);
1431 vtd_switch_address_space_all(s);
1432 /*
1433 * From VT-d spec 6.5.2.1, a global context entry invalidation
1434 * should be followed by a IOTLB global invalidation, so we should
1435 * be safe even without this. Hoewever, let's replay the region as
1436 * well to be safer, and go back here when we need finer tunes for
1437 * VT-d emulation codes.
1438 */
1439 vtd_iommu_replay_all(s);
1440 }
1441
1442 /* Do a context-cache device-selective invalidation.
1443 * @func_mask: FM field after shifting
1444 */
1445 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1446 uint16_t source_id,
1447 uint16_t func_mask)
1448 {
1449 uint16_t mask;
1450 VTDBus *vtd_bus;
1451 VTDAddressSpace *vtd_as;
1452 uint8_t bus_n, devfn;
1453 uint16_t devfn_it;
1454
1455 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1456
1457 switch (func_mask & 3) {
1458 case 0:
1459 mask = 0; /* No bits in the SID field masked */
1460 break;
1461 case 1:
1462 mask = 4; /* Mask bit 2 in the SID field */
1463 break;
1464 case 2:
1465 mask = 6; /* Mask bit 2:1 in the SID field */
1466 break;
1467 case 3:
1468 mask = 7; /* Mask bit 2:0 in the SID field */
1469 break;
1470 }
1471 mask = ~mask;
1472
1473 bus_n = VTD_SID_TO_BUS(source_id);
1474 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1475 if (vtd_bus) {
1476 devfn = VTD_SID_TO_DEVFN(source_id);
1477 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1478 vtd_as = vtd_bus->dev_as[devfn_it];
1479 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1480 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1481 VTD_PCI_FUNC(devfn_it));
1482 vtd_iommu_lock(s);
1483 vtd_as->context_cache_entry.context_cache_gen = 0;
1484 vtd_iommu_unlock(s);
1485 /*
1486 * Do switch address space when needed, in case if the
1487 * device passthrough bit is switched.
1488 */
1489 vtd_switch_address_space(vtd_as);
1490 /*
1491 * So a device is moving out of (or moving into) a
1492 * domain, resync the shadow page table.
1493 * This won't bring bad even if we have no such
1494 * notifier registered - the IOMMU notification
1495 * framework will skip MAP notifications if that
1496 * happened.
1497 */
1498 vtd_sync_shadow_page_table(vtd_as);
1499 }
1500 }
1501 }
1502 }
1503
1504 /* Context-cache invalidation
1505 * Returns the Context Actual Invalidation Granularity.
1506 * @val: the content of the CCMD_REG
1507 */
1508 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1509 {
1510 uint64_t caig;
1511 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1512
1513 switch (type) {
1514 case VTD_CCMD_DOMAIN_INVL:
1515 /* Fall through */
1516 case VTD_CCMD_GLOBAL_INVL:
1517 caig = VTD_CCMD_GLOBAL_INVL_A;
1518 vtd_context_global_invalidate(s);
1519 break;
1520
1521 case VTD_CCMD_DEVICE_INVL:
1522 caig = VTD_CCMD_DEVICE_INVL_A;
1523 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1524 break;
1525
1526 default:
1527 error_report_once("%s: invalid context: 0x%" PRIx64,
1528 __func__, val);
1529 caig = 0;
1530 }
1531 return caig;
1532 }
1533
1534 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1535 {
1536 trace_vtd_inv_desc_iotlb_global();
1537 vtd_reset_iotlb(s);
1538 vtd_iommu_replay_all(s);
1539 }
1540
1541 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1542 {
1543 VTDContextEntry ce;
1544 VTDAddressSpace *vtd_as;
1545
1546 trace_vtd_inv_desc_iotlb_domain(domain_id);
1547
1548 vtd_iommu_lock(s);
1549 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1550 &domain_id);
1551 vtd_iommu_unlock(s);
1552
1553 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1554 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1555 vtd_as->devfn, &ce) &&
1556 domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1557 vtd_sync_shadow_page_table(vtd_as);
1558 }
1559 }
1560 }
1561
1562 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1563 uint16_t domain_id, hwaddr addr,
1564 uint8_t am)
1565 {
1566 VTDAddressSpace *vtd_as;
1567 VTDContextEntry ce;
1568 int ret;
1569 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1570
1571 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1572 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1573 vtd_as->devfn, &ce);
1574 if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1575 if (vtd_as_has_map_notifier(vtd_as)) {
1576 /*
1577 * As long as we have MAP notifications registered in
1578 * any of our IOMMU notifiers, we need to sync the
1579 * shadow page table.
1580 */
1581 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1582 } else {
1583 /*
1584 * For UNMAP-only notifiers, we don't need to walk the
1585 * page tables. We just deliver the PSI down to
1586 * invalidate caches.
1587 */
1588 IOMMUTLBEntry entry = {
1589 .target_as = &address_space_memory,
1590 .iova = addr,
1591 .translated_addr = 0,
1592 .addr_mask = size - 1,
1593 .perm = IOMMU_NONE,
1594 };
1595 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1596 }
1597 }
1598 }
1599 }
1600
1601 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1602 hwaddr addr, uint8_t am)
1603 {
1604 VTDIOTLBPageInvInfo info;
1605
1606 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1607
1608 assert(am <= VTD_MAMV);
1609 info.domain_id = domain_id;
1610 info.addr = addr;
1611 info.mask = ~((1 << am) - 1);
1612 vtd_iommu_lock(s);
1613 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1614 vtd_iommu_unlock(s);
1615 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1616 }
1617
1618 /* Flush IOTLB
1619 * Returns the IOTLB Actual Invalidation Granularity.
1620 * @val: the content of the IOTLB_REG
1621 */
1622 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1623 {
1624 uint64_t iaig;
1625 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1626 uint16_t domain_id;
1627 hwaddr addr;
1628 uint8_t am;
1629
1630 switch (type) {
1631 case VTD_TLB_GLOBAL_FLUSH:
1632 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1633 vtd_iotlb_global_invalidate(s);
1634 break;
1635
1636 case VTD_TLB_DSI_FLUSH:
1637 domain_id = VTD_TLB_DID(val);
1638 iaig = VTD_TLB_DSI_FLUSH_A;
1639 vtd_iotlb_domain_invalidate(s, domain_id);
1640 break;
1641
1642 case VTD_TLB_PSI_FLUSH:
1643 domain_id = VTD_TLB_DID(val);
1644 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1645 am = VTD_IVA_AM(addr);
1646 addr = VTD_IVA_ADDR(addr);
1647 if (am > VTD_MAMV) {
1648 error_report_once("%s: address mask overflow: 0x%" PRIx64,
1649 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
1650 iaig = 0;
1651 break;
1652 }
1653 iaig = VTD_TLB_PSI_FLUSH_A;
1654 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1655 break;
1656
1657 default:
1658 error_report_once("%s: invalid granularity: 0x%" PRIx64,
1659 __func__, val);
1660 iaig = 0;
1661 }
1662 return iaig;
1663 }
1664
1665 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1666
1667 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1668 {
1669 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1670 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1671 }
1672
1673 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1674 {
1675 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1676
1677 trace_vtd_inv_qi_enable(en);
1678
1679 if (en) {
1680 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
1681 /* 2^(x+8) entries */
1682 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1683 s->qi_enabled = true;
1684 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1685 /* Ok - report back to driver */
1686 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1687
1688 if (s->iq_tail != 0) {
1689 /*
1690 * This is a spec violation but Windows guests are known to set up
1691 * Queued Invalidation this way so we allow the write and process
1692 * Invalidation Descriptors right away.
