]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/kvmvapic.c
Do not include cpu.h if it's not really necessary
[mirror_qemu.git] / hw / i386 / kvmvapic.c
1 /*
2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
3 *
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
6 *
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
9 * top-level directory.
10 */
11
12 #include "qemu/osdep.h"
13 #include "qemu/module.h"
14 #include "sysemu/sysemu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/hw_accel.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/runstate.h"
19 #include "hw/i386/apic_internal.h"
20 #include "hw/sysbus.h"
21 #include "hw/boards.h"
22 #include "migration/vmstate.h"
23 #include "qom/object.h"
24
25 #define VAPIC_IO_PORT 0x7e
26
27 #define VAPIC_CPU_SHIFT 7
28
29 #define ROM_BLOCK_SIZE 512
30 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
31
32 typedef enum VAPICMode {
33 VAPIC_INACTIVE = 0,
34 VAPIC_ACTIVE = 1,
35 VAPIC_STANDBY = 2,
36 } VAPICMode;
37
38 typedef struct VAPICHandlers {
39 uint32_t set_tpr;
40 uint32_t set_tpr_eax;
41 uint32_t get_tpr[8];
42 uint32_t get_tpr_stack;
43 } QEMU_PACKED VAPICHandlers;
44
45 typedef struct GuestROMState {
46 char signature[8];
47 uint32_t vaddr;
48 uint32_t fixup_start;
49 uint32_t fixup_end;
50 uint32_t vapic_vaddr;
51 uint32_t vapic_size;
52 uint32_t vcpu_shift;
53 uint32_t real_tpr_addr;
54 VAPICHandlers up;
55 VAPICHandlers mp;
56 } QEMU_PACKED GuestROMState;
57
58 struct VAPICROMState {
59 SysBusDevice busdev;
60 MemoryRegion io;
61 MemoryRegion rom;
62 uint32_t state;
63 uint32_t rom_state_paddr;
64 uint32_t rom_state_vaddr;
65 uint32_t vapic_paddr;
66 uint32_t real_tpr_addr;
67 GuestROMState rom_state;
68 size_t rom_size;
69 bool rom_mapped_writable;
70 VMChangeStateEntry *vmsentry;
71 };
72
73 #define TYPE_VAPIC "kvmvapic"
74 OBJECT_DECLARE_SIMPLE_TYPE(VAPICROMState, VAPIC)
75
76 #define TPR_INSTR_ABS_MODRM 0x1
77 #define TPR_INSTR_MATCH_MODRM_REG 0x2
78
79 typedef struct TPRInstruction {
80 uint8_t opcode;
81 uint8_t modrm_reg;
82 unsigned int flags;
83 TPRAccess access;
84 size_t length;
85 off_t addr_offset;
86 } TPRInstruction;
87
88 /* must be sorted by length, shortest first */
89 static const TPRInstruction tpr_instr[] = {
90 { /* mov abs to eax */
91 .opcode = 0xa1,
92 .access = TPR_ACCESS_READ,
93 .length = 5,
94 .addr_offset = 1,
95 },
96 { /* mov eax to abs */
97 .opcode = 0xa3,
98 .access = TPR_ACCESS_WRITE,
99 .length = 5,
100 .addr_offset = 1,
101 },
102 { /* mov r32 to r/m32 */
103 .opcode = 0x89,
104 .flags = TPR_INSTR_ABS_MODRM,
105 .access = TPR_ACCESS_WRITE,
106 .length = 6,
107 .addr_offset = 2,
108 },
109 { /* mov r/m32 to r32 */
110 .opcode = 0x8b,
111 .flags = TPR_INSTR_ABS_MODRM,
112 .access = TPR_ACCESS_READ,
113 .length = 6,
114 .addr_offset = 2,
115 },
116 { /* push r/m32 */
117 .opcode = 0xff,
118 .modrm_reg = 6,
119 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
120 .access = TPR_ACCESS_READ,
121 .length = 6,
122 .addr_offset = 2,
123 },
124 { /* mov imm32, r/m32 (c7/0) */
125 .opcode = 0xc7,
126 .modrm_reg = 0,
127 .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
128 .access = TPR_ACCESS_WRITE,
129 .length = 10,
130 .addr_offset = 2,
131 },
132 };
133
134 static void read_guest_rom_state(VAPICROMState *s)
135 {
136 cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
137 sizeof(GuestROMState));
138 }
139
140 static void write_guest_rom_state(VAPICROMState *s)
141 {
142 cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
143 sizeof(GuestROMState));
144 }
145
146 static void update_guest_rom_state(VAPICROMState *s)
147 {
148 read_guest_rom_state(s);
149
150 s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
151 s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
152
153 write_guest_rom_state(s);
154 }
155
156 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
157 {
158 CPUState *cs = env_cpu(env);
159 hwaddr paddr;
160 target_ulong addr;
161
162 if (s->state == VAPIC_ACTIVE) {
163 return 0;
164 }
165 /*
166 * If there is no prior TPR access instruction we could analyze (which is
167 * the case after resume from hibernation), we need to scan the possible
168 * virtual address space for the APIC mapping.
