]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/intel_iommu.c
intel_iommu: handle invalid ce for shadow sync
[mirror_qemu.git] / hw / i386 / intel_iommu.c
1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
39
40 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
41 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
42
43 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
44 uint64_t wmask, uint64_t w1cmask)
45 {
46 stq_le_p(&s->csr[addr], val);
47 stq_le_p(&s->wmask[addr], wmask);
48 stq_le_p(&s->w1cmask[addr], w1cmask);
49 }
50
51 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
52 {
53 stq_le_p(&s->womask[addr], mask);
54 }
55
56 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
57 uint32_t wmask, uint32_t w1cmask)
58 {
59 stl_le_p(&s->csr[addr], val);
60 stl_le_p(&s->wmask[addr], wmask);
61 stl_le_p(&s->w1cmask[addr], w1cmask);
62 }
63
64 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
65 {
66 stl_le_p(&s->womask[addr], mask);
67 }
68
69 /* "External" get/set operations */
70 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
71 {
72 uint64_t oldval = ldq_le_p(&s->csr[addr]);
73 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
74 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
75 stq_le_p(&s->csr[addr],
76 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
77 }
78
79 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
80 {
81 uint32_t oldval = ldl_le_p(&s->csr[addr]);
82 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
83 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
84 stl_le_p(&s->csr[addr],
85 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
86 }
87
88 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
89 {
90 uint64_t val = ldq_le_p(&s->csr[addr]);
91 uint64_t womask = ldq_le_p(&s->womask[addr]);
92 return val & ~womask;
93 }
94
95 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
96 {
97 uint32_t val = ldl_le_p(&s->csr[addr]);
98 uint32_t womask = ldl_le_p(&s->womask[addr]);
99 return val & ~womask;
100 }
101
102 /* "Internal" get/set operations */
103 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
104 {
105 return ldq_le_p(&s->csr[addr]);
106 }
107
108 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
109 {
110 return ldl_le_p(&s->csr[addr]);
111 }
112
113 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
114 {
115 stq_le_p(&s->csr[addr], val);
116 }
117
118 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
119 uint32_t clear, uint32_t mask)
120 {
121 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
122 stl_le_p(&s->csr[addr], new_val);
123 return new_val;
124 }
125
126 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
127 uint64_t clear, uint64_t mask)
128 {
129 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
130 stq_le_p(&s->csr[addr], new_val);
131 return new_val;
132 }
133
134 static inline void vtd_iommu_lock(IntelIOMMUState *s)
135 {
136 qemu_mutex_lock(&s->iommu_lock);
137 }
138
139 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
140 {
141 qemu_mutex_unlock(&s->iommu_lock);
142 }
143
144 /* Whether the address space needs to notify new mappings */
145 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
146 {
147 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
148 }
149
150 /* GHashTable functions */
151 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
152 {
153 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
154 }
155
156 static guint vtd_uint64_hash(gconstpointer v)
157 {
158 return (guint)*(const uint64_t *)v;
159 }
160
161 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
162 gpointer user_data)
163 {
164 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
165 uint16_t domain_id = *(uint16_t *)user_data;
166 return entry->domain_id == domain_id;
167 }
168
169 /* The shift of an addr for a certain level of paging structure */
170 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
171 {
172 assert(level != 0);
173 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
174 }
175
176 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
177 {
178 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
179 }
180
181 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
182 gpointer user_data)
183 {
184 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
185 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
186 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
187 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
188 return (entry->domain_id == info->domain_id) &&
189 (((entry->gfn & info->mask) == gfn) ||
190 (entry->gfn == gfn_tlb));
191 }
192
193 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
194 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
195 */
196 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
197 {
198 VTDAddressSpace *vtd_as;
199 VTDBus *vtd_bus;
200 GHashTableIter bus_it;
201 uint32_t devfn_it;
202
203 trace_vtd_context_cache_reset();
204
205 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
206
207 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
208 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
209 vtd_as = vtd_bus->dev_as[devfn_it];
210 if (!vtd_as) {
211 continue;
212 }
213 vtd_as->context_cache_entry.context_cache_gen = 0;
214 }
215 }
216 s->context_cache_gen = 1;
217 }
218
219 /* Must be called with IOMMU lock held. */
220 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
221 {
222 assert(s->iotlb);
223 g_hash_table_remove_all(s->iotlb);
224 }
225
226 static void vtd_reset_iotlb(IntelIOMMUState *s)
227 {
228 vtd_iommu_lock(s);
229 vtd_reset_iotlb_locked(s);
230 vtd_iommu_unlock(s);
231 }
232
233 static void vtd_reset_caches(IntelIOMMUState *s)
234 {
235 vtd_iommu_lock(s);
236 vtd_reset_iotlb_locked(s);
237 vtd_reset_context_cache_locked(s);
238 vtd_iommu_unlock(s);
239 }
240
241 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
242 uint32_t level)
243 {
244 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
245 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
246 }
247
248 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
249 {
250 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
251 }
252
253 /* Must be called with IOMMU lock held */
254 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
255 hwaddr addr)
256 {
257 VTDIOTLBEntry *entry;
258 uint64_t key;
259 int level;
260
261 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
262 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
263 source_id, level);
264 entry = g_hash_table_lookup(s->iotlb, &key);
265 if (entry) {
266 goto out;
267 }
268 }
269
270 out:
271 return entry;
272 }
273
274 /* Must be with IOMMU lock held */
275 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
276 uint16_t domain_id, hwaddr addr, uint64_t slpte,
277 uint8_t access_flags, uint32_t level)
278 {
279 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
280 uint64_t *key = g_malloc(sizeof(*key));
281 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
282
283 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
284 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
285 trace_vtd_iotlb_reset("iotlb exceeds size limit");
286 vtd_reset_iotlb_locked(s);
287 }
288
289 entry->gfn = gfn;
290 entry->domain_id = domain_id;
291 entry->slpte = slpte;
292 entry->access_flags = access_flags;
293 entry->mask = vtd_slpt_level_page_mask(level);
294 *key = vtd_get_iotlb_key(gfn, source_id, level);
295 g_hash_table_replace(s->iotlb, key, entry);
296 }
297
298 /* Given the reg addr of both the message data and address, generate an
299 * interrupt via MSI.
300 */
301 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
302 hwaddr mesg_data_reg)
303 {
304 MSIMessage msi;
305
306 assert(mesg_data_reg < DMAR_REG_SIZE);
307 assert(mesg_addr_reg < DMAR_REG_SIZE);
308
309 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
310 msi.data = vtd_get_long_raw(s, mesg_data_reg);
311
312 trace_vtd_irq_generate(msi.address, msi.data);
313
314 apic_get_class()->send_msi(&msi);
315 }
316
317 /* Generate a fault event to software via MSI if conditions are met.
318 * Notice that the value of FSTS_REG being passed to it should be the one
319 * before any update.
320 */
321 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
322 {
323 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
324 pre_fsts & VTD_FSTS_IQE) {
325 error_report_once("There are previous interrupt conditions "
326 "to be serviced by software, fault event "
327 "is not generated");
328 return;
329 }
330 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
331 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
332 error_report_once("Interrupt Mask set, irq is not generated");
333 } else {
334 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
335 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
336 }
337 }
338
339 /* Check if the Fault (F) field of the Fault Recording Register referenced by
340 * @index is Set.
341 */
342 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
343 {
344 /* Each reg is 128-bit */
345 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
346 addr += 8; /* Access the high 64-bit half */
347
348 assert(index < DMAR_FRCD_REG_NR);
349
350 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
351 }
352
353 /* Update the PPF field of Fault Status Register.
354 * Should be called whenever change the F field of any fault recording
355 * registers.
356 */
357 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
358 {
359 uint32_t i;
360 uint32_t ppf_mask = 0;
361
362 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
363 if (vtd_is_frcd_set(s, i)) {
364 ppf_mask = VTD_FSTS_PPF;
365 break;
366 }
367 }
368 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
369 trace_vtd_fsts_ppf(!!ppf_mask);
370 }
371
372 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
373 {
374 /* Each reg is 128-bit */
375 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
376 addr += 8; /* Access the high 64-bit half */
377
378 assert(index < DMAR_FRCD_REG_NR);
379
380 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
381 vtd_update_fsts_ppf(s);
382 }
383
384 /* Must not update F field now, should be done later */
385 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
386 uint16_t source_id, hwaddr addr,
387 VTDFaultReason fault, bool is_write)
388 {
389 uint64_t hi = 0, lo;
390 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
391
392 assert(index < DMAR_FRCD_REG_NR);
393
394 lo = VTD_FRCD_FI(addr);
395 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
396 if (!is_write) {
397 hi |= VTD_FRCD_T;
398 }
399 vtd_set_quad_raw(s, frcd_reg_addr, lo);
400 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
401
402 trace_vtd_frr_new(index, hi, lo);
403 }
404
405 /* Try to collapse multiple pending faults from the same requester */
406 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
407 {
408 uint32_t i;
409 uint64_t frcd_reg;
410 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
411
412 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
413 frcd_reg = vtd_get_quad_raw(s, addr);
414 if ((frcd_reg & VTD_FRCD_F) &&
415 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
416 return true;
417 }
418 addr += 16; /* 128-bit for each */
419 }
420 return false;
421 }
422
423 /* Log and report an DMAR (address translation) fault to software */
424 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
425 hwaddr addr, VTDFaultReason fault,
426 bool is_write)
427 {
428 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
429
430 assert(fault < VTD_FR_MAX);
431
432 if (fault == VTD_FR_RESERVED_ERR) {
433 /* This is not a normal fault reason case. Drop it. */
434 return;
435 }
436
437 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
438
439 if (fsts_reg & VTD_FSTS_PFO) {
440 error_report_once("New fault is not recorded due to "
441 "Primary Fault Overflow");
442 return;
443 }
444
445 if (vtd_try_collapse_fault(s, source_id)) {
446 error_report_once("New fault is not recorded due to "
447 "compression of faults");
448 return;
449 }
450
451 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
452 error_report_once("Next Fault Recording Reg is used, "
453 "new fault is not recorded, set PFO field");
454 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
455 return;
456 }
457
458 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
459
460 if (fsts_reg & VTD_FSTS_PPF) {
461 error_report_once("There are pending faults already, "
462 "fault event is not generated");
463 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
464 s->next_frcd_reg++;
465 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
466 s->next_frcd_reg = 0;
467 }
468 } else {
469 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
470 VTD_FSTS_FRI(s->next_frcd_reg));
471 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
472 s->next_frcd_reg++;
473 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
474 s->next_frcd_reg = 0;
475 }
476 /* This case actually cause the PPF to be Set.
477 * So generate fault event (interrupt).
478 */
479 vtd_generate_fault_event(s, fsts_reg);
480 }
481 }
482
483 /* Handle Invalidation Queue Errors of queued invalidation interface error
484 * conditions.