1693 */
1694 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1695 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1696 vtd_fetch_inv_desc(s);
1697 }
1698 }
1699 } else {
1700 if (vtd_queued_inv_disable_check(s)) {
1701 /* disable Queued Invalidation */
1702 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1703 s->iq_head = 0;
1704 s->qi_enabled = false;
1705 /* Ok - report back to driver */
1706 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1707 } else {
1708 error_report_once("%s: detected improper state when disable QI "
1709 "(head=0x%x, tail=0x%x, last_type=%d)",
1710 __func__,
1711 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1712 }
1713 }
1714 }
1715
1716 /* Set Root Table Pointer */
1717 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1718 {
1719 vtd_root_table_setup(s);
1720 /* Ok - report back to driver */
1721 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1722 }
1723
1724 /* Set Interrupt Remap Table Pointer */
1725 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1726 {
1727 vtd_interrupt_remap_table_setup(s);
1728 /* Ok - report back to driver */
1729 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1730 }
1731
1732 /* Handle Translation Enable/Disable */
1733 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1734 {
1735 if (s->dmar_enabled == en) {
1736 return;
1737 }
1738
1739 trace_vtd_dmar_enable(en);
1740
1741 if (en) {
1742 s->dmar_enabled = true;
1743 /* Ok - report back to driver */
1744 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1745 } else {
1746 s->dmar_enabled = false;
1747
1748 /* Clear the index of Fault Recording Register */
1749 s->next_frcd_reg = 0;
1750 /* Ok - report back to driver */
1751 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1752 }
1753
1754 vtd_switch_address_space_all(s);
1755 }
1756
1757 /* Handle Interrupt Remap Enable/Disable */
1758 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1759 {
1760 trace_vtd_ir_enable(en);
1761
1762 if (en) {
1763 s->intr_enabled = true;
1764 /* Ok - report back to driver */
1765 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1766 } else {
1767 s->intr_enabled = false;
1768 /* Ok - report back to driver */
1769 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1770 }
1771 }
1772
1773 /* Handle write to Global Command Register */
1774 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1775 {
1776 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1777 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1778 uint32_t changed = status ^ val;
1779
1780 trace_vtd_reg_write_gcmd(status, val);
1781 if (changed & VTD_GCMD_TE) {
1782 /* Translation enable/disable */
1783 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1784 }
1785 if (val & VTD_GCMD_SRTP) {
1786 /* Set/update the root-table pointer */
1787 vtd_handle_gcmd_srtp(s);
1788 }
1789 if (changed & VTD_GCMD_QIE) {
1790 /* Queued Invalidation Enable */
1791 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1792 }
1793 if (val & VTD_GCMD_SIRTP) {
1794 /* Set/update the interrupt remapping root-table pointer */
1795 vtd_handle_gcmd_sirtp(s);
1796 }
1797 if (changed & VTD_GCMD_IRE) {
1798 /* Interrupt remap enable/disable */
1799 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1800 }
1801 }
1802
1803 /* Handle write to Context Command Register */
1804 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1805 {
1806 uint64_t ret;
1807 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1808
1809 /* Context-cache invalidation request */
1810 if (val & VTD_CCMD_ICC) {
1811 if (s->qi_enabled) {
1812 error_report_once("Queued Invalidation enabled, "
1813 "should not use register-based invalidation");
1814 return;
1815 }
1816 ret = vtd_context_cache_invalidate(s, val);
1817 /* Invalidation completed. Change something to show */
1818 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1819 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1820 ret);
1821 }
1822 }
1823
1824 /* Handle write to IOTLB Invalidation Register */
1825 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1826 {
1827 uint64_t ret;
1828 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1829
1830 /* IOTLB invalidation request */
1831 if (val & VTD_TLB_IVT) {
1832 if (s->qi_enabled) {
1833 error_report_once("Queued Invalidation enabled, "
1834 "should not use register-based invalidation");
1835 return;
1836 }
1837 ret = vtd_iotlb_flush(s, val);
1838 /* Invalidation completed. Change something to show */
1839 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1840 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1841 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1842 }
1843 }
1844
1845 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1846 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1847 VTDInvDesc *inv_desc)
1848 {
1849 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1850 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1851 sizeof(*inv_desc))) {
1852 error_report_once("Read INV DESC failed");
1853 inv_desc->lo = 0;
1854 inv_desc->hi = 0;
1855 return false;
1856 }
1857 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1858 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1859 return true;
1860 }
1861
1862 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1863 {
1864 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1865 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1866 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1867 return false;
1868 }
1869 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1870 /* Status Write */
1871 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1872 VTD_INV_DESC_WAIT_DATA_SHIFT);
1873
1874 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1875
1876 /* FIXME: need to be masked with HAW? */
1877 dma_addr_t status_addr = inv_desc->hi;
1878 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1879 status_data = cpu_to_le32(status_data);
1880 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1881 sizeof(status_data))) {
1882 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1883 return false;
1884 }
1885 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1886 /* Interrupt flag */
1887 vtd_generate_completion_event(s);
1888 } else {
1889 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1890 return false;
1891 }
1892 return true;
1893 }
1894
1895 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1896 VTDInvDesc *inv_desc)
1897 {
1898 uint16_t sid, fmask;
1899
1900 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1901 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1902 return false;
1903 }
1904 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1905 case VTD_INV_DESC_CC_DOMAIN:
1906 trace_vtd_inv_desc_cc_domain(
1907 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1908 /* Fall through */
1909 case VTD_INV_DESC_CC_GLOBAL:
1910 vtd_context_global_invalidate(s);
1911 break;
1912
1913 case VTD_INV_DESC_CC_DEVICE:
1914 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1915 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1916 vtd_context_device_invalidate(s, sid, fmask);
1917 break;
1918
1919 default:
1920 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1921 return false;
1922 }
1923 return true;
1924 }
1925
1926 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1927 {
1928 uint16_t domain_id;
1929 uint8_t am;
1930 hwaddr addr;
1931
1932 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1933 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1934 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1935 return false;
1936 }
1937
1938 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1939 case VTD_INV_DESC_IOTLB_GLOBAL:
1940 vtd_iotlb_global_invalidate(s);
1941 break;
1942
1943 case VTD_INV_DESC_IOTLB_DOMAIN:
1944 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1945 vtd_iotlb_domain_invalidate(s, domain_id);
1946 break;
1947
1948 case VTD_INV_DESC_IOTLB_PAGE:
1949 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1950 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1951 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1952 if (am > VTD_MAMV) {
1953 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1954 return false;
1955 }
1956 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1957 break;
1958
1959 default:
1960 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1961 return false;
1962 }
1963 return true;
1964 }
1965
1966 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1967 VTDInvDesc *inv_desc)
1968 {
1969 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1970 inv_desc->iec.index,
1971 inv_desc->iec.index_mask);
1972
1973 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1974 inv_desc->iec.index,
1975 inv_desc->iec.index_mask);
1976 return true;
1977 }
1978
1979 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1980 VTDInvDesc *inv_desc)
1981 {
1982 VTDAddressSpace *vtd_dev_as;
1983 IOMMUTLBEntry entry;
1984 struct VTDBus *vtd_bus;
1985 hwaddr addr;
1986 uint64_t sz;
1987 uint16_t sid;
1988 uint8_t devfn;
1989 bool size;
1990 uint8_t bus_num;
1991
1992 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1993 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1994 devfn = sid & 0xff;
1995 bus_num = sid >> 8;
1996 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1997
1998 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1999 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2000 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
2001 return false;
2002 }
2003
2004 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2005 if (!vtd_bus) {
2006 goto done;
2007 }
2008
2009 vtd_dev_as = vtd_bus->dev_as[devfn];
2010 if (!vtd_dev_as) {
2011 goto done;
2012 }
2013
2014 /* According to ATS spec table 2.4:
2015 * S = 0, bits 15:12 = xxxx range size: 4K
2016 * S = 1, bits 15:12 = xxx0 range size: 8K
2017 * S = 1, bits 15:12 = xx01 range size: 16K
2018 * S = 1, bits 15:12 = x011 range size: 32K
2019 * S = 1, bits 15:12 = 0111 range size: 64K
2020 * ...