169 */
170 for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
171 paddr = cpu_get_phys_page_debug(cs, addr);
172 if (paddr != APIC_DEFAULT_ADDRESS) {
173 continue;
174 }
175 s->real_tpr_addr = addr + 0x80;
176 update_guest_rom_state(s);
177 return 0;
178 }
179 return -1;
180 }
181
182 static uint8_t modrm_reg(uint8_t modrm)
183 {
184 return (modrm >> 3) & 7;
185 }
186
187 static bool is_abs_modrm(uint8_t modrm)
188 {
189 return (modrm & 0xc7) == 0x05;
190 }
191
192 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
193 {
194 return opcode[0] == instr->opcode &&
195 (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
196 (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
197 modrm_reg(opcode[1]) == instr->modrm_reg);
198 }
199
200 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
201 target_ulong *pip, TPRAccess access)
202 {
203 CPUState *cs = CPU(cpu);
204 const TPRInstruction *instr;
205 target_ulong ip = *pip;
206 uint8_t opcode[2];
207 uint32_t real_tpr_addr;
208 int i;
209
210 if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
211 (ip & 0xf0000000ULL) != 0xe0000000ULL) {
212 return -1;
213 }
214
215 /*
216 * Early Windows 2003 SMP initialization contains a
217 *
218 * mov imm32, r/m32
219 *
220 * instruction that is patched by TPR optimization. The problem is that
221 * RSP, used by the patched instruction, is zero, so the guest gets a
222 * double fault and dies.
223 */
224 if (cpu->env.regs[R_ESP] == 0) {
225 return -1;
226 }
227
228 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
229 /*
230 * KVM without kernel-based TPR access reporting will pass an IP that
231 * points after the accessing instruction. So we need to look backward
232 * to find the reason.
233 */
234 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
235 instr = &tpr_instr[i];
236 if (instr->access != access) {
237 continue;
238 }
239 if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
240 sizeof(opcode), 0) < 0) {
241 return -1;
242 }
243 if (opcode_matches(opcode, instr)) {
244 ip -= instr->length;
245 goto instruction_ok;
246 }
247 }
248 return -1;
249 } else {
250 if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
251 return -1;
252 }
253 for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
254 instr = &tpr_instr[i];
255 if (opcode_matches(opcode, instr)) {
256 goto instruction_ok;
257 }
258 }
259 return -1;
260 }
261
262 instruction_ok:
263 /*
264 * Grab the virtual TPR address from the instruction
265 * and update the cached values.
