]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
Merge remote-tracking branch 'remotes/kraxel/tags/vga-20180524-pull-request' into...
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
39
40 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
41 uint64_t wmask, uint64_t w1cmask)
42 {
43 stq_le_p(&s->csr[addr], val);
44 stq_le_p(&s->wmask[addr], wmask);
45 stq_le_p(&s->w1cmask[addr], w1cmask);
46 }
47
48 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
49 {
50 stq_le_p(&s->womask[addr], mask);
51 }
52
53 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
54 uint32_t wmask, uint32_t w1cmask)
55 {
56 stl_le_p(&s->csr[addr], val);
57 stl_le_p(&s->wmask[addr], wmask);
58 stl_le_p(&s->w1cmask[addr], w1cmask);
59 }
60
61 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
62 {
63 stl_le_p(&s->womask[addr], mask);
64 }
65
66 /* "External" get/set operations */
67 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
68 {
69 uint64_t oldval = ldq_le_p(&s->csr[addr]);
70 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
71 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
72 stq_le_p(&s->csr[addr],
73 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
74 }
75
76 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
77 {
78 uint32_t oldval = ldl_le_p(&s->csr[addr]);
79 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
80 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
81 stl_le_p(&s->csr[addr],
82 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
83 }
84
85 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
86 {
87 uint64_t val = ldq_le_p(&s->csr[addr]);
88 uint64_t womask = ldq_le_p(&s->womask[addr]);
89 return val & ~womask;
90 }
91
92 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
93 {
94 uint32_t val = ldl_le_p(&s->csr[addr]);
95 uint32_t womask = ldl_le_p(&s->womask[addr]);
96 return val & ~womask;
97 }
98
99 /* "Internal" get/set operations */
100 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
101 {
102 return ldq_le_p(&s->csr[addr]);
103 }
104
105 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
106 {
107 return ldl_le_p(&s->csr[addr]);
108 }
109
110 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
111 {
112 stq_le_p(&s->csr[addr], val);
113 }
114
115 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
116 uint32_t clear, uint32_t mask)
117 {
118 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
119 stl_le_p(&s->csr[addr], new_val);
120 return new_val;
121 }
122
123 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
124 uint64_t clear, uint64_t mask)
125 {
126 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
127 stq_le_p(&s->csr[addr], new_val);
128 return new_val;
129 }
130
131 static inline void vtd_iommu_lock(IntelIOMMUState *s)
132 {
133 qemu_mutex_lock(&s->iommu_lock);
134 }
135
136 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
137 {
138 qemu_mutex_unlock(&s->iommu_lock);
139 }
140
141 /* Whether the address space needs to notify new mappings */
142 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
143 {
144 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
145 }
146
147 /* GHashTable functions */
148 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
149 {
150 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
151 }
152
153 static guint vtd_uint64_hash(gconstpointer v)
154 {
155 return (guint)*(const uint64_t *)v;
156 }
157
158 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
159 gpointer user_data)
160 {
161 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
162 uint16_t domain_id = *(uint16_t *)user_data;
163 return entry->domain_id == domain_id;
164 }
165
166 /* The shift of an addr for a certain level of paging structure */
167 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
168 {
169 assert(level != 0);
170 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
171 }
172
173 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
174 {
175 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
176 }
177
178 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
179 gpointer user_data)
180 {
181 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
182 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
183 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
184 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
185 return (entry->domain_id == info->domain_id) &&
186 (((entry->gfn & info->mask) == gfn) ||
187 (entry->gfn == gfn_tlb));
188 }
189
190 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
191 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
192 */
193 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
194 {
195 VTDAddressSpace *vtd_as;
196 VTDBus *vtd_bus;
197 GHashTableIter bus_it;
198 uint32_t devfn_it;
199
200 trace_vtd_context_cache_reset();
201
202 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
203
204 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
205 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
206 vtd_as = vtd_bus->dev_as[devfn_it];
207 if (!vtd_as) {
208 continue;
209 }
210 vtd_as->context_cache_entry.context_cache_gen = 0;
211 }
212 }
213 s->context_cache_gen = 1;
214 }
215
216 /* Must be called with IOMMU lock held. */
217 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
218 {
219 assert(s->iotlb);
220 g_hash_table_remove_all(s->iotlb);
221 }
222
223 static void vtd_reset_iotlb(IntelIOMMUState *s)
224 {
225 vtd_iommu_lock(s);
226 vtd_reset_iotlb_locked(s);
227 vtd_iommu_unlock(s);
228 }
229
230 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
231 uint32_t level)
232 {
233 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
234 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
235 }
236
237 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
238 {
239 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
240 }
241
242 /* Must be called with IOMMU lock held */
243 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
244 hwaddr addr)
245 {
246 VTDIOTLBEntry *entry;
247 uint64_t key;
248 int level;
249
250 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
251 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
252 source_id, level);
253 entry = g_hash_table_lookup(s->iotlb, &key);
254 if (entry) {
255 goto out;
256 }
257 }
258
259 out:
260 return entry;
261 }
262
263 /* Must be with IOMMU lock held */
264 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
265 uint16_t domain_id, hwaddr addr, uint64_t slpte,
266 uint8_t access_flags, uint32_t level)
267 {
268 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
269 uint64_t *key = g_malloc(sizeof(*key));
270 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
271
272 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
273 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
274 trace_vtd_iotlb_reset("iotlb exceeds size limit");
275 vtd_reset_iotlb_locked(s);
276 }
277
278 entry->gfn = gfn;
279 entry->domain_id = domain_id;
280 entry->slpte = slpte;
281 entry->access_flags = access_flags;
282 entry->mask = vtd_slpt_level_page_mask(level);
283 *key = vtd_get_iotlb_key(gfn, source_id, level);
284 g_hash_table_replace(s->iotlb, key, entry);
285 }
286
287 /* Given the reg addr of both the message data and address, generate an
288 * interrupt via MSI.
289 */
290 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
291 hwaddr mesg_data_reg)
292 {
293 MSIMessage msi;
294
295 assert(mesg_data_reg < DMAR_REG_SIZE);
296 assert(mesg_addr_reg < DMAR_REG_SIZE);
297
298 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
299 msi.data = vtd_get_long_raw(s, mesg_data_reg);
300
301 trace_vtd_irq_generate(msi.address, msi.data);
302
303 apic_get_class()->send_msi(&msi);
304 }
305
306 /* Generate a fault event to software via MSI if conditions are met.
307 * Notice that the value of FSTS_REG being passed to it should be the one
308 * before any update.
309 */
310 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
311 {
312 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
313 pre_fsts & VTD_FSTS_IQE) {
314 trace_vtd_err("There are previous interrupt conditions "
315 "to be serviced by software, fault event "
316 "is not generated.");
317 return;
318 }
319 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
320 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
321 trace_vtd_err("Interrupt Mask set, irq is not generated.");
322 } else {
323 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
324 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
325 }
326 }
327
328 /* Check if the Fault (F) field of the Fault Recording Register referenced by
329 * @index is Set.
330 */
331 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
332 {
333 /* Each reg is 128-bit */
334 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
335 addr += 8; /* Access the high 64-bit half */
336
337 assert(index < DMAR_FRCD_REG_NR);
338
339 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
340 }
341
342 /* Update the PPF field of Fault Status Register.
343 * Should be called whenever change the F field of any fault recording
344 * registers.
345 */
346 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
347 {
348 uint32_t i;
349 uint32_t ppf_mask = 0;
350
351 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
352 if (vtd_is_frcd_set(s, i)) {
353 ppf_mask = VTD_FSTS_PPF;
354 break;
355 }
356 }
357 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
358 trace_vtd_fsts_ppf(!!ppf_mask);
359 }
360
361 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
362 {
363 /* Each reg is 128-bit */
364 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
365 addr += 8; /* Access the high 64-bit half */
366
367 assert(index < DMAR_FRCD_REG_NR);
368
369 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
370 vtd_update_fsts_ppf(s);
371 }
372
373 /* Must not update F field now, should be done later */
374 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
375 uint16_t source_id, hwaddr addr,
376 VTDFaultReason fault, bool is_write)
377 {
378 uint64_t hi = 0, lo;
379 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
380
381 assert(index < DMAR_FRCD_REG_NR);
382
383 lo = VTD_FRCD_FI(addr);
384 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
385 if (!is_write) {
386 hi |= VTD_FRCD_T;
387 }
388 vtd_set_quad_raw(s, frcd_reg_addr, lo);
389 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
390
391 trace_vtd_frr_new(index, hi, lo);
392 }
393
394 /* Try to collapse multiple pending faults from the same requester */
395 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
396 {
397 uint32_t i;
398 uint64_t frcd_reg;
399 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
400
401 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
402 frcd_reg = vtd_get_quad_raw(s, addr);
403 if ((frcd_reg & VTD_FRCD_F) &&
404 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
405 return true;
406 }
407 addr += 16; /* 128-bit for each */
408 }
409 return false;
410 }
411
412 /* Log and report an DMAR (address translation) fault to software */
413 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
414 hwaddr addr, VTDFaultReason fault,
415 bool is_write)
416 {
417 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
418
419 assert(fault < VTD_FR_MAX);
420
421 if (fault == VTD_FR_RESERVED_ERR) {
422 /* This is not a normal fault reason case. Drop it. */
423 return;
424 }
425
426 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
427
428 if (fsts_reg & VTD_FSTS_PFO) {
429 trace_vtd_err("New fault is not recorded due to "
430 "Primary Fault Overflow.");
431 return;
432 }
433
434 if (vtd_try_collapse_fault(s, source_id)) {
435 trace_vtd_err("New fault is not recorded due to "
436 "compression of faults.");
437 return;
438 }
439
440 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
441 trace_vtd_err("Next Fault Recording Reg is used, "
442 "new fault is not recorded, set PFO field.");
443 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
444 return;
445 }
446
447 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
448
449 if (fsts_reg & VTD_FSTS_PPF) {
450 trace_vtd_err("There are pending faults already, "
451 "fault event is not generated.");
452 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
453 s->next_frcd_reg++;
454 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
455 s->next_frcd_reg = 0;
456 }
457 } else {
458 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
459 VTD_FSTS_FRI(s->next_frcd_reg));
460 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
461 s->next_frcd_reg++;
462 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
463 s->next_frcd_reg = 0;
464 }
465 /* This case actually cause the PPF to be Set.
466 * So generate fault event (interrupt).
467 */
468 vtd_generate_fault_event(s, fsts_reg);
469 }
470 }
471
472 /* Handle Invalidation Queue Errors of queued invalidation interface error
473 * conditions.