2021 */
2022 if (size) {
2023 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2024 addr &= ~(sz - 1);
2025 } else {
2026 sz = VTD_PAGE_SIZE;
2027 }
2028
2029 entry.target_as = &vtd_dev_as->as;
2030 entry.addr_mask = sz - 1;
2031 entry.iova = addr;
2032 entry.perm = IOMMU_NONE;
2033 entry.translated_addr = 0;
2034 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2035
2036 done:
2037 return true;
2038 }
2039
2040 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2041 {
2042 VTDInvDesc inv_desc;
2043 uint8_t desc_type;
2044
2045 trace_vtd_inv_qi_head(s->iq_head);
2046 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
2047 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2048 return false;
2049 }
2050 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2051 /* FIXME: should update at first or at last? */
2052 s->iq_last_desc_type = desc_type;
2053
2054 switch (desc_type) {
2055 case VTD_INV_DESC_CC:
2056 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2057 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2058 return false;
2059 }
2060 break;
2061
2062 case VTD_INV_DESC_IOTLB:
2063 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2064 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2065 return false;
2066 }
2067 break;
2068
2069 case VTD_INV_DESC_WAIT:
2070 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2071 if (!vtd_process_wait_desc(s, &inv_desc)) {
2072 return false;
2073 }
2074 break;
2075
2076 case VTD_INV_DESC_IEC:
2077 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2078 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2079 return false;
2080 }
2081 break;
2082
2083 case VTD_INV_DESC_DEVICE:
2084 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2085 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2086 return false;
2087 }
2088 break;
2089
2090 default:
2091 trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
2092 return false;
2093 }
2094 s->iq_head++;
2095 if (s->iq_head == s->iq_size) {
2096 s->iq_head = 0;
2097 }
2098 return true;
2099 }
2100
2101 /* Try to fetch and process more Invalidation Descriptors */
2102 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2103 {
2104 trace_vtd_inv_qi_fetch();
2105
2106 if (s->iq_tail >= s->iq_size) {
2107 /* Detects an invalid Tail pointer */
2108 error_report_once("%s: detected invalid QI tail "
2109 "(tail=0x%x, size=0x%x)",
2110 __func__, s->iq_tail, s->iq_size);
2111 vtd_handle_inv_queue_error(s);
2112 return;
2113 }
2114 while (s->iq_head != s->iq_tail) {
2115 if (!vtd_process_inv_desc(s)) {
2116 /* Invalidation Queue Errors */
2117 vtd_handle_inv_queue_error(s);
2118 break;
2119 }
2120 /* Must update the IQH_REG in time */
2121 vtd_set_quad_raw(s, DMAR_IQH_REG,
2122 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2123 VTD_IQH_QH_MASK);
2124 }
2125 }
2126
2127 /* Handle write to Invalidation Queue Tail Register */
2128 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2129 {
2130 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2131
2132 s->iq_tail = VTD_IQT_QT(val);
2133 trace_vtd_inv_qi_tail(s->iq_tail);
2134
2135 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2136 /* Process Invalidation Queue here */
2137 vtd_fetch_inv_desc(s);
2138 }
2139 }
2140
2141 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2142 {
2143 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2144 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2145 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2146
2147 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2148 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2149 trace_vtd_fsts_clear_ip();
2150 }
2151 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2152 * Descriptors if there are any when Queued Invalidation is enabled?
2153 */
2154 }
2155
2156 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2157 {
2158 uint32_t fectl_reg;
2159 /* FIXME: when software clears the IM field, check the IP field. But do we
2160 * need to compare the old value and the new value to conclude that
2161 * software clears the IM field? Or just check if the IM field is zero?
2162 */
2163 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2164
2165 trace_vtd_reg_write_fectl(fectl_reg);
2166
2167 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2168 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2169 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2170 }
2171 }
2172
2173 static void vtd_handle_ics_write(IntelIOMMUState *s)
2174 {
2175 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2176 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2177
2178 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2179 trace_vtd_reg_ics_clear_ip();
2180 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2181 }
2182 }
2183
2184 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2185 {
2186 uint32_t iectl_reg;
2187 /* FIXME: when software clears the IM field, check the IP field. But do we
2188 * need to compare the old value and the new value to conclude that
2189 * software clears the IM field? Or just check if the IM field is zero?
