]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
hw/i386/pc.c: Don't use load_image()
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/smbios/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/i386/intel_iommu.h"
76 #include "hw/net/ne2000-isa.h"
77
78 /* debug PC/ISA interrupts */
79 //#define DEBUG_IRQ
80
81 #ifdef DEBUG_IRQ
82 #define DPRINTF(fmt, ...) \
83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
84 #else
85 #define DPRINTF(fmt, ...)
86 #endif
87
88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
93
94 #define E820_NR_ENTRIES 16
95
96 struct e820_entry {
97 uint64_t address;
98 uint64_t length;
99 uint32_t type;
100 } QEMU_PACKED __attribute((__aligned__(4)));
101
102 struct e820_table {
103 uint32_t count;
104 struct e820_entry entry[E820_NR_ENTRIES];
105 } QEMU_PACKED __attribute((__aligned__(4)));
106
107 static struct e820_table e820_reserve;
108 static struct e820_entry *e820_table;
109 static unsigned e820_entries;
110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
111
112 void gsi_handler(void *opaque, int n, int level)
113 {
114 GSIState *s = opaque;
115
116 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
117 if (n < ISA_NUM_IRQS) {
118 qemu_set_irq(s->i8259_irq[n], level);
119 }
120 qemu_set_irq(s->ioapic_irq[n], level);
121 }
122
123 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
124 unsigned size)
125 {
126 }
127
128 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
129 {
130 return 0xffffffffffffffffULL;
131 }
132
133 /* MSDOS compatibility mode FPU exception support */
134 static qemu_irq ferr_irq;
135
136 void pc_register_ferr_irq(qemu_irq irq)
137 {
138 ferr_irq = irq;
139 }
140
141 /* XXX: add IGNNE support */
142 void cpu_set_ferr(CPUX86State *s)
143 {
144 qemu_irq_raise(ferr_irq);
145 }
146
147 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
148 unsigned size)
149 {
150 qemu_irq_lower(ferr_irq);
151 }
152
153 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
154 {
155 return 0xffffffffffffffffULL;
156 }
157
158 /* TSC handling */
159 uint64_t cpu_get_tsc(CPUX86State *env)
160 {
161 return cpu_get_ticks();
162 }
163
164 /* IRQ handling */
165 int cpu_get_pic_interrupt(CPUX86State *env)
166 {
167 X86CPU *cpu = x86_env_get_cpu(env);
168 int intno;
169
170 if (!kvm_irqchip_in_kernel()) {
171 intno = apic_get_interrupt(cpu->apic_state);
172 if (intno >= 0) {
173 return intno;
174 }
175 /* read the irq from the PIC */
176 if (!apic_accept_pic_intr(cpu->apic_state)) {
177 return -1;
178 }
179 }
180
181 intno = pic_read_irq(isa_pic);
182 return intno;
183 }
184
185 static void pic_irq_request(void *opaque, int irq, int level)
186 {
187 CPUState *cs = first_cpu;
188 X86CPU *cpu = X86_CPU(cs);
189
190 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
191 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
192 CPU_FOREACH(cs) {
193 cpu = X86_CPU(cs);
194 if (apic_accept_pic_intr(cpu->apic_state)) {
195 apic_deliver_pic_intr(cpu->apic_state, level);
196 }
197 }
198 } else {
199 if (level) {
200 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
201 } else {
202 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
203 }
204 }
205 }
206
207 /* PC cmos mappings */
208
209 #define REG_EQUIPMENT_BYTE 0x14
210
211 int cmos_get_fd_drive_type(FloppyDriveType fd0)
212 {
213 int val;
214
215 switch (fd0) {
216 case FLOPPY_DRIVE_TYPE_144:
217 /* 1.44 Mb 3"5 drive */
218 val = 4;
219 break;
220 case FLOPPY_DRIVE_TYPE_288:
221 /* 2.88 Mb 3"5 drive */
222 val = 5;
223 break;
224 case FLOPPY_DRIVE_TYPE_120:
225 /* 1.2 Mb 5"5 drive */
226 val = 2;
227 break;
228 case FLOPPY_DRIVE_TYPE_NONE:
229 default:
230 val = 0;
231 break;
232 }
233 return val;