485 */
486 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
487 {
488 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
489
490 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
491 vtd_generate_fault_event(s, fsts_reg);
492 }
493
494 /* Set the IWC field and try to generate an invalidation completion interrupt */
495 static void vtd_generate_completion_event(IntelIOMMUState *s)
496 {
497 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
498 trace_vtd_inv_desc_wait_irq("One pending, skip current");
499 return;
500 }
501 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
502 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
503 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
504 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
505 "new event not generated");
506 return;
507 } else {
508 /* Generate the interrupt event */
509 trace_vtd_inv_desc_wait_irq("Generating complete event");
510 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
511 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
512 }
513 }
514
515 static inline bool vtd_root_entry_present(VTDRootEntry *root)
516 {
517 return root->val & VTD_ROOT_ENTRY_P;
518 }
519
520 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
521 VTDRootEntry *re)
522 {
523 dma_addr_t addr;
524
525 addr = s->root + index * sizeof(*re);
526 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
527 trace_vtd_re_invalid(re->rsvd, re->val);
528 re->val = 0;
529 return -VTD_FR_ROOT_TABLE_INV;
530 }
531 re->val = le64_to_cpu(re->val);
532 return 0;
533 }
534
535 static inline bool vtd_ce_present(VTDContextEntry *context)
536 {
537 return context->lo & VTD_CONTEXT_ENTRY_P;
538 }
539
540 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
541 VTDContextEntry *ce)
542 {
543 dma_addr_t addr;
544
545 /* we have checked that root entry is present */
546 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
547 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
548 trace_vtd_re_invalid(root->rsvd, root->val);
549 return -VTD_FR_CONTEXT_TABLE_INV;
550 }
551 ce->lo = le64_to_cpu(ce->lo);
552 ce->hi = le64_to_cpu(ce->hi);
553 return 0;
554 }
555
556 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
557 {
558 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
559 }
560
561 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
562 {
563 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
564 }
565
566 /* Whether the pte indicates the address of the page frame */
567 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
568 {
569 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
570 }
571
572 /* Get the content of a spte located in @base_addr[@index] */
573 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
574 {
575 uint64_t slpte;
576
577 assert(index < VTD_SL_PT_ENTRY_NR);
578
579 if (dma_memory_read(&address_space_memory,
580 base_addr + index * sizeof(slpte), &slpte,
581 sizeof(slpte))) {
582 slpte = (uint64_t)-1;
583 return slpte;
584 }
585 slpte = le64_to_cpu(slpte);
586 return slpte;
587 }
588
589 /* Given an iova and the level of paging structure, return the offset
590 * of current level.
591 */
592 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
593 {
594 return (iova >> vtd_slpt_level_shift(level)) &
595 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
596 }
597
598 /* Check Capability Register to see if the @level of page-table is supported */
599 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
600 {
601 return VTD_CAP_SAGAW_MASK & s->cap &
602 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
603 }
604
605 /* Get the page-table level that hardware should use for the second-level
606 * page-table walk from the Address Width field of context-entry.
607 */
608 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
609 {
610 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
611 }
612
613 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
614 {
615 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
616 }
617
618 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
619 {
620 return ce->lo & VTD_CONTEXT_ENTRY_TT;
621 }
622
623 /* Return true if check passed, otherwise false */
624 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
625 VTDContextEntry *ce)
626 {
627 switch (vtd_ce_get_type(ce)) {
628 case VTD_CONTEXT_TT_MULTI_LEVEL:
629 /* Always supported */
630 break;
631 case VTD_CONTEXT_TT_DEV_IOTLB:
632 if (!x86_iommu->dt_supported) {
633 return false;
634 }
635 break;
636 case VTD_CONTEXT_TT_PASS_THROUGH:
637 if (!x86_iommu->pt_supported) {
638 return false;
639 }
640 break;
641 default:
642 /* Unknwon type */
643 return false;
644 }
645 return true;
646 }
647
648 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw)
649 {
650 uint32_t ce_agaw = vtd_ce_get_agaw(ce);
651 return 1ULL << MIN(ce_agaw, aw);
652 }
653
654 /* Return true if IOVA passes range check, otherwise false. */
655 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce,
656 uint8_t aw)
657 {
658 /*
659 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
660 * in CAP_REG and AW in context-entry.
661 */
662 return !(iova & ~(vtd_iova_limit(ce, aw) - 1));
663 }
664
665 /*
666 * Rsvd field masks for spte:
667 * Index [1] to [4] 4k pages
668 * Index [5] to [8] large pages
669 */
670 static uint64_t vtd_paging_entry_rsvd_field[9];
671
672 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
673 {
674 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
675 /* Maybe large page */
676 return slpte & vtd_paging_entry_rsvd_field[level + 4];
677 } else {
678 return slpte & vtd_paging_entry_rsvd_field[level];
679 }
680 }
681
682 /* Find the VTD address space associated with a given bus number */
683 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
684 {
685 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
686 if (!vtd_bus) {
687 /*
688 * Iterate over the registered buses to find the one which
689 * currently hold this bus number, and update the bus_num
690 * lookup table:
691 */
692 GHashTableIter iter;
693
694 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
695 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
696 if (pci_bus_num(vtd_bus->bus) == bus_num) {
697 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
698 return vtd_bus;
699 }
700 }
701 }
702 return vtd_bus;
703 }
704
705 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
706 * of the translation, can be used for deciding the size of large page.
707 */
708 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
709 uint64_t *slptep, uint32_t *slpte_level,
710 bool *reads, bool *writes, uint8_t aw_bits)
711 {
712 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
713 uint32_t level = vtd_ce_get_level(ce);
714 uint32_t offset;
715 uint64_t slpte;
716 uint64_t access_right_check;
717
718 if (!vtd_iova_range_check(iova, ce, aw_bits)) {
719 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
720 __func__, iova);
721 return -VTD_FR_ADDR_BEYOND_MGAW;
722 }
723
724 /* FIXME: what is the Atomics request here? */
725 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
726
727 while (true) {
728 offset = vtd_iova_level_offset(iova, level);
729 slpte = vtd_get_slpte(addr, offset);
730
731 if (slpte == (uint64_t)-1) {
732 error_report_once("%s: detected read error on DMAR slpte "
733 "(iova=0x%" PRIx64 ")", __func__, iova);
734 if (level == vtd_ce_get_level(ce)) {
735 /* Invalid programming of context-entry */
736 return -VTD_FR_CONTEXT_ENTRY_INV;
737 } else {
738 return -VTD_FR_PAGING_ENTRY_INV;
739 }
740 }
741 *reads = (*reads) && (slpte & VTD_SL_R);
742 *writes = (*writes) && (slpte & VTD_SL_W);
743 if (!(slpte & access_right_check)) {
744 error_report_once("%s: detected slpte permission error "
745 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
746 "slpte=0x%" PRIx64 ", write=%d)", __func__,
747 iova, level, slpte, is_write);
748 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
749 }
750 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
751 error_report_once("%s: detected splte reserve non-zero "
752 "iova=0x%" PRIx64 ", level=0x%" PRIx32
753 "slpte=0x%" PRIx64 ")", __func__, iova,
754 level, slpte);
755 return -VTD_FR_PAGING_ENTRY_RSVD;
756 }
757
758 if (vtd_is_last_slpte(slpte, level)) {
759 *slptep = slpte;
760 *slpte_level = level;
761 return 0;
762 }
763 addr = vtd_get_slpte_addr(slpte, aw_bits);
764 level--;
765 }
766 }
767
768 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
769
770 /**
771 * Constant information used during page walking
772 *
773 * @hook_fn: hook func to be called when detected page
774 * @private: private data to be passed into hook func
775 * @notify_unmap: whether we should notify invalid entries
776 * @as: VT-d address space of the device
777 * @aw: maximum address width
778 * @domain: domain ID of the page walk
779 */
780 typedef struct {
781 VTDAddressSpace *as;
782 vtd_page_walk_hook hook_fn;
783 void *private;
784 bool notify_unmap;
785 uint8_t aw;
786 uint16_t domain_id;
787 } vtd_page_walk_info;
788
789 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
790 {
791 VTDAddressSpace *as = info->as;
792 vtd_page_walk_hook hook_fn = info->hook_fn;
793 void *private = info->private;
794 DMAMap target = {
795 .iova = entry->iova,
796 .size = entry->addr_mask,
797 .translated_addr = entry->translated_addr,
798 .perm = entry->perm,
799 };
800 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
801
802 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
803 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
804 return 0;
805 }
806
807 assert(hook_fn);
808
809 /* Update local IOVA mapped ranges */
810 if (entry->perm) {
811 if (mapped) {
812 /* If it's exactly the same translation, skip */
813 if (!memcmp(mapped, &target, sizeof(target))) {
814 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
815 entry->translated_addr);
816 return 0;
817 } else {
818 /*
819 * Translation changed. Normally this should not
820 * happen, but it can happen when with buggy guest
821 * OSes. Note that there will be a small window that
822 * we don't have map at all. But that's the best
823 * effort we can do. The ideal way to emulate this is
824 * atomically modify the PTE to follow what has
825 * changed, but we can't. One example is that vfio
826 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
827 * interface to modify a mapping (meanwhile it seems
828 * meaningless to even provide one). Anyway, let's
829 * mark this as a TODO in case one day we'll have
830 * a better solution.
831 */
832 IOMMUAccessFlags cache_perm = entry->perm;
833 int ret;
834
835 /* Emulate an UNMAP */
836 entry->perm = IOMMU_NONE;
837 trace_vtd_page_walk_one(info->domain_id,
838 entry->iova,
839 entry->translated_addr,
840 entry->addr_mask,
841 entry->perm);
842 ret = hook_fn(entry, private);
843 if (ret) {
844 return ret;
845 }
846 /* Drop any existing mapping */
847 iova_tree_remove(as->iova_tree, &target);
848 /* Recover the correct permission */
849 entry->perm = cache_perm;
850 }
851 }
852 iova_tree_insert(as->iova_tree, &target);
853 } else {
854 if (!mapped) {
855 /* Skip since we didn't map this range at all */
856 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
857 return 0;
858 }
859 iova_tree_remove(as->iova_tree, &target);
860 }
861
862 trace_vtd_page_walk_one(info->domain_id, entry->iova,
863 entry->translated_addr, entry->addr_mask,
864 entry->perm);
865 return hook_fn(entry, private);
866 }
867
868 /**
869 * vtd_page_walk_level - walk over specific level for IOVA range
870 *
871 * @addr: base GPA addr to start the walk
872 * @start: IOVA range start address
873 * @end: IOVA range end address (start <= addr < end)
874 * @read: whether parent level has read permission
875 * @write: whether parent level has write permission
876 * @info: constant information for the page walk
877 */
878 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
879 uint64_t end, uint32_t level, bool read,
880 bool write, vtd_page_walk_info *info)
881 {
882 bool read_cur, write_cur, entry_valid;
883 uint32_t offset;
884 uint64_t slpte;
885 uint64_t subpage_size, subpage_mask;
886 IOMMUTLBEntry entry;
887 uint64_t iova = start;
888 uint64_t iova_next;
889 int ret = 0;
890
891 trace_vtd_page_walk_level(addr, level, start, end);
892
893 subpage_size = 1ULL << vtd_slpt_level_shift(level);
894 subpage_mask = vtd_slpt_level_page_mask(level);
895
896 while (iova < end) {
897 iova_next = (iova & subpage_mask) + subpage_size;
898
899 offset = vtd_iova_level_offset(iova, level);
900 slpte = vtd_get_slpte(addr, offset);
901
902 if (slpte == (uint64_t)-1) {
903 trace_vtd_page_walk_skip_read(iova, iova_next);
904 goto next;
905 }
906
907 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
908 trace_vtd_page_walk_skip_reserve(iova, iova_next);
909 goto next;
910 }
911
912 /* Permissions are stacked with parents' */
913 read_cur = read && (slpte & VTD_SL_R);
914 write_cur = write && (slpte & VTD_SL_W);
915
916 /*
917 * As long as we have either read/write permission, this is a
918 * valid entry. The rule works for both page entries and page
919 * table entries.
920 */
921 entry_valid = read_cur | write_cur;
922
923 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
924 /*
925 * This is a valid PDE (or even bigger than PDE). We need
926 * to walk one further level.
927 */
928 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
929 iova, MIN(iova_next, end), level - 1,
930 read_cur, write_cur, info);
931 } else {
932 /*
933 * This means we are either:
934 *
935 * (1) the real page entry (either 4K page, or huge page)
936 * (2) the whole range is invalid
937 *
938 * In either case, we send an IOTLB notification down.