2190 */
2191 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2192
2193 trace_vtd_reg_write_iectl(iectl_reg);
2194
2195 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2196 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2197 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2198 }
2199 }
2200
2201 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2202 {
2203 IntelIOMMUState *s = opaque;
2204 uint64_t val;
2205
2206 trace_vtd_reg_read(addr, size);
2207
2208 if (addr + size > DMAR_REG_SIZE) {
2209 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2210 " size=0x%u", __func__, addr, size);
2211 return (uint64_t)-1;
2212 }
2213
2214 switch (addr) {
2215 /* Root Table Address Register, 64-bit */
2216 case DMAR_RTADDR_REG:
2217 if (size == 4) {
2218 val = s->root & ((1ULL << 32) - 1);
2219 } else {
2220 val = s->root;
2221 }
2222 break;
2223
2224 case DMAR_RTADDR_REG_HI:
2225 assert(size == 4);
2226 val = s->root >> 32;
2227 break;
2228
2229 /* Invalidation Queue Address Register, 64-bit */
2230 case DMAR_IQA_REG:
2231 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2232 if (size == 4) {
2233 val = val & ((1ULL << 32) - 1);
2234 }
2235 break;
2236
2237 case DMAR_IQA_REG_HI:
2238 assert(size == 4);
2239 val = s->iq >> 32;
2240 break;
2241
2242 default:
2243 if (size == 4) {
2244 val = vtd_get_long(s, addr);
2245 } else {
2246 val = vtd_get_quad(s, addr);
2247 }
2248 }
2249
2250 return val;
2251 }
2252
2253 static void vtd_mem_write(void *opaque, hwaddr addr,
2254 uint64_t val, unsigned size)
2255 {
2256 IntelIOMMUState *s = opaque;
2257
2258 trace_vtd_reg_write(addr, size, val);
2259
2260 if (addr + size > DMAR_REG_SIZE) {
2261 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2262 " size=0x%u", __func__, addr, size);
2263 return;
2264 }
2265
2266 switch (addr) {
2267 /* Global Command Register, 32-bit */
2268 case DMAR_GCMD_REG:
2269 vtd_set_long(s, addr, val);
2270 vtd_handle_gcmd_write(s);
2271 break;
2272
2273 /* Context Command Register, 64-bit */
2274 case DMAR_CCMD_REG:
2275 if (size == 4) {
2276 vtd_set_long(s, addr, val);
2277 } else {
2278 vtd_set_quad(s, addr, val);
2279 vtd_handle_ccmd_write(s);
2280 }
2281 break;
2282
2283 case DMAR_CCMD_REG_HI:
2284 assert(size == 4);
2285 vtd_set_long(s, addr, val);
2286 vtd_handle_ccmd_write(s);
2287 break;
2288
2289 /* IOTLB Invalidation Register, 64-bit */
2290 case DMAR_IOTLB_REG:
2291 if (size == 4) {
2292 vtd_set_long(s, addr, val);
2293 } else {
2294 vtd_set_quad(s, addr, val);
2295 vtd_handle_iotlb_write(s);
2296 }
2297 break;
2298
2299 case DMAR_IOTLB_REG_HI:
2300 assert(size == 4);
2301 vtd_set_long(s, addr, val);
2302 vtd_handle_iotlb_write(s);
2303 break;
2304
2305 /* Invalidate Address Register, 64-bit */
2306 case DMAR_IVA_REG:
2307 if (size == 4) {
2308 vtd_set_long(s, addr, val);
2309 } else {
2310 vtd_set_quad(s, addr, val);
2311 }
2312 break;
2313
2314 case DMAR_IVA_REG_HI:
2315 assert(size == 4);
2316 vtd_set_long(s, addr, val);
2317 break;
2318
2319 /* Fault Status Register, 32-bit */
2320 case DMAR_FSTS_REG:
2321 assert(size == 4);
2322 vtd_set_long(s, addr, val);
2323 vtd_handle_fsts_write(s);
2324 break;
2325
2326 /* Fault Event Control Register, 32-bit */
2327 case DMAR_FECTL_REG:
2328 assert(size == 4);
2329 vtd_set_long(s, addr, val);
2330 vtd_handle_fectl_write(s);
2331 break;
2332
2333 /* Fault Event Data Register, 32-bit */
2334 case DMAR_FEDATA_REG:
2335 assert(size == 4);
2336 vtd_set_long(s, addr, val);
2337 break;
2338
2339 /* Fault Event Address Register, 32-bit */
2340 case DMAR_FEADDR_REG:
2341 if (size == 4) {
2342 vtd_set_long(s, addr, val);
2343 } else {
2344 /*
2345 * While the register is 32-bit only, some guests (Xen...) write to
2346 * it with 64-bit.
2347 */
2348 vtd_set_quad(s, addr, val);
2349 }
2350 break;
2351
2352 /* Fault Event Upper Address Register, 32-bit */
2353 case DMAR_FEUADDR_REG:
2354 assert(size == 4);
2355 vtd_set_long(s, addr, val);
2356 break;
2357
2358 /* Protected Memory Enable Register, 32-bit */
2359 case DMAR_PMEN_REG:
2360 assert(size == 4);
2361 vtd_set_long(s, addr, val);
2362 break;
2363
2364 /* Root Table Address Register, 64-bit */
2365 case DMAR_RTADDR_REG:
2366 if (size == 4) {
2367 vtd_set_long(s, addr, val);
2368 } else {
2369 vtd_set_quad(s, addr, val);
2370 }
2371 break;
2372
2373 case DMAR_RTADDR_REG_HI:
2374 assert(size == 4);
2375 vtd_set_long(s, addr, val);
2376 break;
2377
2378 /* Invalidation Queue Tail Register, 64-bit */
2379 case DMAR_IQT_REG:
2380 if (size == 4) {
2381 vtd_set_long(s, addr, val);
2382 } else {
2383 vtd_set_quad(s, addr, val);
2384 }
2385 vtd_handle_iqt_write(s);
2386 break;
2387
2388 case DMAR_IQT_REG_HI:
2389 assert(size == 4);
2390 vtd_set_long(s, addr, val);
2391 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2392 break;
2393
2394 /* Invalidation Queue Address Register, 64-bit */
2395 case DMAR_IQA_REG:
2396 if (size == 4) {
2397 vtd_set_long(s, addr, val);
2398 } else {
2399 vtd_set_quad(s, addr, val);
2400 }
2401 break;
2402
2403 case DMAR_IQA_REG_HI:
2404 assert(size == 4);
2405 vtd_set_long(s, addr, val);
2406 break;
2407
2408 /* Invalidation Completion Status Register, 32-bit */
2409 case DMAR_ICS_REG:
2410 assert(size == 4);
2411 vtd_set_long(s, addr, val);
2412 vtd_handle_ics_write(s);
2413 break;
2414
2415 /* Invalidation Event Control Register, 32-bit */
2416 case DMAR_IECTL_REG:
2417 assert(size == 4);
2418 vtd_set_long(s, addr, val);
2419 vtd_handle_iectl_write(s);
2420 break;
2421
2422 /* Invalidation Event Data Register, 32-bit */
2423 case DMAR_IEDATA_REG:
2424 assert(size == 4);
2425 vtd_set_long(s, addr, val);
2426 break;
2427
2428 /* Invalidation Event Address Register, 32-bit */
2429 case DMAR_IEADDR_REG:
2430 assert(size == 4);
2431 vtd_set_long(s, addr, val);
2432 break;
2433
2434 /* Invalidation Event Upper Address Register, 32-bit */
2435 case DMAR_IEUADDR_REG:
2436 assert(size == 4);
2437 vtd_set_long(s, addr, val);
2438 break;
2439
2440 /* Fault Recording Registers, 128-bit */
2441 case DMAR_FRCD_REG_0_0:
2442 if (size == 4) {