266 */
267 if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
268 (void *)&real_tpr_addr,
269 sizeof(real_tpr_addr), 0) < 0) {
270 return -1;
271 }
272 real_tpr_addr = le32_to_cpu(real_tpr_addr);
273 if ((real_tpr_addr & 0xfff) != 0x80) {
274 return -1;
275 }
276 s->real_tpr_addr = real_tpr_addr;
277 update_guest_rom_state(s);
278
279 *pip = ip;
280 return 0;
281 }
282
283 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
284 {
285 CPUState *cs = env_cpu(env);
286 hwaddr paddr;
287 uint32_t rom_state_vaddr;
288 uint32_t pos, patch, offset;
289
290 /* nothing to do if already activated */
291 if (s->state == VAPIC_ACTIVE) {
292 return 0;
293 }
294
295 /* bail out if ROM init code was not executed (missing ROM?) */
296 if (s->state == VAPIC_INACTIVE) {
297 return -1;
298 }
299
300 /* find out virtual address of the ROM */
301 rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
302 paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
303 if (paddr == -1) {
304 return -1;
305 }
306 paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
307 if (paddr != s->rom_state_paddr) {
308 return -1;
309 }
310 read_guest_rom_state(s);
311 if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
312 return -1;
313 }
314 s->rom_state_vaddr = rom_state_vaddr;
315
316 /* fixup addresses in ROM if needed */
317 if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
318 return 0;
319 }
320 for (pos = le32_to_cpu(s->rom_state.fixup_start);
321 pos < le32_to_cpu(s->rom_state.fixup_end);
322 pos += 4) {
323 cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
324 &offset, sizeof(offset));
325 offset = le32_to_cpu(offset);
326 cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
327 patch = le32_to_cpu(patch);
328 patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
329 patch = cpu_to_le32(patch);
330 cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
331 }
332 read_guest_rom_state(s);
333 s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
334 le32_to_cpu(s->rom_state.vaddr);
335
336 return 0;
337 }
338
339 /*
340 * Tries to read the unique processor number from the Kernel Processor Control
341 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
342 * cannot be accessed or is considered invalid. This also ensures that we are
343 * not patching the wrong guest.
344 */
345 static int get_kpcr_number(X86CPU *cpu)
346 {
347 CPUX86State *env = &cpu->env;
348 struct kpcr {
349 uint8_t fill1[0x1c];
350 uint32_t self;
351 uint8_t fill2[0x31];
352 uint8_t number;
353 } QEMU_PACKED kpcr;
354
355 if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
356 (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
357 kpcr.self != env->segs[R_FS].base) {
358 return -1;
359 }
360 return kpcr.number;
361 }
362
363 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
364 {
365 int cpu_number = get_kpcr_number(cpu);
366 hwaddr vapic_paddr;
367 static const uint8_t enabled = 1;
368
369 if (cpu_number < 0) {
370 return -1;
371 }
372 vapic_paddr = s->vapic_paddr +
373 (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
374 cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
375 &enabled, sizeof(enabled));
376 apic_enable_vapic(cpu->apic_state, vapic_paddr);
377
378 s->state = VAPIC_ACTIVE;
379
380 return 0;
381 }
382
383 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
384 {
385 cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
386 }
387
388 static void patch_call(X86CPU *cpu, target_ulong ip, uint32_t target)
389 {
390 uint32_t offset;
391
392 offset = cpu_to_le32(target - ip - 5);
393 patch_byte(cpu, ip, 0xe8); /* call near */
394 cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
395 }
396
397 typedef struct PatchInfo {
398 VAPICHandlers *handler;
399 target_ulong ip;
400 } PatchInfo;
401
402 static void do_patch_instruction(CPUState *cs, run_on_cpu_data data)
403 {
404 X86CPU *x86_cpu = X86_CPU(cs);
405 PatchInfo *info = (PatchInfo *) data.host_ptr;
406 VAPICHandlers *handlers = info->handler;
407 target_ulong ip = info->ip;
408 uint8_t opcode[2];
409 uint32_t imm32 = 0;
410
411 cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
412
413 switch (opcode[0]) {
414 case 0x89: /* mov r32 to r/m32 */
415 patch_byte(x86_cpu, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
416 patch_call(x86_cpu, ip + 1, handlers->set_tpr);
417 break;
418 case 0x8b: /* mov r/m32 to r32 */
419 patch_byte(x86_cpu, ip, 0x90);