939 */
940 entry.target_as = &address_space_memory;
941 entry.iova = iova & subpage_mask;
942 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
943 entry.addr_mask = ~subpage_mask;
944 /* NOTE: this is only meaningful if entry_valid == true */
945 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
946 ret = vtd_page_walk_one(&entry, info);
947 }
948
949 if (ret < 0) {
950 return ret;
951 }
952
953 next:
954 iova = iova_next;
955 }
956
957 return 0;
958 }
959
960 /**
961 * vtd_page_walk - walk specific IOVA range, and call the hook
962 *
963 * @ce: context entry to walk upon
964 * @start: IOVA address to start the walk
965 * @end: IOVA range end address (start <= addr < end)
966 * @info: page walking information struct
967 */
968 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
969 vtd_page_walk_info *info)
970 {
971 dma_addr_t addr = vtd_ce_get_slpt_base(ce);
972 uint32_t level = vtd_ce_get_level(ce);
973
974 if (!vtd_iova_range_check(start, ce, info->aw)) {
975 return -VTD_FR_ADDR_BEYOND_MGAW;
976 }
977
978 if (!vtd_iova_range_check(end, ce, info->aw)) {
979 /* Fix end so that it reaches the maximum */
980 end = vtd_iova_limit(ce, info->aw);
981 }
982
983 return vtd_page_walk_level(addr, start, end, level, true, true, info);
984 }
985
986 /* Map a device to its corresponding domain (context-entry) */
987 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
988 uint8_t devfn, VTDContextEntry *ce)
989 {
990 VTDRootEntry re;
991 int ret_fr;
992 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
993
994 ret_fr = vtd_get_root_entry(s, bus_num, &re);
995 if (ret_fr) {
996 return ret_fr;
997 }
998
999 if (!vtd_root_entry_present(&re)) {
1000 /* Not error - it's okay we don't have root entry. */
1001 trace_vtd_re_not_present(bus_num);
1002 return -VTD_FR_ROOT_ENTRY_P;
1003 }
1004
1005 if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) {
1006 trace_vtd_re_invalid(re.rsvd, re.val);
1007 return -VTD_FR_ROOT_ENTRY_RSVD;
1008 }
1009
1010 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
1011 if (ret_fr) {
1012 return ret_fr;
1013 }
1014
1015 if (!vtd_ce_present(ce)) {
1016 /* Not error - it's okay we don't have context entry. */
1017 trace_vtd_ce_not_present(bus_num, devfn);
1018 return -VTD_FR_CONTEXT_ENTRY_P;
1019 }
1020
1021 if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
1022 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1023 trace_vtd_ce_invalid(ce->hi, ce->lo);
1024 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1025 }
1026
1027 /* Check if the programming of context-entry is valid */
1028 if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1029 trace_vtd_ce_invalid(ce->hi, ce->lo);
1030 return -VTD_FR_CONTEXT_ENTRY_INV;
1031 }
1032
1033 /* Do translation type check */
1034 if (!vtd_ce_type_check(x86_iommu, ce)) {
1035 trace_vtd_ce_invalid(ce->hi, ce->lo);
1036 return -VTD_FR_CONTEXT_ENTRY_INV;
1037 }
1038
1039 return 0;
1040 }
1041
1042 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1043 void *private)
1044 {
1045 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1046 return 0;
1047 }
1048
1049 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1050 VTDContextEntry *ce,
1051 hwaddr addr, hwaddr size)
1052 {
1053 IntelIOMMUState *s = vtd_as->iommu_state;
1054 vtd_page_walk_info info = {
1055 .hook_fn = vtd_sync_shadow_page_hook,
1056 .private = (void *)&vtd_as->iommu,
1057 .notify_unmap = true,
1058 .aw = s->aw_bits,
1059 .as = vtd_as,
1060 .domain_id = VTD_CONTEXT_ENTRY_DID(ce->hi),
1061 };
1062
1063 return vtd_page_walk(ce, addr, addr + size, &info);
1064 }
1065
1066 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1067 {
1068 int ret;
1069 VTDContextEntry ce;
1070 IOMMUNotifier *n;
1071
1072 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1073 pci_bus_num(vtd_as->bus),
1074 vtd_as->devfn, &ce);
1075 if (ret) {
1076 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1077 /*
1078 * It's a valid scenario to have a context entry that is
1079 * not present. For example, when a device is removed
1080 * from an existing domain then the context entry will be
1081 * zeroed by the guest before it was put into another
1082 * domain. When this happens, instead of synchronizing
1083 * the shadow pages we should invalidate all existing
1084 * mappings and notify the backends.
1085 */
1086 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1087 vtd_address_space_unmap(vtd_as, n);
1088 }
1089 ret = 0;
1090 }
1091 return ret;
1092 }
1093
1094 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1095 }
1096
1097 /*
1098 * Fetch translation type for specific device. Returns <0 if error
1099 * happens, otherwise return the shifted type to check against
1100 * VTD_CONTEXT_TT_*.
1101 */
1102 static int vtd_dev_get_trans_type(VTDAddressSpace *as)
1103 {
1104 IntelIOMMUState *s;
1105 VTDContextEntry ce;
1106 int ret;
1107
1108 s = as->iommu_state;
1109
1110 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1111 as->devfn, &ce);
1112 if (ret) {
1113 return ret;
1114 }
1115
1116 return vtd_ce_get_type(&ce);
1117 }
1118
1119 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1120 {
1121 int ret;
1122
1123 assert(as);
1124
1125 ret = vtd_dev_get_trans_type(as);
1126 if (ret < 0) {
1127 /*
1128 * Possibly failed to parse the context entry for some reason
1129 * (e.g., during init, or any guest configuration errors on
1130 * context entries). We should assume PT not enabled for
1131 * safety.
1132 */
1133 return false;
1134 }
1135
1136 return ret == VTD_CONTEXT_TT_PASS_THROUGH;
1137 }
1138
1139 /* Return whether the device is using IOMMU translation. */
1140 static bool vtd_switch_address_space(VTDAddressSpace *as)
1141 {
1142 bool use_iommu;
1143 /* Whether we need to take the BQL on our own */
1144 bool take_bql = !qemu_mutex_iothread_locked();
1145
1146 assert(as);
1147
1148 use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
1149
1150 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1151 VTD_PCI_SLOT(as->devfn),
1152 VTD_PCI_FUNC(as->devfn),
1153 use_iommu);
1154
1155 /*
1156 * It's possible that we reach here without BQL, e.g., when called
1157 * from vtd_pt_enable_fast_path(). However the memory APIs need
1158 * it. We'd better make sure we have had it already, or, take it.
1159 */
1160 if (take_bql) {
1161 qemu_mutex_lock_iothread();
1162 }
1163
1164 /* Turn off first then on the other */
1165 if (use_iommu) {
1166 memory_region_set_enabled(&as->sys_alias, false);
1167 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1168 } else {
1169 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1170 memory_region_set_enabled(&as->sys_alias, true);
1171 }
1172
1173 if (take_bql) {
1174 qemu_mutex_unlock_iothread();
1175 }
1176
1177 return use_iommu;
1178 }
1179
1180 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1181 {
1182 GHashTableIter iter;
1183 VTDBus *vtd_bus;
1184 int i;
1185
1186 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1187 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1188 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1189 if (!vtd_bus->dev_as[i]) {
1190 continue;
1191 }
1192 vtd_switch_address_space(vtd_bus->dev_as[i]);
1193 }
1194 }
1195 }
1196
1197 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1198 {
1199 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1200 }
1201
1202 static const bool vtd_qualified_faults[] = {
1203 [VTD_FR_RESERVED] = false,
1204 [VTD_FR_ROOT_ENTRY_P] = false,
1205 [VTD_FR_CONTEXT_ENTRY_P] = true,
1206 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1207 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1208 [VTD_FR_WRITE] = true,
1209 [VTD_FR_READ] = true,
1210 [VTD_FR_PAGING_ENTRY_INV] = true,
1211 [VTD_FR_ROOT_TABLE_INV] = false,
1212 [VTD_FR_CONTEXT_TABLE_INV] = false,
1213 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1214 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1215 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1216 [VTD_FR_RESERVED_ERR] = false,
1217 [VTD_FR_MAX] = false,
1218 };
1219
1220 /* To see if a fault condition is "qualified", which is reported to software
1221 * only if the FPD field in the context-entry used to process the faulting
1222 * request is 0.
1223 */
1224 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1225 {
1226 return vtd_qualified_faults[fault];
1227 }
1228
1229 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1230 {
1231 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1232 }
1233
1234 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1235 {
1236 VTDBus *vtd_bus;
1237 VTDAddressSpace *vtd_as;
1238 bool success = false;
1239
1240 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1241 if (!vtd_bus) {
1242 goto out;
1243 }
1244
1245 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1246 if (!vtd_as) {
1247 goto out;
1248 }
1249
1250 if (vtd_switch_address_space(vtd_as) == false) {
1251 /* We switched off IOMMU region successfully. */
1252 success = true;
1253 }
1254
1255 out:
1256 trace_vtd_pt_enable_fast_path(source_id, success);
1257 }
1258
1259 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1260 * translation.
1261 *
1262 * Called from RCU critical section.
1263 *
1264 * @bus_num: The bus number
1265 * @devfn: The devfn, which is the combined of device and function number
1266 * @is_write: The access is a write operation
1267 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1268 *
1269 * Returns true if translation is successful, otherwise false.
1270 */
1271 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1272 uint8_t devfn, hwaddr addr, bool is_write,
1273 IOMMUTLBEntry *entry)
1274 {
1275 IntelIOMMUState *s = vtd_as->iommu_state;
1276 VTDContextEntry ce;
1277 uint8_t bus_num = pci_bus_num(bus);
1278 VTDContextCacheEntry *cc_entry;
1279 uint64_t slpte, page_mask;
1280 uint32_t level;
1281 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1282 int ret_fr;
1283 bool is_fpd_set = false;
1284 bool reads = true;
1285 bool writes = true;
1286 uint8_t access_flags;
1287 VTDIOTLBEntry *iotlb_entry;
1288
1289 /*
1290 * We have standalone memory region for interrupt addresses, we
1291 * should never receive translation requests in this region.
1292 */
1293 assert(!vtd_is_interrupt_addr(addr));
1294
1295 vtd_iommu_lock(s);
1296
1297 cc_entry = &vtd_as->context_cache_entry;
1298
1299 /* Try to fetch slpte form IOTLB */
1300 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1301 if (iotlb_entry) {
1302 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1303 iotlb_entry->domain_id);
1304 slpte = iotlb_entry->slpte;
1305 access_flags = iotlb_entry->access_flags;
1306 page_mask = iotlb_entry->mask;
1307 goto out;
1308 }
1309
1310 /* Try to fetch context-entry from cache first */
1311 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1312 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1313 cc_entry->context_entry.lo,
1314 cc_entry->context_cache_gen);
1315 ce = cc_entry->context_entry;
1316 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1317 } else {
1318 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1319 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1320 if (ret_fr) {
1321 ret_fr = -ret_fr;
1322 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1323 trace_vtd_fault_disabled();
1324 } else {
1325 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1326 }
1327 goto error;
1328 }
1329 /* Update context-cache */
1330 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1331 cc_entry->context_cache_gen,
1332 s->context_cache_gen);
1333 cc_entry->context_entry = ce;
1334 cc_entry->context_cache_gen = s->context_cache_gen;
1335 }
1336
1337 /*
1338 * We don't need to translate for pass-through context entries.
1339 * Also, let's ignore IOTLB caching as well for PT devices.