474 */
475 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
476 {
477 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
478
479 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
480 vtd_generate_fault_event(s, fsts_reg);
481 }
482
483 /* Set the IWC field and try to generate an invalidation completion interrupt */
484 static void vtd_generate_completion_event(IntelIOMMUState *s)
485 {
486 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
487 trace_vtd_inv_desc_wait_irq("One pending, skip current");
488 return;
489 }
490 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
491 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
492 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
493 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
494 "new event not generated");
495 return;
496 } else {
497 /* Generate the interrupt event */
498 trace_vtd_inv_desc_wait_irq("Generating complete event");
499 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
500 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
501 }
502 }
503
504 static inline bool vtd_root_entry_present(VTDRootEntry *root)
505 {
506 return root->val & VTD_ROOT_ENTRY_P;
507 }
508
509 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
510 VTDRootEntry *re)
511 {
512 dma_addr_t addr;
513
514 addr = s->root + index * sizeof(*re);
515 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
516 trace_vtd_re_invalid(re->rsvd, re->val);
517 re->val = 0;
518 return -VTD_FR_ROOT_TABLE_INV;
519 }
520 re->val = le64_to_cpu(re->val);
521 return 0;
522 }
523
524 static inline bool vtd_ce_present(VTDContextEntry *context)
525 {
526 return context->lo & VTD_CONTEXT_ENTRY_P;
527 }
528
529 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
530 VTDContextEntry *ce)
531 {
532 dma_addr_t addr;
533
534 /* we have checked that root entry is present */
535 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
536 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
537 trace_vtd_re_invalid(root->rsvd, root->val);
538 return -VTD_FR_CONTEXT_TABLE_INV;
539 }
540 ce->lo = le64_to_cpu(ce->lo);
541 ce->hi = le64_to_cpu(ce->hi);
542 return 0;
543 }
544
545 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
546 {
547 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
548 }
549
550 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
551 {
552 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
553 }
554
555 /* Whether the pte indicates the address of the page frame */
556 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
557 {
558 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
559 }
560
561 /* Get the content of a spte located in @base_addr[@index] */
562 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
563 {
564 uint64_t slpte;
565
566 assert(index < VTD_SL_PT_ENTRY_NR);
567
568 if (dma_memory_read(&address_space_memory,
569 base_addr + index * sizeof(slpte), &slpte,
570 sizeof(slpte))) {
571 slpte = (uint64_t)-1;
572 return slpte;
573 }
574 slpte = le64_to_cpu(slpte);
575 return slpte;
576 }
577
578 /* Given an iova and the level of paging structure, return the offset
579 * of current level.
580 */
581 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
582 {
583 return (iova >> vtd_slpt_level_shift(level)) &
584 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
585 }
586
587 /* Check Capability Register to see if the @level of page-table is supported */
588 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
589 {
590 return VTD_CAP_SAGAW_MASK & s->cap &
591 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
592 }
593
594 /* Get the page-table level that hardware should use for the second-level
595 * page-table walk from the Address Width field of context-entry.
596 */
597 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
598 {
599 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
600 }
601
602 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
603 {
604 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
605 }
606
607 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
608 {
609 return ce->lo & VTD_CONTEXT_ENTRY_TT;
610 }
611
612 /* Return true if check passed, otherwise false */
613 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
614 VTDContextEntry *ce)
615 {
616 switch (vtd_ce_get_type(ce)) {
617 case VTD_CONTEXT_TT_MULTI_LEVEL:
618 /* Always supported */
619 break;
620 case VTD_CONTEXT_TT_DEV_IOTLB:
621 if (!x86_iommu->dt_supported) {
622 return false;
623 }
624 break;
625 case VTD_CONTEXT_TT_PASS_THROUGH:
626 if (!x86_iommu->pt_supported) {
627 return false;
628 }
629 break;
630 default:
631 /* Unknwon type */
632 return false;
633 }
634 return true;
635 }
636
637 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
638 {
639 uint32_t ce_agaw = vtd_ce_get_agaw(ce);
640 return 1ULL << MIN(ce_agaw, aw);
641 }
642
643 /* Return true if IOVA passes range check, otherwise false. */
644 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
645 uint8_t aw)
646 {
647 /*
648 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
649 * in CAP_REG and AW in context-entry.
650 */
651 return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
652 }
653
654 /*
655 * Rsvd field masks for spte:
656 * Index [1] to [4] 4k pages
657 * Index [5] to [8] large pages
658 */
659 static uint64_t vtd_paging_entry_rsvd_field[9];
660
661 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
662 {
663 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
664 /* Maybe large page */
665 return slpte & vtd_paging_entry_rsvd_field[level + 4];
666 } else {
667 return slpte & vtd_paging_entry_rsvd_field[level];
668 }
669 }
670
671 /* Find the VTD address space associated with a given bus number */
672 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
673 {
674 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
675 if (!vtd_bus) {
676 /*
677 * Iterate over the registered buses to find the one which
678 * currently hold this bus number, and update the bus_num
679 * lookup table:
680 */
681 GHashTableIter iter;
682
683 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
684 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
685 if (pci_bus_num(vtd_bus->bus) == bus_num) {
686 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
687 return vtd_bus;
688 }
689 }
690 }
691 return vtd_bus;
692 }
693
694 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
695 * of the translation, can be used for deciding the size of large page.
696 */
697 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
698 uint64_t *slptep, uint32_t *slpte_level,
699 bool *reads, bool *writes, uint8_t aw_bits)
700 {
701 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
702 uint32_t level = vtd_ce_get_level(ce);
703 uint32_t offset;
704 uint64_t slpte;
705 uint64_t access_right_check;
706
707 if (!vtd_iova_range_check(iova, ce, aw_bits)) {
708 trace_vtd_err_dmar_iova_overflow(iova);
709 return -VTD_FR_ADDR_BEYOND_MGAW;
710 }
711
712 /* FIXME: what is the Atomics request here? */
713 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
714
715 while (true) {
716 offset = vtd_iova_level_offset(iova, level);
717 slpte = vtd_get_slpte(addr, offset);
718
719 if (slpte == (uint64_t)-1) {
720 trace_vtd_err_dmar_slpte_read_error(iova, level);
721 if (level == vtd_ce_get_level(ce)) {
722 /* Invalid programming of context-entry */
723 return -VTD_FR_CONTEXT_ENTRY_INV;
724 } else {
725 return -VTD_FR_PAGING_ENTRY_INV;
726 }
727 }
728 *reads = (*reads) && (slpte & VTD_SL_R);
729 *writes = (*writes) && (slpte & VTD_SL_W);
730 if (!(slpte & access_right_check)) {
731 trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
732 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
733 }
734 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
735 trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
736 return -VTD_FR_PAGING_ENTRY_RSVD;
737 }
738
739 if (vtd_is_last_slpte(slpte, level)) {
740 *slptep = slpte;
741 *slpte_level = level;
742 return 0;
743 }
744 addr = vtd_get_slpte_addr(slpte, aw_bits);
745 level--;
746 }
747 }
748
749 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
750
751 /**
752 * Constant information used during page walking
753 *
754 * @hook_fn: hook func to be called when detected page
755 * @private: private data to be passed into hook func
756 * @notify_unmap: whether we should notify invalid entries
757 * @as: VT-d address space of the device
758 * @aw: maximum address width
759 * @domain: domain ID of the page walk
760 */
761 typedef struct {
762 VTDAddressSpace *as;
763 vtd_page_walk_hook hook_fn;
764 void *private;
765 bool notify_unmap;
766 uint8_t aw;
767 uint16_t domain_id;
768 } vtd_page_walk_info;
769
770 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
771 {
772 VTDAddressSpace *as = info->as;
773 vtd_page_walk_hook hook_fn = info->hook_fn;
774 void *private = info->private;
775 DMAMap target = {
776 .iova = entry->iova,
777 .size = entry->addr_mask,
778 .translated_addr = entry->translated_addr,
779 .perm = entry->perm,
780 };
781 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
782
783 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
784 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
785 return 0;
786 }
787
788 assert(hook_fn);
789
790 /* Update local IOVA mapped ranges */
791 if (entry->perm) {
792 if (mapped) {
793 /* If it's exactly the same translation, skip */
794 if (!memcmp(mapped, &target, sizeof(target))) {
795 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
796 entry->translated_addr);
797 return 0;
798 } else {
799 /*
800 * Translation changed. Normally this should not
801 * happen, but it can happen when with buggy guest
802 * OSes. Note that there will be a small window that
803 * we don't have map at all. But that's the best
804 * effort we can do. The ideal way to emulate this is
805 * atomically modify the PTE to follow what has
806 * changed, but we can't. One example is that vfio
807 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
808 * interface to modify a mapping (meanwhile it seems
809 * meaningless to even provide one). Anyway, let's
810 * mark this as a TODO in case one day we'll have
811 * a better solution.
812 */
813 IOMMUAccessFlags cache_perm = entry->perm;
814 int ret;
815
816 /* Emulate an UNMAP */
817 entry->perm = IOMMU_NONE;
818 trace_vtd_page_walk_one(info->domain_id,
819 entry->iova,
820 entry->translated_addr,
821 entry->addr_mask,
822 entry->perm);
823 ret = hook_fn(entry, private);
824 if (ret) {
825 return ret;
826 }
827 /* Drop any existing mapping */
828 iova_tree_remove(as->iova_tree, &target);
829 /* Recover the correct permission */
830 entry->perm = cache_perm;
831 }
832 }
833 iova_tree_insert(as->iova_tree, &target);
834 } else {
835 if (!mapped) {
836 /* Skip since we didn't map this range at all */
837 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
838 return 0;
839 }
840 iova_tree_remove(as->iova_tree, &target);
841 }
842
843 trace_vtd_page_walk_one(info->domain_id, entry->iova,
844 entry->translated_addr, entry->addr_mask,
845 entry->perm);
846 return hook_fn(entry, private);
847 }
848
849 /**
850 * vtd_page_walk_level - walk over specific level for IOVA range
851 *
852 * @addr: base GPA addr to start the walk
853 * @start: IOVA range start address
854 * @end: IOVA range end address (start <= addr < end)
855 * @read: whether parent level has read permission
856 * @write: whether parent level has write permission
857 * @info: constant information for the page walk
858 */
859 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
860 uint64_t end, uint32_t level, bool read,
861 bool write, vtd_page_walk_info *info)
862 {
863 bool read_cur, write_cur, entry_valid;
864 uint32_t offset;
865 uint64_t slpte;
866 uint64_t subpage_size, subpage_mask;
867 IOMMUTLBEntry entry;
868 uint64_t iova = start;
869 uint64_t iova_next;
870 int ret = 0;
871
872 trace_vtd_page_walk_level(addr, level, start, end);
873
874 subpage_size = 1ULL << vtd_slpt_level_shift(level);
875 subpage_mask = vtd_slpt_level_page_mask(level);
876
877 while (iova < end) {
878 iova_next = (iova & subpage_mask) + subpage_size;
879
880 offset = vtd_iova_level_offset(iova, level);
881 slpte = vtd_get_slpte(addr, offset);
882
883 if (slpte == (uint64_t)-1) {
884 trace_vtd_page_walk_skip_read(iova, iova_next);
885 goto next;
886 }
887
888 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
889 trace_vtd_page_walk_skip_reserve(iova, iova_next);
890 goto next;
891 }
892
893 /* Permissions are stacked with parents' */
894 read_cur = read && (slpte & VTD_SL_R);
895 write_cur = write && (slpte & VTD_SL_W);
896
897 /*
898 * As long as we have either read/write permission, this is a
899 * valid entry. The rule works for both page entries and page
900 * table entries.
901 */
902 entry_valid = read_cur | write_cur;
903
904 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
905 /*
906 * This is a valid PDE (or even bigger than PDE). We need
907 * to walk one further level.
908 */
909 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
910 iova, MIN(iova_next, end), level - 1,
911 read_cur, write_cur, info);
912 } else {
913 /*
914 * This means we are either:
915 *
916 * (1) the real page entry (either 4K page, or huge page)
917 * (2) the whole range is invalid
918 *
919 * In either case, we send an IOTLB notification down.