234 }
235
236 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
237 int16_t cylinders, int8_t heads, int8_t sectors)
238 {
239 rtc_set_memory(s, type_ofs, 47);
240 rtc_set_memory(s, info_ofs, cylinders);
241 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
242 rtc_set_memory(s, info_ofs + 2, heads);
243 rtc_set_memory(s, info_ofs + 3, 0xff);
244 rtc_set_memory(s, info_ofs + 4, 0xff);
245 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
246 rtc_set_memory(s, info_ofs + 6, cylinders);
247 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
248 rtc_set_memory(s, info_ofs + 8, sectors);
249 }
250
251 /* convert boot_device letter to something recognizable by the bios */
252 static int boot_device2nibble(char boot_device)
253 {
254 switch(boot_device) {
255 case 'a':
256 case 'b':
257 return 0x01; /* floppy boot */
258 case 'c':
259 return 0x02; /* hard drive boot */
260 case 'd':
261 return 0x03; /* CD-ROM boot */
262 case 'n':
263 return 0x04; /* Network boot */
264 }
265 return 0;
266 }
267
268 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
269 {
270 #define PC_MAX_BOOT_DEVICES 3
271 int nbds, bds[3] = { 0, };
272 int i;
273
274 nbds = strlen(boot_device);
275 if (nbds > PC_MAX_BOOT_DEVICES) {
276 error_setg(errp, "Too many boot devices for PC");
277 return;
278 }
279 for (i = 0; i < nbds; i++) {
280 bds[i] = boot_device2nibble(boot_device[i]);
281 if (bds[i] == 0) {
282 error_setg(errp, "Invalid boot device for PC: '%c'",
283 boot_device[i]);
284 return;
285 }
286 }
287 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
288 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
289 }
290
291 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
292 {
293 set_boot_dev(opaque, boot_device, errp);
294 }
295
296 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
297 {
298 int val, nb, i;
299 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
300 FLOPPY_DRIVE_TYPE_NONE };
301
302 /* floppy type */
303 if (floppy) {
304 for (i = 0; i < 2; i++) {
305 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
306 }
307 }
308 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
309 cmos_get_fd_drive_type(fd_type[1]);
310 rtc_set_memory(rtc_state, 0x10, val);
311
312 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
313 nb = 0;
314 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
315 nb++;
316 }
317 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
318 nb++;
319 }
320 switch (nb) {
321 case 0:
322 break;
323 case 1:
324 val |= 0x01; /* 1 drive, ready for boot */
325 break;
326 case 2:
327 val |= 0x41; /* 2 drives, ready for boot */
328 break;
329 }
330 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
331 }
332
333 typedef struct pc_cmos_init_late_arg {
334 ISADevice *rtc_state;
335 BusState *idebus[2];
336 } pc_cmos_init_late_arg;
337
338 typedef struct check_fdc_state {
339 ISADevice *floppy;
340 bool multiple;
341 } CheckFdcState;
342
343 static int check_fdc(Object *obj, void *opaque)
344 {
345 CheckFdcState *state = opaque;
346 Object *fdc;
347 uint32_t iobase;
348 Error *local_err = NULL;
349
350 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
351 if (!fdc) {
352 return 0;
353 }
354
355 iobase = object_property_get_uint(obj, "iobase", &local_err);
356 if (local_err || iobase != 0x3f0) {
357 error_free(local_err);
358 return 0;
359 }
360
361 if (state->floppy) {
362 state->multiple = true;
363 } else {
364 state->floppy = ISA_DEVICE(obj);
365 }
366 return 0;
367 }
368
369 static const char * const fdc_container_path[] = {
370 "/unattached", "/peripheral", "/peripheral-anon"
371 };
372
373 /*
374 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
375 * and ACPI objects.