1340 */
1341 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1342 entry->iova = addr & VTD_PAGE_MASK_4K;
1343 entry->translated_addr = entry->iova;
1344 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1345 entry->perm = IOMMU_RW;
1346 trace_vtd_translate_pt(source_id, entry->iova);
1347
1348 /*
1349 * When this happens, it means firstly caching-mode is not
1350 * enabled, and this is the first passthrough translation for
1351 * the device. Let's enable the fast path for passthrough.
1352 *
1353 * When passthrough is disabled again for the device, we can
1354 * capture it via the context entry invalidation, then the
1355 * IOMMU region can be swapped back.
1356 */
1357 vtd_pt_enable_fast_path(s, source_id);
1358 vtd_iommu_unlock(s);
1359 return true;
1360 }
1361
1362 ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1363 &reads, &writes, s->aw_bits);
1364 if (ret_fr) {
1365 ret_fr = -ret_fr;
1366 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1367 trace_vtd_fault_disabled();
1368 } else {
1369 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1370 }
1371 goto error;
1372 }
1373
1374 page_mask = vtd_slpt_level_page_mask(level);
1375 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1376 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1377 access_flags, level);
1378 out:
1379 vtd_iommu_unlock(s);
1380 entry->iova = addr & page_mask;
1381 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1382 entry->addr_mask = ~page_mask;
1383 entry->perm = access_flags;
1384 return true;
1385
1386 error:
1387 vtd_iommu_unlock(s);
1388 entry->iova = 0;
1389 entry->translated_addr = 0;
1390 entry->addr_mask = 0;
1391 entry->perm = IOMMU_NONE;
1392 return false;
1393 }
1394
1395 static void vtd_root_table_setup(IntelIOMMUState *s)
1396 {
1397 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1398 s->root_extended = s->root & VTD_RTADDR_RTT;
1399 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1400
1401 trace_vtd_reg_dmar_root(s->root, s->root_extended);
1402 }
1403
1404 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1405 uint32_t index, uint32_t mask)
1406 {
1407 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1408 }
1409
1410 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1411 {
1412 uint64_t value = 0;
1413 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1414 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1415 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1416 s->intr_eime = value & VTD_IRTA_EIME;
1417
1418 /* Notify global invalidation */
1419 vtd_iec_notify_all(s, true, 0, 0);
1420
1421 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1422 }
1423
1424 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1425 {
1426 VTDAddressSpace *vtd_as;
1427
1428 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1429 vtd_sync_shadow_page_table(vtd_as);
1430 }
1431 }
1432
1433 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1434 {
1435 trace_vtd_inv_desc_cc_global();
1436 /* Protects context cache */
1437 vtd_iommu_lock(s);
1438 s->context_cache_gen++;
1439 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1440 vtd_reset_context_cache_locked(s);
1441 }
1442 vtd_iommu_unlock(s);
1443 vtd_address_space_refresh_all(s);
1444 /*
1445 * From VT-d spec 6.5.2.1, a global context entry invalidation
1446 * should be followed by a IOTLB global invalidation, so we should
1447 * be safe even without this. Hoewever, let's replay the region as
1448 * well to be safer, and go back here when we need finer tunes for
1449 * VT-d emulation codes.
1450 */
1451 vtd_iommu_replay_all(s);
1452 }
1453
1454 /* Do a context-cache device-selective invalidation.
1455 * @func_mask: FM field after shifting
1456 */
1457 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1458 uint16_t source_id,
1459 uint16_t func_mask)
1460 {
1461 uint16_t mask;
1462 VTDBus *vtd_bus;
1463 VTDAddressSpace *vtd_as;
1464 uint8_t bus_n, devfn;
1465 uint16_t devfn_it;
1466
1467 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1468
1469 switch (func_mask & 3) {
1470 case 0:
1471 mask = 0; /* No bits in the SID field masked */
1472 break;
1473 case 1:
1474 mask = 4; /* Mask bit 2 in the SID field */
1475 break;
1476 case 2:
1477 mask = 6; /* Mask bit 2:1 in the SID field */
1478 break;
1479 case 3:
1480 mask = 7; /* Mask bit 2:0 in the SID field */
1481 break;
1482 }
1483 mask = ~mask;
1484
1485 bus_n = VTD_SID_TO_BUS(source_id);
1486 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1487 if (vtd_bus) {
1488 devfn = VTD_SID_TO_DEVFN(source_id);
1489 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1490 vtd_as = vtd_bus->dev_as[devfn_it];
1491 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1492 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1493 VTD_PCI_FUNC(devfn_it));
1494 vtd_iommu_lock(s);
1495 vtd_as->context_cache_entry.context_cache_gen = 0;
1496 vtd_iommu_unlock(s);
1497 /*
1498 * Do switch address space when needed, in case if the
1499 * device passthrough bit is switched.
1500 */
1501 vtd_switch_address_space(vtd_as);
1502 /*
1503 * So a device is moving out of (or moving into) a
1504 * domain, resync the shadow page table.
1505 * This won't bring bad even if we have no such
1506 * notifier registered - the IOMMU notification
1507 * framework will skip MAP notifications if that
1508 * happened.
1509 */
1510 vtd_sync_shadow_page_table(vtd_as);
1511 }
1512 }
1513 }
1514 }
1515
1516 /* Context-cache invalidation
1517 * Returns the Context Actual Invalidation Granularity.
1518 * @val: the content of the CCMD_REG
1519 */
1520 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1521 {
1522 uint64_t caig;
1523 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1524
1525 switch (type) {
1526 case VTD_CCMD_DOMAIN_INVL:
1527 /* Fall through */
1528 case VTD_CCMD_GLOBAL_INVL:
1529 caig = VTD_CCMD_GLOBAL_INVL_A;
1530 vtd_context_global_invalidate(s);
1531 break;
1532
1533 case VTD_CCMD_DEVICE_INVL:
1534 caig = VTD_CCMD_DEVICE_INVL_A;
1535 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1536 break;
1537
1538 default:
1539 error_report_once("%s: invalid context: 0x%" PRIx64,
1540 __func__, val);
1541 caig = 0;
1542 }
1543 return caig;
1544 }
1545
1546 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1547 {
1548 trace_vtd_inv_desc_iotlb_global();
1549 vtd_reset_iotlb(s);
1550 vtd_iommu_replay_all(s);
1551 }
1552
1553 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1554 {
1555 VTDContextEntry ce;
1556 VTDAddressSpace *vtd_as;
1557
1558 trace_vtd_inv_desc_iotlb_domain(domain_id);
1559
1560 vtd_iommu_lock(s);
1561 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1562 &domain_id);
1563 vtd_iommu_unlock(s);
1564
1565 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1566 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1567 vtd_as->devfn, &ce) &&
1568 domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1569 vtd_sync_shadow_page_table(vtd_as);
1570 }
1571 }
1572 }
1573
1574 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1575 uint16_t domain_id, hwaddr addr,
1576 uint8_t am)
1577 {
1578 VTDAddressSpace *vtd_as;
1579 VTDContextEntry ce;
1580 int ret;
1581 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1582
1583 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1584 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1585 vtd_as->devfn, &ce);
1586 if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1587 if (vtd_as_has_map_notifier(vtd_as)) {
1588 /*
1589 * As long as we have MAP notifications registered in
1590 * any of our IOMMU notifiers, we need to sync the
1591 * shadow page table.
1592 */
1593 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1594 } else {
1595 /*
1596 * For UNMAP-only notifiers, we don't need to walk the
1597 * page tables. We just deliver the PSI down to
1598 * invalidate caches.
1599 */
1600 IOMMUTLBEntry entry = {
1601 .target_as = &address_space_memory,
1602 .iova = addr,
1603 .translated_addr = 0,
1604 .addr_mask = size - 1,
1605 .perm = IOMMU_NONE,
1606 };
1607 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1608 }
1609 }
1610 }
1611 }
1612
1613 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1614 hwaddr addr, uint8_t am)
1615 {
1616 VTDIOTLBPageInvInfo info;
1617
1618 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1619
1620 assert(am <= VTD_MAMV);
1621 info.domain_id = domain_id;
1622 info.addr = addr;
1623 info.mask = ~((1 << am) - 1);
1624 vtd_iommu_lock(s);
1625 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1626 vtd_iommu_unlock(s);
1627 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1628 }
1629
1630 /* Flush IOTLB
1631 * Returns the IOTLB Actual Invalidation Granularity.
1632 * @val: the content of the IOTLB_REG
1633 */
1634 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1635 {
1636 uint64_t iaig;
1637 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1638 uint16_t domain_id;
1639 hwaddr addr;
1640 uint8_t am;
1641
1642 switch (type) {
1643 case VTD_TLB_GLOBAL_FLUSH:
1644 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1645 vtd_iotlb_global_invalidate(s);
1646 break;
1647
1648 case VTD_TLB_DSI_FLUSH:
1649 domain_id = VTD_TLB_DID(val);
1650 iaig = VTD_TLB_DSI_FLUSH_A;
1651 vtd_iotlb_domain_invalidate(s, domain_id);
1652 break;
1653
1654 case VTD_TLB_PSI_FLUSH:
1655 domain_id = VTD_TLB_DID(val);
1656 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1657 am = VTD_IVA_AM(addr);
1658 addr = VTD_IVA_ADDR(addr);
1659 if (am > VTD_MAMV) {
1660 error_report_once("%s: address mask overflow: 0x%" PRIx64,
1661 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
1662 iaig = 0;
1663 break;
1664 }
1665 iaig = VTD_TLB_PSI_FLUSH_A;
1666 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1667 break;
1668
1669 default:
1670 error_report_once("%s: invalid granularity: 0x%" PRIx64,
1671 __func__, val);
1672 iaig = 0;
1673 }
1674 return iaig;
1675 }
1676
1677 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1678
1679 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1680 {
1681 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1682 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1683 }
1684
1685 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1686 {
1687 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1688
1689 trace_vtd_inv_qi_enable(en);
1690
1691 if (en) {
1692 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
1693 /* 2^(x+8) entries */
1694 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1695 s->qi_enabled = true;
1696 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1697 /* Ok - report back to driver */
1698 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1699
1700 if (s->iq_tail != 0) {
1701 /*
1702 * This is a spec violation but Windows guests are known to set up
1703 * Queued Invalidation this way so we allow the write and process
1704 * Invalidation Descriptors right away.