920 */
921 entry.target_as = &address_space_memory;
922 entry.iova = iova & subpage_mask;
923 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
924 entry.addr_mask = ~subpage_mask;
925 /* NOTE: this is only meaningful if entry_valid == true */
926 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
927 ret = vtd_page_walk_one(&entry, info);
928 }
929
930 if (ret < 0) {
931 return ret;
932 }
933
934 next:
935 iova = iova_next;
936 }
937
938 return 0;
939 }
940
941 /**
942 * vtd_page_walk - walk specific IOVA range, and call the hook
943 *
944 * @ce: context entry to walk upon
945 * @start: IOVA address to start the walk
946 * @end: IOVA range end address (start <= addr < end)
947 * @info: page walking information struct
948 */
949 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
950 vtd_page_walk_info *info)
951 {
952 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
953 uint32_t level = vtd_ce_get_level(ce);
954
955 if (!vtd_iova_range_check(start, ce, info->aw)) {
956 return -VTD_FR_ADDR_BEYOND_MGAW;
957 }
958
959 if (!vtd_iova_range_check(end, ce, info->aw)) {
960 /* Fix end so that it reaches the maximum */
961 end = vtd_iova_limit(ce, info->aw);
962 }
963
964 return vtd_page_walk_level(addr, start, end, level, true, true, info);
965 }
966
967 /* Map a device to its corresponding domain (context-entry) */
968 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
969 uint8_t devfn, VTDContextEntry *ce)
970 {
971 VTDRootEntry re;
972 int ret_fr;
973 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
974
975 ret_fr = vtd_get_root_entry(s, bus_num, &re);
976 if (ret_fr) {
977 return ret_fr;
978 }
979
980 if (!vtd_root_entry_present(&re)) {
981 /* Not error - it's okay we don't have root entry. */
982 trace_vtd_re_not_present(bus_num);
983 return -VTD_FR_ROOT_ENTRY_P;
984 }
985
986 if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
987 trace_vtd_re_invalid(re.rsvd, re.val);
988 return -VTD_FR_ROOT_ENTRY_RSVD;
989 }
990
991 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
992 if (ret_fr) {
993 return ret_fr;
994 }
995
996 if (!vtd_ce_present(ce)) {
997 /* Not error - it's okay we don't have context entry. */
998 trace_vtd_ce_not_present(bus_num, devfn);
999 return -VTD_FR_CONTEXT_ENTRY_P;
1000 }
1001
1002 if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
1003 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1004 trace_vtd_ce_invalid(ce->hi, ce->lo);
1005 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1006 }
1007
1008 /* Check if the programming of context-entry is valid */
1009 if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1010 trace_vtd_ce_invalid(ce->hi, ce->lo);
1011 return -VTD_FR_CONTEXT_ENTRY_INV;
1012 }
1013
1014 /* Do translation type check */
1015 if (!vtd_ce_type_check(x86_iommu, ce)) {
1016 trace_vtd_ce_invalid(ce->hi, ce->lo);
1017 return -VTD_FR_CONTEXT_ENTRY_INV;
1018 }
1019
1020 return 0;
1021 }
1022
1023 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1024 void *private)
1025 {
1026 memory_region_notify_iommu((IOMMUMemoryRegion *)private, *entry);
1027 return 0;
1028 }
1029
1030 /* If context entry is NULL, we'll try to fetch it on our own. */
1031 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1032 VTDContextEntry *ce,
1033 hwaddr addr, hwaddr size)
1034 {
1035 IntelIOMMUState *s = vtd_as->iommu_state;
1036 vtd_page_walk_info info = {
1037 .hook_fn = vtd_sync_shadow_page_hook,
1038 .private = (void *)&vtd_as->iommu,
1039 .notify_unmap = true,
1040 .aw = s->aw_bits,
1041 .as = vtd_as,
1042 };
1043 VTDContextEntry ce_cache;
1044 int ret;
1045
1046 if (ce) {
1047 /* If the caller provided context entry, use it */
1048 ce_cache = *ce;
1049 } else {
1050 /* If the caller didn't provide ce, try to fetch */
1051 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1052 vtd_as->devfn, &ce_cache);
1053 if (ret) {
1054 /*
1055 * This should not really happen, but in case it happens,
1056 * we just skip the sync for this time. After all we even
1057 * don't have the root table pointer!
1058 */
1059 trace_vtd_err("Detected invalid context entry when "
1060 "trying to sync shadow page table");
1061 return 0;
1062 }
1063 }
1064
1065 info.domain_id = VTD_CONTEXT_ENTRY_DID(ce_cache.hi);
1066
1067 return vtd_page_walk(&ce_cache, addr, addr + size, &info);
1068 }
1069
1070 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1071 {
1072 return vtd_sync_shadow_page_table_range(vtd_as, NULL, 0, UINT64_MAX);
1073 }
1074
1075 /*
1076 * Fetch translation type for specific device. Returns <0 if error
1077 * happens, otherwise return the shifted type to check against
1078 * VTD_CONTEXT_TT_*.
1079 */
1080 static int vtd_dev_get_trans_type(VTDAddressSpace *as)
1081 {
1082 IntelIOMMUState *s;
1083 VTDContextEntry ce;
1084 int ret;
1085
1086 s = as->iommu_state;
1087
1088 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1089 as->devfn, &ce);
1090 if (ret) {
1091 return ret;
1092 }
1093
1094 return vtd_ce_get_type(&ce);
1095 }
1096
1097 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1098 {
1099 int ret;
1100
1101 assert(as);
1102
1103 ret = vtd_dev_get_trans_type(as);
1104 if (ret < 0) {
1105 /*
1106 * Possibly failed to parse the context entry for some reason
1107 * (e.g., during init, or any guest configuration errors on
1108 * context entries). We should assume PT not enabled for
1109 * safety.
1110 */
1111 return false;
1112 }
1113
1114 return ret == VTD_CONTEXT_TT_PASS_THROUGH;
1115 }
1116
1117 /* Return whether the device is using IOMMU translation. */
1118 static bool vtd_switch_address_space(VTDAddressSpace *as)
1119 {
1120 bool use_iommu;
1121 /* Whether we need to take the BQL on our own */
1122 bool take_bql = !qemu_mutex_iothread_locked();
1123
1124 assert(as);
1125
1126 use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
1127
1128 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1129 VTD_PCI_SLOT(as->devfn),
1130 VTD_PCI_FUNC(as->devfn),
1131 use_iommu);
1132
1133 /*
1134 * It's possible that we reach here without BQL, e.g., when called
1135 * from vtd_pt_enable_fast_path(). However the memory APIs need
1136 * it. We'd better make sure we have had it already, or, take it.
1137 */
1138 if (take_bql) {
1139 qemu_mutex_lock_iothread();
1140 }
1141
1142 /* Turn off first then on the other */
1143 if (use_iommu) {
1144 memory_region_set_enabled(&as->sys_alias, false);
1145 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1146 } else {
1147 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1148 memory_region_set_enabled(&as->sys_alias, true);
1149 }
1150
1151 if (take_bql) {
1152 qemu_mutex_unlock_iothread();
1153 }
1154
1155 return use_iommu;
1156 }
1157
1158 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1159 {
1160 GHashTableIter iter;
1161 VTDBus *vtd_bus;
1162 int i;
1163
1164 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1165 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1166 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1167 if (!vtd_bus->dev_as[i]) {
1168 continue;
1169 }
1170 vtd_switch_address_space(vtd_bus->dev_as[i]);
1171 }
1172 }
1173 }
1174
1175 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1176 {
1177 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1178 }
1179
1180 static const bool vtd_qualified_faults[] = {
1181 [VTD_FR_RESERVED] = false,
1182 [VTD_FR_ROOT_ENTRY_P] = false,
1183 [VTD_FR_CONTEXT_ENTRY_P] = true,
1184 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1185 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1186 [VTD_FR_WRITE] = true,
1187 [VTD_FR_READ] = true,
1188 [VTD_FR_PAGING_ENTRY_INV] = true,
1189 [VTD_FR_ROOT_TABLE_INV] = false,
1190 [VTD_FR_CONTEXT_TABLE_INV] = false,
1191 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1192 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1193 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1194 [VTD_FR_RESERVED_ERR] = false,
1195 [VTD_FR_MAX] = false,
1196 };
1197
1198 /* To see if a fault condition is "qualified", which is reported to software
1199 * only if the FPD field in the context-entry used to process the faulting
1200 * request is 0.
1201 */
1202 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1203 {
1204 return vtd_qualified_faults[fault];
1205 }
1206
1207 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1208 {
1209 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1210 }
1211
1212 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1213 {
1214 VTDBus *vtd_bus;
1215 VTDAddressSpace *vtd_as;
1216 bool success = false;
1217
1218 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1219 if (!vtd_bus) {
1220 goto out;
1221 }
1222
1223 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1224 if (!vtd_as) {
1225 goto out;
1226 }
1227
1228 if (vtd_switch_address_space(vtd_as) == false) {
1229 /* We switched off IOMMU region successfully. */
1230 success = true;
1231 }
1232
1233 out:
1234 trace_vtd_pt_enable_fast_path(source_id, success);
1235 }
1236
1237 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1238 * translation.
1239 *
1240 * Called from RCU critical section.
1241 *
1242 * @bus_num: The bus number
1243 * @devfn: The devfn, which is the combined of device and function number
1244 * @is_write: The access is a write operation
1245 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1246 *
1247 * Returns true if translation is successful, otherwise false.
1248 */
1249 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1250 uint8_t devfn, hwaddr addr, bool is_write,
1251 IOMMUTLBEntry *entry)
1252 {
1253 IntelIOMMUState *s = vtd_as->iommu_state;
1254 VTDContextEntry ce;
1255 uint8_t bus_num = pci_bus_num(bus);
1256 VTDContextCacheEntry *cc_entry;
1257 uint64_t slpte, page_mask;
1258 uint32_t level;
1259 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1260 int ret_fr;
1261 bool is_fpd_set = false;
1262 bool reads = true;
1263 bool writes = true;
1264 uint8_t access_flags;
1265 VTDIOTLBEntry *iotlb_entry;
1266
1267 /*
1268 * We have standalone memory region for interrupt addresses, we
1269 * should never receive translation requests in this region.
1270 */
1271 assert(!vtd_is_interrupt_addr(addr));
1272
1273 vtd_iommu_lock(s);
1274
1275 cc_entry = &vtd_as->context_cache_entry;
1276
1277 /* Try to fetch slpte form IOTLB */
1278 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1279 if (iotlb_entry) {
1280 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1281 iotlb_entry->domain_id);
1282 slpte = iotlb_entry->slpte;
1283 access_flags = iotlb_entry->access_flags;
1284 page_mask = iotlb_entry->mask;
1285 goto out;
1286 }
1287
1288 /* Try to fetch context-entry from cache first */
1289 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1290 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1291 cc_entry->context_entry.lo,
1292 cc_entry->context_cache_gen);
1293 ce = cc_entry->context_entry;
1294 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1295 } else {
1296 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1297 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1298 if (ret_fr) {
1299 ret_fr = -ret_fr;
1300 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1301 trace_vtd_fault_disabled();
1302 } else {
1303 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1304 }
1305 goto error;
1306 }
1307 /* Update context-cache */
1308 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1309 cc_entry->context_cache_gen,
1310 s->context_cache_gen);
1311 cc_entry->context_entry = ce;
1312 cc_entry->context_cache_gen = s->context_cache_gen;
1313 }
1314
1315 /*
1316 * We don't need to translate for pass-through context entries.
