]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
intel_iommu: add 256 bits qi_desc support
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
39
40 /* context entry operations */
41 #define VTD_CE_GET_RID2PASID(ce) \
42 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
43 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
44 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
45
46 /* pe operations */
47 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
48 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
49 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
50 if (ret_fr) { \
51 ret_fr = -ret_fr; \
52 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
53 trace_vtd_fault_disabled(); \
54 } else { \
55 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
56 } \
57 goto error; \
58 } \
59 }
60
61 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
62 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
63
64 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
65 uint64_t wmask, uint64_t w1cmask)
66 {
67 stq_le_p(&s->csr[addr], val);
68 stq_le_p(&s->wmask[addr], wmask);
69 stq_le_p(&s->w1cmask[addr], w1cmask);
70 }
71
72 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
73 {
74 stq_le_p(&s->womask[addr], mask);
75 }
76
77 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
78 uint32_t wmask, uint32_t w1cmask)
79 {
80 stl_le_p(&s->csr[addr], val);
81 stl_le_p(&s->wmask[addr], wmask);
82 stl_le_p(&s->w1cmask[addr], w1cmask);
83 }
84
85 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
86 {
87 stl_le_p(&s->womask[addr], mask);
88 }
89
90 /* "External" get/set operations */
91 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
92 {
93 uint64_t oldval = ldq_le_p(&s->csr[addr]);
94 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
95 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
96 stq_le_p(&s->csr[addr],
97 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
98 }
99
100 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
101 {
102 uint32_t oldval = ldl_le_p(&s->csr[addr]);
103 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
104 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
105 stl_le_p(&s->csr[addr],
106 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
107 }
108
109 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
110 {
111 uint64_t val = ldq_le_p(&s->csr[addr]);
112 uint64_t womask = ldq_le_p(&s->womask[addr]);
113 return val & ~womask;
114 }
115
116 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
117 {
118 uint32_t val = ldl_le_p(&s->csr[addr]);
119 uint32_t womask = ldl_le_p(&s->womask[addr]);
120 return val & ~womask;
121 }
122
123 /* "Internal" get/set operations */
124 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
125 {
126 return ldq_le_p(&s->csr[addr]);
127 }
128
129 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
130 {
131 return ldl_le_p(&s->csr[addr]);
132 }
133
134 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
135 {
136 stq_le_p(&s->csr[addr], val);
137 }
138
139 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
140 uint32_t clear, uint32_t mask)
141 {
142 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
143 stl_le_p(&s->csr[addr], new_val);
144 return new_val;
145 }
146
147 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
148 uint64_t clear, uint64_t mask)
149 {
150 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
151 stq_le_p(&s->csr[addr], new_val);
152 return new_val;
153 }
154
155 static inline void vtd_iommu_lock(IntelIOMMUState *s)
156 {
157 qemu_mutex_lock(&s->iommu_lock);
158 }
159
160 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
161 {
162 qemu_mutex_unlock(&s->iommu_lock);
163 }
164
165 /* Whether the address space needs to notify new mappings */
166 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
167 {
168 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
169 }
170
171 /* GHashTable functions */
172 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
173 {
174 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
175 }
176
177 static guint vtd_uint64_hash(gconstpointer v)
178 {
179 return (guint)*(const uint64_t *)v;
180 }
181
182 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
183 gpointer user_data)
184 {
185 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
186 uint16_t domain_id = *(uint16_t *)user_data;
187 return entry->domain_id == domain_id;
188 }
189
190 /* The shift of an addr for a certain level of paging structure */
191 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
192 {
193 assert(level != 0);
194 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
195 }
196
197 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
198 {
199 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
200 }
201
202 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
203 gpointer user_data)
204 {
205 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
206 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
207 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
208 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
209 return (entry->domain_id == info->domain_id) &&
210 (((entry->gfn & info->mask) == gfn) ||
211 (entry->gfn == gfn_tlb));
212 }
213
214 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
215 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
216 */
217 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
218 {
219 VTDAddressSpace *vtd_as;
220 VTDBus *vtd_bus;
221 GHashTableIter bus_it;
222 uint32_t devfn_it;
223
224 trace_vtd_context_cache_reset();
225
226 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
227
228 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
229 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
230 vtd_as = vtd_bus->dev_as[devfn_it];
231 if (!vtd_as) {
232 continue;
233 }
234 vtd_as->context_cache_entry.context_cache_gen = 0;
235 }
236 }
237 s->context_cache_gen = 1;
238 }
239
240 /* Must be called with IOMMU lock held. */
241 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
242 {
243 assert(s->iotlb);
244 g_hash_table_remove_all(s->iotlb);
245 }
246
247 static void vtd_reset_iotlb(IntelIOMMUState *s)
248 {
249 vtd_iommu_lock(s);
250 vtd_reset_iotlb_locked(s);
251 vtd_iommu_unlock(s);
252 }
253
254 static void vtd_reset_caches(IntelIOMMUState *s)
255 {
256 vtd_iommu_lock(s);
257 vtd_reset_iotlb_locked(s);
258 vtd_reset_context_cache_locked(s);
259 vtd_iommu_unlock(s);
260 }
261
262 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
263 uint32_t level)
264 {
265 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
266 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
267 }
268
269 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
270 {
271 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
272 }
273
274 /* Must be called with IOMMU lock held */
275 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
276 hwaddr addr)
277 {
278 VTDIOTLBEntry *entry;
279 uint64_t key;
280 int level;
281
282 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
283 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
284 source_id, level);
285 entry = g_hash_table_lookup(s->iotlb, &key);
286 if (entry) {
287 goto out;
288 }
289 }
290
291 out:
292 return entry;
293 }
294
295 /* Must be with IOMMU lock held */
296 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
297 uint16_t domain_id, hwaddr addr, uint64_t slpte,
298 uint8_t access_flags, uint32_t level)
299 {
300 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
301 uint64_t *key = g_malloc(sizeof(*key));
302 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
303
304 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
305 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
306 trace_vtd_iotlb_reset("iotlb exceeds size limit");
307 vtd_reset_iotlb_locked(s);
308 }
309
310 entry->gfn = gfn;
311 entry->domain_id = domain_id;
312 entry->slpte = slpte;
313 entry->access_flags = access_flags;
314 entry->mask = vtd_slpt_level_page_mask(level);
315 *key = vtd_get_iotlb_key(gfn, source_id, level);
316 g_hash_table_replace(s->iotlb, key, entry);
317 }
318
319 /* Given the reg addr of both the message data and address, generate an
320 * interrupt via MSI.
321 */
322 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
323 hwaddr mesg_data_reg)
324 {
325 MSIMessage msi;
326
327 assert(mesg_data_reg < DMAR_REG_SIZE);
328 assert(mesg_addr_reg < DMAR_REG_SIZE);
329
330 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
331 msi.data = vtd_get_long_raw(s, mesg_data_reg);
332
333 trace_vtd_irq_generate(msi.address, msi.data);
334
335 apic_get_class()->send_msi(&msi);
336 }
337
338 /* Generate a fault event to software via MSI if conditions are met.
339 * Notice that the value of FSTS_REG being passed to it should be the one
340 * before any update.
341 */
342 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
343 {
344 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
345 pre_fsts & VTD_FSTS_IQE) {
346 error_report_once("There are previous interrupt conditions "
347 "to be serviced by software, fault event "
348 "is not generated");
349 return;
350 }
351 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
352 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
353 error_report_once("Interrupt Mask set, irq is not generated");
354 } else {
355 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
356 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
357 }
358 }
359
360 /* Check if the Fault (F) field of the Fault Recording Register referenced by
361 * @index is Set.
362 */
363 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
364 {
365 /* Each reg is 128-bit */
366 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
367 addr += 8; /* Access the high 64-bit half */
368
369 assert(index < DMAR_FRCD_REG_NR);
370
371 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
372 }
373
374 /* Update the PPF field of Fault Status Register.
375 * Should be called whenever change the F field of any fault recording
376 * registers.
377 */
378 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
379 {
380 uint32_t i;
381 uint32_t ppf_mask = 0;
382
383 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
384 if (vtd_is_frcd_set(s, i)) {
385 ppf_mask = VTD_FSTS_PPF;
386 break;
387 }
388 }
389 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
390 trace_vtd_fsts_ppf(!!ppf_mask);
391 }
392
393 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
394 {
395 /* Each reg is 128-bit */
396 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
397 addr += 8; /* Access the high 64-bit half */
398
399 assert(index < DMAR_FRCD_REG_NR);
400
401 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
402 vtd_update_fsts_ppf(s);
403 }
404
405 /* Must not update F field now, should be done later */
406 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
407 uint16_t source_id, hwaddr addr,
408 VTDFaultReason fault, bool is_write)
409 {
410 uint64_t hi = 0, lo;
411 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
412
413 assert(index < DMAR_FRCD_REG_NR);
414
415 lo = VTD_FRCD_FI(addr);
416 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
417 if (!is_write) {
418 hi |= VTD_FRCD_T;
419 }
420 vtd_set_quad_raw(s, frcd_reg_addr, lo);
421 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
422
423 trace_vtd_frr_new(index, hi, lo);
424 }
425
426 /* Try to collapse multiple pending faults from the same requester */
427 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
428 {
429 uint32_t i;
430 uint64_t frcd_reg;
431 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
432
433 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
434 frcd_reg = vtd_get_quad_raw(s, addr);
435 if ((frcd_reg & VTD_FRCD_F) &&
436 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
437 return true;
438 }
439 addr += 16; /* 128-bit for each */
440 }
441 return false;
442 }
443
444 /* Log and report an DMAR (address translation) fault to software */
445 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
446 hwaddr addr, VTDFaultReason fault,
447 bool is_write)
448 {
449 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
450
451 assert(fault < VTD_FR_MAX);
452
453 if (fault == VTD_FR_RESERVED_ERR) {
454 /* This is not a normal fault reason case. Drop it. */
455 return;
456 }
457
458 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
459
460 if (fsts_reg & VTD_FSTS_PFO) {
461 error_report_once("New fault is not recorded due to "
462 "Primary Fault Overflow");
463 return;
464 }
465
466 if (vtd_try_collapse_fault(s, source_id)) {
467 error_report_once("New fault is not recorded due to "
468 "compression of faults");
469 return;
470 }
471
472 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
473 error_report_once("Next Fault Recording Reg is used, "
474 "new fault is not recorded, set PFO field");
475 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
476 return;
477 }
478
479 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
480
481 if (fsts_reg & VTD_FSTS_PPF) {
482 error_report_once("There are pending faults already, "
483 "fault event is not generated");
484 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
485 s->next_frcd_reg++;
486 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
487 s->next_frcd_reg = 0;
488 }
489 } else {
490 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
491 VTD_FSTS_FRI(s->next_frcd_reg));
492 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
493 s->next_frcd_reg++;
494 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
495 s->next_frcd_reg = 0;
496 }
497 /* This case actually cause the PPF to be Set.
498 * So generate fault event (interrupt).
499 */
500 vtd_generate_fault_event(s, fsts_reg);
501 }
502 }
503
504 /* Handle Invalidation Queue Errors of queued invalidation interface error
505 * conditions.