1705 */
1706 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1707 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1708 vtd_fetch_inv_desc(s);
1709 }
1710 }
1711 } else {
1712 if (vtd_queued_inv_disable_check(s)) {
1713 /* disable Queued Invalidation */
1714 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1715 s->iq_head = 0;
1716 s->qi_enabled = false;
1717 /* Ok - report back to driver */
1718 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1719 } else {
1720 error_report_once("%s: detected improper state when disable QI "
1721 "(head=0x%x, tail=0x%x, last_type=%d)",
1722 __func__,
1723 s->iq_head, s->iq_tail, s->iq_last_desc_type);
1724 }
1725 }
1726 }
1727
1728 /* Set Root Table Pointer */
1729 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1730 {
1731 vtd_root_table_setup(s);
1732 /* Ok - report back to driver */
1733 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1734 vtd_reset_caches(s);
1735 vtd_address_space_refresh_all(s);
1736 }
1737
1738 /* Set Interrupt Remap Table Pointer */
1739 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1740 {
1741 vtd_interrupt_remap_table_setup(s);
1742 /* Ok - report back to driver */
1743 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1744 }
1745
1746 /* Handle Translation Enable/Disable */
1747 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1748 {
1749 if (s->dmar_enabled == en) {
1750 return;
1751 }
1752
1753 trace_vtd_dmar_enable(en);
1754
1755 if (en) {
1756 s->dmar_enabled = true;
1757 /* Ok - report back to driver */
1758 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1759 } else {
1760 s->dmar_enabled = false;
1761
1762 /* Clear the index of Fault Recording Register */
1763 s->next_frcd_reg = 0;
1764 /* Ok - report back to driver */
1765 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1766 }
1767
1768 vtd_reset_caches(s);
1769 vtd_address_space_refresh_all(s);
1770 }
1771
1772 /* Handle Interrupt Remap Enable/Disable */
1773 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1774 {
1775 trace_vtd_ir_enable(en);
1776
1777 if (en) {
1778 s->intr_enabled = true;
1779 /* Ok - report back to driver */
1780 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1781 } else {
1782 s->intr_enabled = false;
1783 /* Ok - report back to driver */
1784 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1785 }
1786 }
1787
1788 /* Handle write to Global Command Register */
1789 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1790 {
1791 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1792 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1793 uint32_t changed = status ^ val;
1794
1795 trace_vtd_reg_write_gcmd(status, val);
1796 if (changed & VTD_GCMD_TE) {
1797 /* Translation enable/disable */
1798 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1799 }
1800 if (val & VTD_GCMD_SRTP) {
1801 /* Set/update the root-table pointer */
1802 vtd_handle_gcmd_srtp(s);
1803 }
1804 if (changed & VTD_GCMD_QIE) {
1805 /* Queued Invalidation Enable */
1806 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1807 }
1808 if (val & VTD_GCMD_SIRTP) {
1809 /* Set/update the interrupt remapping root-table pointer */
1810 vtd_handle_gcmd_sirtp(s);
1811 }
1812 if (changed & VTD_GCMD_IRE) {
1813 /* Interrupt remap enable/disable */
1814 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1815 }
1816 }
1817
1818 /* Handle write to Context Command Register */
1819 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1820 {
1821 uint64_t ret;
1822 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1823
1824 /* Context-cache invalidation request */
1825 if (val & VTD_CCMD_ICC) {
1826 if (s->qi_enabled) {
1827 error_report_once("Queued Invalidation enabled, "
1828 "should not use register-based invalidation");
1829 return;
1830 }
1831 ret = vtd_context_cache_invalidate(s, val);
1832 /* Invalidation completed. Change something to show */
1833 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1834 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1835 ret);
1836 }
1837 }
1838
1839 /* Handle write to IOTLB Invalidation Register */
1840 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1841 {
1842 uint64_t ret;
1843 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1844
1845 /* IOTLB invalidation request */
1846 if (val & VTD_TLB_IVT) {
1847 if (s->qi_enabled) {
1848 error_report_once("Queued Invalidation enabled, "
1849 "should not use register-based invalidation");
1850 return;
1851 }
1852 ret = vtd_iotlb_flush(s, val);
1853 /* Invalidation completed. Change something to show */
1854 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1855 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1856 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1857 }
1858 }
1859
1860 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1861 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1862 VTDInvDesc *inv_desc)
1863 {
1864 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1865 if (dma_memory_read(&address_space_memory, addr, inv_desc,
1866 sizeof(*inv_desc))) {
1867 error_report_once("Read INV DESC failed");
1868 inv_desc->lo = 0;
1869 inv_desc->hi = 0;
1870 return false;
1871 }
1872 inv_desc->lo = le64_to_cpu(inv_desc->lo);
1873 inv_desc->hi = le64_to_cpu(inv_desc->hi);
1874 return true;
1875 }
1876
1877 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1878 {
1879 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1880 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1881 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1882 return false;
1883 }
1884 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1885 /* Status Write */
1886 uint32_t status_data = (uint32_t)(inv_desc->lo >>
1887 VTD_INV_DESC_WAIT_DATA_SHIFT);
1888
1889 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1890
1891 /* FIXME: need to be masked with HAW? */
1892 dma_addr_t status_addr = inv_desc->hi;
1893 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1894 status_data = cpu_to_le32(status_data);
1895 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1896 sizeof(status_data))) {
1897 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1898 return false;
1899 }
1900 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1901 /* Interrupt flag */
1902 vtd_generate_completion_event(s);
1903 } else {
1904 trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1905 return false;
1906 }
1907 return true;
1908 }
1909
1910 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1911 VTDInvDesc *inv_desc)
1912 {
1913 uint16_t sid, fmask;
1914
1915 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1916 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1917 return false;
1918 }
1919 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1920 case VTD_INV_DESC_CC_DOMAIN:
1921 trace_vtd_inv_desc_cc_domain(
1922 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1923 /* Fall through */
1924 case VTD_INV_DESC_CC_GLOBAL:
1925 vtd_context_global_invalidate(s);
1926 break;
1927
1928 case VTD_INV_DESC_CC_DEVICE:
1929 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1930 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1931 vtd_context_device_invalidate(s, sid, fmask);
1932 break;
1933
1934 default:
1935 trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1936 return false;
1937 }
1938 return true;
1939 }
1940
1941 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1942 {
1943 uint16_t domain_id;
1944 uint8_t am;
1945 hwaddr addr;
1946
1947 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1948 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1949 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1950 return false;
1951 }
1952
1953 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1954 case VTD_INV_DESC_IOTLB_GLOBAL:
1955 vtd_iotlb_global_invalidate(s);
1956 break;
1957
1958 case VTD_INV_DESC_IOTLB_DOMAIN:
1959 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1960 vtd_iotlb_domain_invalidate(s, domain_id);
1961 break;
1962
1963 case VTD_INV_DESC_IOTLB_PAGE:
1964 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1965 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1966 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1967 if (am > VTD_MAMV) {
1968 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1969 return false;
1970 }
1971 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1972 break;
1973
1974 default:
1975 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1976 return false;
1977 }
1978 return true;
1979 }
1980
1981 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1982 VTDInvDesc *inv_desc)
1983 {
1984 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1985 inv_desc->iec.index,
1986 inv_desc->iec.index_mask);
1987
1988 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1989 inv_desc->iec.index,
1990 inv_desc->iec.index_mask);
1991 return true;
1992 }
1993
1994 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1995 VTDInvDesc *inv_desc)
1996 {
1997 VTDAddressSpace *vtd_dev_as;
1998 IOMMUTLBEntry entry;
1999 struct VTDBus *vtd_bus;
2000 hwaddr addr;
2001 uint64_t sz;
2002 uint16_t sid;
2003 uint8_t devfn;
2004 bool size;
2005 uint8_t bus_num;
2006
2007 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2008 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2009 devfn = sid & 0xff;
2010 bus_num = sid >> 8;
2011 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2012
2013 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2014 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2015 trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
2016 return false;
2017 }
2018
2019 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2020 if (!vtd_bus) {
2021 goto done;
2022 }
2023
2024 vtd_dev_as = vtd_bus->dev_as[devfn];
2025 if (!vtd_dev_as) {
2026 goto done;
2027 }
2028
2029 /* According to ATS spec table 2.4:
2030 * S = 0, bits 15:12 = xxxx range size: 4K
2031 * S = 1, bits 15:12 = xxx0 range size: 8K
2032 * S = 1, bits 15:12 = xx01 range size: 16K
2033 * S = 1, bits 15:12 = x011 range size: 32K
2034 * S = 1, bits 15:12 = 0111 range size: 64K
2035 * ...
2036 */
2037 if (size) {
2038 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2039 addr &= ~(sz - 1);
2040 } else {
2041 sz = VTD_PAGE_SIZE;
2042 }
2043
2044 entry.target_as = &vtd_dev_as->as;
2045 entry.addr_mask = sz - 1;
2046 entry.iova = addr;
2047 entry.perm = IOMMU_NONE;
2048 entry.translated_addr = 0;
2049 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2050
2051 done:
2052 return true;
2053 }
2054
2055 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2056 {
2057 VTDInvDesc inv_desc;
2058 uint8_t desc_type;
2059
2060 trace_vtd_inv_qi_head(s->iq_head);
2061 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
2062 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2063 return false;
2064 }
2065 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2066 /* FIXME: should update at first or at last? */
2067 s->iq_last_desc_type = desc_type;
2068
2069 switch (desc_type) {
2070 case VTD_INV_DESC_CC:
2071 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2072 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2073 return false;
2074 }
2075 break;
2076
2077 case VTD_INV_DESC_IOTLB:
2078 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2079 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2080 return false;
2081 }
2082 break;
2083
2084 case VTD_INV_DESC_WAIT:
2085 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2086 if (!vtd_process_wait_desc(s, &inv_desc)) {
2087 return false;
2088 }
2089 break;
2090
2091 case VTD_INV_DESC_IEC:
2092 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2093 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2094 return false;
2095 }
2096 break;
2097
2098 case VTD_INV_DESC_DEVICE:
2099 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2100 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2101 return false;
2102 }
2103 break;
2104
2105 default:
2106 trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
2107 return false;
2108 }
2109 s->iq_head++;
2110 if (s->iq_head == s->iq_size) {
2111 s->iq_head = 0;
2112 }
2113 return true;
2114 }
2115
2116 /* Try to fetch and process more Invalidation Descriptors */
2117 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2118 {
2119 trace_vtd_inv_qi_fetch();
2120
2121 if (s->iq_tail >= s->iq_size) {
2122 /* Detects an invalid Tail pointer */
2123 error_report_once("%s: detected invalid QI tail "
2124 "(tail=0x%x, size=0x%x)",
2125 __func__, s->iq_tail, s->iq_size);
2126 vtd_handle_inv_queue_error(s);
2127 return;
2128 }
2129 while (s->iq_head != s->iq_tail) {
2130 if (!vtd_process_inv_desc(s)) {
2131 /* Invalidation Queue Errors */
2132 vtd_handle_inv_queue_error(s);
2133 break;
2134 }
2135 /* Must update the IQH_REG in time */
2136 vtd_set_quad_raw(s, DMAR_IQH_REG,
2137 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2138 VTD_IQH_QH_MASK);
2139 }
2140 }
2141
2142 /* Handle write to Invalidation Queue Tail Register */
2143 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2144 {
2145 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2146
2147 s->iq_tail = VTD_IQT_QT(val);
2148 trace_vtd_inv_qi_tail(s->iq_tail);
2149
2150 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2151 /* Process Invalidation Queue here */
2152 vtd_fetch_inv_desc(s);
2153 }
2154 }
2155
2156 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2157 {
2158 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2159 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2160 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2161
2162 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2163 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2164 trace_vtd_fsts_clear_ip();
2165 }
2166 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2167 * Descriptors if there are any when Queued Invalidation is enabled?
2168 */
2169 }
2170
2171 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2172 {
2173 uint32_t fectl_reg;
2174 /* FIXME: when software clears the IM field, check the IP field. But do we
2175 * need to compare the old value and the new value to conclude that
2176 * software clears the IM field? Or just check if the IM field is zero?
2177 */
2178 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2179
2180 trace_vtd_reg_write_fectl(fectl_reg);
2181
2182 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2183 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2184 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2185 }
2186 }
2187
2188 static void vtd_handle_ics_write(IntelIOMMUState *s)
2189 {
2190 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2191 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2192
2193 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2194 trace_vtd_reg_ics_clear_ip();
2195 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2196 }
2197 }
2198
2199 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2200 {
2201 uint32_t iectl_reg;
2202 /* FIXME: when software clears the IM field, check the IP field. But do we
2203 * need to compare the old value and the new value to conclude that
2204 * software clears the IM field? Or just check if the IM field is zero?