1317 * Also, let's ignore IOTLB caching as well for PT devices.
1318 */
1319 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1320 entry->iova = addr & VTD_PAGE_MASK_4K;
1321 entry->translated_addr = entry->iova;
1322 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1323 entry->perm = IOMMU_RW;
1324 trace_vtd_translate_pt(source_id, entry->iova);
1325
1326 /*
1327 * When this happens, it means firstly caching-mode is not
1328 * enabled, and this is the first passthrough translation for
1329 * the device. Let's enable the fast path for passthrough.
1330 *
1331 * When passthrough is disabled again for the device, we can
1332 * capture it via the context entry invalidation, then the
1333 * IOMMU region can be swapped back.
1334 */
1335 vtd_pt_enable_fast_path(s, source_id);
1336 vtd_iommu_unlock(s);
1337 return true;
1338 }
1339
1340 ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1341 &reads, &writes, s->aw_bits);
1342 if (ret_fr) {
1343 ret_fr = -ret_fr;
1344 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1345 trace_vtd_fault_disabled();
1346 } else {
1347 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1348 }
1349 goto error;
1350 }
1351
1352 page_mask = vtd_slpt_level_page_mask(level);
1353 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1354 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1355 access_flags, level);
1356 out:
1357 vtd_iommu_unlock(s);
1358 entry->iova = addr & page_mask;
1359 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1360 entry->addr_mask = ~page_mask;
1361 entry->perm = access_flags;
1362 return true;
1363
1364 error:
1365 vtd_iommu_unlock(s);
1366 entry->iova = 0;
1367 entry->translated_addr = 0;
1368 entry->addr_mask = 0;
1369 entry->perm = IOMMU_NONE;
1370 return false;
1371 }
1372
1373 static void vtd_root_table_setup(IntelIOMMUState *s)
1374 {
1375 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1376 s->root_extended = s->root & VTD_RTADDR_RTT;
1377 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1378
1379 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1380 }
1381
1382 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1383 uint32_t index, uint32_t mask)
1384 {
1385 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1386 }
1387
1388 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1389 {
1390 uint64_t value = 0;
1391 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1392 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1393 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1394 s->intr_eime = value & VTD_IRTA_EIME;
1395
1396 /* Notify global invalidation */
1397 vtd_iec_notify_all(s, true, 0, 0);
1398
1399 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1400 }
1401
1402 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1403 {
1404 VTDAddressSpace *vtd_as;
1405
1406 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1407 vtd_sync_shadow_page_table(vtd_as);
1408 }
1409 }
1410
1411 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1412 {
1413 trace_vtd_inv_desc_cc_global();
1414 /* Protects context cache */
1415 vtd_iommu_lock(s);
1416 s->context_cache_gen++;
1417 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1418 vtd_reset_context_cache_locked(s);
1419 }
1420 vtd_iommu_unlock(s);
1421 vtd_switch_address_space_all(s);
1422 /*
1423 * From VT-d spec 6.5.2.1, a global context entry invalidation
1424 * should be followed by a IOTLB global invalidation, so we should
1425 * be safe even without this. Hoewever, let's replay the region as
1426 * well to be safer, and go back here when we need finer tunes for
1427 * VT-d emulation codes.
1428 */
1429 vtd_iommu_replay_all(s);
1430 }
1431
1432 /* Do a context-cache device-selective invalidation.
1433 * @func_mask: FM field after shifting
1434 */
1435 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1436 uint16_t source_id,
1437 uint16_t func_mask)
1438 {
1439 uint16_t mask;
1440 VTDBus *vtd_bus;
1441 VTDAddressSpace *vtd_as;
1442 uint8_t bus_n, devfn;
1443 uint16_t devfn_it;
1444
1445 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1446
1447 switch (func_mask & 3) {
1448 case 0:
1449 mask = 0; /* No bits in the SID field masked */
1450 break;
1451 case 1:
1452 mask = 4; /* Mask bit 2 in the SID field */
1453 break;
1454 case 2:
1455 mask = 6; /* Mask bit 2:1 in the SID field */
1456 break;
1457 case 3:
1458 mask = 7; /* Mask bit 2:0 in the SID field */
1459 break;
1460 }
1461 mask = ~mask;
1462
1463 bus_n = VTD_SID_TO_BUS(source_id);
1464 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1465 if (vtd_bus) {
1466 devfn = VTD_SID_TO_DEVFN(source_id);
1467 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1468 vtd_as = vtd_bus->dev_as[devfn_it];
1469 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1470 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1471 VTD_PCI_FUNC(devfn_it));
1472 vtd_iommu_lock(s);
1473 vtd_as->context_cache_entry.context_cache_gen = 0;
1474 vtd_iommu_unlock(s);
1475 /*
1476 * Do switch address space when needed, in case if the
1477 * device passthrough bit is switched.
1478 */
1479 vtd_switch_address_space(vtd_as);
1480 /*
1481 * So a device is moving out of (or moving into) a
1482 * domain, resync the shadow page table.
1483 * This won't bring bad even if we have no such
1484 * notifier registered - the IOMMU notification
1485 * framework will skip MAP notifications if that
1486 * happened.
1487 */
1488 vtd_sync_shadow_page_table(vtd_as);
1489 }
1490 }
1491 }
1492 }
1493
1494 /* Context-cache invalidation
1495 * Returns the Context Actual Invalidation Granularity.
1496 * @val: the content of the CCMD_REG
1497 */
1498 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1499 {
1500 uint64_t caig;
1501 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1502
1503 switch (type) {
1504 case VTD_CCMD_DOMAIN_INVL:
1505 /* Fall through */
1506 case VTD_CCMD_GLOBAL_INVL:
1507 caig = VTD_CCMD_GLOBAL_INVL_A;
1508 vtd_context_global_invalidate(s);
1509 break;
1510
1511 case VTD_CCMD_DEVICE_INVL:
1512 caig = VTD_CCMD_DEVICE_INVL_A;
1513 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1514 break;
1515
1516 default:
1517 trace_vtd_err("Context cache invalidate type error.");
1518 caig = 0;
1519 }
1520 return caig;
1521 }
1522
1523 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1524 {
1525 trace_vtd_inv_desc_iotlb_global();
1526 vtd_reset_iotlb(s);
1527 vtd_iommu_replay_all(s);
1528 }
1529
1530 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1531 {
1532 VTDContextEntry ce;
1533 VTDAddressSpace *vtd_as;
1534
1535 trace_vtd_inv_desc_iotlb_domain(domain_id);
1536
1537 vtd_iommu_lock(s);
1538 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1539 &domain_id);
1540 vtd_iommu_unlock(s);
1541
1542 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1543 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1544 vtd_as->devfn, &ce) &&
1545 domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1546 vtd_sync_shadow_page_table(vtd_as);
1547 }
1548 }
1549 }
1550
1551 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1552 uint16_t domain_id, hwaddr addr,
1553 uint8_t am)
1554 {
1555 VTDAddressSpace *vtd_as;
1556 VTDContextEntry ce;
1557 int ret;
1558 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1559
1560 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1561 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1562 vtd_as->devfn, &ce);
1563 if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1564 if (vtd_as_has_map_notifier(vtd_as)) {
1565 /*
1566 * As long as we have MAP notifications registered in
1567 * any of our IOMMU notifiers, we need to sync the
1568 * shadow page table.
1569 */
1570 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1571 } else {
1572 /*
1573 * For UNMAP-only notifiers, we don't need to walk the
1574 * page tables. We just deliver the PSI down to
1575 * invalidate caches.
1576 */
1577 IOMMUTLBEntry entry = {
1578 .target_as = &address_space_memory,
1579 .iova = addr,
1580 .translated_addr = 0,
1581 .addr_mask = size - 1,
1582 .perm = IOMMU_NONE,
1583 };
1584 memory_region_notify_iommu(&vtd_as->iommu, entry);
1585 }
1586 }
1587 }
1588 }
1589
1590 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1591 hwaddr addr, uint8_t am)
1592 {
1593 VTDIOTLBPageInvInfo info;
1594
1595 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1596
1597 assert(am <= VTD_MAMV);
1598 info.domain_id = domain_id;
1599 info.addr = addr;
1600 info.mask = ~((1 << am) - 1);
1601 vtd_iommu_lock(s);
1602 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1603 vtd_iommu_unlock(s);
1604 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1605 }
1606
1607 /* Flush IOTLB
1608 * Returns the IOTLB Actual Invalidation Granularity.
1609 * @val: the content of the IOTLB_REG
1610 */
1611 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1612 {
1613 uint64_t iaig;
1614 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1615 uint16_t domain_id;
1616 hwaddr addr;
1617 uint8_t am;
1618
1619 switch (type) {
1620 case VTD_TLB_GLOBAL_FLUSH:
1621 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1622 vtd_iotlb_global_invalidate(s);
1623 break;
1624
1625 case VTD_TLB_DSI_FLUSH:
1626 domain_id = VTD_TLB_DID(val);
1627 iaig = VTD_TLB_DSI_FLUSH_A;
1628 vtd_iotlb_domain_invalidate(s, domain_id);
1629 break;
1630
1631 case VTD_TLB_PSI_FLUSH:
1632 domain_id = VTD_TLB_DID(val);
1633 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1634 am = VTD_IVA_AM(addr);
1635 addr = VTD_IVA_ADDR(addr);
1636 if (am > VTD_MAMV) {
1637 trace_vtd_err("IOTLB PSI flush: address mask overflow.");
1638 iaig = 0;
1639 break;
1640 }
1641 iaig = VTD_TLB_PSI_FLUSH_A;
1642 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1643 break;
1644
1645 default:
1646 trace_vtd_err("IOTLB flush: invalid granularity.");
1647 iaig = 0;
1648 }
1649 return iaig;
1650 }
1651
1652 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1653
1654 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1655 {
1656 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1657 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1658 }
1659
1660 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1661 {
1662 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1663
1664 trace_vtd_inv_qi_enable(en);
1665
1666 if (en) {
1667 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
1668 /* 2^(x+8) entries */
1669 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1670 s->qi_enabled = true;
1671 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1672 /* Ok - report back to driver */
1673 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1674
1675 if (s->iq_tail != 0) {
1676 /*
1677 * This is a spec violation but Windows guests are known to set up
1678 * Queued Invalidation this way so we allow the write and process
1679 * Invalidation Descriptors right away.