506 */
507 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
508 {
509 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
510
511 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
512 vtd_generate_fault_event(s, fsts_reg);
513 }
514
515 /* Set the IWC field and try to generate an invalidation completion interrupt */
516 static void vtd_generate_completion_event(IntelIOMMUState *s)
517 {
518 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
519 trace_vtd_inv_desc_wait_irq("One pending, skip current");
520 return;
521 }
522 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
523 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
524 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
525 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
526 "new event not generated");
527 return;
528 } else {
529 /* Generate the interrupt event */
530 trace_vtd_inv_desc_wait_irq("Generating complete event");
531 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
532 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
533 }
534 }
535
536 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
537 VTDRootEntry *re,
538 uint8_t devfn)
539 {
540 if (s->root_scalable && devfn > UINT8_MAX / 2) {
541 return re->hi & VTD_ROOT_ENTRY_P;
542 }
543
544 return re->lo & VTD_ROOT_ENTRY_P;
545 }
546
547 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
548 VTDRootEntry *re)
549 {
550 dma_addr_t addr;
551
552 addr = s->root + index * sizeof(*re);
553 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
554 re->lo = 0;
555 return -VTD_FR_ROOT_TABLE_INV;
556 }
557 re->lo = le64_to_cpu(re->lo);
558 re->hi = le64_to_cpu(re->hi);
559 return 0;
560 }
561
562 static inline bool vtd_ce_present(VTDContextEntry *context)
563 {
564 return context->lo & VTD_CONTEXT_ENTRY_P;
565 }
566
567 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
568 VTDRootEntry *re,
569 uint8_t index,
570 VTDContextEntry *ce)
571 {
572 dma_addr_t addr, ce_size;
573
574 /* we have checked that root entry is present */
575 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
576 VTD_CTX_ENTRY_LEGACY_SIZE;
577
578 if (s->root_scalable && index > UINT8_MAX / 2) {
579 index = index & (~VTD_DEVFN_CHECK_MASK);
580 addr = re->hi & VTD_ROOT_ENTRY_CTP;
581 } else {
582 addr = re->lo & VTD_ROOT_ENTRY_CTP;
583 }
584
585 addr = addr + index * ce_size;
586 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
587 return -VTD_FR_CONTEXT_TABLE_INV;
588 }
589
590 ce->lo = le64_to_cpu(ce->lo);
591 ce->hi = le64_to_cpu(ce->hi);
592 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
593 ce->val[2] = le64_to_cpu(ce->val[2]);
594 ce->val[3] = le64_to_cpu(ce->val[3]);
595 }
596 return 0;
597 }
598
599 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
600 {
601 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
602 }
603
604 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
605 {
606 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
607 }
608
609 /* Whether the pte indicates the address of the page frame */
610 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
611 {
612 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
613 }
614
615 /* Get the content of a spte located in @base_addr[@index] */
616 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
617 {
618 uint64_t slpte;
619
620 assert(index < VTD_SL_PT_ENTRY_NR);
621
622 if (dma_memory_read(&address_space_memory,
623 base_addr + index * sizeof(slpte), &slpte,
624 sizeof(slpte))) {
625 slpte = (uint64_t)-1;
626 return slpte;
627 }
628 slpte = le64_to_cpu(slpte);
629 return slpte;
630 }
631
632 /* Given an iova and the level of paging structure, return the offset
633 * of current level.
634 */
635 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
636 {
637 return (iova >> vtd_slpt_level_shift(level)) &
638 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
639 }
640
641 /* Check Capability Register to see if the @level of page-table is supported */
642 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
643 {
644 return VTD_CAP_SAGAW_MASK & s->cap &
645 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
646 }
647
648 /* Return true if check passed, otherwise false */
649 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
650 VTDPASIDEntry *pe)
651 {
652 switch (VTD_PE_GET_TYPE(pe)) {
653 case VTD_SM_PASID_ENTRY_FLT:
654 case VTD_SM_PASID_ENTRY_SLT:
655 case VTD_SM_PASID_ENTRY_NESTED:
656 break;
657 case VTD_SM_PASID_ENTRY_PT:
658 if (!x86_iommu->pt_supported) {
659 return false;
660 }
661 break;
662 default:
663 /* Unknwon type */
664 return false;
665 }
666 return true;
667 }
668
669 static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base,
670 uint32_t pasid,
671 VTDPASIDDirEntry *pdire)
672 {
673 uint32_t index;
674 dma_addr_t addr, entry_size;
675
676 index = VTD_PASID_DIR_INDEX(pasid);
677 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
678 addr = pasid_dir_base + index * entry_size;
679 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
680 return -VTD_FR_PASID_TABLE_INV;
681 }
682
683 return 0;
684 }
685
686 static int vtd_get_pasid_entry(IntelIOMMUState *s,
687 uint32_t pasid,
688 VTDPASIDDirEntry *pdire,
689 VTDPASIDEntry *pe)
690 {
691 uint32_t index;
692 dma_addr_t addr, entry_size;
693 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
694
695 index = VTD_PASID_TABLE_INDEX(pasid);
696 entry_size = VTD_PASID_ENTRY_SIZE;
697 addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
698 addr = addr + index * entry_size;
699 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
700 return -VTD_FR_PASID_TABLE_INV;
701 }
702
703 /* Do translation type check */
704 if (!vtd_pe_type_check(x86_iommu, pe)) {
705 return -VTD_FR_PASID_TABLE_INV;
706 }
707
708 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
709 return -VTD_FR_PASID_TABLE_INV;
710 }
711
712 return 0;
713 }
714
715 static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s,
716 dma_addr_t pasid_dir_base,
717 uint32_t pasid,
718 VTDPASIDEntry *pe)
719 {
720 int ret;
721 VTDPASIDDirEntry pdire;
722
723 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
724 if (ret) {
725 return ret;
726 }
727
728 ret = vtd_get_pasid_entry(s, pasid, &pdire, pe);
729 if (ret) {
730 return ret;
731 }
732
733 return ret;
734 }
735
736 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
737 VTDContextEntry *ce,
738 VTDPASIDEntry *pe)
739 {
740 uint32_t pasid;
741 dma_addr_t pasid_dir_base;
742 int ret = 0;
743
744 pasid = VTD_CE_GET_RID2PASID(ce);
745 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
746 ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe);
747
748 return ret;
749 }
750
751 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
752 VTDContextEntry *ce,
753 bool *pe_fpd_set)
754 {
755 int ret;
756 uint32_t pasid;
757 dma_addr_t pasid_dir_base;
758 VTDPASIDDirEntry pdire;
759 VTDPASIDEntry pe;
760
761 pasid = VTD_CE_GET_RID2PASID(ce);
762 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
763
764 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
765 if (ret) {
766 return ret;
767 }
768
769 if (pdire.val & VTD_PASID_DIR_FPD) {
770 *pe_fpd_set = true;
771 return 0;
772 }
773
774 ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe);
775 if (ret) {
776 return ret;
777 }
778
779 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
780 *pe_fpd_set = true;
781 }
782
783 return 0;
784 }
785
786 /* Get the page-table level that hardware should use for the second-level
787 * page-table walk from the Address Width field of context-entry.
788 */
789 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
790 {
791 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
792 }
793
794 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
795 VTDContextEntry *ce)
796 {
797 VTDPASIDEntry pe;
798
799 if (s->root_scalable) {
800 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
801 return VTD_PE_GET_LEVEL(&pe);
802 }
803
804 return vtd_ce_get_level(ce);
805 }
806
807 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
808 {
809 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
810 }
811
812 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
813 VTDContextEntry *ce)
814 {
815 VTDPASIDEntry pe;
816
817 if (s->root_scalable) {
818 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
819 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
820 }
821
822 return vtd_ce_get_agaw(ce);
823 }
824
825 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
826 {
827 return ce->lo & VTD_CONTEXT_ENTRY_TT;
828 }
829
830 /* Only for Legacy Mode. Return true if check passed, otherwise false */
831 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
832 VTDContextEntry *ce)
833 {
834 switch (vtd_ce_get_type(ce)) {
835 case VTD_CONTEXT_TT_MULTI_LEVEL:
836 /* Always supported */
837 break;
838 case VTD_CONTEXT_TT_DEV_IOTLB:
839 if (!x86_iommu->dt_supported) {
840 error_report_once("%s: DT specified but not supported", __func__);
841 return false;
842 }
843 break;
844 case VTD_CONTEXT_TT_PASS_THROUGH:
845 if (!x86_iommu->pt_supported) {
846 error_report_once("%s: PT specified but not supported", __func__);
847 return false;
848 }
849 break;
850 default:
851 /* Unknown type */
852 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
853 vtd_ce_get_type(ce));
854 return false;
855 }
856 return true;
857 }
858
859 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
860 VTDContextEntry *ce, uint8_t aw)
861 {
862 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
863 return 1ULL << MIN(ce_agaw, aw);
864 }
865
866 /* Return true if IOVA passes range check, otherwise false. */
867 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
868 uint64_t iova, VTDContextEntry *ce,
869 uint8_t aw)
870 {
871 /*
872 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
873 * in CAP_REG and AW in context-entry.
874 */
875 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
876 }
877
878 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
879 VTDContextEntry *ce)
880 {
881 VTDPASIDEntry pe;
882
883 if (s->root_scalable) {
884 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
885 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
886 }
887
888 return vtd_ce_get_slpt_base(ce);
889 }
890
891 /*
892 * Rsvd field masks for spte:
893 * Index [1] to [4] 4k pages
894 * Index [5] to [8] large pages
895 */
896 static uint64_t vtd_paging_entry_rsvd_field[9];
897
898 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
899 {
900 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
901 /* Maybe large page */
902 return slpte & vtd_paging_entry_rsvd_field[level + 4];
903 } else {
904 return slpte & vtd_paging_entry_rsvd_field[level];
905 }
906 }
907
908 /* Find the VTD address space associated with a given bus number */
909 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
910 {
911 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
912 if (!vtd_bus) {
913 /*
914 * Iterate over the registered buses to find the one which
915 * currently hold this bus number, and update the bus_num
916 * lookup table:
917 */
918 GHashTableIter iter;
919
920 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
921 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
922 if (pci_bus_num(vtd_bus->bus) == bus_num) {
923 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
924 return vtd_bus;
925 }
926 }
927 }
928 return vtd_bus;
929 }
930
931 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
932 * of the translation, can be used for deciding the size of large page.
933 */
934 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
935 uint64_t iova, bool is_write,
936 uint64_t *slptep, uint32_t *slpte_level,
937 bool *reads, bool *writes, uint8_t aw_bits)
938 {
939 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
940 uint32_t level = vtd_get_iova_level(s, ce);
941 uint32_t offset;
942 uint64_t slpte;
943 uint64_t access_right_check;
944
945 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
946 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
947 __func__, iova);
948 return -VTD_FR_ADDR_BEYOND_MGAW;
949 }
950
951 /* FIXME: what is the Atomics request here? */
952 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
953
954 while (true) {
955 offset = vtd_iova_level_offset(iova, level);
956 slpte = vtd_get_slpte(addr, offset);
957
958 if (slpte == (uint64_t)-1) {
959 error_report_once("%s: detected read error on DMAR slpte "
960 "(iova=0x%" PRIx64 ")", __func__, iova);
961 if (level == vtd_get_iova_level(s, ce)) {
962 /* Invalid programming of context-entry */
963 return -VTD_FR_CONTEXT_ENTRY_INV;
964 } else {
965 return -VTD_FR_PAGING_ENTRY_INV;
966 }
967 }
968 *reads = (*reads) && (slpte & VTD_SL_R);
969 *writes = (*writes) && (slpte & VTD_SL_W);
970 if (!(slpte & access_right_check)) {
971 error_report_once("%s: detected slpte permission error "
972 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
973 "slpte=0x%" PRIx64 ", write=%d)", __func__,
974 iova, level, slpte, is_write);
975 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
976 }
977 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
978 error_report_once("%s: detected splte reserve non-zero "
979 "iova=0x%" PRIx64 ", level=0x%" PRIx32
980 "slpte=0x%" PRIx64 ")", __func__, iova,
981 level, slpte);
982 return -VTD_FR_PAGING_ENTRY_RSVD;
983 }
984
985 if (vtd_is_last_slpte(slpte, level)) {
986 *slptep = slpte;
987 *slpte_level = level;
988 return 0;
989 }
990 addr = vtd_get_slpte_addr(slpte, aw_bits);
991 level--;
992 }
993 }
994
995 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
996
997 /**
998 * Constant information used during page walking
999 *
1000 * @hook_fn: hook func to be called when detected page
1001 * @private: private data to be passed into hook func
1002 * @notify_unmap: whether we should notify invalid entries
1003 * @as: VT-d address space of the device
1004 * @aw: maximum address width
1005 * @domain: domain ID of the page walk
1006 */
1007 typedef struct {
1008 VTDAddressSpace *as;
1009 vtd_page_walk_hook hook_fn;
1010 void *private;
1011 bool notify_unmap;
1012 uint8_t aw;
1013 uint16_t domain_id;
1014 } vtd_page_walk_info;
1015
1016 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
1017 {
1018 VTDAddressSpace *as = info->as;
1019 vtd_page_walk_hook hook_fn = info->hook_fn;
1020 void *private = info->private;
1021 DMAMap target = {
1022 .iova = entry->iova,
1023 .size = entry->addr_mask,
1024 .translated_addr = entry->translated_addr,
1025 .perm = entry->perm,
1026 };
1027 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1028
1029 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
1030 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1031 return 0;
1032 }
1033
1034 assert(hook_fn);
1035
1036 /* Update local IOVA mapped ranges */
1037 if (entry->perm) {
1038 if (mapped) {
1039 /* If it's exactly the same translation, skip */
1040 if (!memcmp(mapped, &target, sizeof(target))) {
1041 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1042 entry->translated_addr);
1043 return 0;
1044 } else {
1045 /*
1046 * Translation changed. Normally this should not
1047 * happen, but it can happen when with buggy guest
1048 * OSes. Note that there will be a small window that
1049 * we don't have map at all. But that's the best
1050 * effort we can do. The ideal way to emulate this is
1051 * atomically modify the PTE to follow what has
1052 * changed, but we can't. One example is that vfio
1053 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1054 * interface to modify a mapping (meanwhile it seems
1055 * meaningless to even provide one). Anyway, let's
1056 * mark this as a TODO in case one day we'll have
1057 * a better solution.