2443 vtd_set_long(s, addr, val);
2444 } else {
2445 vtd_set_quad(s, addr, val);
2446 }
2447 break;
2448
2449 case DMAR_FRCD_REG_0_1:
2450 assert(size == 4);
2451 vtd_set_long(s, addr, val);
2452 break;
2453
2454 case DMAR_FRCD_REG_0_2:
2455 if (size == 4) {
2456 vtd_set_long(s, addr, val);
2457 } else {
2458 vtd_set_quad(s, addr, val);
2459 /* May clear bit 127 (Fault), update PPF */
2460 vtd_update_fsts_ppf(s);
2461 }
2462 break;
2463
2464 case DMAR_FRCD_REG_0_3:
2465 assert(size == 4);
2466 vtd_set_long(s, addr, val);
2467 /* May clear bit 127 (Fault), update PPF */
2468 vtd_update_fsts_ppf(s);
2469 break;
2470
2471 case DMAR_IRTA_REG:
2472 if (size == 4) {
2473 vtd_set_long(s, addr, val);
2474 } else {
2475 vtd_set_quad(s, addr, val);
2476 }
2477 break;
2478
2479 case DMAR_IRTA_REG_HI:
2480 assert(size == 4);
2481 vtd_set_long(s, addr, val);
2482 break;
2483
2484 default:
2485 if (size == 4) {
2486 vtd_set_long(s, addr, val);
2487 } else {
2488 vtd_set_quad(s, addr, val);
2489 }
2490 }
2491 }
2492
2493 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2494 IOMMUAccessFlags flag, int iommu_idx)
2495 {
2496 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2497 IntelIOMMUState *s = vtd_as->iommu_state;
2498 IOMMUTLBEntry iotlb = {
2499 /* We'll fill in the rest later. */
2500 .target_as = &address_space_memory,
2501 };
2502 bool success;
2503
2504 if (likely(s->dmar_enabled)) {
2505 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2506 addr, flag & IOMMU_WO, &iotlb);
2507 } else {
2508 /* DMAR disabled, passthrough, use 4k-page*/
2509 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2510 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2511 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2512 iotlb.perm = IOMMU_RW;
2513 success = true;
2514 }
2515
2516 if (likely(success)) {
2517 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2518 VTD_PCI_SLOT(vtd_as->devfn),
2519 VTD_PCI_FUNC(vtd_as->devfn),
2520 iotlb.iova, iotlb.translated_addr,
2521 iotlb.addr_mask);
2522 } else {
2523 error_report_once("%s: detected translation failure "
2524 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2525 __func__, pci_bus_num(vtd_as->bus),
2526 VTD_PCI_SLOT(vtd_as->devfn),
2527 VTD_PCI_FUNC(vtd_as->devfn),
2528 iotlb.iova);
2529 }
2530
2531 return iotlb;
2532 }
2533
2534 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2535 IOMMUNotifierFlag old,
2536 IOMMUNotifierFlag new)
2537 {
2538 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2539 IntelIOMMUState *s = vtd_as->iommu_state;
2540
2541 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2542 error_report("We need to set caching-mode=1 for intel-iommu to enable "
2543 "device assignment with IOMMU protection.");
2544 exit(1);
2545 }
2546
2547 /* Update per-address-space notifier flags */
2548 vtd_as->notifier_flags = new;
2549
2550 if (old == IOMMU_NOTIFIER_NONE) {
2551 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2552 } else if (new == IOMMU_NOTIFIER_NONE) {
2553 QLIST_REMOVE(vtd_as, next);
2554 }
2555 }
2556
2557 static int vtd_post_load(void *opaque, int version_id)
2558 {
2559 IntelIOMMUState *iommu = opaque;
2560
2561 /*
2562 * Memory regions are dynamically turned on/off depending on
2563 * context entry configurations from the guest. After migration,
2564 * we need to make sure the memory regions are still correct.
2565 */
2566 vtd_switch_address_space_all(iommu);
2567
2568 return 0;
2569 }
2570
2571 static const VMStateDescription vtd_vmstate = {
2572 .name = "iommu-intel",
2573 .version_id = 1,
2574 .minimum_version_id = 1,
2575 .priority = MIG_PRI_IOMMU,
2576 .post_load = vtd_post_load,
2577 .fields = (VMStateField[]) {
2578 VMSTATE_UINT64(root, IntelIOMMUState),
2579 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2580 VMSTATE_UINT64(iq, IntelIOMMUState),
2581 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2582 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2583 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2584 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2585 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2586 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2587 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2588 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2589 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2590 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2591 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2592 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2593 VMSTATE_END_OF_LIST()
2594 }
2595 };
2596
2597 static const MemoryRegionOps vtd_mem_ops = {
2598 .read = vtd_mem_read,
2599 .write = vtd_mem_write,
2600 .endianness = DEVICE_LITTLE_ENDIAN,
2601 .impl = {
2602 .min_access_size = 4,
2603 .max_access_size = 8,
2604 },
2605 .valid = {
2606 .min_access_size = 4,
2607 .max_access_size = 8,
2608 },
2609 };
2610
2611 static Property vtd_properties[] = {
2612 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2613 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2614 ON_OFF_AUTO_AUTO),
2615 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2616 DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
2617 VTD_HOST_ADDRESS_WIDTH),
2618 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2619 DEFINE_PROP_END_OF_LIST(),
2620 };
2621
2622 /* Read IRTE entry with specific index */
2623 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2624 VTD_IR_TableEntry *entry, uint16_t sid)
2625 {
2626 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2627 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2628 dma_addr_t addr = 0x00;
2629 uint16_t mask, source_id;
2630 uint8_t bus, bus_max, bus_min;
2631
2632 addr = iommu->intr_root + index * sizeof(*entry);
2633 if (dma_memory_read(&address_space_memory, addr, entry,
2634 sizeof(*entry))) {
2635 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
2636 __func__, index, addr);
2637 return -VTD_FR_IR_ROOT_INVAL;
2638 }
2639
2640 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2641 le64_to_cpu(entry->data[0]));
2642