1680 */
1681 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1682 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1683 vtd_fetch_inv_desc(s);
1684 }
1685 }
1686 } else {
1687 if (vtd_queued_inv_disable_check(s)) {
1688 /* disable Queued Invalidation */
1689 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1690 s->iq_head = 0;
1691 s->qi_enabled = false;
1692 /* Ok - report back to driver */
1693 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1694 } else {
1695 trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
1696 }
1697 }
1698 }
1699
1700 /* Set Root Table Pointer */
1701 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1702 {
1703 vtd_root_table_setup(s);
1704 /* Ok - report back to driver */
1705 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1706 }
1707
1708 /* Set Interrupt Remap Table Pointer */
1709 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1710 {
1711 vtd_interrupt_remap_table_setup(s);
1712 /* Ok - report back to driver */
1713 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1714 }
1715
1716 /* Handle Translation Enable/Disable */
1717 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1718 {
1719 if (s->dmar_enabled == en) {
1720 return;
1721 }
1722
1723 trace_vtd_dmar_enable(en);
1724
1725 if (en) {
1726 s->dmar_enabled = true;
1727 /* Ok - report back to driver */
1728 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1729 } else {
1730 s->dmar_enabled = false;
1731
1732 /* Clear the index of Fault Recording Register */
1733 s->next_frcd_reg = 0;
1734 /* Ok - report back to driver */
1735 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1736 }
1737
1738 vtd_switch_address_space_all(s);
1739 }
1740
1741 /* Handle Interrupt Remap Enable/Disable */
1742 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1743 {
1744 trace_vtd_ir_enable(en);
1745
1746 if (en) {
1747 s->intr_enabled = true;
1748 /* Ok - report back to driver */
1749 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1750 } else {
1751 s->intr_enabled = false;
1752 /* Ok - report back to driver */
1753 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1754 }
1755 }
1756
1757 /* Handle write to Global Command Register */
1758 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1759 {
1760 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1761 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1762 uint32_t changed = status ^ val;
1763
1764 trace_vtd_reg_write_gcmd(status, val);
1765 if (changed & VTD_GCMD_TE) {
1766 /* Translation enable/disable */
1767 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1768 }
1769 if (val & VTD_GCMD_SRTP) {
1770 /* Set/update the root-table pointer */
1771 vtd_handle_gcmd_srtp(s);
1772 }
1773 if (changed & VTD_GCMD_QIE) {
1774 /* Queued Invalidation Enable */
1775 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1776 }
1777 if (val & VTD_GCMD_SIRTP) {
1778 /* Set/update the interrupt remapping root-table pointer */
1779 vtd_handle_gcmd_sirtp(s);
1780 }
1781 if (changed & VTD_GCMD_IRE) {
1782 /* Interrupt remap enable/disable */
1783 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1784 }
1785 }
1786
1787 /* Handle write to Context Command Register */
1788 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1789 {
1790 uint64_t ret;
1791 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1792
1793 /* Context-cache invalidation request */
1794 if (val & VTD_CCMD_ICC) {
1795 if (s->qi_enabled) {
1796 trace_vtd_err("Queued Invalidation enabled, "
1797 "should not use register-based invalidation");
1798 return;
1799 }
1800 ret = vtd_context_cache_invalidate(s, val);
1801 /* Invalidation completed. Change something to show */
1802 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1803 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1804 ret);
1805 }
1806 }
1807
1808 /* Handle write to IOTLB Invalidation Register */
1809 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1810 {
1811 uint64_t ret;
1812 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1813
1814 /* IOTLB invalidation request */
1815 if (val & VTD_TLB_IVT) {
1816 if (s->qi_enabled) {
1817 trace_vtd_err("Queued Invalidation enabled, "
1818 "should not use register-based invalidation.");
1819 return;
1820 }
1821 ret = vtd_iotlb_flush(s, val);
1822 /* Invalidation completed. Change something to show */
1823 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1824 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1825 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1826 }
1827 }
1828
1829 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1830 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1831 VTDInvDesc *inv_desc)
1832 {
1833 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1834 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1835 sizeof(*inv_desc))) {
1836 trace_vtd_err("Read INV DESC failed.");
1837 inv_desc->lo = 0;
1838 inv_desc->hi = 0;
1839 return false;
1840 }
1841 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1842 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1843 return true;
1844 }
1845
1846 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1847 {
1848 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1849 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1850 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1851 return false;
1852 }
1853 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1854 /* Status Write */
1855 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1856 VTD_INV_DESC_WAIT_DATA_SHIFT);
1857
1858 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1859
1860 /* FIXME: need to be masked with HAW? */
1861 dma_addr_t status_addr = inv_desc->hi;
1862 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1863 status_data = cpu_to_le32(status_data);
1864 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1865 sizeof(status_data))) {
1866 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1867 return false;
1868 }
1869 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1870 /* Interrupt flag */
1871 vtd_generate_completion_event(s);
1872 } else {
1873 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1874 return false;
1875 }
1876 return true;
1877 }
1878
1879 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1880 VTDInvDesc *inv_desc)
1881 {
1882 uint16_t sid, fmask;
1883
1884 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1885 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1886 return false;
1887 }
1888 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1889 case VTD_INV_DESC_CC_DOMAIN:
1890 trace_vtd_inv_desc_cc_domain(
1891 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1892 /* Fall through */
1893 case VTD_INV_DESC_CC_GLOBAL:
1894 vtd_context_global_invalidate(s);
1895 break;
1896
1897 case VTD_INV_DESC_CC_DEVICE:
1898 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1899 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1900 vtd_context_device_invalidate(s, sid, fmask);
1901 break;
1902
1903 default:
1904 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1905 return false;
1906 }
1907 return true;
1908 }
1909
1910 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1911 {
1912 uint16_t domain_id;
1913 uint8_t am;
1914 hwaddr addr;
1915
1916 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1917 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1918 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1919 return false;
1920 }
1921
1922 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1923 case VTD_INV_DESC_IOTLB_GLOBAL:
1924 vtd_iotlb_global_invalidate(s);
1925 break;
1926
1927 case VTD_INV_DESC_IOTLB_DOMAIN:
1928 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1929 vtd_iotlb_domain_invalidate(s, domain_id);
1930 break;
1931
1932 case VTD_INV_DESC_IOTLB_PAGE:
1933 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1934 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1935 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1936 if (am > VTD_MAMV) {
1937 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1938 return false;
1939 }
1940 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1941 break;
1942
1943 default:
1944 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1945 return false;
1946 }
1947 return true;
1948 }
1949
1950 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1951 VTDInvDesc *inv_desc)
1952 {
1953 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1954 inv_desc->iec.index,
1955 inv_desc->iec.index_mask);
1956
1957 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1958 inv_desc->iec.index,
1959 inv_desc->iec.index_mask);
1960 return true;
1961 }
1962
1963 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1964 VTDInvDesc *inv_desc)
1965 {
1966 VTDAddressSpace *vtd_dev_as;
1967 IOMMUTLBEntry entry;
1968 struct VTDBus *vtd_bus;
1969 hwaddr addr;
1970 uint64_t sz;
1971 uint16_t sid;
1972 uint8_t devfn;
1973 bool size;
1974 uint8_t bus_num;
1975
1976 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1977 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1978 devfn = sid & 0xff;
1979 bus_num = sid >> 8;
1980 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1981
1982 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1983 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
1984 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1985 return false;
1986 }
1987
1988 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1989 if (!vtd_bus) {
1990 goto done;
1991 }
1992
1993 vtd_dev_as = vtd_bus->dev_as[devfn];
1994 if (!vtd_dev_as) {
1995 goto done;
1996 }
1997
1998 /* According to ATS spec table 2.4:
1999 * S = 0, bits 15:12 = xxxx range size: 4K
2000 * S = 1, bits 15:12 = xxx0 range size: 8K
2001 * S = 1, bits 15:12 = xx01 range size: 16K
2002 * S = 1, bits 15:12 = x011 range size: 32K
2003 * S = 1, bits 15:12 = 0111 range size: 64K
2004 * ...
2005 */
2006 if (size) {
2007 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2008 addr &= ~(sz - 1);
2009 } else {
2010 sz = VTD_PAGE_SIZE;
2011 }
2012
2013 entry.target_as = &vtd_dev_as->as;
2014 entry.addr_mask = sz - 1;
2015 entry.iova = addr;
2016 entry.perm = IOMMU_NONE;
2017 entry.translated_addr = 0;
2018 memory_region_notify_iommu(&vtd_dev_as->iommu, entry);
2019
2020 done:
2021 return true;
2022 }
2023
2024 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2025 {
2026 VTDInvDesc inv_desc;
2027 uint8_t desc_type;
2028
2029 trace_vtd_inv_qi_head(s->iq_head);
2030 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
2031 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2032 return false;
2033 }
2034 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2035 /* FIXME: should update at first or at last? */
2036 s->iq_last_desc_type = desc_type;
2037
2038 switch (desc_type) {
2039 case VTD_INV_DESC_CC:
2040 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2041 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2042 return false;
2043 }
2044 break;
2045
2046 case VTD_INV_DESC_IOTLB:
2047 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2048 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2049 return false;
2050 }
2051 break;
2052
2053 case VTD_INV_DESC_WAIT:
2054 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2055 if (!vtd_process_wait_desc(s, &inv_desc)) {
2056 return false;
2057 }
2058 break;
2059
2060 case VTD_INV_DESC_IEC:
2061 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2062 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2063 return false;
2064 }
2065 break;
2066
2067 case VTD_INV_DESC_DEVICE:
2068 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2069 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2070 return false;
2071 }
2072 break;
2073
2074 default:
2075 trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
2076 return false;
2077 }
2078 s->iq_head++;
2079 if (s->iq_head == s->iq_size) {
2080 s->iq_head = 0;
2081 }
2082 return true;
2083 }
2084
2085 /* Try to fetch and process more Invalidation Descriptors */
2086 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2087 {
2088 trace_vtd_inv_qi_fetch();
2089
2090 if (s->iq_tail >= s->iq_size) {
2091 /* Detects an invalid Tail pointer */
2092 trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
2093 vtd_handle_inv_queue_error(s);
2094 return;
2095 }
2096 while (s->iq_head != s->iq_tail) {
2097 if (!vtd_process_inv_desc(s)) {
2098 /* Invalidation Queue Errors */
2099 vtd_handle_inv_queue_error(s);
2100 break;
2101 }
2102 /* Must update the IQH_REG in time */
2103 vtd_set_quad_raw(s, DMAR_IQH_REG,
2104 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2105 VTD_IQH_QH_MASK);
2106 }
2107 }
2108
2109 /* Handle write to Invalidation Queue Tail Register */
2110 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2111 {
2112 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2113
2114 s->iq_tail = VTD_IQT_QT(val);
2115 trace_vtd_inv_qi_tail(s->iq_tail);
2116
2117 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2118 /* Process Invalidation Queue here */
2119 vtd_fetch_inv_desc(s);
2120 }
2121 }
2122
2123 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2124 {
2125 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2126 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2127 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2128
2129 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2130 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2131 trace_vtd_fsts_clear_ip();
2132 }
2133 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2134 * Descriptors if there are any when Queued Invalidation is enabled?
2135 */
2136 }
2137
2138 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2139 {
2140 uint32_t fectl_reg;
2141 /* FIXME: when software clears the IM field, check the IP field. But do we
2142 * need to compare the old value and the new value to conclude that
2143 * software clears the IM field? Or just check if the IM field is zero?
2144 */
2145 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2146
2147 trace_vtd_reg_write_fectl(fectl_reg);
2148
2149 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2150 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2151 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2152 }
2153 }
2154
2155 static void vtd_handle_ics_write(IntelIOMMUState *s)
2156 {
2157 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2158 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2159
2160 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2161 trace_vtd_reg_ics_clear_ip();
2162 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2163 }
2164 }
2165
2166 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2167 {
2168 uint32_t iectl_reg;
2169 /* FIXME: when software clears the IM field, check the IP field. But do we
2170 * need to compare the old value and the new value to conclude that
2171 * software clears the IM field? Or just check if the IM field is zero?