376 */
377 ISADevice *pc_find_fdc0(void)
378 {
379 int i;
380 Object *container;
381 CheckFdcState state = { 0 };
382
383 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
384 container = container_get(qdev_get_machine(), fdc_container_path[i]);
385 object_child_foreach(container, check_fdc, &state);
386 }
387
388 if (state.multiple) {
389 warn_report("multiple floppy disk controllers with "
390 "iobase=0x3f0 have been found");
391 error_printf("the one being picked for CMOS setup might not reflect "
392 "your intent");
393 }
394
395 return state.floppy;
396 }
397
398 static void pc_cmos_init_late(void *opaque)
399 {
400 pc_cmos_init_late_arg *arg = opaque;
401 ISADevice *s = arg->rtc_state;
402 int16_t cylinders;
403 int8_t heads, sectors;
404 int val;
405 int i, trans;
406
407 val = 0;
408 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
409 &cylinders, &heads, &sectors) >= 0) {
410 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
411 val |= 0xf0;
412 }
413 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
414 &cylinders, &heads, &sectors) >= 0) {
415 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
416 val |= 0x0f;
417 }
418 rtc_set_memory(s, 0x12, val);
419
420 val = 0;
421 for (i = 0; i < 4; i++) {
422 /* NOTE: ide_get_geometry() returns the physical
423 geometry. It is always such that: 1 <= sects <= 63, 1
424 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
425 geometry can be different if a translation is done. */
426 if (arg->idebus[i / 2] &&
427 ide_get_geometry(arg->idebus[i / 2], i % 2,
428 &cylinders, &heads, &sectors) >= 0) {
429 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
430 assert((trans & ~3) == 0);
431 val |= trans << (i * 2);
432 }
433 }
434 rtc_set_memory(s, 0x39, val);
435
436 pc_cmos_init_floppy(s, pc_find_fdc0());
437
438 qemu_unregister_reset(pc_cmos_init_late, opaque);
439 }
440
441 void pc_cmos_init(PCMachineState *pcms,
442 BusState *idebus0, BusState *idebus1,
443 ISADevice *s)
444 {
445 int val;
446 static pc_cmos_init_late_arg arg;
447
448 /* various important CMOS locations needed by PC/Bochs bios */
449
450 /* memory size */
451 /* base memory (first MiB) */
452 val = MIN(pcms->below_4g_mem_size / KiB, 640);
453 rtc_set_memory(s, 0x15, val);
454 rtc_set_memory(s, 0x16, val >> 8);
455 /* extended memory (next 64MiB) */
456 if (pcms->below_4g_mem_size > 1 * MiB) {
457 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
458 } else {
459 val = 0;
460 }
461 if (val > 65535)
462 val = 65535;
463 rtc_set_memory(s, 0x17, val);
464 rtc_set_memory(s, 0x18, val >> 8);
465 rtc_set_memory(s, 0x30, val);
466 rtc_set_memory(s, 0x31, val >> 8);
467 /* memory between 16MiB and 4GiB */
468 if (pcms->below_4g_mem_size > 16 * MiB) {
469 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
470 } else {
471 val = 0;
472 }
473 if (val > 65535)
474 val = 65535;
475 rtc_set_memory(s, 0x34, val);
476 rtc_set_memory(s, 0x35, val >> 8);
477 /* memory above 4GiB */
478 val = pcms->above_4g_mem_size / 65536;
479 rtc_set_memory(s, 0x5b, val);
480 rtc_set_memory(s, 0x5c, val >> 8);
481 rtc_set_memory(s, 0x5d, val >> 16);