2205 */
2206 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2207
2208 trace_vtd_reg_write_iectl(iectl_reg);
2209
2210 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2211 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2212 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2213 }
2214 }
2215
2216 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2217 {
2218 IntelIOMMUState *s = opaque;
2219 uint64_t val;
2220
2221 trace_vtd_reg_read(addr, size);
2222
2223 if (addr + size > DMAR_REG_SIZE) {
2224 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2225 " size=0x%u", __func__, addr, size);
2226 return (uint64_t)-1;
2227 }
2228
2229 switch (addr) {
2230 /* Root Table Address Register, 64-bit */
2231 case DMAR_RTADDR_REG:
2232 if (size == 4) {
2233 val = s->root & ((1ULL << 32) - 1);
2234 } else {
2235 val = s->root;
2236 }
2237 break;
2238
2239 case DMAR_RTADDR_REG_HI:
2240 assert(size == 4);
2241 val = s->root >> 32;
2242 break;
2243
2244 /* Invalidation Queue Address Register, 64-bit */
2245 case DMAR_IQA_REG:
2246 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2247 if (size == 4) {
2248 val = val & ((1ULL << 32) - 1);
2249 }
2250 break;
2251
2252 case DMAR_IQA_REG_HI:
2253 assert(size == 4);
2254 val = s->iq >> 32;
2255 break;
2256
2257 default:
2258 if (size == 4) {
2259 val = vtd_get_long(s, addr);
2260 } else {
2261 val = vtd_get_quad(s, addr);
2262 }
2263 }
2264
2265 return val;
2266 }
2267
2268 static void vtd_mem_write(void *opaque, hwaddr addr,
2269 uint64_t val, unsigned size)
2270 {
2271 IntelIOMMUState *s = opaque;
2272
2273 trace_vtd_reg_write(addr, size, val);
2274
2275 if (addr + size > DMAR_REG_SIZE) {
2276 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2277 " size=0x%u", __func__, addr, size);
2278 return;
2279 }
2280
2281 switch (addr) {
2282 /* Global Command Register, 32-bit */
2283 case DMAR_GCMD_REG:
2284 vtd_set_long(s, addr, val);
2285 vtd_handle_gcmd_write(s);
2286 break;
2287
2288 /* Context Command Register, 64-bit */
2289 case DMAR_CCMD_REG:
2290 if (size == 4) {
2291 vtd_set_long(s, addr, val);
2292 } else {
2293 vtd_set_quad(s, addr, val);
2294 vtd_handle_ccmd_write(s);
2295 }
2296 break;
2297
2298 case DMAR_CCMD_REG_HI:
2299 assert(size == 4);
2300 vtd_set_long(s, addr, val);
2301 vtd_handle_ccmd_write(s);
2302 break;
2303
2304 /* IOTLB Invalidation Register, 64-bit */
2305 case DMAR_IOTLB_REG:
2306 if (size == 4) {
2307 vtd_set_long(s, addr, val);
2308 } else {
2309 vtd_set_quad(s, addr, val);
2310 vtd_handle_iotlb_write(s);
2311 }
2312 break;
2313
2314 case DMAR_IOTLB_REG_HI:
2315 assert(size == 4);
2316 vtd_set_long(s, addr, val);
2317 vtd_handle_iotlb_write(s);
2318 break;
2319
2320 /* Invalidate Address Register, 64-bit */
2321 case DMAR_IVA_REG:
2322 if (size == 4) {
2323 vtd_set_long(s, addr, val);
2324 } else {
2325 vtd_set_quad(s, addr, val);
2326 }
2327 break;
2328
2329 case DMAR_IVA_REG_HI:
2330 assert(size == 4);
2331 vtd_set_long(s, addr, val);
2332 break;
2333
2334 /* Fault Status Register, 32-bit */
2335 case DMAR_FSTS_REG:
2336 assert(size == 4);
2337 vtd_set_long(s, addr, val);
2338 vtd_handle_fsts_write(s);
2339 break;
2340
2341 /* Fault Event Control Register, 32-bit */
2342 case DMAR_FECTL_REG:
2343 assert(size == 4);
2344 vtd_set_long(s, addr, val);
2345 vtd_handle_fectl_write(s);
2346 break;
2347
2348 /* Fault Event Data Register, 32-bit */
2349 case DMAR_FEDATA_REG:
2350 assert(size == 4);
2351 vtd_set_long(s, addr, val);
2352 break;
2353
2354 /* Fault Event Address Register, 32-bit */
2355 case DMAR_FEADDR_REG:
2356 if (size == 4) {
2357 vtd_set_long(s, addr, val);
2358 } else {
2359 /*
2360 * While the register is 32-bit only, some guests (Xen...) write to
2361 * it with 64-bit.
2362 */
2363 vtd_set_quad(s, addr, val);
2364 }
2365 break;
2366
2367 /* Fault Event Upper Address Register, 32-bit */
2368 case DMAR_FEUADDR_REG:
2369 assert(size == 4);
2370 vtd_set_long(s, addr, val);
2371 break;
2372
2373 /* Protected Memory Enable Register, 32-bit */
2374 case DMAR_PMEN_REG:
2375 assert(size == 4);
2376 vtd_set_long(s, addr, val);
2377 break;
2378
2379 /* Root Table Address Register, 64-bit */
2380 case DMAR_RTADDR_REG:
2381 if (size == 4) {
2382 vtd_set_long(s, addr, val);
2383 } else {
2384 vtd_set_quad(s, addr, val);
2385 }
2386 break;
2387
2388 case DMAR_RTADDR_REG_HI:
2389 assert(size == 4);
2390 vtd_set_long(s, addr, val);
2391 break;
2392
2393 /* Invalidation Queue Tail Register, 64-bit */
2394 case DMAR_IQT_REG:
2395 if (size == 4) {
2396 vtd_set_long(s, addr, val);
2397 } else {
2398 vtd_set_quad(s, addr, val);
2399 }
2400 vtd_handle_iqt_write(s);
2401 break;
2402
2403 case DMAR_IQT_REG_HI:
2404 assert(size == 4);
2405 vtd_set_long(s, addr, val);
2406 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2407 break;
2408
2409 /* Invalidation Queue Address Register, 64-bit */
2410 case DMAR_IQA_REG:
2411 if (size == 4) {
2412 vtd_set_long(s, addr, val);
2413 } else {
2414 vtd_set_quad(s, addr, val);
2415 }
2416 break;
2417
2418 case DMAR_IQA_REG_HI:
2419 assert(size == 4);
2420 vtd_set_long(s, addr, val);
2421 break;
2422
2423 /* Invalidation Completion Status Register, 32-bit */
2424 case DMAR_ICS_REG:
2425 assert(size == 4);
2426 vtd_set_long(s, addr, val);
2427 vtd_handle_ics_write(s);
2428 break;
2429
2430 /* Invalidation Event Control Register, 32-bit */
2431 case DMAR_IECTL_REG:
2432 assert(size == 4);
2433 vtd_set_long(s, addr, val);
2434 vtd_handle_iectl_write(s);
2435 break;
2436
2437 /* Invalidation Event Data Register, 32-bit */
2438 case DMAR_IEDATA_REG:
2439 assert(size == 4);
2440 vtd_set_long(s, addr, val);
2441 break;
2442
2443 /* Invalidation Event Address Register, 32-bit */
2444 case DMAR_IEADDR_REG:
2445 assert(size == 4);
2446 vtd_set_long(s, addr, val);
2447 break;
2448
2449 /* Invalidation Event Upper Address Register, 32-bit */
2450 case DMAR_IEUADDR_REG:
2451 assert(size == 4);
2452 vtd_set_long(s, addr, val);
2453 break;
2454
2455 /* Fault Recording Registers, 128-bit */
2456 case DMAR_FRCD_REG_0_0:
2457 if (size == 4) {
2458 vtd_set_long(s, addr, val);
2459 } else {
2460 vtd_set_quad(s, addr, val);
2461 }
2462 break;
2463
2464 case DMAR_FRCD_REG_0_1:
2465 assert(size == 4);
2466 vtd_set_long(s, addr, val);
2467 break;
2468
2469 case DMAR_FRCD_REG_0_2:
2470 if (size == 4) {
2471 vtd_set_long(s, addr, val);
2472 } else {
2473 vtd_set_quad(s, addr, val);
2474 /* May clear bit 127 (Fault), update PPF */
2475 vtd_update_fsts_ppf(s);
2476 }
2477 break;
2478
2479 case DMAR_FRCD_REG_0_3:
2480 assert(size == 4);
2481 vtd_set_long(s, addr, val);
2482 /* May clear bit 127 (Fault), update PPF */
2483 vtd_update_fsts_ppf(s);
2484 break;
2485
2486 case DMAR_IRTA_REG:
2487 if (size == 4) {
2488 vtd_set_long(s, addr, val);
2489 } else {
2490 vtd_set_quad(s, addr, val);
2491 }
2492 break;
2493
2494 case DMAR_IRTA_REG_HI:
2495 assert(size == 4);
2496 vtd_set_long(s, addr, val);
2497 break;
2498
2499 default:
2500 if (size == 4) {
2501 vtd_set_long(s, addr, val);
2502 } else {
2503 vtd_set_quad(s, addr, val);
2504 }
2505 }
2506 }
2507
2508 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2509 IOMMUAccessFlags flag, int iommu_idx)
2510 {
2511 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2512 IntelIOMMUState *s = vtd_as->iommu_state;
2513 IOMMUTLBEntry iotlb = {
2514 /* We'll fill in the rest later. */
2515 .target_as = &address_space_memory,
2516 };
2517 bool success;
2518
2519 if (likely(s->dmar_enabled)) {
2520 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2521 addr, flag & IOMMU_WO, &iotlb);
2522 } else {
2523 /* DMAR disabled, passthrough, use 4k-page*/
2524 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2525 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2526 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2527 iotlb.perm = IOMMU_RW;
2528 success = true;
2529 }
2530
2531 if (likely(success)) {
2532 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2533 VTD_PCI_SLOT(vtd_as->devfn),
2534 VTD_PCI_FUNC(vtd_as->devfn),
2535 iotlb.iova, iotlb.translated_addr,
2536 iotlb.addr_mask);
2537 } else {
2538 error_report_once("%s: detected translation failure "
2539 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2540 __func__, pci_bus_num(vtd_as->bus),
2541 VTD_PCI_SLOT(vtd_as->devfn),
2542 VTD_PCI_FUNC(vtd_as->devfn),
2543 iotlb.iova);
2544 }
2545
2546 return iotlb;
2547 }
2548
2549 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2550 IOMMUNotifierFlag old,
2551 IOMMUNotifierFlag new)
2552 {
2553 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2554 IntelIOMMUState *s = vtd_as->iommu_state;
2555
2556 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2557 error_report("We need to set caching-mode=1 for intel-iommu to enable "
2558 "device assignment with IOMMU protection.");
2559 exit(1);
2560 }
2561
2562 /* Update per-address-space notifier flags */
2563 vtd_as->notifier_flags = new;
2564
2565 if (old == IOMMU_NOTIFIER_NONE) {
2566 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2567 } else if (new == IOMMU_NOTIFIER_NONE) {
2568 QLIST_REMOVE(vtd_as, next);
2569 }
2570 }
2571
2572 static int vtd_post_load(void *opaque, int version_id)
2573 {
2574 IntelIOMMUState *iommu = opaque;
2575
2576 /*
2577 * Memory regions are dynamically turned on/off depending on
2578 * context entry configurations from the guest. After migration,
2579 * we need to make sure the memory regions are still correct.