2172 */
2173 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2174
2175 trace_vtd_reg_write_iectl(iectl_reg);
2176
2177 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2178 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2179 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2180 }
2181 }
2182
2183 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2184 {
2185 IntelIOMMUState *s = opaque;
2186 uint64_t val;
2187
2188 trace_vtd_reg_read(addr, size);
2189
2190 if (addr + size > DMAR_REG_SIZE) {
2191 trace_vtd_err("Read MMIO over range.");
2192 return (uint64_t)-1;
2193 }
2194
2195 switch (addr) {
2196 /* Root Table Address Register, 64-bit */
2197 case DMAR_RTADDR_REG:
2198 if (size == 4) {
2199 val = s->root & ((1ULL << 32) - 1);
2200 } else {
2201 val = s->root;
2202 }
2203 break;
2204
2205 case DMAR_RTADDR_REG_HI:
2206 assert(size == 4);
2207 val = s->root >> 32;
2208 break;
2209
2210 /* Invalidation Queue Address Register, 64-bit */
2211 case DMAR_IQA_REG:
2212 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2213 if (size == 4) {
2214 val = val & ((1ULL << 32) - 1);
2215 }
2216 break;
2217
2218 case DMAR_IQA_REG_HI:
2219 assert(size == 4);
2220 val = s->iq >> 32;
2221 break;
2222
2223 default:
2224 if (size == 4) {
2225 val = vtd_get_long(s, addr);
2226 } else {
2227 val = vtd_get_quad(s, addr);
2228 }
2229 }
2230
2231 return val;
2232 }
2233
2234 static void vtd_mem_write(void *opaque, hwaddr addr,
2235 uint64_t val, unsigned size)
2236 {
2237 IntelIOMMUState *s = opaque;
2238
2239 trace_vtd_reg_write(addr, size, val);
2240
2241 if (addr + size > DMAR_REG_SIZE) {
2242 trace_vtd_err("Write MMIO over range.");
2243 return;
2244 }
2245
2246 switch (addr) {
2247 /* Global Command Register, 32-bit */
2248 case DMAR_GCMD_REG:
2249 vtd_set_long(s, addr, val);
2250 vtd_handle_gcmd_write(s);
2251 break;
2252
2253 /* Context Command Register, 64-bit */
2254 case DMAR_CCMD_REG:
2255 if (size == 4) {
2256 vtd_set_long(s, addr, val);
2257 } else {
2258 vtd_set_quad(s, addr, val);
2259 vtd_handle_ccmd_write(s);
2260 }
2261 break;
2262
2263 case DMAR_CCMD_REG_HI:
2264 assert(size == 4);
2265 vtd_set_long(s, addr, val);
2266 vtd_handle_ccmd_write(s);
2267 break;
2268
2269 /* IOTLB Invalidation Register, 64-bit */
2270 case DMAR_IOTLB_REG:
2271 if (size == 4) {
2272 vtd_set_long(s, addr, val);
2273 } else {
2274 vtd_set_quad(s, addr, val);
2275 vtd_handle_iotlb_write(s);
2276 }
2277 break;
2278
2279 case DMAR_IOTLB_REG_HI:
2280 assert(size == 4);
2281 vtd_set_long(s, addr, val);
2282 vtd_handle_iotlb_write(s);
2283 break;
2284
2285 /* Invalidate Address Register, 64-bit */
2286 case DMAR_IVA_REG:
2287 if (size == 4) {
2288 vtd_set_long(s, addr, val);
2289 } else {
2290 vtd_set_quad(s, addr, val);
2291 }
2292 break;
2293
2294 case DMAR_IVA_REG_HI:
2295 assert(size == 4);
2296 vtd_set_long(s, addr, val);
2297 break;
2298
2299 /* Fault Status Register, 32-bit */
2300 case DMAR_FSTS_REG:
2301 assert(size == 4);
2302 vtd_set_long(s, addr, val);
2303 vtd_handle_fsts_write(s);
2304 break;
2305
2306 /* Fault Event Control Register, 32-bit */
2307 case DMAR_FECTL_REG:
2308 assert(size == 4);
2309 vtd_set_long(s, addr, val);
2310 vtd_handle_fectl_write(s);
2311 break;
2312
2313 /* Fault Event Data Register, 32-bit */
2314 case DMAR_FEDATA_REG:
2315 assert(size == 4);
2316 vtd_set_long(s, addr, val);
2317 break;
2318
2319 /* Fault Event Address Register, 32-bit */
2320 case DMAR_FEADDR_REG:
2321 if (size == 4) {
2322 vtd_set_long(s, addr, val);
2323 } else {
2324 /*
2325 * While the register is 32-bit only, some guests (Xen...) write to
2326 * it with 64-bit.
2327 */
2328 vtd_set_quad(s, addr, val);
2329 }
2330 break;
2331
2332 /* Fault Event Upper Address Register, 32-bit */
2333 case DMAR_FEUADDR_REG:
2334 assert(size == 4);
2335 vtd_set_long(s, addr, val);
2336 break;
2337
2338 /* Protected Memory Enable Register, 32-bit */
2339 case DMAR_PMEN_REG:
2340 assert(size == 4);
2341 vtd_set_long(s, addr, val);
2342 break;
2343
2344 /* Root Table Address Register, 64-bit */
2345 case DMAR_RTADDR_REG:
2346 if (size == 4) {
2347 vtd_set_long(s, addr, val);
2348 } else {
2349 vtd_set_quad(s, addr, val);
2350 }
2351 break;
2352
2353 case DMAR_RTADDR_REG_HI:
2354 assert(size == 4);
2355 vtd_set_long(s, addr, val);
2356 break;
2357
2358 /* Invalidation Queue Tail Register, 64-bit */
2359 case DMAR_IQT_REG:
2360 if (size == 4) {
2361 vtd_set_long(s, addr, val);
2362 } else {
2363 vtd_set_quad(s, addr, val);
2364 }
2365 vtd_handle_iqt_write(s);
2366 break;
2367
2368 case DMAR_IQT_REG_HI:
2369 assert(size == 4);
2370 vtd_set_long(s, addr, val);
2371 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2372 break;
2373
2374 /* Invalidation Queue Address Register, 64-bit */
2375 case DMAR_IQA_REG:
2376 if (size == 4) {
2377 vtd_set_long(s, addr, val);
2378 } else {
2379 vtd_set_quad(s, addr, val);
2380 }
2381 break;
2382
2383 case DMAR_IQA_REG_HI:
2384 assert(size == 4);
2385 vtd_set_long(s, addr, val);
2386 break;
2387
2388 /* Invalidation Completion Status Register, 32-bit */
2389 case DMAR_ICS_REG:
2390 assert(size == 4);
2391 vtd_set_long(s, addr, val);
2392 vtd_handle_ics_write(s);
2393 break;
2394
2395 /* Invalidation Event Control Register, 32-bit */
2396 case DMAR_IECTL_REG:
2397 assert(size == 4);
2398 vtd_set_long(s, addr, val);
2399 vtd_handle_iectl_write(s);
2400 break;
2401
2402 /* Invalidation Event Data Register, 32-bit */
2403 case DMAR_IEDATA_REG:
2404 assert(size == 4);
2405 vtd_set_long(s, addr, val);
2406 break;
2407
2408 /* Invalidation Event Address Register, 32-bit */
2409 case DMAR_IEADDR_REG:
2410 assert(size == 4);
2411 vtd_set_long(s, addr, val);
2412 break;
2413
2414 /* Invalidation Event Upper Address Register, 32-bit */
2415 case DMAR_IEUADDR_REG:
2416 assert(size == 4);
2417 vtd_set_long(s, addr, val);
2418 break;
2419
2420 /* Fault Recording Registers, 128-bit */
2421 case DMAR_FRCD_REG_0_0:
2422 if (size == 4) {
2423 vtd_set_long(s, addr, val);
2424 } else {
2425 vtd_set_quad(s, addr, val);
2426 }
2427 break;
2428
2429 case DMAR_FRCD_REG_0_1:
2430 assert(size == 4);
2431 vtd_set_long(s, addr, val);
2432 break;
2433
2434 case DMAR_FRCD_REG_0_2:
2435 if (size == 4) {
2436 vtd_set_long(s, addr, val);
2437 } else {
2438 vtd_set_quad(s, addr, val);
2439 /* May clear bit 127 (Fault), update PPF */
2440 vtd_update_fsts_ppf(s);
2441 }
2442 break;
2443
2444 case DMAR_FRCD_REG_0_3:
2445 assert(size == 4);
2446 vtd_set_long(s, addr, val);
2447 /* May clear bit 127 (Fault), update PPF */
2448 vtd_update_fsts_ppf(s);
2449 break;
2450
2451 case DMAR_IRTA_REG:
2452 if (size == 4) {
2453 vtd_set_long(s, addr, val);
2454 } else {
2455 vtd_set_quad(s, addr, val);
2456 }
2457 break;
2458
2459 case DMAR_IRTA_REG_HI:
2460 assert(size == 4);
2461 vtd_set_long(s, addr, val);
2462 break;
2463
2464 default:
2465 if (size == 4) {
2466 vtd_set_long(s, addr, val);
2467 } else {
2468 vtd_set_quad(s, addr, val);
2469 }
2470 }
2471 }
2472
2473 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2474 IOMMUAccessFlags flag)
2475 {
2476 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2477 IntelIOMMUState *s = vtd_as->iommu_state;
2478 IOMMUTLBEntry iotlb = {
2479 /* We'll fill in the rest later. */
2480 .target_as = &address_space_memory,
2481 };
2482 bool success;
2483
2484 if (likely(s->dmar_enabled)) {
2485 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2486 addr, flag & IOMMU_WO, &iotlb);
2487 } else {
2488 /* DMAR disabled, passthrough, use 4k-page*/
2489 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2490 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2491 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2492 iotlb.perm = IOMMU_RW;
2493 success = true;
2494 }
2495
2496 if (likely(success)) {
2497 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2498 VTD_PCI_SLOT(vtd_as->devfn),
2499 VTD_PCI_FUNC(vtd_as->devfn),
2500 iotlb.iova, iotlb.translated_addr,
2501 iotlb.addr_mask);
2502 } else {
2503 trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
2504 VTD_PCI_SLOT(vtd_as->devfn),
2505 VTD_PCI_FUNC(vtd_as->devfn),
2506 iotlb.iova);
2507 }
2508
2509 return iotlb;
2510 }
2511
2512 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2513 IOMMUNotifierFlag old,
2514 IOMMUNotifierFlag new)
2515 {
2516 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2517 IntelIOMMUState *s = vtd_as->iommu_state;
2518
2519 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2520 error_report("We need to set caching-mode=1 for intel-iommu to enable "
2521 "device assignment with IOMMU protection.");
2522 exit(1);
2523 }
2524
2525 /* Update per-address-space notifier flags */
2526 vtd_as->notifier_flags = new;
2527
2528 if (old == IOMMU_NOTIFIER_NONE) {
2529 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2530 } else if (new == IOMMU_NOTIFIER_NONE) {
2531 QLIST_REMOVE(vtd_as, next);
2532 }
2533 }
2534
2535 static int vtd_post_load(void *opaque, int version_id)
2536 {
2537 IntelIOMMUState *iommu = opaque;
2538
2539 /*
2540 * Memory regions are dynamically turned on/off depending on
2541 * context entry configurations from the guest. After migration,
2542 * we need to make sure the memory regions are still correct.