1058 */
1059 IOMMUAccessFlags cache_perm = entry->perm;
1060 int ret;
1061
1062 /* Emulate an UNMAP */
1063 entry->perm = IOMMU_NONE;
1064 trace_vtd_page_walk_one(info->domain_id,
1065 entry->iova,
1066 entry->translated_addr,
1067 entry->addr_mask,
1068 entry->perm);
1069 ret = hook_fn(entry, private);
1070 if (ret) {
1071 return ret;
1072 }
1073 /* Drop any existing mapping */
1074 iova_tree_remove(as->iova_tree, &target);
1075 /* Recover the correct permission */
1076 entry->perm = cache_perm;
1077 }
1078 }
1079 iova_tree_insert(as->iova_tree, &target);
1080 } else {
1081 if (!mapped) {
1082 /* Skip since we didn't map this range at all */
1083 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1084 return 0;
1085 }
1086 iova_tree_remove(as->iova_tree, &target);
1087 }
1088
1089 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1090 entry->translated_addr, entry->addr_mask,
1091 entry->perm);
1092 return hook_fn(entry, private);
1093 }
1094
1095 /**
1096 * vtd_page_walk_level - walk over specific level for IOVA range
1097 *
1098 * @addr: base GPA addr to start the walk
1099 * @start: IOVA range start address
1100 * @end: IOVA range end address (start <= addr < end)
1101 * @read: whether parent level has read permission
1102 * @write: whether parent level has write permission
1103 * @info: constant information for the page walk
1104 */
1105 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1106 uint64_t end, uint32_t level, bool read,
1107 bool write, vtd_page_walk_info *info)
1108 {
1109 bool read_cur, write_cur, entry_valid;
1110 uint32_t offset;
1111 uint64_t slpte;
1112 uint64_t subpage_size, subpage_mask;
1113 IOMMUTLBEntry entry;
1114 uint64_t iova = start;
1115 uint64_t iova_next;
1116 int ret = 0;
1117
1118 trace_vtd_page_walk_level(addr, level, start, end);
1119
1120 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1121 subpage_mask = vtd_slpt_level_page_mask(level);
1122
1123 while (iova < end) {
1124 iova_next = (iova & subpage_mask) + subpage_size;
1125
1126 offset = vtd_iova_level_offset(iova, level);
1127 slpte = vtd_get_slpte(addr, offset);
1128
1129 if (slpte == (uint64_t)-1) {
1130 trace_vtd_page_walk_skip_read(iova, iova_next);
1131 goto next;
1132 }
1133
1134 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1135 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1136 goto next;
1137 }
1138
1139 /* Permissions are stacked with parents' */
1140 read_cur = read && (slpte & VTD_SL_R);
1141 write_cur = write && (slpte & VTD_SL_W);
1142
1143 /*
1144 * As long as we have either read/write permission, this is a
1145 * valid entry. The rule works for both page entries and page
1146 * table entries.
1147 */
1148 entry_valid = read_cur | write_cur;
1149
1150 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1151 /*
1152 * This is a valid PDE (or even bigger than PDE). We need
1153 * to walk one further level.
1154 */
1155 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1156 iova, MIN(iova_next, end), level - 1,
1157 read_cur, write_cur, info);
1158 } else {
1159 /*
1160 * This means we are either:
1161 *
1162 * (1) the real page entry (either 4K page, or huge page)
1163 * (2) the whole range is invalid
1164 *
1165 * In either case, we send an IOTLB notification down.
1166 */
1167 entry.target_as = &address_space_memory;
1168 entry.iova = iova & subpage_mask;
1169 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1170 entry.addr_mask = ~subpage_mask;
1171 /* NOTE: this is only meaningful if entry_valid == true */
1172 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1173 ret = vtd_page_walk_one(&entry, info);
1174 }
1175
1176 if (ret < 0) {
1177 return ret;
1178 }
1179
1180 next:
1181 iova = iova_next;
1182 }
1183
1184 return 0;
1185 }
1186
1187 /**
1188 * vtd_page_walk - walk specific IOVA range, and call the hook
1189 *
1190 * @s: intel iommu state
1191 * @ce: context entry to walk upon
1192 * @start: IOVA address to start the walk
1193 * @end: IOVA range end address (start <= addr < end)
1194 * @info: page walking information struct
1195 */
1196 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1197 uint64_t start, uint64_t end,
1198 vtd_page_walk_info *info)
1199 {
1200 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1201 uint32_t level = vtd_get_iova_level(s, ce);
1202
1203 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1204 return -VTD_FR_ADDR_BEYOND_MGAW;
1205 }
1206
1207 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1208 /* Fix end so that it reaches the maximum */
1209 end = vtd_iova_limit(s, ce, info->aw);
1210 }
1211
1212 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1213 }
1214
1215 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1216 VTDRootEntry *re)
1217 {
1218 /* Legacy Mode reserved bits check */
1219 if (!s->root_scalable &&
1220 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1221 goto rsvd_err;
1222
1223 /* Scalable Mode reserved bits check */
1224 if (s->root_scalable &&
1225 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1226 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1227 goto rsvd_err;
1228
1229 return 0;
1230
1231 rsvd_err:
1232 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1233 ", lo=0x%"PRIx64,
1234 __func__, re->hi, re->lo);
1235 return -VTD_FR_ROOT_ENTRY_RSVD;
1236 }
1237
1238 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1239 VTDContextEntry *ce)
1240 {
1241 if (!s->root_scalable &&
1242 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1243 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1244 error_report_once("%s: invalid context entry: hi=%"PRIx64
1245 ", lo=%"PRIx64" (reserved nonzero)",
1246 __func__, ce->hi, ce->lo);
1247 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1248 }
1249
1250 if (s->root_scalable &&
1251 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1252 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1253 ce->val[2] ||
1254 ce->val[3])) {
1255 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1256 ", val[2]=%"PRIx64
1257 ", val[1]=%"PRIx64
1258 ", val[0]=%"PRIx64" (reserved nonzero)",
1259 __func__, ce->val[3], ce->val[2],
1260 ce->val[1], ce->val[0]);
1261 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1262 }
1263
1264 return 0;
1265 }
1266
1267 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1268 VTDContextEntry *ce)
1269 {
1270 VTDPASIDEntry pe;
1271
1272 /*
1273 * Make sure in Scalable Mode, a present context entry
1274 * has valid rid2pasid setting, which includes valid
1275 * rid2pasid field and corresponding pasid entry setting
1276 */
1277 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1278 }
1279
1280 /* Map a device to its corresponding domain (context-entry) */
1281 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1282 uint8_t devfn, VTDContextEntry *ce)
1283 {
1284 VTDRootEntry re;
1285 int ret_fr;
1286 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1287
1288 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1289 if (ret_fr) {
1290 return ret_fr;
1291 }
1292
1293 if (!vtd_root_entry_present(s, &re, devfn)) {
1294 /* Not error - it's okay we don't have root entry. */
1295 trace_vtd_re_not_present(bus_num);
1296 return -VTD_FR_ROOT_ENTRY_P;
1297 }
1298
1299 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1300 if (ret_fr) {
1301 return ret_fr;
1302 }
1303
1304 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1305 if (ret_fr) {
1306 return ret_fr;
1307 }
1308
1309 if (!vtd_ce_present(ce)) {
1310 /* Not error - it's okay we don't have context entry. */
1311 trace_vtd_ce_not_present(bus_num, devfn);
1312 return -VTD_FR_CONTEXT_ENTRY_P;
1313 }
1314
1315 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1316 if (ret_fr) {
1317 return ret_fr;
1318 }
1319
1320 /* Check if the programming of context-entry is valid */
1321 if (!s->root_scalable &&
1322 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1323 error_report_once("%s: invalid context entry: hi=%"PRIx64
1324 ", lo=%"PRIx64" (level %d not supported)",
1325 __func__, ce->hi, ce->lo,
1326 vtd_ce_get_level(ce));
1327 return -VTD_FR_CONTEXT_ENTRY_INV;
1328 }
1329
1330 if (!s->root_scalable) {
1331 /* Do translation type check */
1332 if (!vtd_ce_type_check(x86_iommu, ce)) {
1333 /* Errors dumped in vtd_ce_type_check() */
1334 return -VTD_FR_CONTEXT_ENTRY_INV;
1335 }
1336 } else {
1337 /*
1338 * Check if the programming of context-entry.rid2pasid
1339 * and corresponding pasid setting is valid, and thus
1340 * avoids to check pasid entry fetching result in future
1341 * helper function calling.
1342 */
1343 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1344 if (ret_fr) {
1345 return ret_fr;
1346 }
1347 }
1348
1349 return 0;
1350 }
1351
1352 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1353 void *private)
1354 {
1355 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1356 return 0;
1357 }
1358
1359 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1360 VTDContextEntry *ce)
1361 {
1362 VTDPASIDEntry pe;
1363
1364 if (s->root_scalable) {
1365 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1366 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1367 }
1368
1369 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1370 }
1371
1372 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1373 VTDContextEntry *ce,
1374 hwaddr addr, hwaddr size)
1375 {
1376 IntelIOMMUState *s = vtd_as->iommu_state;
1377 vtd_page_walk_info info = {
1378 .hook_fn = vtd_sync_shadow_page_hook,
1379 .private = (void *)&vtd_as->iommu,
1380 .notify_unmap = true,
1381 .aw = s->aw_bits,
1382 .as = vtd_as,
1383 .domain_id = vtd_get_domain_id(s, ce),
1384 };
1385
1386 return vtd_page_walk(s, ce, addr, addr + size, &info);
1387 }
1388
1389 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1390 {
1391 int ret;
1392 VTDContextEntry ce;
1393 IOMMUNotifier *n;
1394
1395 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1396 pci_bus_num(vtd_as->bus),
1397 vtd_as->devfn, &ce);
1398 if (ret) {
1399 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1400 /*
1401 * It's a valid scenario to have a context entry that is
1402 * not present. For example, when a device is removed
1403 * from an existing domain then the context entry will be
1404 * zeroed by the guest before it was put into another
1405 * domain. When this happens, instead of synchronizing
1406 * the shadow pages we should invalidate all existing
1407 * mappings and notify the backends.
1408 */
1409 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1410 vtd_address_space_unmap(vtd_as, n);
1411 }
1412 ret = 0;
1413 }
1414 return ret;
1415 }
1416
1417 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1418 }
1419
1420 /*
1421 * Check if specific device is configed to bypass address
1422 * translation for DMA requests. In Scalable Mode, bypass
1423 * 1st-level translation or 2nd-level translation, it depends
1424 * on PGTT setting.
1425 */
1426 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1427 {
1428 IntelIOMMUState *s;
1429 VTDContextEntry ce;
1430 VTDPASIDEntry pe;
1431 int ret;
1432
1433 assert(as);
1434
1435 s = as->iommu_state;
1436 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1437 as->devfn, &ce);
1438 if (ret) {
1439 /*
1440 * Possibly failed to parse the context entry for some reason
1441 * (e.g., during init, or any guest configuration errors on
1442 * context entries). We should assume PT not enabled for
1443 * safety.
1444 */
1445 return false;
1446 }
1447
1448 if (s->root_scalable) {
1449 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1450 if (ret) {
1451 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1452 __func__, ret);
1453 return false;
1454 }
1455 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1456 }
1457
1458 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1459 }
1460
1461 /* Return whether the device is using IOMMU translation. */
1462 static bool vtd_switch_address_space(VTDAddressSpace *as)
1463 {
1464 bool use_iommu;
1465 /* Whether we need to take the BQL on our own */
1466 bool take_bql = !qemu_mutex_iothread_locked();
1467
1468 assert(as);
1469
1470 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1471
1472 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1473 VTD_PCI_SLOT(as->devfn),
1474 VTD_PCI_FUNC(as->devfn),
1475 use_iommu);
1476
1477 /*
1478 * It's possible that we reach here without BQL, e.g., when called
1479 * from vtd_pt_enable_fast_path(). However the memory APIs need
1480 * it. We'd better make sure we have had it already, or, take it.