2580 */
2581 vtd_switch_address_space_all(iommu);
2582
2583 return 0;
2584 }
2585
2586 static const VMStateDescription vtd_vmstate = {
2587 .name = "iommu-intel",
2588 .version_id = 1,
2589 .minimum_version_id = 1,
2590 .priority = MIG_PRI_IOMMU,
2591 .post_load = vtd_post_load,
2592 .fields = (VMStateField[]) {
2593 VMSTATE_UINT64(root, IntelIOMMUState),
2594 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2595 VMSTATE_UINT64(iq, IntelIOMMUState),
2596 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2597 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2598 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2599 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2600 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2601 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2602 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2603 VMSTATE_BOOL(root_extended, IntelIOMMUState),
2604 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2605 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2606 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2607 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2608 VMSTATE_END_OF_LIST()
2609 }
2610 };
2611
2612 static const MemoryRegionOps vtd_mem_ops = {
2613 .read = vtd_mem_read,
2614 .write = vtd_mem_write,
2615 .endianness = DEVICE_LITTLE_ENDIAN,
2616 .impl = {
2617 .min_access_size = 4,
2618 .max_access_size = 8,
2619 },
2620 .valid = {
2621 .min_access_size = 4,
2622 .max_access_size = 8,
2623 },
2624 };
2625
2626 static Property vtd_properties[] = {
2627 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2628 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2629 ON_OFF_AUTO_AUTO),
2630 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2631 DEFINE_PROP_UINT8("x-aw-bits", IntelIOMMUState, aw_bits,
2632 VTD_HOST_ADDRESS_WIDTH),
2633 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2634 DEFINE_PROP_END_OF_LIST(),
2635 };
2636
2637 /* Read IRTE entry with specific index */
2638 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2639 VTD_IR_TableEntry *entry, uint16_t sid)
2640 {
2641 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2642 {0xffff, 0xfffb, 0xfff9, 0xfff8};
2643 dma_addr_t addr = 0x00;
2644 uint16_t mask, source_id;
2645 uint8_t bus, bus_max, bus_min;
2646
2647 addr = iommu->intr_root + index * sizeof(*entry);
2648 if (dma_memory_read(&address_space_memory, addr, entry,
2649 sizeof(*entry))) {
2650 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
2651 __func__, index, addr);
2652 return -VTD_FR_IR_ROOT_INVAL;
2653 }
2654
2655 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2656 le64_to_cpu(entry->data[0]));
2657
2658 if (!entry->irte.present) {
2659 error_report_once("%s: detected non-present IRTE "
2660 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
2661 __func__, index, le64_to_cpu(entry->data[1]),
2662 le64_to_cpu(entry->data[0]));
2663 return -VTD_FR_IR_ENTRY_P;
2664 }
2665
2666 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2667 entry->irte.__reserved_2) {
2668 error_report_once("%s: detected non-zero reserved IRTE "
2669 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
2670 __func__, index, le64_to_cpu(entry->data[1]),
2671 le64_to_cpu(entry->data[0]));
2672 return -VTD_FR_IR_IRTE_RSVD;
2673 }
2674
2675 if (sid != X86_IOMMU_SID_INVALID) {
2676 /* Validate IRTE SID */
2677 source_id = le32_to_cpu(entry->irte.source_id);
2678 switch (entry->irte.sid_vtype) {
2679 case VTD_SVT_NONE:
2680 break;
2681
2682 case VTD_SVT_ALL:
2683 mask = vtd_svt_mask[entry->irte.sid_q];
2684 if ((source_id & mask) != (sid & mask)) {
2685 error_report_once("%s: invalid IRTE SID "
2686 "(index=%u, sid=%u, source_id=%u)",
2687 __func__, index, sid, source_id);
2688 return -VTD_FR_IR_SID_ERR;
2689 }
2690 break;
2691
2692 case VTD_SVT_BUS:
2693 bus_max = source_id >> 8;
2694 bus_min = source_id & 0xff;
2695 bus = sid >> 8;
2696 if (bus > bus_max || bus < bus_min) {
2697 error_report_once("%s: invalid SVT_BUS "
2698 "(index=%u, bus=%u, min=%u, max=%u)",
2699 __func__, index, bus, bus_min, bus_max);
2700 return -VTD_FR_IR_SID_ERR;
2701 }
2702 break;
2703
2704 default:
2705 error_report_once("%s: detected invalid IRTE SVT "
2706 "(index=%u, type=%d)", __func__,
2707 index, entry->irte.sid_vtype);
2708 /* Take this as verification failure. */
2709 return -VTD_FR_IR_SID_ERR;
2710 break;
2711 }
2712 }
2713
2714 return 0;
2715 }
2716
2717 /* Fetch IRQ information of specific IR index */
2718 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2719 VTDIrq *irq, uint16_t sid)
2720 {
2721 VTD_IR_TableEntry irte = {};
2722 int ret = 0;
2723
2724 ret = vtd_irte_get(iommu, index, &irte, sid);
2725 if (ret) {
2726 return ret;
2727 }
2728
2729 irq->trigger_mode = irte.irte.trigger_mode;
2730 irq->vector = irte.irte.vector;
2731 irq->delivery_mode = irte.irte.delivery_mode;
2732 irq->dest = le32_to_cpu(irte.irte.dest_id);
2733 if (!iommu->intr_eime) {
2734 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
2735 #define VTD_IR_APIC_DEST_SHIFT (8)
2736 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2737 VTD_IR_APIC_DEST_SHIFT;
2738 }
2739 irq->dest_mode = irte.irte.dest_mode;
2740 irq->redir_hint = irte.irte.redir_hint;
2741
2742 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2743 irq->delivery_mode, irq->dest, irq->dest_mode);
2744
2745 return 0;
2746 }
2747
2748 /* Generate one MSI message from VTDIrq info */
2749 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2750 {
2751 VTD_MSIMessage msg = {};
2752
2753 /* Generate address bits */
2754 msg.dest_mode = irq->dest_mode;
2755 msg.redir_hint = irq->redir_hint;
2756 msg.dest = irq->dest;
2757 msg.__addr_hi = irq->dest & 0xffffff00;
2758 msg.__addr_head = cpu_to_le32(0xfee);
2759 /* Keep this from original MSI address bits */
2760 msg.__not_used = irq->msi_addr_last_bits;
2761
2762 /* Generate data bits */
2763 msg.vector = irq->vector;
2764 msg.delivery_mode = irq->delivery_mode;
2765 msg.level = 1;
2766 msg.trigger_mode = irq->trigger_mode;
2767
2768 msg_out->address = msg.msi_addr;
2769 msg_out->data = msg.msi_data;
2770 }
2771
2772 /* Interrupt remapping for MSI/MSI-X entry */
2773 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2774 MSIMessage *origin,
2775 MSIMessage *translated,
2776 uint16_t sid)
2777 {
2778 int ret = 0;
2779 VTD_IR_MSIAddress addr;
2780 uint16_t index;
2781 VTDIrq irq = {};
2782
2783 assert(origin && translated);
2784
2785 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2786
2787 if (!iommu || !iommu->intr_enabled) {
2788 memcpy(translated, origin, sizeof(*origin));
2789 goto out;
2790 }
2791
2792 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2793 error_report_once("%s: MSI address high 32 bits non-zero detected: "
2794 "address=0x%" PRIx64, __func__, origin->address);
2795 return -VTD_FR_IR_REQ_RSVD;
2796 }
2797
2798 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2799 if (addr.addr.__head != 0xfee) {
2800 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
2801 __func__, addr.data);
2802 return -VTD_FR_IR_REQ_RSVD;
2803 }
2804
2805 /* This is compatible mode. */
2806 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2807 memcpy(translated, origin, sizeof(*origin));
2808 goto out;
2809 }
2810
2811 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2812
2813 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
2814 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
2815
2816 if (addr.addr.sub_valid) {
2817 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2818 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2819 }
2820
2821 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2822 if (ret) {
2823 return ret;
2824 }
2825
2826 if (addr.addr.sub_valid) {
2827 trace_vtd_ir_remap_type("MSI");
2828 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2829 error_report_once("%s: invalid IR MSI "
2830 "(sid=%u, address=0x%" PRIx64
2831 ", data=0x%" PRIx32 ")",
2832 __func__, sid, origin->address, origin->data);
2833 return -VTD_FR_IR_REQ_RSVD;
2834 }
2835 } else {
2836 uint8_t vector = origin->data & 0xff;
2837 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2838
2839 trace_vtd_ir_remap_type("IOAPIC");
2840 /* IOAPIC entry vector should be aligned with IRTE vector
2841 * (see vt-d spec 5.1.5.1). */
2842 if (vector != irq.vector) {
2843 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2844 }
2845
2846 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2847 * (see vt-d spec 5.1.5.1). */
2848 if (trigger_mode != irq.trigger_mode) {
2849 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2850 irq.trigger_mode);
2851 }
2852 }
2853
2854 /*
2855 * We'd better keep the last two bits, assuming that guest OS
2856 * might modify it. Keep it does not hurt after all.
2857 */
2858 irq.msi_addr_last_bits = addr.addr.__not_care;
2859
2860 /* Translate VTDIrq to MSI message */
2861 vtd_generate_msi_message(&irq, translated);
2862
2863 out:
2864 trace_vtd_ir_remap_msi(origin->address, origin->data,
2865 translated->address, translated->data);
2866 return 0;
2867 }
2868
2869 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2870 MSIMessage *dst, uint16_t sid)
2871 {
2872 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2873 src, dst, sid);
2874 }
2875
2876 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2877 uint64_t *data, unsigned size,
2878 MemTxAttrs attrs)
2879 {
2880 return MEMTX_OK;
2881 }
2882
2883 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2884 uint64_t value, unsigned size,
2885 MemTxAttrs attrs)
2886 {
2887 int ret = 0;
2888 MSIMessage from = {}, to = {};
2889 uint16_t sid = X86_IOMMU_SID_INVALID;
2890
2891 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2892 from.data = (uint32_t) value;
2893
2894 if (!attrs.unspecified) {
2895 /* We have explicit Source ID */
2896 sid = attrs.requester_id;
2897 }
2898
2899 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2900 if (ret) {
2901 /* TODO: report error */
2902 /* Drop this interrupt */
2903 return MEMTX_ERROR;
2904 }
2905
2906 apic_get_class()->send_msi(&to);
2907
2908 return MEMTX_OK;
2909 }
2910
2911 static const MemoryRegionOps vtd_mem_ir_ops = {
2912 .read_with_attrs = vtd_mem_ir_read,
2913 .write_with_attrs = vtd_mem_ir_write,
2914 .endianness = DEVICE_LITTLE_ENDIAN,
2915 .impl = {
2916 .min_access_size = 4,
2917 .max_access_size = 4,
2918 },
2919 .valid = {
2920 .min_access_size = 4,
2921 .max_access_size = 4,
2922 },
2923 };
2924
2925 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2926 {
2927 uintptr_t key = (uintptr_t)bus;
2928 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2929 VTDAddressSpace *vtd_dev_as;
2930 char name[128];
2931
2932 if (!vtd_bus) {
2933 uintptr_t *new_key = g_malloc(sizeof(*new_key));
2934 *new_key = (uintptr_t)bus;
2935 /* No corresponding free() */
2936 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2937 PCI_DEVFN_MAX);
2938 vtd_bus->bus = bus;
2939 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2940 }
2941
2942 vtd_dev_as = vtd_bus->dev_as[devfn];
2943
2944 if (!vtd_dev_as) {
2945 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2946 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2947
2948 vtd_dev_as->bus = bus;
2949 vtd_dev_as->devfn = (uint8_t)devfn;
2950 vtd_dev_as->iommu_state = s;
2951 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2952 vtd_dev_as->iova_tree = iova_tree_new();
2953
2954 /*
2955 * Memory region relationships looks like (Address range shows
2956 * only lower 32 bits to make it short in length...):
2957 *
2958 * |-----------------+-------------------+----------|
2959 * | Name | Address range | Priority |
2960 * |-----------------+-------------------+----------+
2961 * | vtd_root | 00000000-ffffffff | 0 |
2962 * | intel_iommu | 00000000-ffffffff | 1 |
2963 * | vtd_sys_alias | 00000000-ffffffff | 1 |
2964 * | intel_iommu_ir | fee00000-feefffff | 64 |
2965 * |-----------------+-------------------+----------|
2966 *
2967 * We enable/disable DMAR by switching enablement for
2968 * vtd_sys_alias and intel_iommu regions. IR region is always
2969 * enabled.