420 patch_call(x86_cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
421 break;
422 case 0xa1: /* mov abs to eax */
423 patch_call(x86_cpu, ip, handlers->get_tpr[0]);
424 break;
425 case 0xa3: /* mov eax to abs */
426 patch_call(x86_cpu, ip, handlers->set_tpr_eax);
427 break;
428 case 0xc7: /* mov imm32, r/m32 (c7/0) */
429 patch_byte(x86_cpu, ip, 0x68); /* push imm32 */
430 cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
431 cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
432 patch_call(x86_cpu, ip + 5, handlers->set_tpr);
433 break;
434 case 0xff: /* push r/m32 */
435 patch_byte(x86_cpu, ip, 0x50); /* push eax */
436 patch_call(x86_cpu, ip + 1, handlers->get_tpr_stack);
437 break;
438 default:
439 abort();
440 }
441
442 g_free(info);
443 }
444
445 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
446 {
447 MachineState *ms = MACHINE(qdev_get_machine());
448 CPUState *cs = CPU(cpu);
449 VAPICHandlers *handlers;
450 PatchInfo *info;
451
452 if (ms->smp.cpus == 1) {
453 handlers = &s->rom_state.up;
454 } else {
455 handlers = &s->rom_state.mp;
456 }
457
458 info = g_new(PatchInfo, 1);
459 info->handler = handlers;
460 info->ip = ip;
461
462 async_safe_run_on_cpu(cs, do_patch_instruction, RUN_ON_CPU_HOST_PTR(info));
463 }
464
465 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
466 TPRAccess access)
467 {
468 VAPICROMState *s = VAPIC(dev);
469 X86CPU *cpu = X86_CPU(cs);
470 CPUX86State *env = &cpu->env;
471
472 cpu_synchronize_state(cs);
473
474 if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
475 if (s->state == VAPIC_ACTIVE) {
476 vapic_enable(s, cpu);
477 }
478 return;
479 }
480 if (update_rom_mapping(s, env, ip) < 0) {
481 return;
482 }
483 if (vapic_enable(s, cpu) < 0) {
484 return;
485 }
486 patch_instruction(s, cpu, ip);
487 }
488
489 typedef struct VAPICEnableTPRReporting {
490 DeviceState *apic;
491 bool enable;
492 } VAPICEnableTPRReporting;
493
494 static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data)
495 {
496 VAPICEnableTPRReporting *info = data.host_ptr;
497 apic_enable_tpr_access_reporting(info->apic, info->enable);
498 }
499
500 static void vapic_enable_tpr_reporting(bool enable)
501 {
502 VAPICEnableTPRReporting info = {
503 .enable = enable,
504 };
505 CPUState *cs;
506 X86CPU *cpu;
507
508 CPU_FOREACH(cs) {
509 cpu = X86_CPU(cs);
510 info.apic = cpu->apic_state;
511 run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info));
512 }
513 }
514
515 static void vapic_reset(DeviceState *dev)
516 {
517 VAPICROMState *s = VAPIC(dev);
518
519 s->state = VAPIC_INACTIVE;
520 s->rom_state_paddr = 0;
521 vapic_enable_tpr_reporting(false);
522 }
523
524 /*
525 * Set the IRQ polling hypercalls to the supported variant:
526 * - vmcall if using KVM in-kernel irqchip
527 * - 32-bit VAPIC port write otherwise
528 */
529 static int patch_hypercalls(VAPICROMState *s)
530 {
531 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
532 static const uint8_t vmcall_pattern[] = { /* vmcall */
533 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
534 };
535 static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
536 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
537 };
538 uint8_t alternates[2];
539 const uint8_t *pattern;
540 const uint8_t *patch;
541 off_t pos;
542 uint8_t *rom;
543
544 rom = g_malloc(s->rom_size);
545 cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
546
547 for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
548 if (kvm_irqchip_in_kernel()) {
549 pattern = outl_pattern;
550 alternates[0] = outl_pattern[7];
551 alternates[1] = outl_pattern[7];
552 patch = &vmcall_pattern[5];
553 } else {
554 pattern = vmcall_pattern;
555 alternates[0] = vmcall_pattern[7];
556 alternates[1] = 0xd9; /* AMD's VMMCALL */
557 patch = &outl_pattern[5];
558 }
559 if (memcmp(rom + pos, pattern, 7) == 0 &&
560 (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
561 cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
562 /*
563 * Don't flush the tb here. Under ordinary conditions, the patched
564 * calls are miles away from the current IP. Under malicious
565 * conditions, the guest could trick us to crash.
566 */
567 }
568 }
569
570 g_free(rom);
571 return 0;
572 }
573
574 /*
575 * For TCG mode or the time KVM honors read-only memory regions, we need to
576 * enable write access to the option ROM so that variables can be updated by
577 * the guest.