1481 */
1482 if (take_bql) {
1483 qemu_mutex_lock_iothread();
1484 }
1485
1486 /* Turn off first then on the other */
1487 if (use_iommu) {
1488 memory_region_set_enabled(&as->sys_alias, false);
1489 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1490 } else {
1491 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1492 memory_region_set_enabled(&as->sys_alias, true);
1493 }
1494
1495 if (take_bql) {
1496 qemu_mutex_unlock_iothread();
1497 }
1498
1499 return use_iommu;
1500 }
1501
1502 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1503 {
1504 GHashTableIter iter;
1505 VTDBus *vtd_bus;
1506 int i;
1507
1508 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1509 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1510 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1511 if (!vtd_bus->dev_as[i]) {
1512 continue;
1513 }
1514 vtd_switch_address_space(vtd_bus->dev_as[i]);
1515 }
1516 }
1517 }
1518
1519 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1520 {
1521 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1522 }
1523
1524 static const bool vtd_qualified_faults[] = {
1525 [VTD_FR_RESERVED] = false,
1526 [VTD_FR_ROOT_ENTRY_P] = false,
1527 [VTD_FR_CONTEXT_ENTRY_P] = true,
1528 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1529 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1530 [VTD_FR_WRITE] = true,
1531 [VTD_FR_READ] = true,
1532 [VTD_FR_PAGING_ENTRY_INV] = true,
1533 [VTD_FR_ROOT_TABLE_INV] = false,
1534 [VTD_FR_CONTEXT_TABLE_INV] = false,
1535 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1536 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1537 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1538 [VTD_FR_PASID_TABLE_INV] = false,
1539 [VTD_FR_RESERVED_ERR] = false,
1540 [VTD_FR_MAX] = false,
1541 };
1542
1543 /* To see if a fault condition is "qualified", which is reported to software
1544 * only if the FPD field in the context-entry used to process the faulting
1545 * request is 0.
1546 */
1547 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1548 {
1549 return vtd_qualified_faults[fault];
1550 }
1551
1552 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1553 {
1554 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1555 }
1556
1557 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1558 {
1559 VTDBus *vtd_bus;
1560 VTDAddressSpace *vtd_as;
1561 bool success = false;
1562
1563 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1564 if (!vtd_bus) {
1565 goto out;
1566 }
1567
1568 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1569 if (!vtd_as) {
1570 goto out;
1571 }
1572
1573 if (vtd_switch_address_space(vtd_as) == false) {
1574 /* We switched off IOMMU region successfully. */
1575 success = true;
1576 }
1577
1578 out:
1579 trace_vtd_pt_enable_fast_path(source_id, success);
1580 }
1581
1582 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1583 * translation.
1584 *
1585 * Called from RCU critical section.
1586 *
1587 * @bus_num: The bus number
1588 * @devfn: The devfn, which is the combined of device and function number
1589 * @is_write: The access is a write operation
1590 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1591 *
1592 * Returns true if translation is successful, otherwise false.
1593 */
1594 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1595 uint8_t devfn, hwaddr addr, bool is_write,
1596 IOMMUTLBEntry *entry)
1597 {
1598 IntelIOMMUState *s = vtd_as->iommu_state;
1599 VTDContextEntry ce;
1600 uint8_t bus_num = pci_bus_num(bus);
1601 VTDContextCacheEntry *cc_entry;
1602 uint64_t slpte, page_mask;
1603 uint32_t level;
1604 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1605 int ret_fr;
1606 bool is_fpd_set = false;
1607 bool reads = true;
1608 bool writes = true;
1609 uint8_t access_flags;
1610 VTDIOTLBEntry *iotlb_entry;
1611
1612 /*
1613 * We have standalone memory region for interrupt addresses, we
1614 * should never receive translation requests in this region.
1615 */
1616 assert(!vtd_is_interrupt_addr(addr));
1617
1618 vtd_iommu_lock(s);
1619
1620 cc_entry = &vtd_as->context_cache_entry;
1621
1622 /* Try to fetch slpte form IOTLB */
1623 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1624 if (iotlb_entry) {
1625 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1626 iotlb_entry->domain_id);
1627 slpte = iotlb_entry->slpte;
1628 access_flags = iotlb_entry->access_flags;
1629 page_mask = iotlb_entry->mask;
1630 goto out;
1631 }
1632
1633 /* Try to fetch context-entry from cache first */
1634 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1635 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1636 cc_entry->context_entry.lo,
1637 cc_entry->context_cache_gen);
1638 ce = cc_entry->context_entry;
1639 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1640 if (!is_fpd_set && s->root_scalable) {
1641 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1642 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1643 }
1644 } else {
1645 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1646 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1647 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1648 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1649 }
1650 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1651 /* Update context-cache */
1652 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1653 cc_entry->context_cache_gen,
1654 s->context_cache_gen);
1655 cc_entry->context_entry = ce;
1656 cc_entry->context_cache_gen = s->context_cache_gen;
1657 }
1658
1659 /*
1660 * We don't need to translate for pass-through context entries.
1661 * Also, let's ignore IOTLB caching as well for PT devices.
1662 */
1663 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1664 entry->iova = addr & VTD_PAGE_MASK_4K;
1665 entry->translated_addr = entry->iova;
1666 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1667 entry->perm = IOMMU_RW;
1668 trace_vtd_translate_pt(source_id, entry->iova);
1669
1670 /*
1671 * When this happens, it means firstly caching-mode is not
1672 * enabled, and this is the first passthrough translation for
1673 * the device. Let's enable the fast path for passthrough.
1674 *
1675 * When passthrough is disabled again for the device, we can
1676 * capture it via the context entry invalidation, then the
1677 * IOMMU region can be swapped back.
1678 */
1679 vtd_pt_enable_fast_path(s, source_id);
1680 vtd_iommu_unlock(s);
1681 return true;
1682 }
1683
1684 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1685 &reads, &writes, s->aw_bits);
1686 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1687
1688 page_mask = vtd_slpt_level_page_mask(level);
1689 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1690 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1691 access_flags, level);
1692 out:
1693 vtd_iommu_unlock(s);
1694 entry->iova = addr & page_mask;
1695 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1696 entry->addr_mask = ~page_mask;
1697 entry->perm = access_flags;
1698 return true;
1699
1700 error:
1701 vtd_iommu_unlock(s);
1702 entry->iova = 0;
1703 entry->translated_addr = 0;
1704 entry->addr_mask = 0;
1705 entry->perm = IOMMU_NONE;
1706 return false;
1707 }
1708
1709 static void vtd_root_table_setup(IntelIOMMUState *s)
1710 {
1711 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1712 s->root_extended = s->root & VTD_RTADDR_RTT;
1713 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1714
1715 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1716 }
1717
1718 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1719 uint32_t index, uint32_t mask)
1720 {
1721 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1722 }
1723
1724 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1725 {
1726 uint64_t value = 0;
1727 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1728 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1729 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1730 s->intr_eime = value & VTD_IRTA_EIME;
1731
1732 /* Notify global invalidation */
1733 vtd_iec_notify_all(s, true, 0, 0);
1734
1735 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1736 }
1737
1738 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1739 {
1740 VTDAddressSpace *vtd_as;
1741
1742 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1743 vtd_sync_shadow_page_table(vtd_as);
1744 }
1745 }
1746
1747 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1748 {
1749 trace_vtd_inv_desc_cc_global();
1750 /* Protects context cache */
1751 vtd_iommu_lock(s);
1752 s->context_cache_gen++;
1753 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1754 vtd_reset_context_cache_locked(s);
1755 }
1756 vtd_iommu_unlock(s);
1757 vtd_address_space_refresh_all(s);
1758 /*
1759 * From VT-d spec 6.5.2.1, a global context entry invalidation
1760 * should be followed by a IOTLB global invalidation, so we should
1761 * be safe even without this. Hoewever, let's replay the region as
1762 * well to be safer, and go back here when we need finer tunes for
1763 * VT-d emulation codes.
1764 */
1765 vtd_iommu_replay_all(s);
1766 }
1767
1768 /* Do a context-cache device-selective invalidation.
1769 * @func_mask: FM field after shifting
1770 */
1771 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1772 uint16_t source_id,
1773 uint16_t func_mask)
1774 {
1775 uint16_t mask;
1776 VTDBus *vtd_bus;
1777 VTDAddressSpace *vtd_as;
1778 uint8_t bus_n, devfn;
1779 uint16_t devfn_it;
1780
1781 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1782
1783 switch (func_mask & 3) {
1784 case 0:
1785 mask = 0; /* No bits in the SID field masked */
1786 break;
1787 case 1:
1788 mask = 4; /* Mask bit 2 in the SID field */
1789 break;
1790 case 2:
1791 mask = 6; /* Mask bit 2:1 in the SID field */
1792 break;
1793 case 3:
1794 mask = 7; /* Mask bit 2:0 in the SID field */
1795 break;
1796 }
1797 mask = ~mask;
1798
1799 bus_n = VTD_SID_TO_BUS(source_id);
1800 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1801 if (vtd_bus) {
1802 devfn = VTD_SID_TO_DEVFN(source_id);
1803 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1804 vtd_as = vtd_bus->dev_as[devfn_it];
1805 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1806 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1807 VTD_PCI_FUNC(devfn_it));
1808 vtd_iommu_lock(s);
1809 vtd_as->context_cache_entry.context_cache_gen = 0;
1810 vtd_iommu_unlock(s);
1811 /*
1812 * Do switch address space when needed, in case if the
1813 * device passthrough bit is switched.
1814 */
1815 vtd_switch_address_space(vtd_as);
1816 /*
1817 * So a device is moving out of (or moving into) a
1818 * domain, resync the shadow page table.
1819 * This won't bring bad even if we have no such
1820 * notifier registered - the IOMMU notification
1821 * framework will skip MAP notifications if that
1822 * happened.
1823 */
1824 vtd_sync_shadow_page_table(vtd_as);
1825 }
1826 }
1827 }
1828 }
1829
1830 /* Context-cache invalidation
1831 * Returns the Context Actual Invalidation Granularity.
1832 * @val: the content of the CCMD_REG
1833 */
1834 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1835 {
1836 uint64_t caig;
1837 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1838
1839 switch (type) {
1840 case VTD_CCMD_DOMAIN_INVL:
1841 /* Fall through */
1842 case VTD_CCMD_GLOBAL_INVL:
1843 caig = VTD_CCMD_GLOBAL_INVL_A;
1844 vtd_context_global_invalidate(s);
1845 break;
1846
1847 case VTD_CCMD_DEVICE_INVL:
1848 caig = VTD_CCMD_DEVICE_INVL_A;
1849 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1850 break;
1851
1852 default:
1853 error_report_once("%s: invalid context: 0x%" PRIx64,
1854 __func__, val);
1855 caig = 0;
1856 }
1857 return caig;
1858 }
1859
1860 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1861 {
1862 trace_vtd_inv_desc_iotlb_global();
1863 vtd_reset_iotlb(s);
1864 vtd_iommu_replay_all(s);
1865 }
1866
1867 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1868 {
1869 VTDContextEntry ce;
1870 VTDAddressSpace *vtd_as;
1871
1872 trace_vtd_inv_desc_iotlb_domain(domain_id);
1873
1874 vtd_iommu_lock(s);
1875 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1876 &domain_id);
1877 vtd_iommu_unlock(s);
1878
1879 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1880 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1881 vtd_as->devfn, &ce) &&
1882 domain_id == vtd_get_domain_id(s, &ce)) {
1883 vtd_sync_shadow_page_table(vtd_as);
1884 }
1885 }
1886 }
1887
1888 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1889 uint16_t domain_id, hwaddr addr,
1890 uint8_t am)
1891 {
1892 VTDAddressSpace *vtd_as;
1893 VTDContextEntry ce;
1894 int ret;
1895 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1896
1897 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1898 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1899 vtd_as->devfn, &ce);
1900 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1901 if (vtd_as_has_map_notifier(vtd_as)) {
1902 /*
1903 * As long as we have MAP notifications registered in
1904 * any of our IOMMU notifiers, we need to sync the
1905 * shadow page table.
1906 */
1907 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1908 } else {
1909 /*
1910 * For UNMAP-only notifiers, we don't need to walk the
1911 * page tables. We just deliver the PSI down to
1912 * invalidate caches.
1913 */
1914 IOMMUTLBEntry entry = {
1915 .target_as = &address_space_memory,
1916 .iova = addr,
1917 .translated_addr = 0,
1918 .addr_mask = size - 1,
1919 .perm = IOMMU_NONE,
1920 };
1921 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1922 }
1923 }
1924 }
1925 }
1926
1927 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1928 hwaddr addr, uint8_t am)
1929 {
1930 VTDIOTLBPageInvInfo info;
1931
1932 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1933
1934 assert(am <= VTD_MAMV);
1935 info.domain_id = domain_id;
1936 info.addr = addr;
1937 info.mask = ~((1 << am) - 1);
1938 vtd_iommu_lock(s);
1939 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1940 vtd_iommu_unlock(s);
1941 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1942 }
1943
1944 /* Flush IOTLB
1945 * Returns the IOTLB Actual Invalidation Granularity.