482
483 object_property_add_link(OBJECT(pcms), "rtc_state",
484 TYPE_ISA_DEVICE,
485 (Object **)&pcms->rtc,
486 object_property_allow_set_link,
487 OBJ_PROP_LINK_STRONG, &error_abort);
488 object_property_set_link(OBJECT(pcms), OBJECT(s),
489 "rtc_state", &error_abort);
490
491 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
492
493 val = 0;
494 val |= 0x02; /* FPU is there */
495 val |= 0x04; /* PS/2 mouse installed */
496 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
497
498 /* hard drives and FDC */
499 arg.rtc_state = s;
500 arg.idebus[0] = idebus0;
501 arg.idebus[1] = idebus1;
502 qemu_register_reset(pc_cmos_init_late, &arg);
503 }
504
505 #define TYPE_PORT92 "port92"
506 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
507
508 /* port 92 stuff: could be split off */
509 typedef struct Port92State {
510 ISADevice parent_obj;
511
512 MemoryRegion io;
513 uint8_t outport;
514 qemu_irq a20_out;
515 } Port92State;
516
517 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
518 unsigned size)
519 {
520 Port92State *s = opaque;
521 int oldval = s->outport;
522
523 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
524 s->outport = val;
525 qemu_set_irq(s->a20_out, (val >> 1) & 1);
526 if ((val & 1) && !(oldval & 1)) {
527 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
528 }
529 }
530
531 static uint64_t port92_read(void *opaque, hwaddr addr,
532 unsigned size)
533 {
534 Port92State *s = opaque;
535 uint32_t ret;
536
537 ret = s->outport;
538 DPRINTF("port92: read 0x%02x\n", ret);
539 return ret;
540 }
541
542 static void port92_init(ISADevice *dev, qemu_irq a20_out)
543 {
544 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
545 }
546
547 static const VMStateDescription vmstate_port92_isa = {
548 .name = "port92",
549 .version_id = 1,
550 .minimum_version_id = 1,
551 .fields = (VMStateField[]) {
552 VMSTATE_UINT8(outport, Port92State),
553 VMSTATE_END_OF_LIST()
554 }
555 };
556
557 static void port92_reset(DeviceState *d)
558 {
559 Port92State *s = PORT92(d);
560
561 s->outport &= ~1;
562 }
563
564 static const MemoryRegionOps port92_ops = {
565 .read = port92_read,
566 .write = port92_write,
567 .impl = {
568 .min_access_size = 1,
569 .max_access_size = 1,
570 },
571 .endianness = DEVICE_LITTLE_ENDIAN,
572 };
573
574 static void port92_initfn(Object *obj)
575 {
576 Port92State *s = PORT92(obj);
577
578 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
579
580 s->outport = 0;
581
582 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
583 }
584
585 static void port92_realizefn(DeviceState *dev, Error **errp)
586 {
587 ISADevice *isadev = ISA_DEVICE(dev);
588 Port92State *s = PORT92(dev);
589
590 isa_register_ioport(isadev, &s->io, 0x92);
591 }
592
593 static void port92_class_initfn(ObjectClass *klass, void *data)
594 {
595 DeviceClass *dc = DEVICE_CLASS(klass);
596
597 dc->realize = port92_realizefn;
598 dc->reset = port92_reset;
599 dc->vmsd = &vmstate_port92_isa;
600 /*
601 * Reason: unlike ordinary ISA devices, this one needs additional
602 * wiring: its A20 output line needs to be wired up by
603 * port92_init().