2543 */
2544 vtd_switch_address_space_all(iommu);
2545
2546 return 0;
2547 }
2548
2549 static const VMStateDescription vtd_vmstate = {
2550 .name = "iommu-intel",
2551 .version_id = 1,
2552 .minimum_version_id = 1,
2553 .priority = MIG_PRI_IOMMU,
2554 .post_load = vtd_post_load,
2555 .fields = (VMStateField[]) {
2556 VMSTATE_UINT64(root, IntelIOMMUState),
2557 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2558 VMSTATE_UINT64(iq, IntelIOMMUState),
2559 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2560 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2561 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2562 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2563 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2564 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2565 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2566 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2567 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2568 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2569 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2570 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2571 VMSTATE_END_OF_LIST()
2572 }
2573 };
2574
2575 static const MemoryRegionOps vtd_mem_ops = {
2576 .read = vtd_mem_read,
2577 .write = vtd_mem_write,
2578 .endianness = DEVICE_LITTLE_ENDIAN,
2579 .impl = {
2580 .min_access_size = 4,
2581 .max_access_size = 8,
2582 },
2583 .valid = {
2584 .min_access_size = 4,
2585 .max_access_size = 8,
2586 },
2587 };
2588
2589 static Property vtd_properties[] = {
2590 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2591 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2592 ON_OFF_AUTO_AUTO),
2593 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2594 DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
2595 VTD_HOST_ADDRESS_WIDTH),
2596 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2597 DEFINE_PROP_END_OF_LIST(),
2598 };
2599
2600 /* Read IRTE entry with specific index */
2601 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2602 VTD_IR_TableEntry *entry, uint16_t sid)
2603 {
2604 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2605 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2606 dma_addr_t addr = 0x00;
2607 uint16_t mask, source_id;
2608 uint8_t bus, bus_max, bus_min;
2609
2610 addr = iommu->intr_root + index * sizeof(*entry);
2611 if (dma_memory_read(&address_space_memory, addr, entry,
2612 sizeof(*entry))) {
2613 trace_vtd_err("Memory read failed for IRTE.");
2614 return -VTD_FR_IR_ROOT_INVAL;
2615 }
2616
2617 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2618 le64_to_cpu(entry->data[0]));
2619
2620 if (!entry->irte.present) {
2621 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2622 le64_to_cpu(entry->data[0]));
2623 return -VTD_FR_IR_ENTRY_P;
2624 }
2625
2626 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2627 entry->irte.__reserved_2) {
2628 trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2629 le64_to_cpu(entry->data[0]));
2630 return -VTD_FR_IR_IRTE_RSVD;
2631 }
2632
2633 if (sid != X86_IOMMU_SID_INVALID) {
2634 /* Validate IRTE SID */
2635 source_id = le32_to_cpu(entry->irte.source_id);
2636 switch (entry->irte.sid_vtype) {
2637 case VTD_SVT_NONE:
2638 break;
2639
2640 case VTD_SVT_ALL:
2641 mask = vtd_svt_mask[entry->irte.sid_q];
2642 if ((source_id & mask) != (sid & mask)) {
2643 trace_vtd_err_irte_sid(index, sid, source_id);
2644 return -VTD_FR_IR_SID_ERR;
2645 }
2646 break;
2647
2648 case VTD_SVT_BUS:
2649 bus_max = source_id >> 8;
2650 bus_min = source_id & 0xff;
2651 bus = sid >> 8;
2652 if (bus > bus_max || bus < bus_min) {
2653 trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
2654 return -VTD_FR_IR_SID_ERR;
2655 }
2656 break;
2657
2658 default:
2659 trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
2660 /* Take this as verification failure. */
2661 return -VTD_FR_IR_SID_ERR;
2662 break;
2663 }
2664 }
2665
2666 return 0;
2667 }
2668
2669 /* Fetch IRQ information of specific IR index */
2670 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2671 VTDIrq *irq, uint16_t sid)
2672 {
2673 VTD_IR_TableEntry irte = {};
2674 int ret = 0;
2675
2676 ret = vtd_irte_get(iommu, index, &irte, sid);
2677 if (ret) {
2678 return ret;
2679 }
2680
2681 irq->trigger_mode = irte.irte.trigger_mode;
2682 irq->vector = irte.irte.vector;
2683 irq->delivery_mode = irte.irte.delivery_mode;
2684 irq->dest = le32_to_cpu(irte.irte.dest_id);
2685 if (!iommu->intr_eime) {
2686 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2687 #define VTD_IR_APIC_DEST_SHIFT (8)
2688 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2689 VTD_IR_APIC_DEST_SHIFT;
2690 }
2691 irq->dest_mode = irte.irte.dest_mode;
2692 irq->redir_hint = irte.irte.redir_hint;
2693
2694 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2695 irq->delivery_mode, irq->dest, irq->dest_mode);
2696
2697 return 0;
2698 }
2699
2700 /* Generate one MSI message from VTDIrq info */
2701 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2702 {
2703 VTD_MSIMessage msg = {};
2704
2705 /* Generate address bits */
2706 msg.dest_mode = irq->dest_mode;
2707 msg.redir_hint = irq->redir_hint;
2708 msg.dest = irq->dest;
2709 msg.__addr_hi = irq->dest & 0xffffff00;
2710 msg.__addr_head = cpu_to_le32(0xfee);
2711 /* Keep this from original MSI address bits */
2712 msg.__not_used = irq->msi_addr_last_bits;
2713
2714 /* Generate data bits */
2715 msg.vector = irq->vector;
2716 msg.delivery_mode = irq->delivery_mode;
2717 msg.level = 1;
2718 msg.trigger_mode = irq->trigger_mode;
2719
2720 msg_out->address = msg.msi_addr;
2721 msg_out->data = msg.msi_data;
2722 }
2723
2724 /* Interrupt remapping for MSI/MSI-X entry */
2725 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2726 MSIMessage *origin,
2727 MSIMessage *translated,
2728 uint16_t sid)
2729 {
2730 int ret = 0;
2731 VTD_IR_MSIAddress addr;
2732 uint16_t index;
2733 VTDIrq irq = {};
2734
2735 assert(origin && translated);
2736
2737 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2738
2739 if (!iommu || !iommu->intr_enabled) {
2740 memcpy(translated, origin, sizeof(*origin));
2741 goto out;
2742 }
2743
2744 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2745 trace_vtd_err("MSI address high 32 bits non-zero when "
2746 "Interrupt Remapping enabled.");
2747 return -VTD_FR_IR_REQ_RSVD;
2748 }
2749
2750 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2751 if (addr.addr.__head != 0xfee) {
2752 trace_vtd_err("MSI addr low 32 bit invalid.");
2753 return -VTD_FR_IR_REQ_RSVD;
2754 }
2755
2756 /* This is compatible mode. */
2757 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2758 memcpy(translated, origin, sizeof(*origin));
2759 goto out;
2760 }
2761
2762 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2763
2764 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2765 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2766
2767 if (addr.addr.sub_valid) {
2768 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2769 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2770 }
2771
2772 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2773 if (ret) {
2774 return ret;
2775 }
2776
2777 if (addr.addr.sub_valid) {
2778 trace_vtd_ir_remap_type("MSI");
2779 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2780 trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
2781 return -VTD_FR_IR_REQ_RSVD;
2782 }
2783 } else {
2784 uint8_t vector = origin->data & 0xff;
2785 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2786
2787 trace_vtd_ir_remap_type("IOAPIC");
2788 /* IOAPIC entry vector should be aligned with IRTE vector
2789 * (see vt-d spec 5.1.5.1). */
2790 if (vector != irq.vector) {
2791 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2792 }
2793
2794 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2795 * (see vt-d spec 5.1.5.1). */
2796 if (trigger_mode != irq.trigger_mode) {
2797 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2798 irq.trigger_mode);
2799 }
2800 }
2801
2802 /*
2803 * We'd better keep the last two bits, assuming that guest OS
2804 * might modify it. Keep it does not hurt after all.
2805 */
2806 irq.msi_addr_last_bits = addr.addr.__not_care;
2807
2808 /* Translate VTDIrq to MSI message */
2809 vtd_generate_msi_message(&irq, translated);
2810
2811 out:
2812 trace_vtd_ir_remap_msi(origin->address, origin->data,
2813 translated->address, translated->data);
2814 return 0;
2815 }
2816
2817 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2818 MSIMessage *dst, uint16_t sid)
2819 {
2820 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2821 src, dst, sid);
2822 }
2823
2824 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2825 uint64_t *data, unsigned size,
2826 MemTxAttrs attrs)
2827 {
2828 return MEMTX_OK;
2829 }
2830
2831 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2832 uint64_t value, unsigned size,
2833 MemTxAttrs attrs)
2834 {
2835 int ret = 0;
2836 MSIMessage from = {}, to = {};
2837 uint16_t sid = X86_IOMMU_SID_INVALID;
2838
2839 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2840 from.data = (uint32_t) value;
2841
2842 if (!attrs.unspecified) {
2843 /* We have explicit Source ID */
2844 sid = attrs.requester_id;
2845 }
2846
2847 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2848 if (ret) {
2849 /* TODO: report error */
2850 /* Drop this interrupt */
2851 return MEMTX_ERROR;
2852 }
2853
2854 apic_get_class()->send_msi(&to);
2855
2856 return MEMTX_OK;
2857 }
2858
2859 static const MemoryRegionOps vtd_mem_ir_ops = {
2860 .read_with_attrs = vtd_mem_ir_read,
2861 .write_with_attrs = vtd_mem_ir_write,
2862 .endianness = DEVICE_LITTLE_ENDIAN,
2863 .impl = {
2864 .min_access_size = 4,
2865 .max_access_size = 4,
2866 },
2867 .valid = {
2868 .min_access_size = 4,
2869 .max_access_size = 4,
2870 },
2871 };
2872
2873 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2874 {
2875 uintptr_t key = (uintptr_t)bus;
2876 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2877 VTDAddressSpace *vtd_dev_as;
2878 char name[128];
2879
2880 if (!vtd_bus) {
2881 uintptr_t *new_key = g_malloc(sizeof(*new_key));
2882 *new_key = (uintptr_t)bus;
2883 /* No corresponding free() */
2884 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2885 PCI_DEVFN_MAX);
2886 vtd_bus->bus = bus;
2887 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2888 }
2889
2890 vtd_dev_as = vtd_bus->dev_as[devfn];
2891
2892 if (!vtd_dev_as) {
2893 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2894 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2895
2896 vtd_dev_as->bus = bus;
2897 vtd_dev_as->devfn = (uint8_t)devfn;
2898 vtd_dev_as->iommu_state = s;
2899 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2900 vtd_dev_as->iova_tree = iova_tree_new();
2901
2902 /*
2903 * Memory region relationships looks like (Address range shows
2904 * only lower 32 bits to make it short in length...):
2905 *
2906 * |-----------------+-------------------+----------|
2907 * | Name | Address range | Priority |
2908 * |-----------------+-------------------+----------+
2909 * | vtd_root | 00000000-ffffffff | 0 |
2910 * | intel_iommu | 00000000-ffffffff | 1 |
2911 * | vtd_sys_alias | 00000000-ffffffff | 1 |
2912 * | intel_iommu_ir | fee00000-feefffff | 64 |
2913 * |-----------------+-------------------+----------|
2914 *
2915 * We enable/disable DMAR by switching enablement for
2916 * vtd_sys_alias and intel_iommu regions. IR region is always
2917 * enabled.