1946 * @val: the content of the IOTLB_REG
1947 */
1948 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1949 {
1950 uint64_t iaig;
1951 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1952 uint16_t domain_id;
1953 hwaddr addr;
1954 uint8_t am;
1955
1956 switch (type) {
1957 case VTD_TLB_GLOBAL_FLUSH:
1958 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1959 vtd_iotlb_global_invalidate(s);
1960 break;
1961
1962 case VTD_TLB_DSI_FLUSH:
1963 domain_id = VTD_TLB_DID(val);
1964 iaig = VTD_TLB_DSI_FLUSH_A;
1965 vtd_iotlb_domain_invalidate(s, domain_id);
1966 break;
1967
1968 case VTD_TLB_PSI_FLUSH:
1969 domain_id = VTD_TLB_DID(val);
1970 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1971 am = VTD_IVA_AM(addr);
1972 addr = VTD_IVA_ADDR(addr);
1973 if (am > VTD_MAMV) {
1974 error_report_once("%s: address mask overflow: 0x%" PRIx64,
1975 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
1976 iaig = 0;
1977 break;
1978 }
1979 iaig = VTD_TLB_PSI_FLUSH_A;
1980 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1981 break;
1982
1983 default:
1984 error_report_once("%s: invalid granularity: 0x%" PRIx64,
1985 __func__, val);
1986 iaig = 0;
1987 }
1988 return iaig;
1989 }
1990
1991 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1992
1993 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1994 {
1995 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1996 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1997 }
1998
1999 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2000 {
2001 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2002
2003 trace_vtd_inv_qi_enable(en);
2004
2005 if (en) {
2006 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2007 /* 2^(x+8) entries */
2008 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2009 s->qi_enabled = true;
2010 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2011 /* Ok - report back to driver */
2012 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2013
2014 if (s->iq_tail != 0) {
2015 /*
2016 * This is a spec violation but Windows guests are known to set up
2017 * Queued Invalidation this way so we allow the write and process
2018 * Invalidation Descriptors right away.
2019 */
2020 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2021 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2022 vtd_fetch_inv_desc(s);
2023 }
2024 }
2025 } else {
2026 if (vtd_queued_inv_disable_check(s)) {
2027 /* disable Queued Invalidation */
2028 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2029 s->iq_head = 0;
2030 s->qi_enabled = false;
2031 /* Ok - report back to driver */
2032 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2033 } else {
2034 error_report_once("%s: detected improper state when disable QI "
2035 "(head=0x%x, tail=0x%x, last_type=%d)",
2036 __func__,
2037 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2038 }
2039 }
2040 }
2041
2042 /* Set Root Table Pointer */
2043 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2044 {
2045 vtd_root_table_setup(s);
2046 /* Ok - report back to driver */
2047 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2048 vtd_reset_caches(s);
2049 vtd_address_space_refresh_all(s);
2050 }
2051
2052 /* Set Interrupt Remap Table Pointer */
2053 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2054 {
2055 vtd_interrupt_remap_table_setup(s);
2056 /* Ok - report back to driver */
2057 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2058 }
2059
2060 /* Handle Translation Enable/Disable */
2061 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2062 {
2063 if (s->dmar_enabled == en) {
2064 return;
2065 }
2066
2067 trace_vtd_dmar_enable(en);
2068
2069 if (en) {
2070 s->dmar_enabled = true;
2071 /* Ok - report back to driver */
2072 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2073 } else {
2074 s->dmar_enabled = false;
2075
2076 /* Clear the index of Fault Recording Register */
2077 s->next_frcd_reg = 0;
2078 /* Ok - report back to driver */
2079 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2080 }
2081
2082 vtd_reset_caches(s);
2083 vtd_address_space_refresh_all(s);
2084 }
2085
2086 /* Handle Interrupt Remap Enable/Disable */
2087 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2088 {
2089 trace_vtd_ir_enable(en);
2090
2091 if (en) {
2092 s->intr_enabled = true;
2093 /* Ok - report back to driver */
2094 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2095 } else {
2096 s->intr_enabled = false;
2097 /* Ok - report back to driver */
2098 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2099 }
2100 }
2101
2102 /* Handle write to Global Command Register */
2103 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2104 {
2105 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2106 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2107 uint32_t changed = status ^ val;
2108
2109 trace_vtd_reg_write_gcmd(status, val);
2110 if (changed & VTD_GCMD_TE) {
2111 /* Translation enable/disable */
2112 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2113 }
2114 if (val & VTD_GCMD_SRTP) {
2115 /* Set/update the root-table pointer */
2116 vtd_handle_gcmd_srtp(s);
2117 }
2118 if (changed & VTD_GCMD_QIE) {
2119 /* Queued Invalidation Enable */
2120 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2121 }
2122 if (val & VTD_GCMD_SIRTP) {
2123 /* Set/update the interrupt remapping root-table pointer */
2124 vtd_handle_gcmd_sirtp(s);
2125 }
2126 if (changed & VTD_GCMD_IRE) {
2127 /* Interrupt remap enable/disable */
2128 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2129 }
2130 }
2131
2132 /* Handle write to Context Command Register */
2133 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2134 {
2135 uint64_t ret;
2136 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2137
2138 /* Context-cache invalidation request */
2139 if (val & VTD_CCMD_ICC) {
2140 if (s->qi_enabled) {
2141 error_report_once("Queued Invalidation enabled, "
2142 "should not use register-based invalidation");
2143 return;
2144 }
2145 ret = vtd_context_cache_invalidate(s, val);
2146 /* Invalidation completed. Change something to show */
2147 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2148 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2149 ret);
2150 }
2151 }
2152
2153 /* Handle write to IOTLB Invalidation Register */
2154 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2155 {
2156 uint64_t ret;
2157 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2158
2159 /* IOTLB invalidation request */
2160 if (val & VTD_TLB_IVT) {
2161 if (s->qi_enabled) {
2162 error_report_once("Queued Invalidation enabled, "
2163 "should not use register-based invalidation");
2164 return;
2165 }
2166 ret = vtd_iotlb_flush(s, val);
2167 /* Invalidation completed. Change something to show */
2168 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2169 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2170 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2171 }
2172 }
2173
2174 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2175 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2176 VTDInvDesc *inv_desc)
2177 {
2178 dma_addr_t base_addr = s->iq;
2179 uint32_t offset = s->iq_head;
2180 uint32_t dw = s->iq_dw ? 32 : 16;
2181 dma_addr_t addr = base_addr + offset * dw;
2182
2183 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2184 error_report_once("Read INV DESC failed.");
2185 return false;
2186 }
2187 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2188 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2189 if (dw == 32) {
2190 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2191 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2192 }
2193 return true;
2194 }
2195
2196 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2197 {
2198 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2199 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2200 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2201 " (reserved nonzero)", __func__, inv_desc->hi,
2202 inv_desc->lo);
2203 return false;
2204 }
2205 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2206 /* Status Write */
2207 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2208 VTD_INV_DESC_WAIT_DATA_SHIFT);
2209
2210 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2211
2212 /* FIXME: need to be masked with HAW? */
2213 dma_addr_t status_addr = inv_desc->hi;
2214 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2215 status_data = cpu_to_le32(status_data);
2216 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2217 sizeof(status_data))) {
2218 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2219 return false;
2220 }
2221 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2222 /* Interrupt flag */
2223 vtd_generate_completion_event(s);
2224 } else {
2225 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2226 " (unknown type)", __func__, inv_desc->hi,
2227 inv_desc->lo);
2228 return false;
2229 }
2230 return true;
2231 }
2232
2233 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2234 VTDInvDesc *inv_desc)
2235 {
2236 uint16_t sid, fmask;
2237
2238 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2239 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2240 " (reserved nonzero)", __func__, inv_desc->hi,
2241 inv_desc->lo);
2242 return false;
2243 }
2244 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2245 case VTD_INV_DESC_CC_DOMAIN:
2246 trace_vtd_inv_desc_cc_domain(
2247 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2248 /* Fall through */
2249 case VTD_INV_DESC_CC_GLOBAL:
2250 vtd_context_global_invalidate(s);
2251 break;
2252
2253 case VTD_INV_DESC_CC_DEVICE:
2254 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2255 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2256 vtd_context_device_invalidate(s, sid, fmask);
2257 break;
2258
2259 default:
2260 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2261 " (invalid type)", __func__, inv_desc->hi,
2262 inv_desc->lo);
2263 return false;
2264 }
2265 return true;
2266 }
2267
2268 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2269 {
2270 uint16_t domain_id;
2271 uint8_t am;
2272 hwaddr addr;
2273
2274 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2275 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2276 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2277 ", lo=0x%"PRIx64" (reserved bits unzero)\n",
2278 __func__, inv_desc->hi, inv_desc->lo);
2279 return false;
2280 }
2281
2282 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2283 case VTD_INV_DESC_IOTLB_GLOBAL:
2284 vtd_iotlb_global_invalidate(s);
2285 break;
2286
2287 case VTD_INV_DESC_IOTLB_DOMAIN:
2288 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2289 vtd_iotlb_domain_invalidate(s, domain_id);
2290 break;
2291
2292 case VTD_INV_DESC_IOTLB_PAGE:
2293 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2294 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2295 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2296 if (am > VTD_MAMV) {
2297 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2298 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
2299 __func__, inv_desc->hi, inv_desc->lo,
2300 am, (unsigned)VTD_MAMV);
2301 return false;
2302 }
2303 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2304 break;
2305
2306 default:
2307 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2308 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
2309 __func__, inv_desc->hi, inv_desc->lo,
2310 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2311 return false;
2312 }
2313 return true;
2314 }
2315
2316 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2317 VTDInvDesc *inv_desc)
2318 {
2319 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2320 inv_desc->iec.index,
2321 inv_desc->iec.index_mask);
2322
2323 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2324 inv_desc->iec.index,
2325 inv_desc->iec.index_mask);
2326 return true;
2327 }
2328
2329 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2330 VTDInvDesc *inv_desc)
2331 {
2332 VTDAddressSpace *vtd_dev_as;
2333 IOMMUTLBEntry entry;
2334 struct VTDBus *vtd_bus;
2335 hwaddr addr;
2336 uint64_t sz;
2337 uint16_t sid;
2338 uint8_t devfn;
2339 bool size;
2340 uint8_t bus_num;
2341
2342 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2343 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2344 devfn = sid & 0xff;
2345 bus_num = sid >> 8;
2346 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2347
2348 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2349 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2350 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2351 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2352 inv_desc->hi, inv_desc->lo);
2353 return false;
2354 }
2355
2356 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2357 if (!vtd_bus) {
2358 goto done;
2359 }
2360
2361 vtd_dev_as = vtd_bus->dev_as[devfn];
2362 if (!vtd_dev_as) {
2363 goto done;
2364 }
2365
2366 /* According to ATS spec table 2.4:
2367 * S = 0, bits 15:12 = xxxx range size: 4K
2368 * S = 1, bits 15:12 = xxx0 range size: 8K
2369 * S = 1, bits 15:12 = xx01 range size: 16K
2370 * S = 1, bits 15:12 = x011 range size: 32K
2371 * S = 1, bits 15:12 = 0111 range size: 64K
2372 * ...