604 */
605 dc->user_creatable = false;
606 }
607
608 static const TypeInfo port92_info = {
609 .name = TYPE_PORT92,
610 .parent = TYPE_ISA_DEVICE,
611 .instance_size = sizeof(Port92State),
612 .instance_init = port92_initfn,
613 .class_init = port92_class_initfn,
614 };
615
616 static void port92_register_types(void)
617 {
618 type_register_static(&port92_info);
619 }
620
621 type_init(port92_register_types)
622
623 static void handle_a20_line_change(void *opaque, int irq, int level)
624 {
625 X86CPU *cpu = opaque;
626
627 /* XXX: send to all CPUs ? */
628 /* XXX: add logic to handle multiple A20 line sources */
629 x86_cpu_set_a20(cpu, level);
630 }
631
632 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
633 {
634 int index = le32_to_cpu(e820_reserve.count);
635 struct e820_entry *entry;
636
637 if (type != E820_RAM) {
638 /* old FW_CFG_E820_TABLE entry -- reservations only */
639 if (index >= E820_NR_ENTRIES) {
640 return -EBUSY;
641 }
642 entry = &e820_reserve.entry[index++];
643
644 entry->address = cpu_to_le64(address);
645 entry->length = cpu_to_le64(length);
646 entry->type = cpu_to_le32(type);
647
648 e820_reserve.count = cpu_to_le32(index);
649 }
650
651 /* new "etc/e820" file -- include ram too */
652 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
653 e820_table[e820_entries].address = cpu_to_le64(address);
654 e820_table[e820_entries].length = cpu_to_le64(length);
655 e820_table[e820_entries].type = cpu_to_le32(type);
656 e820_entries++;
657
658 return e820_entries;
659 }
660
661 int e820_get_num_entries(void)
662 {
663 return e820_entries;
664 }
665
666 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
667 {
668 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
669 *address = le64_to_cpu(e820_table[idx].address);
670 *length = le64_to_cpu(e820_table[idx].length);
671 return true;
672 }
673 return false;
674 }
675
676 /* Enables contiguous-apic-ID mode, for compatibility */
677 static bool compat_apic_id_mode;
678
679 void enable_compat_apic_id_mode(void)
680 {
681 compat_apic_id_mode = true;
682 }
683
684 /* Calculates initial APIC ID for a specific CPU index
685 *
686 * Currently we need to be able to calculate the APIC ID from the CPU index
687 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
688 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
689 * all CPUs up to max_cpus.
690 */
691 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
692 {
693 uint32_t correct_id;
694 static bool warned;
695
696 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
697 if (compat_apic_id_mode) {
698 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
699 error_report("APIC IDs set in compatibility mode, "
700 "CPU topology won't match the configuration");
701 warned = true;
702 }
703 return cpu_index;
704 } else {
705 return correct_id;
706 }
707 }
708
709 static void pc_build_smbios(PCMachineState *pcms)
710 {
711 uint8_t *smbios_tables, *smbios_anchor;
712 size_t smbios_tables_len, smbios_anchor_len;
713 struct smbios_phys_mem_area *mem_array;
714 unsigned i, array_count;
715 MachineState *ms = MACHINE(pcms);
716 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
717
718 /* tell smbios about cpuid version and features */
719 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
720
721 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
722 if (smbios_tables) {
723 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
724 smbios_tables, smbios_tables_len);
725 }
726
727 /* build the array of physical mem area from e820 table */
728 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
729 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
730 uint64_t addr, len;
731
732 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
733 mem_array[array_count].address = addr;
734 mem_array[array_count].length = len;
735 array_count++;
736 }
737 }
738 smbios_get_tables(mem_array, array_count,
739 &smbios_tables, &smbios_tables_len,
740 &smbios_anchor, &smbios_anchor_len);
741 g_free(mem_array);
742
743 if (smbios_anchor) {
744 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
745 smbios_tables, smbios_tables_len);
746 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
747 smbios_anchor, smbios_anchor_len);
748 }
749 }
750
751 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
752 {
753 FWCfgState *fw_cfg;
754 uint64_t *numa_fw_cfg;
755 int i;
756 const CPUArchIdList *cpus;
757 MachineClass *mc = MACHINE_GET_CLASS(pcms);
758
759 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
760 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
761
762 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
763 *
764 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
765 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
766 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
767 * for CPU hotplug also uses APIC ID and not "CPU index".
768 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
769 * but the "limit to the APIC ID values SeaBIOS may see".
770 *
771 * So for compatibility reasons with old BIOSes we are stuck with
772 * "etc/max-cpus" actually being apic_id_limit
773 */
774 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
775 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
776 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
777 acpi_tables, acpi_tables_len);
778 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
779
780 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
781 &e820_reserve, sizeof(e820_reserve));
782 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
783 sizeof(struct e820_entry) * e820_entries);
784
785 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
786 /* allocate memory for the NUMA channel: one (64bit) word for the number
787 * of nodes, one word for each VCPU->node and one word for each node to
788 * hold the amount of memory.