578 */
579 static int vapic_map_rom_writable(VAPICROMState *s)
580 {
581 hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
582 MemoryRegionSection section;
583 MemoryRegion *as;
584 size_t rom_size;
585 uint8_t *ram;
586
587 as = sysbus_address_space(&s->busdev);
588
589 if (s->rom_mapped_writable) {
590 memory_region_del_subregion(as, &s->rom);
591 object_unparent(OBJECT(&s->rom));
592 }
593
594 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
595 section = memory_region_find(as, 0, 1);
596
597 /* read ROM size from RAM region */
598 if (rom_paddr + 2 >= memory_region_size(section.mr)) {
599 return -1;
600 }
601 ram = memory_region_get_ram_ptr(section.mr);
602 rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
603 if (rom_size == 0) {
604 return -1;
605 }
606 s->rom_size = rom_size;
607
608 /* We need to round to avoid creating subpages
609 * from which we cannot run code. */
610 rom_size += rom_paddr & ~TARGET_PAGE_MASK;
611 rom_paddr &= TARGET_PAGE_MASK;
612 rom_size = TARGET_PAGE_ALIGN(rom_size);
613
614 memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
615 rom_paddr, rom_size);
616 memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
617 s->rom_mapped_writable = true;
618 memory_region_unref(section.mr);
619
620 return 0;
621 }
622
623 static int vapic_prepare(VAPICROMState *s)
624 {
625 if (vapic_map_rom_writable(s) < 0) {
626 return -1;
627 }
628
629 if (patch_hypercalls(s) < 0) {
630 return -1;
631 }
632
633 vapic_enable_tpr_reporting(true);
634
635 return 0;
636 }
637
638 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
639 unsigned int size)
640 {
641 VAPICROMState *s = opaque;
642 X86CPU *cpu;
643 CPUX86State *env;
644 hwaddr rom_paddr;
645
646 if (!current_cpu) {
647 return;
648 }
649
650 cpu_synchronize_state(current_cpu);
651 cpu = X86_CPU(current_cpu);
652 env = &cpu->env;
653
654 /*
655 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
656 * o 16-bit write access:
657 * Reports the option ROM initialization to the hypervisor. Written
658 * value is the offset of the state structure in the ROM.
659 * o 8-bit write access:
660 * Reactivates the VAPIC after a guest hibernation, i.e. after the
661 * option ROM content has been re-initialized by a guest power cycle.
662 * o 32-bit write access:
663 * Poll for pending IRQs, considering the current VAPIC state.
664 */
665 switch (size) {
666 case 2:
667 if (s->state == VAPIC_INACTIVE) {
668 rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
669 s->rom_state_paddr = rom_paddr + data;
670
671 s->state = VAPIC_STANDBY;
672 }
673 if (vapic_prepare(s) < 0) {
674 s->state = VAPIC_INACTIVE;
675 s->rom_state_paddr = 0;
676 break;
677 }
678 break;
679 case 1:
680 if (kvm_enabled()) {
681 /*
682 * Disable triggering instruction in ROM by writing a NOP.
683 *
684 * We cannot do this in TCG mode as the reported IP is not
685 * accurate.
686 */
687 pause_all_vcpus();
688 patch_byte(cpu, env->eip - 2, 0x66);
689 patch_byte(cpu, env->eip - 1, 0x90);
690 resume_all_vcpus();
691 }
692
693 if (s->state == VAPIC_ACTIVE) {
694 break;
695 }
696 if (update_rom_mapping(s, env, env->eip) < 0) {
697 break;
698 }
699 if (find_real_tpr_addr(s, env) < 0) {
700 break;
701 }
702 vapic_enable(s, cpu);
703 break;
704 default:
705 case 4:
706 if (!kvm_irqchip_in_kernel()) {
707 apic_poll_irq(cpu->apic_state);
708 }
709 break;
710 }
711 }
712
713 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
714 {
715 return 0xffffffff;
716 }
717
718 static const MemoryRegionOps vapic_ops = {
719 .write = vapic_write,
720 .read = vapic_read,
721 .endianness = DEVICE_NATIVE_ENDIAN,
722 };
723
724 static void vapic_realize(DeviceState *dev, Error **errp)
725 {
726 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
727 VAPICROMState *s = VAPIC(dev);
728
729 memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
730 sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
731 sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
732