2373 */
2374 if (size) {
2375 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2376 addr &= ~(sz - 1);
2377 } else {
2378 sz = VTD_PAGE_SIZE;
2379 }
2380
2381 entry.target_as = &vtd_dev_as->as;
2382 entry.addr_mask = sz - 1;
2383 entry.iova = addr;
2384 entry.perm = IOMMU_NONE;
2385 entry.translated_addr = 0;
2386 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2387
2388 done:
2389 return true;
2390 }
2391
2392 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2393 {
2394 VTDInvDesc inv_desc;
2395 uint8_t desc_type;
2396
2397 trace_vtd_inv_qi_head(s->iq_head);
2398 if (!vtd_get_inv_desc(s, &inv_desc)) {
2399 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2400 return false;
2401 }
2402
2403 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2404 /* FIXME: should update at first or at last? */
2405 s->iq_last_desc_type = desc_type;
2406
2407 switch (desc_type) {
2408 case VTD_INV_DESC_CC:
2409 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2410 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2411 return false;
2412 }
2413 break;
2414
2415 case VTD_INV_DESC_IOTLB:
2416 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2417 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2418 return false;
2419 }
2420 break;
2421
2422 case VTD_INV_DESC_WAIT:
2423 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2424 if (!vtd_process_wait_desc(s, &inv_desc)) {
2425 return false;
2426 }
2427 break;
2428
2429 case VTD_INV_DESC_IEC:
2430 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2431 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2432 return false;
2433 }
2434 break;
2435
2436 case VTD_INV_DESC_DEVICE:
2437 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2438 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2439 return false;
2440 }
2441 break;
2442
2443 default:
2444 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2445 " (unknown type)", __func__, inv_desc.hi,
2446 inv_desc.lo);
2447 return false;
2448 }
2449 s->iq_head++;
2450 if (s->iq_head == s->iq_size) {
2451 s->iq_head = 0;
2452 }
2453 return true;
2454 }
2455
2456 /* Try to fetch and process more Invalidation Descriptors */
2457 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2458 {
2459 trace_vtd_inv_qi_fetch();
2460
2461 if (s->iq_tail >= s->iq_size) {
2462 /* Detects an invalid Tail pointer */
2463 error_report_once("%s: detected invalid QI tail "
2464 "(tail=0x%x, size=0x%x)",
2465 __func__, s->iq_tail, s->iq_size);
2466 vtd_handle_inv_queue_error(s);
2467 return;
2468 }
2469 while (s->iq_head != s->iq_tail) {
2470 if (!vtd_process_inv_desc(s)) {
2471 /* Invalidation Queue Errors */
2472 vtd_handle_inv_queue_error(s);
2473 break;
2474 }
2475 /* Must update the IQH_REG in time */
2476 vtd_set_quad_raw(s, DMAR_IQH_REG,
2477 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2478 VTD_IQH_QH_MASK);
2479 }
2480 }
2481
2482 /* Handle write to Invalidation Queue Tail Register */
2483 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2484 {
2485 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2486
2487 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2488 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2489 __func__, val);
2490 return;
2491 }
2492 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2493 trace_vtd_inv_qi_tail(s->iq_tail);
2494
2495 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2496 /* Process Invalidation Queue here */
2497 vtd_fetch_inv_desc(s);
2498 }
2499 }
2500
2501 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2502 {
2503 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2504 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2505 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2506
2507 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2508 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2509 trace_vtd_fsts_clear_ip();
2510 }
2511 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2512 * Descriptors if there are any when Queued Invalidation is enabled?
2513 */
2514 }
2515
2516 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2517 {
2518 uint32_t fectl_reg;
2519 /* FIXME: when software clears the IM field, check the IP field. But do we
2520 * need to compare the old value and the new value to conclude that
2521 * software clears the IM field? Or just check if the IM field is zero?
2522 */
2523 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2524
2525 trace_vtd_reg_write_fectl(fectl_reg);
2526
2527 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2528 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2529 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2530 }
2531 }
2532
2533 static void vtd_handle_ics_write(IntelIOMMUState *s)
2534 {
2535 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2536 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2537
2538 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2539 trace_vtd_reg_ics_clear_ip();
2540 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2541 }
2542 }
2543
2544 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2545 {
2546 uint32_t iectl_reg;
2547 /* FIXME: when software clears the IM field, check the IP field. But do we
2548 * need to compare the old value and the new value to conclude that
2549 * software clears the IM field? Or just check if the IM field is zero?
2550 */
2551 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2552
2553 trace_vtd_reg_write_iectl(iectl_reg);
2554
2555 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2556 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2557 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2558 }
2559 }
2560
2561 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2562 {
2563 IntelIOMMUState *s = opaque;
2564 uint64_t val;
2565
2566 trace_vtd_reg_read(addr, size);
2567
2568 if (addr + size > DMAR_REG_SIZE) {
2569 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2570 " size=0x%u", __func__, addr, size);
2571 return (uint64_t)-1;
2572 }
2573
2574 switch (addr) {
2575 /* Root Table Address Register, 64-bit */
2576 case DMAR_RTADDR_REG:
2577 if (size == 4) {
2578 val = s->root & ((1ULL << 32) - 1);
2579 } else {
2580 val = s->root;
2581 }
2582 break;
2583
2584 case DMAR_RTADDR_REG_HI:
2585 assert(size == 4);
2586 val = s->root >> 32;
2587 break;
2588
2589 /* Invalidation Queue Address Register, 64-bit */
2590 case DMAR_IQA_REG:
2591 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2592 if (size == 4) {
2593 val = val & ((1ULL << 32) - 1);
2594 }
2595 break;
2596
2597 case DMAR_IQA_REG_HI:
2598 assert(size == 4);
2599 val = s->iq >> 32;
2600 break;
2601
2602 default:
2603 if (size == 4) {
2604 val = vtd_get_long(s, addr);
2605 } else {
2606 val = vtd_get_quad(s, addr);
2607 }
2608 }
2609
2610 return val;
2611 }
2612
2613 static void vtd_mem_write(void *opaque, hwaddr addr,
2614 uint64_t val, unsigned size)
2615 {
2616 IntelIOMMUState *s = opaque;
2617
2618 trace_vtd_reg_write(addr, size, val);
2619
2620 if (addr + size > DMAR_REG_SIZE) {
2621 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2622 " size=0x%u", __func__, addr, size);
2623 return;
2624 }
2625
2626 switch (addr) {
2627 /* Global Command Register, 32-bit */
2628 case DMAR_GCMD_REG:
2629 vtd_set_long(s, addr, val);
2630 vtd_handle_gcmd_write(s);
2631 break;
2632
2633 /* Context Command Register, 64-bit */
2634 case DMAR_CCMD_REG:
2635 if (size == 4) {
2636 vtd_set_long(s, addr, val);
2637 } else {
2638 vtd_set_quad(s, addr, val);
2639 vtd_handle_ccmd_write(s);
2640 }
2641 break;
2642
2643 case DMAR_CCMD_REG_HI:
2644 assert(size == 4);
2645 vtd_set_long(s, addr, val);
2646 vtd_handle_ccmd_write(s);
2647 break;
2648
2649 /* IOTLB Invalidation Register, 64-bit */
2650 case DMAR_IOTLB_REG:
2651 if (size == 4) {
2652 vtd_set_long(s, addr, val);
2653 } else {
2654 vtd_set_quad(s, addr, val);
2655 vtd_handle_iotlb_write(s);
2656 }
2657 break;
2658
2659 case DMAR_IOTLB_REG_HI:
2660 assert(size == 4);
2661 vtd_set_long(s, addr, val);
2662 vtd_handle_iotlb_write(s);
2663 break;
2664
2665 /* Invalidate Address Register, 64-bit */
2666 case DMAR_IVA_REG:
2667 if (size == 4) {
2668 vtd_set_long(s, addr, val);
2669 } else {
2670 vtd_set_quad(s, addr, val);
2671 }
2672 break;
2673
2674 case DMAR_IVA_REG_HI:
2675 assert(size == 4);
2676 vtd_set_long(s, addr, val);
2677 break;
2678
2679 /* Fault Status Register, 32-bit */
2680 case DMAR_FSTS_REG:
2681 assert(size == 4);
2682 vtd_set_long(s, addr, val);
2683 vtd_handle_fsts_write(s);
2684 break;
2685
2686 /* Fault Event Control Register, 32-bit */
2687 case DMAR_FECTL_REG:
2688 assert(size == 4);
2689 vtd_set_long(s, addr, val);
2690 vtd_handle_fectl_write(s);
2691 break;
2692
2693 /* Fault Event Data Register, 32-bit */
2694 case DMAR_FEDATA_REG:
2695 assert(size == 4);
2696 vtd_set_long(s, addr, val);
2697 break;
2698
2699 /* Fault Event Address Register, 32-bit */
2700 case DMAR_FEADDR_REG:
2701 if (size == 4) {
2702 vtd_set_long(s, addr, val);
2703 } else {
2704 /*
2705 * While the register is 32-bit only, some guests (Xen...) write to
2706 * it with 64-bit.
2707 */
2708 vtd_set_quad(s, addr, val);
2709 }
2710 break;
2711
2712 /* Fault Event Upper Address Register, 32-bit */
2713 case DMAR_FEUADDR_REG:
2714 assert(size == 4);
2715 vtd_set_long(s, addr, val);
2716 break;
2717
2718 /* Protected Memory Enable Register, 32-bit */
2719 case DMAR_PMEN_REG:
2720 assert(size == 4);
2721 vtd_set_long(s, addr, val);
2722 break;
2723
2724 /* Root Table Address Register, 64-bit */
2725 case DMAR_RTADDR_REG:
2726 if (size == 4) {
2727 vtd_set_long(s, addr, val);
2728 } else {
2729 vtd_set_quad(s, addr, val);
2730 }
2731 break;
2732
2733 case DMAR_RTADDR_REG_HI:
2734 assert(size == 4);
2735 vtd_set_long(s, addr, val);
2736 break;
2737
2738 /* Invalidation Queue Tail Register, 64-bit */
2739 case DMAR_IQT_REG:
2740 if (size == 4) {
2741 vtd_set_long(s, addr, val);
2742 } else {
2743 vtd_set_quad(s, addr, val);
2744 }
2745 vtd_handle_iqt_write(s);
2746 break;
2747
2748 case DMAR_IQT_REG_HI:
2749 assert(size == 4);
2750 vtd_set_long(s, addr, val);
2751 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2752 break;
2753
2754 /* Invalidation Queue Address Register, 64-bit */
2755 case DMAR_IQA_REG:
2756 if (size == 4) {
2757 vtd_set_long(s, addr, val);
2758 } else {
2759 vtd_set_quad(s, addr, val);
2760 }
2761 if (s->ecap & VTD_ECAP_SMTS &&
2762 val & VTD_IQA_DW_MASK) {
2763 s->iq_dw = true;
2764 } else {
2765 s->iq_dw = false;
2766 }
2767 break;
2768
2769 case DMAR_IQA_REG_HI:
2770 assert(size == 4);
2771 vtd_set_long(s, addr, val);
2772 break;
2773
2774 /* Invalidation Completion Status Register, 32-bit */
2775 case DMAR_ICS_REG:
2776 assert(size == 4);
2777 vtd_set_long(s, addr, val);
2778 vtd_handle_ics_write(s);
2779 break;
2780
2781 /* Invalidation Event Control Register, 32-bit */
2782 case DMAR_IECTL_REG:
2783 assert(size == 4);
2784 vtd_set_long(s, addr, val);
2785 vtd_handle_iectl_write(s);
2786 break;
2787
2788 /* Invalidation Event Data Register, 32-bit */
2789 case DMAR_IEDATA_REG:
2790 assert(size == 4);
2791 vtd_set_long(s, addr, val);
2792 break;
2793
2794 /* Invalidation Event Address Register, 32-bit */
2795 case DMAR_IEADDR_REG:
2796 assert(size == 4);
2797 vtd_set_long(s, addr, val);
2798 break;
2799
2800 /* Invalidation Event Upper Address Register, 32-bit */
2801 case DMAR_IEUADDR_REG:
2802 assert(size == 4);
2803 vtd_set_long(s, addr, val);
2804 break;
2805
2806 /* Fault Recording Registers, 128-bit */
2807 case DMAR_FRCD_REG_0_0:
2808 if (size == 4) {
2809 vtd_set_long(s, addr, val);
2810 } else {
2811 vtd_set_quad(s, addr, val);
2812 }
2813 break;
2814
2815 case DMAR_FRCD_REG_0_1:
2816 assert(size == 4);
2817 vtd_set_long(s, addr, val);
2818 break;
2819
2820 case DMAR_FRCD_REG_0_2:
2821 if (size == 4) {
2822 vtd_set_long(s, addr, val);
2823 } else {
2824 vtd_set_quad(s, addr, val);
2825 /* May clear bit 127 (Fault), update PPF */
2826 vtd_update_fsts_ppf(s);
2827 }
2828 break;
2829
2830 case DMAR_FRCD_REG_0_3:
2831 assert(size == 4);
2832 vtd_set_long(s, addr, val);
2833 /* May clear bit 127 (Fault), update PPF */
2834 vtd_update_fsts_ppf(s);
2835 break;
2836
2837 case DMAR_IRTA_REG:
2838 if (size == 4) {
2839 vtd_set_long(s, addr, val);
2840 } else {
2841 vtd_set_quad(s, addr, val);
2842 }
2843 break;
2844
2845 case DMAR_IRTA_REG_HI:
2846 assert(size == 4);
2847 vtd_set_long(s, addr, val);
2848 break;
2849
2850 default:
2851 if (size == 4) {
2852 vtd_set_long(s, addr, val);
2853 } else {
2854 vtd_set_quad(s, addr, val);
2855 }
2856 }
2857 }
2858
2859 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2860 IOMMUAccessFlags flag, int iommu_idx)
2861 {
2862 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2863 IntelIOMMUState *s = vtd_as->iommu_state;
2864 IOMMUTLBEntry iotlb = {
2865 /* We'll fill in the rest later. */
2866 .target_as = &address_space_memory,
2867 };
2868 bool success;
2869
2870 if (likely(s->dmar_enabled)) {
2871 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2872 addr, flag & IOMMU_WO, &iotlb);
2873 } else {
2874 /* DMAR disabled, passthrough, use 4k-page*/
2875 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2876 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2877 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2878 iotlb.perm = IOMMU_RW;
2879 success = true;
2880 }
2881
2882 if (likely(success)) {
2883 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2884 VTD_PCI_SLOT(vtd_as->devfn),
2885 VTD_PCI_FUNC(vtd_as->devfn),
2886 iotlb.iova, iotlb.translated_addr,
2887 iotlb.addr_mask);
2888 } else {
2889 error_report_once("%s: detected translation failure "
2890 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2891 __func__, pci_bus_num(vtd_as->bus),
2892 VTD_PCI_SLOT(vtd_as->devfn),
2893 VTD_PCI_FUNC(vtd_as->devfn),
2894 addr);
2895 }
2896
2897 return iotlb;
2898 }
2899
2900 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2901 IOMMUNotifierFlag old,
2902 IOMMUNotifierFlag new)
2903 {
2904 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2905 IntelIOMMUState *s = vtd_as->iommu_state;
2906
2907 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2908 error_report("We need to set caching-mode=1 for intel-iommu to enable "
2909 "device assignment with IOMMU protection.");
2910 exit(1);
2911 }
2912
2913 /* Update per-address-space notifier flags */
2914 vtd_as->notifier_flags = new;
2915
2916 if (old == IOMMU_NOTIFIER_NONE) {
2917 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2918 } else if (new == IOMMU_NOTIFIER_NONE) {
2919 QLIST_REMOVE(vtd_as, next);
2920 }
2921 }
2922
2923 static int vtd_post_load(void *opaque, int version_id)
2924 {
2925 IntelIOMMUState *iommu = opaque;
2926
2927 /*
2928 * Memory regions are dynamically turned on/off depending on
2929 * context entry configurations from the guest. After migration,
2930 * we need to make sure the memory regions are still correct.