2643 if (!entry->irte.present) {
2644 error_report_once("%s: detected non-present IRTE "
2645 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
2646 __func__, index, le64_to_cpu(entry->data[1]),
2647 le64_to_cpu(entry->data[0]));
2648 return -VTD_FR_IR_ENTRY_P;
2649 }
2650
2651 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2652 entry->irte.__reserved_2) {
2653 error_report_once("%s: detected non-zero reserved IRTE "
2654 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
2655 __func__, index, le64_to_cpu(entry->data[1]),
2656 le64_to_cpu(entry->data[0]));
2657 return -VTD_FR_IR_IRTE_RSVD;
2658 }
2659
2660 if (sid != X86_IOMMU_SID_INVALID) {
2661 /* Validate IRTE SID */
2662 source_id = le32_to_cpu(entry->irte.source_id);
2663 switch (entry->irte.sid_vtype) {
2664 case VTD_SVT_NONE:
2665 break;
2666
2667 case VTD_SVT_ALL:
2668 mask = vtd_svt_mask[entry->irte.sid_q];
2669 if ((source_id & mask) != (sid & mask)) {
2670 error_report_once("%s: invalid IRTE SID "
2671 "(index=%u, sid=%u, source_id=%u)",
2672 __func__, index, sid, source_id);
2673 return -VTD_FR_IR_SID_ERR;
2674 }
2675 break;
2676
2677 case VTD_SVT_BUS:
2678 bus_max = source_id >> 8;
2679 bus_min = source_id & 0xff;
2680 bus = sid >> 8;
2681 if (bus > bus_max || bus < bus_min) {
2682 error_report_once("%s: invalid SVT_BUS "
2683 "(index=%u, bus=%u, min=%u, max=%u)",
2684 __func__, index, bus, bus_min, bus_max);
2685 return -VTD_FR_IR_SID_ERR;
2686 }
2687 break;
2688
2689 default:
2690 error_report_once("%s: detected invalid IRTE SVT "
2691 "(index=%u, type=%d)", __func__,
2692 index, entry->irte.sid_vtype);
2693 /* Take this as verification failure. */
2694 return -VTD_FR_IR_SID_ERR;
2695 break;
2696 }
2697 }
2698
2699 return 0;
2700 }
2701
2702 /* Fetch IRQ information of specific IR index */
2703 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2704 VTDIrq *irq, uint16_t sid)
2705 {
2706 VTD_IR_TableEntry irte = {};
2707 int ret = 0;
2708
2709 ret = vtd_irte_get(iommu, index, &irte, sid);
2710 if (ret) {
2711 return ret;
2712 }
2713
2714 irq->trigger_mode = irte.irte.trigger_mode;
2715 irq->vector = irte.irte.vector;
2716 irq->delivery_mode = irte.irte.delivery_mode;
2717 irq->dest = le32_to_cpu(irte.irte.dest_id);
2718 if (!iommu->intr_eime) {
2719 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2720 #define VTD_IR_APIC_DEST_SHIFT (8)
2721 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2722 VTD_IR_APIC_DEST_SHIFT;
2723 }
2724 irq->dest_mode = irte.irte.dest_mode;
2725 irq->redir_hint = irte.irte.redir_hint;
2726
2727 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2728 irq->delivery_mode, irq->dest, irq->dest_mode);
2729
2730 return 0;
2731 }
2732
2733 /* Generate one MSI message from VTDIrq info */
2734 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2735 {
2736 VTD_MSIMessage msg = {};
2737
2738 /* Generate address bits */
2739 msg.dest_mode = irq->dest_mode;
2740 msg.redir_hint = irq->redir_hint;
2741 msg.dest = irq->dest;
2742 msg.__addr_hi = irq->dest & 0xffffff00;
2743 msg.__addr_head = cpu_to_le32(0xfee);
2744 /* Keep this from original MSI address bits */
2745 msg.__not_used = irq->msi_addr_last_bits;
2746
2747 /* Generate data bits */
2748 msg.vector = irq->vector;
2749 msg.delivery_mode = irq->delivery_mode;
2750 msg.level = 1;
2751 msg.trigger_mode = irq->trigger_mode;
2752
2753 msg_out->address = msg.msi_addr;
2754 msg_out->data = msg.msi_data;
2755 }
2756
2757 /* Interrupt remapping for MSI/MSI-X entry */
2758 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2759 MSIMessage *origin,
2760 MSIMessage *translated,
2761 uint16_t sid)
2762 {
2763 int ret = 0;
2764 VTD_IR_MSIAddress addr;
2765 uint16_t index;
2766 VTDIrq irq = {};
2767
2768 assert(origin && translated);
2769
2770 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2771
2772 if (!iommu || !iommu->intr_enabled) {
2773 memcpy(translated, origin, sizeof(*origin));
2774 goto out;
2775 }
2776
2777 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2778 error_report_once("%s: MSI address high 32 bits non-zero detected: "
2779 "address=0x%" PRIx64, __func__, origin->address);
2780 return -VTD_FR_IR_REQ_RSVD;
2781 }
2782
2783 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2784 if (addr.addr.__head != 0xfee) {
2785 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
2786 __func__, addr.data);
2787 return -VTD_FR_IR_REQ_RSVD;
2788 }
2789
2790 /* This is compatible mode. */
2791 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2792 memcpy(translated, origin, sizeof(*origin));
2793 goto out;
2794 }
2795
2796 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2797
2798 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2799 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2800
2801 if (addr.addr.sub_valid) {
2802 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2803 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2804 }
2805
2806 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2807 if (ret) {
2808 return ret;
2809 }
2810
2811 if (addr.addr.sub_valid) {
2812 trace_vtd_ir_remap_type("MSI");
2813 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2814 error_report_once("%s: invalid IR MSI "
2815 "(sid=%u, address=0x%" PRIx64
2816 ", data=0x%" PRIx32 ")",
2817 __func__, sid, origin->address, origin->data);
2818 return -VTD_FR_IR_REQ_RSVD;
2819 }
2820 } else {
2821 uint8_t vector = origin->data & 0xff;
2822 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2823
2824 trace_vtd_ir_remap_type("IOAPIC");
2825 /* IOAPIC entry vector should be aligned with IRTE vector
2826 * (see vt-d spec 5.1.5.1). */
2827 if (vector != irq.vector) {
2828 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2829 }
2830
2831 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2832 * (see vt-d spec 5.1.5.1). */
2833 if (trigger_mode != irq.trigger_mode) {
2834 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2835 irq.trigger_mode);
2836 }
2837 }
2838
2839 /*
2840 * We'd better keep the last two bits, assuming that guest OS
2841 * might modify it. Keep it does not hurt after all.