733 option_rom[nb_option_roms].name = "kvmvapic.bin";
734 option_rom[nb_option_roms].bootindex = -1;
735 nb_option_roms++;
736 }
737
738 static void do_vapic_enable(CPUState *cs, run_on_cpu_data data)
739 {
740 VAPICROMState *s = data.host_ptr;
741 X86CPU *cpu = X86_CPU(cs);
742
743 static const uint8_t enabled = 1;
744 cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
745 &enabled, sizeof(enabled));
746 apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
747 s->state = VAPIC_ACTIVE;
748 }
749
750 static void kvmvapic_vm_state_change(void *opaque, bool running,
751 RunState state)
752 {
753 MachineState *ms = MACHINE(qdev_get_machine());
754 VAPICROMState *s = opaque;
755 uint8_t *zero;
756
757 if (!running) {
758 return;
759 }
760
761 if (s->state == VAPIC_ACTIVE) {
762 if (ms->smp.cpus == 1) {
763 run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s));
764 } else {
765 zero = g_malloc0(s->rom_state.vapic_size);
766 cpu_physical_memory_write(s->vapic_paddr, zero,
767 s->rom_state.vapic_size);
768 g_free(zero);
769 }
770 }
771
772 qemu_del_vm_change_state_handler(s->vmsentry);
773 s->vmsentry = NULL;
774 }
775
776 static int vapic_post_load(void *opaque, int version_id)
777 {
778 VAPICROMState *s = opaque;
779
780 /*
781 * The old implementation of qemu-kvm did not provide the state
782 * VAPIC_STANDBY. Reconstruct it.
783 */
784 if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
785 s->state = VAPIC_STANDBY;
786 }
787
788 if (s->state != VAPIC_INACTIVE) {
789 if (vapic_prepare(s) < 0) {
790 return -1;
791 }
792 }
793
794 if (!s->vmsentry) {
795 s->vmsentry =
796 qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
797 }
798 return 0;
799 }
800
801 static const VMStateDescription vmstate_handlers = {
802 .name = "kvmvapic-handlers",
803 .version_id = 1,
804 .minimum_version_id = 1,
805 .fields = (VMStateField[]) {
806 VMSTATE_UINT32(set_tpr, VAPICHandlers),
807 VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
808 VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
809 VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
810 VMSTATE_END_OF_LIST()
811 }
812 };
813
814 static const VMStateDescription vmstate_guest_rom = {
815 .name = "kvmvapic-guest-rom",
816 .version_id = 1,
817 .minimum_version_id = 1,
818 .fields = (VMStateField[]) {
819 VMSTATE_UNUSED(8), /* signature */
820 VMSTATE_UINT32(vaddr, GuestROMState),
821 VMSTATE_UINT32(fixup_start, GuestROMState),
822 VMSTATE_UINT32(fixup_end, GuestROMState),
823 VMSTATE_UINT32(vapic_vaddr, GuestROMState),
824 VMSTATE_UINT32(vapic_size, GuestROMState),
825 VMSTATE_UINT32(vcpu_shift, GuestROMState),
826 VMSTATE_UINT32(real_tpr_addr, GuestROMState),
827 VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
828 VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
829 VMSTATE_END_OF_LIST()
830 }
831 };
832
833 static const VMStateDescription vmstate_vapic = {
834 .name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
835 .version_id = 1,
836 .minimum_version_id = 1,
837 .post_load = vapic_post_load,
838 .fields = (VMStateField[]) {
839 VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
840 GuestROMState),
841 VMSTATE_UINT32(state, VAPICROMState),
842 VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
843 VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
844 VMSTATE_UINT32(vapic_paddr, VAPICROMState),
845 VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
846 VMSTATE_END_OF_LIST()
847 }
848 };
849
850 static void vapic_class_init(ObjectClass *klass, void *data)
851 {
852 DeviceClass *dc = DEVICE_CLASS(klass);
853
854 dc->reset = vapic_reset;
855 dc->vmsd = &vmstate_vapic;
856 dc->realize = vapic_realize;
857 }
858
859 static const TypeInfo vapic_type = {
860 .name = TYPE_VAPIC,
861 .parent = TYPE_SYS_BUS_DEVICE,
862 .instance_size = sizeof(VAPICROMState),
863 .class_init = vapic_class_init,
864 };
865
866 static void vapic_register(void)
867 {
868 type_register_static(&vapic_type);
869 }
870
871 type_init(vapic_register);