2931 */
2932 vtd_switch_address_space_all(iommu);
2933
2934 return 0;
2935 }
2936
2937 static const VMStateDescription vtd_vmstate = {
2938 .name = "iommu-intel",
2939 .version_id = 1,
2940 .minimum_version_id = 1,
2941 .priority = MIG_PRI_IOMMU,
2942 .post_load = vtd_post_load,
2943 .fields = (VMStateField[]) {
2944 VMSTATE_UINT64(root, IntelIOMMUState),
2945 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2946 VMSTATE_UINT64(iq, IntelIOMMUState),
2947 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2948 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2949 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2950 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2951 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2952 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2953 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2954 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2955 VMSTATE_BOOL(root_scalable, IntelIOMMUState),
2956 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2957 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2958 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2959 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2960 VMSTATE_END_OF_LIST()
2961 }
2962 };
2963
2964 static const MemoryRegionOps vtd_mem_ops = {
2965 .read = vtd_mem_read,
2966 .write = vtd_mem_write,
2967 .endianness = DEVICE_LITTLE_ENDIAN,
2968 .impl = {
2969 .min_access_size = 4,
2970 .max_access_size = 8,
2971 },
2972 .valid = {
2973 .min_access_size = 4,
2974 .max_access_size = 8,
2975 },
2976 };
2977
2978 static Property vtd_properties[] = {
2979 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2980 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2981 ON_OFF_AUTO_AUTO),
2982 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2983 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
2984 VTD_HOST_ADDRESS_WIDTH),
2985 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2986 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
2987 DEFINE_PROP_END_OF_LIST(),
2988 };
2989
2990 /* Read IRTE entry with specific index */
2991 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2992 VTD_IR_TableEntry *entry, uint16_t sid)
2993 {
2994 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2995 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2996 dma_addr_t addr = 0x00;
2997 uint16_t mask, source_id;
2998 uint8_t bus, bus_max, bus_min;
2999
3000 addr = iommu->intr_root + index * sizeof(*entry);
3001 if (dma_memory_read(&address_space_memory, addr, entry,
3002 sizeof(*entry))) {
3003 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3004 __func__, index, addr);
3005 return -VTD_FR_IR_ROOT_INVAL;
3006 }
3007
3008 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3009 le64_to_cpu(entry->data[0]));
3010
3011 if (!entry->irte.present) {
3012 error_report_once("%s: detected non-present IRTE "
3013 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3014 __func__, index, le64_to_cpu(entry->data[1]),
3015 le64_to_cpu(entry->data[0]));
3016 return -VTD_FR_IR_ENTRY_P;
3017 }
3018
3019 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3020 entry->irte.__reserved_2) {
3021 error_report_once("%s: detected non-zero reserved IRTE "
3022 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3023 __func__, index, le64_to_cpu(entry->data[1]),
3024 le64_to_cpu(entry->data[0]));
3025 return -VTD_FR_IR_IRTE_RSVD;
3026 }
3027
3028 if (sid != X86_IOMMU_SID_INVALID) {
3029 /* Validate IRTE SID */
3030 source_id = le32_to_cpu(entry->irte.source_id);
3031 switch (entry->irte.sid_vtype) {
3032 case VTD_SVT_NONE:
3033 break;
3034
3035 case VTD_SVT_ALL:
3036 mask = vtd_svt_mask[entry->irte.sid_q];
3037 if ((source_id & mask) != (sid & mask)) {
3038 error_report_once("%s: invalid IRTE SID "
3039 "(index=%u, sid=%u, source_id=%u)",
3040 __func__, index, sid, source_id);
3041 return -VTD_FR_IR_SID_ERR;
3042 }
3043 break;
3044
3045 case VTD_SVT_BUS:
3046 bus_max = source_id >> 8;
3047 bus_min = source_id & 0xff;
3048 bus = sid >> 8;
3049 if (bus > bus_max || bus < bus_min) {
3050 error_report_once("%s: invalid SVT_BUS "
3051 "(index=%u, bus=%u, min=%u, max=%u)",
3052 __func__, index, bus, bus_min, bus_max);
3053 return -VTD_FR_IR_SID_ERR;
3054 }
3055 break;
3056
3057 default:
3058 error_report_once("%s: detected invalid IRTE SVT "
3059 "(index=%u, type=%d)", __func__,
3060 index, entry->irte.sid_vtype);
3061 /* Take this as verification failure. */
3062 return -VTD_FR_IR_SID_ERR;
3063 break;
3064 }
3065 }
3066
3067 return 0;
3068 }
3069
3070 /* Fetch IRQ information of specific IR index */
3071 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3072 X86IOMMUIrq *irq, uint16_t sid)
3073 {
3074 VTD_IR_TableEntry irte = {};
3075 int ret = 0;
3076
3077 ret = vtd_irte_get(iommu, index, &irte, sid);
3078 if (ret) {
3079 return ret;
3080 }
3081
3082 irq->trigger_mode = irte.irte.trigger_mode;
3083 irq->vector = irte.irte.vector;
3084 irq->delivery_mode = irte.irte.delivery_mode;
3085 irq->dest = le32_to_cpu(irte.irte.dest_id);
3086 if (!iommu->intr_eime) {
3087 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3088 #define VTD_IR_APIC_DEST_SHIFT (8)
3089 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3090 VTD_IR_APIC_DEST_SHIFT;
3091 }
3092 irq->dest_mode = irte.irte.dest_mode;
3093 irq->redir_hint = irte.irte.redir_hint;
3094
3095 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3096 irq->delivery_mode, irq->dest, irq->dest_mode);
3097
3098 return 0;
3099 }
3100
3101 /* Interrupt remapping for MSI/MSI-X entry */
3102 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3103 MSIMessage *origin,
3104 MSIMessage *translated,
3105 uint16_t sid)
3106 {
3107 int ret = 0;
3108 VTD_IR_MSIAddress addr;
3109 uint16_t index;
3110 X86IOMMUIrq irq = {};
3111
3112 assert(origin && translated);
3113
3114 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3115
3116 if (!iommu || !iommu->intr_enabled) {
3117 memcpy(translated, origin, sizeof(*origin));
3118 goto out;
3119 }
3120
3121 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3122 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3123 "address=0x%" PRIx64, __func__, origin->address);
3124 return -VTD_FR_IR_REQ_RSVD;
3125 }
3126
3127 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3128 if (addr.addr.__head != 0xfee) {
3129 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3130 __func__, addr.data);
3131 return -VTD_FR_IR_REQ_RSVD;
3132 }
3133
3134 /* This is compatible mode. */
3135 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3136 memcpy(translated, origin, sizeof(*origin));
3137 goto out;
3138 }
3139
3140 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3141
3142 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3143 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3144
3145 if (addr.addr.sub_valid) {
3146 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3147 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3148 }
3149
3150 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3151 if (ret) {
3152 return ret;
3153 }
3154
3155 if (addr.addr.sub_valid) {
3156 trace_vtd_ir_remap_type("MSI");
3157 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3158 error_report_once("%s: invalid IR MSI "
3159 "(sid=%u, address=0x%" PRIx64
3160 ", data=0x%" PRIx32 ")",
3161 __func__, sid, origin->address, origin->data);
3162 return -VTD_FR_IR_REQ_RSVD;
3163 }
3164 } else {
3165 uint8_t vector = origin->data & 0xff;
3166 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3167
3168 trace_vtd_ir_remap_type("IOAPIC");
3169 /* IOAPIC entry vector should be aligned with IRTE vector
3170 * (see vt-d spec 5.1.5.1). */
3171 if (vector != irq.vector) {
3172 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3173 }
3174
3175 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3176 * (see vt-d spec 5.1.5.1). */
3177 if (trigger_mode != irq.trigger_mode) {
3178 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3179 irq.trigger_mode);
3180 }
3181 }
3182
3183 /*
3184 * We'd better keep the last two bits, assuming that guest OS
3185 * might modify it. Keep it does not hurt after all.
3186 */
3187 irq.msi_addr_last_bits = addr.addr.__not_care;
3188
3189 /* Translate X86IOMMUIrq to MSI message */
3190 x86_iommu_irq_to_msi_message(&irq, translated);
3191
3192 out:
3193 trace_vtd_ir_remap_msi(origin->address, origin->data,
3194 translated->address, translated->data);
3195 return 0;
3196 }
3197
3198 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3199 MSIMessage *dst, uint16_t sid)
3200 {
3201 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3202 src, dst, sid);
3203 }
3204
3205 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3206 uint64_t *data, unsigned size,
3207 MemTxAttrs attrs)
3208 {
3209 return MEMTX_OK;
3210 }
3211
3212 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3213 uint64_t value, unsigned size,
3214 MemTxAttrs attrs)
3215 {
3216 int ret = 0;
3217 MSIMessage from = {}, to = {};
3218 uint16_t sid = X86_IOMMU_SID_INVALID;
3219
3220 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3221 from.data = (uint32_t) value;
3222
3223 if (!attrs.unspecified) {
3224 /* We have explicit Source ID */
3225 sid = attrs.requester_id;
3226 }
3227
3228 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3229 if (ret) {
3230 /* TODO: report error */
3231 /* Drop this interrupt */
3232 return MEMTX_ERROR;
3233 }
3234
3235 apic_get_class()->send_msi(&to);
3236
3237 return MEMTX_OK;
3238 }
3239
3240 static const MemoryRegionOps vtd_mem_ir_ops = {
3241 .read_with_attrs = vtd_mem_ir_read,
3242 .write_with_attrs = vtd_mem_ir_write,
3243 .endianness = DEVICE_LITTLE_ENDIAN,
3244 .impl = {
3245 .min_access_size = 4,
3246 .max_access_size = 4,
3247 },
3248 .valid = {
3249 .min_access_size = 4,
3250 .max_access_size = 4,
3251 },
3252 };
3253
3254 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3255 {
3256 uintptr_t key = (uintptr_t)bus;
3257 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3258 VTDAddressSpace *vtd_dev_as;
3259 char name[128];
3260
3261 if (!vtd_bus) {
3262 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3263 *new_key = (uintptr_t)bus;
3264 /* No corresponding free() */
3265 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3266 PCI_DEVFN_MAX);
3267 vtd_bus->bus = bus;
3268 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3269 }
3270
3271 vtd_dev_as = vtd_bus->dev_as[devfn];
3272
3273 if (!vtd_dev_as) {
3274 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
3275 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3276
3277 vtd_dev_as->bus = bus;
3278 vtd_dev_as->devfn = (uint8_t)devfn;
3279 vtd_dev_as->iommu_state = s;
3280 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3281 vtd_dev_as->iova_tree = iova_tree_new();
3282
3283 /*
3284 * Memory region relationships looks like (Address range shows
3285 * only lower 32 bits to make it short in length...):
3286 *
3287 * |-----------------+-------------------+----------|
3288 * | Name | Address range | Priority |
3289 * |-----------------+-------------------+----------+
3290 * | vtd_root | 00000000-ffffffff | 0 |
3291 * | intel_iommu | 00000000-ffffffff | 1 |
3292 * | vtd_sys_alias | 00000000-ffffffff | 1 |
3293 * | intel_iommu_ir | fee00000-feefffff | 64 |
3294 * |-----------------+-------------------+----------|
3295 *
3296 * We enable/disable DMAR by switching enablement for
3297 * vtd_sys_alias and intel_iommu regions. IR region is always
3298 * enabled.