2970 */
2971 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2972 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2973 "intel_iommu_dmar",
2974 UINT64_MAX);
2975 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2976 "vtd_sys_alias", get_system_memory(),
2977 0, memory_region_size(get_system_memory()));
2978 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2979 &vtd_mem_ir_ops, s, "intel_iommu_ir",
2980 VTD_INTERRUPT_ADDR_SIZE);
2981 memory_region_init(&vtd_dev_as->root, OBJECT(s),
2982 "vtd_root", UINT64_MAX);
2983 memory_region_add_subregion_overlap(&vtd_dev_as->root,
2984 VTD_INTERRUPT_ADDR_FIRST,
2985 &vtd_dev_as->iommu_ir, 64);
2986 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2987 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2988 &vtd_dev_as->sys_alias, 1);
2989 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2990 MEMORY_REGION(&vtd_dev_as->iommu),
2991 1);
2992 vtd_switch_address_space(vtd_dev_as);
2993 }
2994 return vtd_dev_as;
2995 }
2996
2997 /* Unmap the whole range in the notifier's scope. */
2998 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2999 {
3000 IOMMUTLBEntry entry;
3001 hwaddr size;
3002 hwaddr start = n->start;
3003 hwaddr end = n->end;
3004 IntelIOMMUState *s = as->iommu_state;
3005 DMAMap map;
3006
3007 /*
3008 * Note: all the codes in this function has a assumption that IOVA
3009 * bits are no more than VTD_MGAW bits (which is restricted by
3010 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3011 */
3012
3013 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) {
3014 /*
3015 * Don't need to unmap regions that is bigger than the whole
3016 * VT-d supported address space size
3017 */
3018 end = VTD_ADDRESS_SIZE(s->aw_bits);
3019 }
3020
3021 assert(start <= end);
3022 size = end - start;
3023
3024 if (ctpop64(size) != 1) {
3025 /*
3026 * This size cannot format a correct mask. Let's enlarge it to
3027 * suite the minimum available mask.
3028 */
3029 int n = 64 - clz64(size);
3030 if (n > s->aw_bits) {
3031 /* should not happen, but in case it happens, limit it */
3032 n = s->aw_bits;
3033 }
3034 size = 1ULL << n;
3035 }
3036
3037 entry.target_as = &address_space_memory;
3038 /* Adjust iova for the size */
3039 entry.iova = n->start & ~(size - 1);
3040 /* This field is meaningless for unmap */
3041 entry.translated_addr = 0;
3042 entry.perm = IOMMU_NONE;
3043 entry.addr_mask = size - 1;
3044
3045 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3046 VTD_PCI_SLOT(as->devfn),
3047 VTD_PCI_FUNC(as->devfn),
3048 entry.iova, size);
3049
3050 map.iova = entry.iova;
3051 map.size = entry.addr_mask;
3052 iova_tree_remove(as->iova_tree, &map);
3053
3054 memory_region_notify_one(n, &entry);
3055 }
3056
3057 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3058 {
3059 VTDAddressSpace *vtd_as;
3060 IOMMUNotifier *n;
3061
3062 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3063 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3064 vtd_address_space_unmap(vtd_as, n);
3065 }
3066 }
3067 }
3068
3069 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3070 {
3071 vtd_address_space_unmap_all(s);
3072 vtd_switch_address_space_all(s);
3073 }
3074
3075 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3076 {
3077 memory_region_notify_one((IOMMUNotifier *)private, entry);
3078 return 0;
3079 }
3080
3081 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3082 {
3083 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3084 IntelIOMMUState *s = vtd_as->iommu_state;
3085 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3086 VTDContextEntry ce;
3087
3088 /*
3089 * The replay can be triggered by either a invalidation or a newly
3090 * created entry. No matter what, we release existing mappings
3091 * (it means flushing caches for UNMAP-only registers).
3092 */
3093 vtd_address_space_unmap(vtd_as, n);
3094
3095 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3096 trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
3097 PCI_FUNC(vtd_as->devfn),
3098 VTD_CONTEXT_ENTRY_DID(ce.hi),
3099 ce.hi, ce.lo);
3100 if (vtd_as_has_map_notifier(vtd_as)) {
3101 /* This is required only for MAP typed notifiers */
3102 vtd_page_walk_info info = {
3103 .hook_fn = vtd_replay_hook,
3104 .private = (void *)n,
3105 .notify_unmap = false,
3106 .aw = s->aw_bits,
3107 .as = vtd_as,
3108 .domain_id = VTD_CONTEXT_ENTRY_DID(ce.hi),
3109 };
3110
3111 vtd_page_walk(&ce, 0, ~0ULL, &info);
3112 }
3113 } else {
3114 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3115 PCI_FUNC(vtd_as->devfn));
3116 }
3117
3118 return;
3119 }
3120
3121 /* Do the initialization. It will also be called when reset, so pay
3122 * attention when adding new initialization stuff.
3123 */
3124 static void vtd_init(IntelIOMMUState *s)
3125 {
3126 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3127
3128 memset(s->csr, 0, DMAR_REG_SIZE);
3129 memset(s->wmask, 0, DMAR_REG_SIZE);
3130 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3131 memset(s->womask, 0, DMAR_REG_SIZE);
3132
3133 s->root = 0;
3134 s->root_extended = false;
3135 s->dmar_enabled = false;
3136 s->iq_head = 0;
3137 s->iq_tail = 0;
3138 s->iq = 0;
3139 s->iq_size = 0;
3140 s->qi_enabled = false;
3141 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3142 s->next_frcd_reg = 0;
3143 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3144 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3145 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3146 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3147 s->cap |= VTD_CAP_SAGAW_48bit;
3148 }
3149 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3150
3151 /*
3152 * Rsvd field masks for spte
3153 */
3154 vtd_paging_entry_rsvd_field[0] = ~0ULL;
3155 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3156 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3157 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3158 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3159 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3160 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3161 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3162 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3163
3164 if (x86_iommu->intr_supported) {
3165 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3166 if (s->intr_eim == ON_OFF_AUTO_ON) {
3167 s->ecap |= VTD_ECAP_EIM;
3168 }
3169 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3170 }
3171
3172 if (x86_iommu->dt_supported) {
3173 s->ecap |= VTD_ECAP_DT;
3174 }
3175
3176 if (x86_iommu->pt_supported) {
3177 s->ecap |= VTD_ECAP_PT;
3178 }
3179
3180 if (s->caching_mode) {
3181 s->cap |= VTD_CAP_CM;
3182 }
3183
3184 vtd_reset_caches(s);
3185
3186 /* Define registers with default values and bit semantics */
3187 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3188 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3189 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3190 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3191 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3192 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3193 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
3194 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3195 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3196
3197 /* Advanced Fault Logging not supported */
3198 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3199 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3200 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3201 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3202
3203 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3204 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3205 */
3206 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3207
3208 /* Treated as RO for implementations that PLMR and PHMR fields reported
3209 * as Clear in the CAP_REG.
3210 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3211 */
3212 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3213
3214 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3215 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3216 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
3217 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3218 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3219 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3220 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3221 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3222 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3223
3224 /* IOTLB registers */
3225 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3226 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3227 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3228
3229 /* Fault Recording Registers, 128-bit */
3230 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3231 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3232
3233 /*
3234 * Interrupt remapping registers.
3235 */
3236 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3237 }
3238
3239 /* Should not reset address_spaces when reset because devices will still use
3240 * the address space they got at first (won't ask the bus again).
3241 */
3242 static void vtd_reset(DeviceState *dev)
3243 {
3244 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3245
3246 vtd_init(s);
3247 vtd_address_space_refresh_all(s);
3248 }
3249
3250 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3251 {
3252 IntelIOMMUState *s = opaque;
3253 VTDAddressSpace *vtd_as;
3254
3255 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3256
3257 vtd_as = vtd_find_add_as(s, bus, devfn);
3258 return &vtd_as->as;
3259 }
3260
3261 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3262 {
3263 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3264
3265 /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
3266 if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
3267 !kvm_irqchip_is_split()) {
3268 error_setg(errp, "Intel Interrupt Remapping cannot work with "
3269 "kernel-irqchip=on, please use 'split|off'.");
3270 return false;
3271 }
3272 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3273 error_setg(errp, "eim=on cannot be selected without intremap=on");
3274 return false;
3275 }
3276
3277 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3278 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3279 && x86_iommu->intr_supported ?
3280 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3281 }
3282 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3283 if (!kvm_irqchip_in_kernel()) {
3284 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3285 return false;
3286 }
3287 if (!kvm_enable_x2apic()) {
3288 error_setg(errp, "eim=on requires support on the KVM side"
3289 "(X2APIC_API, first shipped in v4.7)");
3290 return false;
3291 }
3292 }
3293
3294 /* Currently only address widths supported are 39 and 48 bits */
3295 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3296 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3297 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3298 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3299 return false;
3300 }
3301
3302 return true;
3303 }
3304
3305 static void vtd_realize(DeviceState *dev, Error **errp)
3306 {
3307 MachineState *ms = MACHINE(qdev_get_machine());
3308 PCMachineState *pcms = PC_MACHINE(ms);
3309 PCIBus *bus = pcms->bus;
3310 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3311 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3312
3313 x86_iommu->type = TYPE_INTEL;
3314
3315 if (!vtd_decide_config(s, errp)) {
3316 return;
3317 }
3318
3319 QLIST_INIT(&s->vtd_as_with_notifiers);
3320 qemu_mutex_init(&s->iommu_lock);
3321 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3322 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3323 "intel_iommu", DMAR_REG_SIZE);
3324 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3325 /* No corresponding destroy */
3326 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3327 g_free, g_free);
3328 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3329 g_free, g_free);
3330 vtd_init(s);
3331 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3332 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3333 /* Pseudo address space under root PCI bus. */
3334 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3335 }
3336
3337 static void vtd_class_init(ObjectClass *klass, void *data)
3338 {
3339 DeviceClass *dc = DEVICE_CLASS(klass);
3340 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3341
3342 dc->reset = vtd_reset;
3343 dc->vmsd = &vtd_vmstate;
3344 dc->props = vtd_properties;
3345 dc->hotpluggable = false;
3346 x86_class->realize = vtd_realize;
3347 x86_class->int_remap = vtd_int_remap;
3348 /* Supported by the pc-q35-* machine types */
3349 dc->user_creatable = true;
3350 }
3351
3352 static const TypeInfo vtd_info = {
3353 .name = TYPE_INTEL_IOMMU_DEVICE,
3354 .parent = TYPE_X86_IOMMU_DEVICE,
3355 .instance_size = sizeof(IntelIOMMUState),
3356 .class_init = vtd_class_init,
3357 };
3358
3359 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3360 void *data)
3361 {
3362 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3363
3364 imrc->translate = vtd_iommu_translate;
3365 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3366 imrc->replay = vtd_iommu_replay;
3367 }
3368
3369 static const TypeInfo vtd_iommu_memory_region_info = {
3370 .parent = TYPE_IOMMU_MEMORY_REGION,
3371 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3372 .class_init = vtd_iommu_memory_region_class_init,
3373 };
3374
3375 static void vtd_register_types(void)
3376 {
3377 type_register_static(&vtd_info);
3378 type_register_static(&vtd_iommu_memory_region_info);
3379 }
3380
3381 type_init(vtd_register_types)