2918 */
2919 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2920 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2921 "intel_iommu_dmar",
2922 UINT64_MAX);
2923 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2924 "vtd_sys_alias", get_system_memory(),
2925 0, memory_region_size(get_system_memory()));
2926 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2927 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2928 VTD_INTERRUPT_ADDR_SIZE);
2929 memory_region_init(&vtd_dev_as->root, OBJECT(s),
2930 "vtd_root", UINT64_MAX);
2931 memory_region_add_subregion_overlap(&vtd_dev_as->root,
2932 VTD_INTERRUPT_ADDR_FIRST,
2933 &vtd_dev_as->iommu_ir, 64);
2934 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2935 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2936 &vtd_dev_as->sys_alias, 1);
2937 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2938 MEMORY_REGION(&vtd_dev_as->iommu),
2939 1);
2940 vtd_switch_address_space(vtd_dev_as);
2941 }
2942 return vtd_dev_as;
2943 }
2944
2945 /* Unmap the whole range in the notifier's scope. */
2946 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2947 {
2948 IOMMUTLBEntry entry;
2949 hwaddr size;
2950 hwaddr start = n->start;
2951 hwaddr end = n->end;
2952 IntelIOMMUState *s = as->iommu_state;
2953 DMAMap map;
2954
2955 /*
2956 * Note: all the codes in this function has a assumption that IOVA
2957 * bits are no more than VTD_MGAW bits (which is restricted by
2958 * VT-d spec), otherwise we need to consider overflow of 64 bits.
2959 */
2960
2961 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
2962 /*
2963 * Don't need to unmap regions that is bigger than the whole
2964 * VT-d supported address space size
2965 */
2966 end = VTD_ADDRESS_SIZE(s->aw_bits);
2967 }
2968
2969 assert(start <= end);
2970 size = end - start;
2971
2972 if (ctpop64(size) != 1) {
2973 /*
2974 * This size cannot format a correct mask. Let's enlarge it to
2975 * suite the minimum available mask.
2976 */
2977 int n = 64 - clz64(size);
2978 if (n > s->aw_bits) {
2979 /* should not happen, but in case it happens, limit it */
2980 n = s->aw_bits;
2981 }
2982 size = 1ULL << n;
2983 }
2984
2985 entry.target_as = &address_space_memory;
2986 /* Adjust iova for the size */
2987 entry.iova = n->start & ~(size - 1);
2988 /* This field is meaningless for unmap */
2989 entry.translated_addr = 0;
2990 entry.perm = IOMMU_NONE;
2991 entry.addr_mask = size - 1;
2992
2993 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
2994 VTD_PCI_SLOT(as->devfn),
2995 VTD_PCI_FUNC(as->devfn),
2996 entry.iova, size);
2997
2998 map.iova = entry.iova;
2999 map.size = entry.addr_mask;
3000 iova_tree_remove(as->iova_tree, &map);
3001
3002 memory_region_notify_one(n, &entry);
3003 }
3004
3005 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3006 {
3007 VTDAddressSpace *vtd_as;
3008 IOMMUNotifier *n;
3009
3010 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3011 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3012 vtd_address_space_unmap(vtd_as, n);
3013 }
3014 }
3015 }
3016
3017 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3018 {
3019 memory_region_notify_one((IOMMUNotifier *)private, entry);
3020 return 0;
3021 }
3022
3023 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3024 {
3025 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3026 IntelIOMMUState *s = vtd_as->iommu_state;
3027 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3028 VTDContextEntry ce;
3029
3030 /*
3031 * The replay can be triggered by either a invalidation or a newly
3032 * created entry. No matter what, we release existing mappings
3033 * (it means flushing caches for UNMAP-only registers).
3034 */
3035 vtd_address_space_unmap(vtd_as, n);
3036
3037 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3038 trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
3039 PCI_FUNC(vtd_as->devfn),
3040 VTD_CONTEXT_ENTRY_DID(ce.hi),
3041 ce.hi, ce.lo);
3042 if (vtd_as_has_map_notifier(vtd_as)) {
3043 /* This is required only for MAP typed notifiers */
3044 vtd_page_walk_info info = {
3045 .hook_fn = vtd_replay_hook,
3046 .private = (void *)n,
3047 .notify_unmap = false,
3048 .aw = s->aw_bits,
3049 .as = vtd_as,
3050 .domain_id = VTD_CONTEXT_ENTRY_DID(ce.hi),
3051 };
3052
3053 vtd_page_walk(&ce, 0, ~0ULL, &info);
3054 }
3055 } else {
3056 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3057 PCI_FUNC(vtd_as->devfn));
3058 }
3059
3060 return;
3061 }
3062
3063 /* Do the initialization. It will also be called when reset, so pay
3064 * attention when adding new initialization stuff.
3065 */
3066 static void vtd_init(IntelIOMMUState *s)
3067 {
3068 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3069
3070 memset(s->csr, 0, DMAR_REG_SIZE);
3071 memset(s->wmask, 0, DMAR_REG_SIZE);
3072 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3073 memset(s->womask, 0, DMAR_REG_SIZE);
3074
3075 s->root = 0;
3076 s->root_extended = false;
3077 s->dmar_enabled = false;
3078 s->iq_head = 0;
3079 s->iq_tail = 0;
3080 s->iq = 0;
3081 s->iq_size = 0;
3082 s->qi_enabled = false;
3083 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3084 s->next_frcd_reg = 0;
3085 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3086 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3087 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3088 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3089 s->cap |= VTD_CAP_SAGAW_48bit;
3090 }
3091 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3092
3093 /*
3094 * Rsvd field masks for spte
3095 */
3096 vtd_paging_entry_rsvd_field[0] = ~0ULL;
3097 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3098 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3099 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3100 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3101 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3102 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3103 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3104 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3105
3106 if (x86_iommu->intr_supported) {
3107 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3108 if (s->intr_eim == ON_OFF_AUTO_ON) {
3109 s->ecap |= VTD_ECAP_EIM;
3110 }
3111 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3112 }
3113
3114 if (x86_iommu->dt_supported) {
3115 s->ecap |= VTD_ECAP_DT;
3116 }
3117
3118 if (x86_iommu->pt_supported) {
3119 s->ecap |= VTD_ECAP_PT;
3120 }
3121
3122 if (s->caching_mode) {
3123 s->cap |= VTD_CAP_CM;
3124 }
3125
3126 vtd_iommu_lock(s);
3127 vtd_reset_context_cache_locked(s);
3128 vtd_reset_iotlb_locked(s);
3129 vtd_iommu_unlock(s);
3130
3131 /* Define registers with default values and bit semantics */
3132 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3133 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3134 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3135 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3136 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3137 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3138 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
3139 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3140 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3141
3142 /* Advanced Fault Logging not supported */
3143 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3144 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3145 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3146 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3147
3148 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3149 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3150 */
3151 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3152
3153 /* Treated as RO for implementations that PLMR and PHMR fields reported
3154 * as Clear in the CAP_REG.
3155 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3156 */
3157 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3158
3159 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3160 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3161 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
3162 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3163 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3164 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3165 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3166 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3167 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3168
3169 /* IOTLB registers */
3170 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3171 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3172 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3173
3174 /* Fault Recording Registers, 128-bit */
3175 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3176 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3177
3178 /*
3179 * Interrupt remapping registers.
3180 */
3181 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3182 }
3183
3184 /* Should not reset address_spaces when reset because devices will still use
3185 * the address space they got at first (won't ask the bus again).
3186 */
3187 static void vtd_reset(DeviceState *dev)
3188 {
3189 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3190
3191 vtd_init(s);
3192
3193 /*
3194 * When device reset, throw away all mappings and external caches
3195 */
3196 vtd_address_space_unmap_all(s);
3197 }
3198
3199 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3200 {
3201 IntelIOMMUState *s = opaque;
3202 VTDAddressSpace *vtd_as;
3203
3204 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3205
3206 vtd_as = vtd_find_add_as(s, bus, devfn);
3207 return &vtd_as->as;
3208 }
3209
3210 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3211 {
3212 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3213
3214 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
3215 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
3216 !kvm_irqchip_is_split()) {
3217 error_setg(errp, "Intel Interrupt Remapping cannot work with "
3218 "kernel-irqchip=on, please use 'split|off'.");
3219 return false;
3220 }
3221 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3222 error_setg(errp, "eim=on cannot be selected without intremap=on");
3223 return false;
3224 }
3225
3226 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3227 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3228 && x86_iommu->intr_supported ?
3229 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3230 }
3231 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3232 if (!kvm_irqchip_in_kernel()) {
3233 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3234 return false;
3235 }
3236 if (!kvm_enable_x2apic()) {
3237 error_setg(errp, "eim=on requires support on the KVM side"
3238 "(X2APIC_API, first shipped in v4.7)");
3239 return false;
3240 }
3241 }
3242
3243 /* Currently only address widths supported are 39 and 48 bits */
3244 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3245 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3246 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3247 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3248 return false;
3249 }
3250
3251 return true;
3252 }
3253
3254 static void vtd_realize(DeviceState *dev, Error **errp)
3255 {
3256 MachineState *ms = MACHINE(qdev_get_machine());
3257 PCMachineState *pcms = PC_MACHINE(ms);
3258 PCIBus *bus = pcms->bus;
3259 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3260 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3261
3262 x86_iommu->type = TYPE_INTEL;
3263
3264 if (!vtd_decide_config(s, errp)) {
3265 return;
3266 }
3267
3268 QLIST_INIT(&s->vtd_as_with_notifiers);
3269 qemu_mutex_init(&s->iommu_lock);
3270 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3271 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3272 "intel_iommu", DMAR_REG_SIZE);
3273 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3274 /* No corresponding destroy */
3275 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3276 g_free, g_free);
3277 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3278 g_free, g_free);
3279 vtd_init(s);
3280 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3281 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3282 /* Pseudo address space under root PCI bus. */
3283 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3284 }
3285
3286 static void vtd_class_init(ObjectClass *klass, void *data)
3287 {
3288 DeviceClass *dc = DEVICE_CLASS(klass);
3289 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3290
3291 dc->reset = vtd_reset;
3292 dc->vmsd = &vtd_vmstate;
3293 dc->props = vtd_properties;
3294 dc->hotpluggable = false;
3295 x86_class->realize = vtd_realize;
3296 x86_class->int_remap = vtd_int_remap;
3297 /* Supported by the pc-q35-* machine types */
3298 dc->user_creatable = true;
3299 }
3300
3301 static const TypeInfo vtd_info = {
3302 .name = TYPE_INTEL_IOMMU_DEVICE,
3303 .parent = TYPE_X86_IOMMU_DEVICE,
3304 .instance_size = sizeof(IntelIOMMUState),
3305 .class_init = vtd_class_init,
3306 };
3307
3308 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3309 void *data)
3310 {
3311 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3312
3313 imrc->translate = vtd_iommu_translate;
3314 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3315 imrc->replay = vtd_iommu_replay;
3316 }
3317
3318 static const TypeInfo vtd_iommu_memory_region_info = {
3319 .parent = TYPE_IOMMU_MEMORY_REGION,
3320 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3321 .class_init = vtd_iommu_memory_region_class_init,
3322 };
3323
3324 static void vtd_register_types(void)
3325 {
3326 type_register_static(&vtd_info);
3327 type_register_static(&vtd_iommu_memory_region_info);
3328 }
3329
3330 type_init(vtd_register_types)