3299 */
3300 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3301 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3302 "intel_iommu_dmar",
3303 UINT64_MAX);
3304 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
3305 "vtd_sys_alias", get_system_memory(),
3306 0, memory_region_size(get_system_memory()));
3307 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
3308 &vtd_mem_ir_ops, s, "intel_iommu_ir",
3309 VTD_INTERRUPT_ADDR_SIZE);
3310 memory_region_init(&vtd_dev_as->root, OBJECT(s),
3311 "vtd_root", UINT64_MAX);
3312 memory_region_add_subregion_overlap(&vtd_dev_as->root,
3313 VTD_INTERRUPT_ADDR_FIRST,
3314 &vtd_dev_as->iommu_ir, 64);
3315 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
3316 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3317 &vtd_dev_as->sys_alias, 1);
3318 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3319 MEMORY_REGION(&vtd_dev_as->iommu),
3320 1);
3321 vtd_switch_address_space(vtd_dev_as);
3322 }
3323 return vtd_dev_as;
3324 }
3325
3326 /* Unmap the whole range in the notifier's scope. */
3327 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3328 {
3329 IOMMUTLBEntry entry;
3330 hwaddr size;
3331 hwaddr start = n->start;
3332 hwaddr end = n->end;
3333 IntelIOMMUState *s = as->iommu_state;
3334 DMAMap map;
3335
3336 /*
3337 * Note: all the codes in this function has a assumption that IOVA
3338 * bits are no more than VTD_MGAW bits (which is restricted by
3339 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3340 */
3341
3342 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
3343 /*
3344 * Don't need to unmap regions that is bigger than the whole
3345 * VT-d supported address space size
3346 */
3347 end = VTD_ADDRESS_SIZE(s->aw_bits);
3348 }
3349
3350 assert(start <= end);
3351 size = end - start;
3352
3353 if (ctpop64(size) != 1) {
3354 /*
3355 * This size cannot format a correct mask. Let's enlarge it to
3356 * suite the minimum available mask.
3357 */
3358 int n = 64 - clz64(size);
3359 if (n > s->aw_bits) {
3360 /* should not happen, but in case it happens, limit it */
3361 n = s->aw_bits;
3362 }
3363 size = 1ULL << n;
3364 }
3365
3366 entry.target_as = &address_space_memory;
3367 /* Adjust iova for the size */
3368 entry.iova = n->start & ~(size - 1);
3369 /* This field is meaningless for unmap */
3370 entry.translated_addr = 0;
3371 entry.perm = IOMMU_NONE;
3372 entry.addr_mask = size - 1;
3373
3374 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3375 VTD_PCI_SLOT(as->devfn),
3376 VTD_PCI_FUNC(as->devfn),
3377 entry.iova, size);
3378
3379 map.iova = entry.iova;
3380 map.size = entry.addr_mask;
3381 iova_tree_remove(as->iova_tree, &map);
3382
3383 memory_region_notify_one(n, &entry);
3384 }
3385
3386 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3387 {
3388 VTDAddressSpace *vtd_as;
3389 IOMMUNotifier *n;
3390
3391 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3392 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3393 vtd_address_space_unmap(vtd_as, n);
3394 }
3395 }
3396 }
3397
3398 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3399 {
3400 vtd_address_space_unmap_all(s);
3401 vtd_switch_address_space_all(s);
3402 }
3403
3404 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3405 {
3406 memory_region_notify_one((IOMMUNotifier *)private, entry);
3407 return 0;
3408 }
3409
3410 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3411 {
3412 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3413 IntelIOMMUState *s = vtd_as->iommu_state;
3414 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3415 VTDContextEntry ce;
3416
3417 /*
3418 * The replay can be triggered by either a invalidation or a newly
3419 * created entry. No matter what, we release existing mappings
3420 * (it means flushing caches for UNMAP-only registers).
3421 */
3422 vtd_address_space_unmap(vtd_as, n);
3423
3424 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3425 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3426 "legacy mode",
3427 bus_n, PCI_SLOT(vtd_as->devfn),
3428 PCI_FUNC(vtd_as->devfn),
3429 vtd_get_domain_id(s, &ce),
3430 ce.hi, ce.lo);
3431 if (vtd_as_has_map_notifier(vtd_as)) {
3432 /* This is required only for MAP typed notifiers */
3433 vtd_page_walk_info info = {
3434 .hook_fn = vtd_replay_hook,
3435 .private = (void *)n,
3436 .notify_unmap = false,
3437 .aw = s->aw_bits,
3438 .as = vtd_as,
3439 .domain_id = vtd_get_domain_id(s, &ce),
3440 };
3441
3442 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3443 }
3444 } else {
3445 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3446 PCI_FUNC(vtd_as->devfn));
3447 }
3448
3449 return;
3450 }
3451
3452 /* Do the initialization. It will also be called when reset, so pay
3453 * attention when adding new initialization stuff.
3454 */
3455 static void vtd_init(IntelIOMMUState *s)
3456 {
3457 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3458
3459 memset(s->csr, 0, DMAR_REG_SIZE);
3460 memset(s->wmask, 0, DMAR_REG_SIZE);
3461 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3462 memset(s->womask, 0, DMAR_REG_SIZE);
3463
3464 s->root = 0;
3465 s->root_extended = false;
3466 s->root_scalable = false;
3467 s->dmar_enabled = false;
3468 s->intr_enabled = false;
3469 s->iq_head = 0;
3470 s->iq_tail = 0;
3471 s->iq = 0;
3472 s->iq_size = 0;
3473 s->qi_enabled = false;
3474 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3475 s->iq_dw = false;
3476 s->next_frcd_reg = 0;
3477 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3478 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3479 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3480 if (s->dma_drain) {
3481 s->cap |= VTD_CAP_DRAIN;
3482 }
3483 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3484 s->cap |= VTD_CAP_SAGAW_48bit;
3485 }
3486 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3487
3488 /*
3489 * Rsvd field masks for spte
3490 */
3491 vtd_paging_entry_rsvd_field[0] = ~0ULL;
3492 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3493 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3494 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3495 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3496 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3497 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3498 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3499 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3500
3501 if (x86_iommu_ir_supported(x86_iommu)) {
3502 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3503 if (s->intr_eim == ON_OFF_AUTO_ON) {
3504 s->ecap |= VTD_ECAP_EIM;
3505 }
3506 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3507 }
3508
3509 if (x86_iommu->dt_supported) {
3510 s->ecap |= VTD_ECAP_DT;
3511 }
3512
3513 if (x86_iommu->pt_supported) {
3514 s->ecap |= VTD_ECAP_PT;
3515 }
3516
3517 if (s->caching_mode) {
3518 s->cap |= VTD_CAP_CM;
3519 }
3520
3521 vtd_reset_caches(s);
3522
3523 /* Define registers with default values and bit semantics */
3524 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3525 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3526 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3527 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3528 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3529 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3530 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3531 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3532 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3533
3534 /* Advanced Fault Logging not supported */
3535 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3536 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3537 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3538 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3539
3540 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3541 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3542 */
3543 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3544
3545 /* Treated as RO for implementations that PLMR and PHMR fields reported
3546 * as Clear in the CAP_REG.
3547 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3548 */
3549 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3550
3551 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3552 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3553 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3554 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3555 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3556 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3557 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3558 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3559 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3560
3561 /* IOTLB registers */
3562 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3563 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3564 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3565
3566 /* Fault Recording Registers, 128-bit */
3567 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3568 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3569
3570 /*
3571 * Interrupt remapping registers.
3572 */
3573 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3574 }
3575
3576 /* Should not reset address_spaces when reset because devices will still use
3577 * the address space they got at first (won't ask the bus again).
3578 */
3579 static void vtd_reset(DeviceState *dev)
3580 {
3581 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3582
3583 vtd_init(s);
3584 vtd_address_space_refresh_all(s);
3585 }
3586
3587 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3588 {
3589 IntelIOMMUState *s = opaque;
3590 VTDAddressSpace *vtd_as;
3591
3592 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3593
3594 vtd_as = vtd_find_add_as(s, bus, devfn);
3595 return &vtd_as->as;
3596 }
3597
3598 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3599 {
3600 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3601
3602 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3603 error_setg(errp, "eim=on cannot be selected without intremap=on");
3604 return false;
3605 }
3606
3607 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3608 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3609 && x86_iommu_ir_supported(x86_iommu) ?
3610 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3611 }
3612 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3613 if (!kvm_irqchip_in_kernel()) {
3614 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3615 return false;
3616 }
3617 if (!kvm_enable_x2apic()) {
3618 error_setg(errp, "eim=on requires support on the KVM side"
3619 "(X2APIC_API, first shipped in v4.7)");
3620 return false;
3621 }
3622 }
3623
3624 /* Currently only address widths supported are 39 and 48 bits */
3625 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3626 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3627 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3628 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3629 return false;
3630 }
3631
3632 return true;
3633 }
3634
3635 static void vtd_realize(DeviceState *dev, Error **errp)
3636 {
3637 MachineState *ms = MACHINE(qdev_get_machine());
3638 PCMachineState *pcms = PC_MACHINE(ms);
3639 PCIBus *bus = pcms->bus;
3640 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3641 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3642
3643 x86_iommu->type = TYPE_INTEL;
3644
3645 if (!vtd_decide_config(s, errp)) {
3646 return;
3647 }
3648
3649 QLIST_INIT(&s->vtd_as_with_notifiers);
3650 qemu_mutex_init(&s->iommu_lock);
3651 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3652 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3653 "intel_iommu", DMAR_REG_SIZE);
3654 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3655 /* No corresponding destroy */
3656 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3657 g_free, g_free);
3658 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3659 g_free, g_free);
3660 vtd_init(s);
3661 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3662 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3663 /* Pseudo address space under root PCI bus. */
3664 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3665 }
3666
3667 static void vtd_class_init(ObjectClass *klass, void *data)
3668 {
3669 DeviceClass *dc = DEVICE_CLASS(klass);
3670 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3671
3672 dc->reset = vtd_reset;
3673 dc->vmsd = &vtd_vmstate;
3674 dc->props = vtd_properties;
3675 dc->hotpluggable = false;
3676 x86_class->realize = vtd_realize;
3677 x86_class->int_remap = vtd_int_remap;
3678 /* Supported by the pc-q35-* machine types */
3679 dc->user_creatable = true;
3680 }
3681
3682 static const TypeInfo vtd_info = {
3683 .name = TYPE_INTEL_IOMMU_DEVICE,
3684 .parent = TYPE_X86_IOMMU_DEVICE,
3685 .instance_size = sizeof(IntelIOMMUState),
3686 .class_init = vtd_class_init,
3687 };
3688
3689 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3690 void *data)
3691 {
3692 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3693
3694 imrc->translate = vtd_iommu_translate;
3695 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3696 imrc->replay = vtd_iommu_replay;
3697 }
3698
3699 static const TypeInfo vtd_iommu_memory_region_info = {
3700 .parent = TYPE_IOMMU_MEMORY_REGION,
3701 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3702 .class_init = vtd_iommu_memory_region_class_init,
3703 };
3704
3705 static void vtd_register_types(void)
3706 {
3707 type_register_static(&vtd_info);
3708 type_register_static(&vtd_iommu_memory_region_info);
3709 }
3710
3711 type_init(vtd_register_types)