789 */
790 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
791 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
792 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
793 for (i = 0; i < cpus->len; i++) {
794 unsigned int apic_id = cpus->cpus[i].arch_id;
795 assert(apic_id < pcms->apic_id_limit);
796 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
797 }
798 for (i = 0; i < nb_numa_nodes; i++) {
799 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
800 cpu_to_le64(numa_info[i].node_mem);
801 }
802 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
803 (1 + pcms->apic_id_limit + nb_numa_nodes) *
804 sizeof(*numa_fw_cfg));
805
806 return fw_cfg;
807 }
808
809 static long get_file_size(FILE *f)
810 {
811 long where, size;
812
813 /* XXX: on Unix systems, using fstat() probably makes more sense */
814
815 where = ftell(f);
816 fseek(f, 0, SEEK_END);
817 size = ftell(f);
818 fseek(f, where, SEEK_SET);
819
820 return size;
821 }
822
823 /* setup_data types */
824 #define SETUP_NONE 0
825 #define SETUP_E820_EXT 1
826 #define SETUP_DTB 2
827 #define SETUP_PCI 3
828 #define SETUP_EFI 4
829
830 struct setup_data {
831 uint64_t next;
832 uint32_t type;
833 uint32_t len;
834 uint8_t data[0];
835 } __attribute__((packed));
836
837 static void load_linux(PCMachineState *pcms,
838 FWCfgState *fw_cfg)
839 {
840 uint16_t protocol;
841 int setup_size, kernel_size, cmdline_size;
842 int dtb_size, setup_data_offset;
843 uint32_t initrd_max;
844 uint8_t header[8192], *setup, *kernel;
845 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
846 FILE *f;
847 char *vmode;
848 MachineState *machine = MACHINE(pcms);
849 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
850 struct setup_data *setup_data;
851 const char *kernel_filename = machine->kernel_filename;
852 const char *initrd_filename = machine->initrd_filename;
853 const char *dtb_filename = machine->dtb;
854 const char *kernel_cmdline = machine->kernel_cmdline;
855
856 /* Align to 16 bytes as a paranoia measure */
857 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
858
859 /* load the kernel header */
860 f = fopen(kernel_filename, "rb");
861 if (!f || !(kernel_size = get_file_size(f)) ||
862 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
863 MIN(ARRAY_SIZE(header), kernel_size)) {
864 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
865 kernel_filename, strerror(errno));
866 exit(1);
867 }
868
869 /* kernel protocol version */
870 #if 0
871 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
872 #endif
873 if (ldl_p(header+0x202) == 0x53726448) {
874 protocol = lduw_p(header+0x206);
875 } else {
876 /* This looks like a multiboot kernel. If it is, let's stop
877 treating it like a Linux kernel. */
878 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
879 kernel_cmdline, kernel_size, header)) {
880 return;
881 }
882 protocol = 0;
883 }
884
885 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
886 /* Low kernel */
887 real_addr = 0x90000;
888 cmdline_addr = 0x9a000 - cmdline_size;
889 prot_addr = 0x10000;
890 } else if (protocol < 0x202) {
891 /* High but ancient kernel */
892 real_addr = 0x90000;
893 cmdline_addr = 0x9a000 - cmdline_size;
894 prot_addr = 0x100000;
895 } else {
896 /* High and recent kernel */
897 real_addr = 0x10000;
898 cmdline_addr = 0x20000;
899 prot_addr = 0x100000;
900 }
901
902 #if 0
903 fprintf(stderr,
904 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
905 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
906 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
907 real_addr,
908 cmdline_addr,
909 prot_addr);
910 #endif
911
912 /* highest address for loading the initrd */
913 if (protocol >= 0x203) {
914 initrd_max = ldl_p(header+0x22c);
915 } else {
916 initrd_max = 0x37ffffff;
917 }
918
919 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
920 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
921 }
922
923 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
924 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
925 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
926
927 if (protocol >= 0x202) {
928 stl_p(header+0x228, cmdline_addr);
929 } else {
930 stw_p(header+0x20, 0xA33F);
931 stw_p(header+0x22, cmdline_addr-real_addr);
932 }
933
934 /* handle vga= parameter */
935 vmode = strstr(kernel_cmdline, "vga=");
936 if (vmode) {
937 unsigned int video_mode;
938 /* skip "vga=" */
939 vmode += 4;
940 if (!strncmp(vmode, "normal", 6)) {
941 video_mode = 0xffff;
942 } else if (!strncmp(vmode, "ext", 3)) {
943 video_mode = 0xfffe;
944 } else if (!strncmp(vmode, "ask", 3)) {
945 video_mode = 0xfffd;
946 } else {
947 video_mode = strtol(vmode, NULL, 0);
948 }
949 stw_p(header+0x1fa, video_mode);
950 }
951
952 /* loader type */
953 /* High nybble = B reserved for QEMU; low nybble is revision number.