2842 */
2843 irq.msi_addr_last_bits = addr.addr.__not_care;
2844
2845 /* Translate VTDIrq to MSI message */
2846 vtd_generate_msi_message(&irq, translated);
2847
2848 out:
2849 trace_vtd_ir_remap_msi(origin->address, origin->data,
2850 translated->address, translated->data);
2851 return 0;
2852 }
2853
2854 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2855 MSIMessage *dst, uint16_t sid)
2856 {
2857 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2858 src, dst, sid);
2859 }
2860
2861 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2862 uint64_t *data, unsigned size,
2863 MemTxAttrs attrs)
2864 {
2865 return MEMTX_OK;
2866 }
2867
2868 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2869 uint64_t value, unsigned size,
2870 MemTxAttrs attrs)
2871 {
2872 int ret = 0;
2873 MSIMessage from = {}, to = {};
2874 uint16_t sid = X86_IOMMU_SID_INVALID;
2875
2876 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2877 from.data = (uint32_t) value;
2878
2879 if (!attrs.unspecified) {
2880 /* We have explicit Source ID */
2881 sid = attrs.requester_id;
2882 }
2883
2884 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2885 if (ret) {
2886 /* TODO: report error */
2887 /* Drop this interrupt */
2888 return MEMTX_ERROR;
2889 }
2890
2891 apic_get_class()->send_msi(&to);
2892
2893 return MEMTX_OK;
2894 }
2895
2896 static const MemoryRegionOps vtd_mem_ir_ops = {
2897 .read_with_attrs = vtd_mem_ir_read,
2898 .write_with_attrs = vtd_mem_ir_write,
2899 .endianness = DEVICE_LITTLE_ENDIAN,
2900 .impl = {
2901 .min_access_size = 4,
2902 .max_access_size = 4,
2903 },
2904 .valid = {
2905 .min_access_size = 4,
2906 .max_access_size = 4,
2907 },
2908 };
2909
2910 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2911 {
2912 uintptr_t key = (uintptr_t)bus;
2913 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2914 VTDAddressSpace *vtd_dev_as;
2915 char name[128];
2916
2917 if (!vtd_bus) {
2918 uintptr_t *new_key = g_malloc(sizeof(*new_key));
2919 *new_key = (uintptr_t)bus;
2920 /* No corresponding free() */
2921 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2922 PCI_DEVFN_MAX);
2923 vtd_bus->bus = bus;
2924 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2925 }
2926
2927 vtd_dev_as = vtd_bus->dev_as[devfn];
2928
2929 if (!vtd_dev_as) {
2930 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2931 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2932
2933 vtd_dev_as->bus = bus;
2934 vtd_dev_as->devfn = (uint8_t)devfn;
2935 vtd_dev_as->iommu_state = s;
2936 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2937 vtd_dev_as->iova_tree = iova_tree_new();
2938
2939 /*
2940 * Memory region relationships looks like (Address range shows
2941 * only lower 32 bits to make it short in length...):
2942 *
2943 * |-----------------+-------------------+----------|
2944 * | Name | Address range | Priority |
2945 * |-----------------+-------------------+----------+
2946 * | vtd_root | 00000000-ffffffff | 0 |
2947 * | intel_iommu | 00000000-ffffffff | 1 |
2948 * | vtd_sys_alias | 00000000-ffffffff | 1 |
2949 * | intel_iommu_ir | fee00000-feefffff | 64 |
2950 * |-----------------+-------------------+----------|
2951 *
2952 * We enable/disable DMAR by switching enablement for
2953 * vtd_sys_alias and intel_iommu regions. IR region is always
2954 * enabled.
2955 */
2956 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2957 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2958 "intel_iommu_dmar",
2959 UINT64_MAX);
2960 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2961 "vtd_sys_alias", get_system_memory(),
2962 0, memory_region_size(get_system_memory()));
2963 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2964 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2965 VTD_INTERRUPT_ADDR_SIZE);
2966 memory_region_init(&vtd_dev_as->root, OBJECT(s),
2967 "vtd_root", UINT64_MAX);
2968 memory_region_add_subregion_overlap(&vtd_dev_as->root,
2969 VTD_INTERRUPT_ADDR_FIRST,
2970 &vtd_dev_as->iommu_ir, 64);
2971 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2972 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2973 &vtd_dev_as->sys_alias, 1);
2974 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2975 MEMORY_REGION(&vtd_dev_as->iommu),
2976 1);
2977 vtd_switch_address_space(vtd_dev_as);
2978 }
2979 return vtd_dev_as;
2980 }
2981
2982 /* Unmap the whole range in the notifier's scope. */
2983 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2984 {
2985 IOMMUTLBEntry entry;
2986 hwaddr size;
2987 hwaddr start = n->start;
2988 hwaddr end = n->end;
2989 IntelIOMMUState *s = as->iommu_state;
2990 DMAMap map;
2991
2992 /*
2993 * Note: all the codes in this function has a assumption that IOVA
2994 * bits are no more than VTD_MGAW bits (which is restricted by
2995 * VT-d spec), otherwise we need to consider overflow of 64 bits.
2996 */
2997
2998 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
2999 /*
3000 * Don't need to unmap regions that is bigger than the whole
3001 * VT-d supported address space size
3002 */
3003 end = VTD_ADDRESS_SIZE(s->aw_bits);
3004 }
3005
3006 assert(start <= end);
3007 size = end - start;
3008
3009 if (ctpop64(size) != 1) {
3010 /*
3011 * This size cannot format a correct mask. Let's enlarge it to
3012 * suite the minimum available mask.
3013 */
3014 int n = 64 - clz64(size);
3015 if (n > s->aw_bits) {
3016 /* should not happen, but in case it happens, limit it */
3017 n = s->aw_bits;
3018 }
3019 size = 1ULL << n;
3020 }
3021
3022 entry.target_as = &address_space_memory;
3023 /* Adjust iova for the size */
3024 entry.iova = n->start & ~(size - 1);
3025 /* This field is meaningless for unmap */
3026 entry.translated_addr = 0;
3027 entry.perm = IOMMU_NONE;
3028 entry.addr_mask = size - 1;
3029
3030 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3031 VTD_PCI_SLOT(as->devfn),
3032 VTD_PCI_FUNC(as->devfn),
3033 entry.iova, size);
3034
3035 map.iova = entry.iova;
3036 map.size = entry.addr_mask;
3037 iova_tree_remove(as->iova_tree, &map);
3038
3039 memory_region_notify_one(n, &entry);
3040 }
3041
3042 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3043 {
3044 VTDAddressSpace *vtd_as;
3045 IOMMUNotifier *n;
3046
3047 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3048 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3049 vtd_address_space_unmap(vtd_as, n);
3050 }
3051 }
3052 }
3053
3054 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3055 {
3056 memory_region_notify_one((IOMMUNotifier *)private, entry);
3057 return 0;
3058 }
3059
3060 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3061 {
3062 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3063 IntelIOMMUState *s = vtd_as->iommu_state;
3064 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3065 VTDContextEntry ce;
3066
3067 /*
3068 * The replay can be triggered by either a invalidation or a newly
3069 * created entry. No matter what, we release existing mappings
3070 * (it means flushing caches for UNMAP-only registers).
3071 */
3072 vtd_address_space_unmap(vtd_as, n);
3073
3074 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3075 trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
3076 PCI_FUNC(vtd_as->devfn),
3077 VTD_CONTEXT_ENTRY_DID(ce.hi),
3078 ce.hi, ce.lo);
3079 if (vtd_as_has_map_notifier(vtd_as)) {
3080 /* This is required only for MAP typed notifiers */
3081 vtd_page_walk_info info = {
3082 .hook_fn = vtd_replay_hook,
3083 .private = (void *)n,
3084 .notify_unmap = false,
3085 .aw = s->aw_bits,
3086 .as = vtd_as,
3087 .domain_id = VTD_CONTEXT_ENTRY_DID(ce.hi),
3088 };
3089
3090 vtd_page_walk(&ce, 0, ~0ULL, &info);
3091 }
3092 } else {
3093 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3094 PCI_FUNC(vtd_as->devfn));
3095 }
3096
3097 return;
3098 }
3099
3100 /* Do the initialization. It will also be called when reset, so pay
3101 * attention when adding new initialization stuff.
3102 */
3103 static void vtd_init(IntelIOMMUState *s)
3104 {
3105 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3106
3107 memset(s->csr, 0, DMAR_REG_SIZE);
3108 memset(s->wmask, 0, DMAR_REG_SIZE);
3109 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3110 memset(s->womask, 0, DMAR_REG_SIZE);
3111
3112 s->root = 0;
3113 s->root_extended = false;
3114 s->dmar_enabled = false;
3115 s->iq_head = 0;
3116 s->iq_tail = 0;
3117 s->iq = 0;
3118 s->iq_size = 0;
3119 s->qi_enabled = false;
3120 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3121 s->next_frcd_reg = 0;
3122 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3123 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3124 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3125 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3126 s->cap |= VTD_CAP_SAGAW_48bit;
3127 }
3128 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3129
3130 /*
3131 * Rsvd field masks for spte
3132 */
3133 vtd_paging_entry_rsvd_field[0] = ~0ULL;
3134 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3135 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3136 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3137 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3138 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3139 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3140 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3141 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3142
3143 if (x86_iommu->intr_supported) {
3144 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3145 if (s->intr_eim == ON_OFF_AUTO_ON) {
3146 s->ecap |= VTD_ECAP_EIM;
3147 }
3148 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3149 }
3150
3151 if (x86_iommu->dt_supported) {
3152 s->ecap |= VTD_ECAP_DT;
3153 }
3154
3155 if (x86_iommu->pt_supported) {
3156 s->ecap |= VTD_ECAP_PT;
3157 }
3158
3159 if (s->caching_mode) {
3160 s->cap |= VTD_CAP_CM;
3161 }
3162
3163 vtd_iommu_lock(s);
3164 vtd_reset_context_cache_locked(s);
3165 vtd_reset_iotlb_locked(s);
3166 vtd_iommu_unlock(s);
3167
3168 /* Define registers with default values and bit semantics */
3169 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3170 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3171 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3172 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3173 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3174 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3175 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
3176 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3177 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3178
3179 /* Advanced Fault Logging not supported */
3180 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3181 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3182 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3183 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3184
3185 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3186 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3187 */
3188 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3189
3190 /* Treated as RO for implementations that PLMR and PHMR fields reported
3191 * as Clear in the CAP_REG.
3192 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3193 */
3194 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3195
3196 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3197 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3198 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
3199 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3200 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3201 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3202 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3203 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3204 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3205
3206 /* IOTLB registers */
3207 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3208 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3209 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3210
3211 /* Fault Recording Registers, 128-bit */
3212 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3213 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3214
3215 /*
3216 * Interrupt remapping registers.
3217 */
3218 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3219 }
3220
3221 /* Should not reset address_spaces when reset because devices will still use
3222 * the address space they got at first (won't ask the bus again).
3223 */
3224 static void vtd_reset(DeviceState *dev)
3225 {
3226 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3227
3228 vtd_init(s);
3229
3230 /*
3231 * When device reset, throw away all mappings and external caches
3232 */
3233 vtd_address_space_unmap_all(s);
3234 }
3235
3236 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3237 {
3238 IntelIOMMUState *s = opaque;
3239 VTDAddressSpace *vtd_as;
3240
3241 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3242
3243 vtd_as = vtd_find_add_as(s, bus, devfn);
3244 return &vtd_as->as;
3245 }
3246
3247 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3248 {
3249 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3250
3251 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
3252 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
3253 !kvm_irqchip_is_split()) {
3254 error_setg(errp, "Intel Interrupt Remapping cannot work with "
3255 "kernel-irqchip=on, please use 'split|off'.");
3256 return false;
3257 }
3258 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3259 error_setg(errp, "eim=on cannot be selected without intremap=on");
3260 return false;
3261 }
3262
3263 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3264 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3265 && x86_iommu->intr_supported ?
3266 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3267 }
3268 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3269 if (!kvm_irqchip_in_kernel()) {
3270 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3271 return false;
3272 }
3273 if (!kvm_enable_x2apic()) {
3274 error_setg(errp, "eim=on requires support on the KVM side"
3275 "(X2APIC_API, first shipped in v4.7)");
3276 return false;
3277 }
3278 }
3279
3280 /* Currently only address widths supported are 39 and 48 bits */
3281 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3282 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3283 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3284 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3285 return false;
3286 }
3287
3288 return true;
3289 }
3290
3291 static void vtd_realize(DeviceState *dev, Error **errp)
3292 {
3293 MachineState *ms = MACHINE(qdev_get_machine());
3294 PCMachineState *pcms = PC_MACHINE(ms);
3295 PCIBus *bus = pcms->bus;
3296 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3297 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3298
3299 x86_iommu->type = TYPE_INTEL;
3300
3301 if (!vtd_decide_config(s, errp)) {
3302 return;
3303 }
3304
3305 QLIST_INIT(&s->vtd_as_with_notifiers);
3306 qemu_mutex_init(&s->iommu_lock);
3307 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3308 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3309 "intel_iommu", DMAR_REG_SIZE);
3310 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3311 /* No corresponding destroy */
3312 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3313 g_free, g_free);
3314 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3315 g_free, g_free);
3316 vtd_init(s);
3317 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3318 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3319 /* Pseudo address space under root PCI bus. */
3320 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3321 }
3322
3323 static void vtd_class_init(ObjectClass *klass, void *data)
3324 {
3325 DeviceClass *dc = DEVICE_CLASS(klass);
3326 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3327
3328 dc->reset = vtd_reset;
3329 dc->vmsd = &vtd_vmstate;
3330 dc->props = vtd_properties;
3331 dc->hotpluggable = false;
3332 x86_class->realize = vtd_realize;
3333 x86_class->int_remap = vtd_int_remap;
3334 /* Supported by the pc-q35-* machine types */
3335 dc->user_creatable = true;
3336 }
3337
3338 static const TypeInfo vtd_info = {
3339 .name = TYPE_INTEL_IOMMU_DEVICE,
3340 .parent = TYPE_X86_IOMMU_DEVICE,
3341 .instance_size = sizeof(IntelIOMMUState),
3342 .class_init = vtd_class_init,
3343 };
3344
3345 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3346 void *data)
3347 {
3348 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3349
3350 imrc->translate = vtd_iommu_translate;
3351 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3352 imrc->replay = vtd_iommu_replay;
3353 }
3354
3355 static const TypeInfo vtd_iommu_memory_region_info = {
3356 .parent = TYPE_IOMMU_MEMORY_REGION,
3357 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3358 .class_init = vtd_iommu_memory_region_class_init,
3359 };
3360
3361 static void vtd_register_types(void)
3362 {
3363 type_register_static(&vtd_info);
3364 type_register_static(&vtd_iommu_memory_region_info);
3365 }
3366
3367 type_init(vtd_register_types)