954 If this code is substantially changed, you may want to consider
955 incrementing the revision. */
956 if (protocol >= 0x200) {
957 header[0x210] = 0xB0;
958 }
959 /* heap */
960 if (protocol >= 0x201) {
961 header[0x211] |= 0x80; /* CAN_USE_HEAP */
962 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
963 }
964
965 /* load initrd */
966 if (initrd_filename) {
967 gsize initrd_size;
968 gchar *initrd_data;
969 GError *gerr = NULL;
970
971 if (protocol < 0x200) {
972 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
973 exit(1);
974 }
975
976 if (!g_file_get_contents(initrd_filename, &initrd_data,
977 &initrd_size, &gerr)) {
978 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
979 initrd_filename, gerr->message);
980 exit(1);
981 }
982 if (initrd_size >= initrd_max) {
983 fprintf(stderr, "qemu: initrd is too large, cannot support."
984 "(max: %"PRIu32", need %"PRId64")\n",
985 initrd_max, (uint64_t)initrd_size);
986 exit(1);
987 }
988
989 initrd_addr = (initrd_max-initrd_size) & ~4095;
990
991 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
992 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
993 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
994
995 stl_p(header+0x218, initrd_addr);
996 stl_p(header+0x21c, initrd_size);
997 }
998
999 /* load kernel and setup */
1000 setup_size = header[0x1f1];
1001 if (setup_size == 0) {
1002 setup_size = 4;
1003 }
1004 setup_size = (setup_size+1)*512;
1005 if (setup_size > kernel_size) {
1006 fprintf(stderr, "qemu: invalid kernel header\n");
1007 exit(1);
1008 }
1009 kernel_size -= setup_size;
1010
1011 setup = g_malloc(setup_size);
1012 kernel = g_malloc(kernel_size);
1013 fseek(f, 0, SEEK_SET);
1014 if (fread(setup, 1, setup_size, f) != setup_size) {
1015 fprintf(stderr, "fread() failed\n");
1016 exit(1);
1017 }
1018 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1019 fprintf(stderr, "fread() failed\n");
1020 exit(1);
1021 }
1022 fclose(f);
1023
1024 /* append dtb to kernel */
1025 if (dtb_filename) {
1026 if (protocol < 0x209) {
1027 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1028 exit(1);
1029 }
1030
1031 dtb_size = get_image_size(dtb_filename);
1032 if (dtb_size <= 0) {
1033 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1034 dtb_filename, strerror(errno));
1035 exit(1);
1036 }
1037
1038 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1039 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1040 kernel = g_realloc(kernel, kernel_size);
1041
1042 stq_p(header+0x250, prot_addr + setup_data_offset);
1043
1044 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1045 setup_data->next = 0;
1046 setup_data->type = cpu_to_le32(SETUP_DTB);
1047 setup_data->len = cpu_to_le32(dtb_size);
1048
1049 load_image_size(dtb_filename, setup_data->data, dtb_size);
1050 }
1051
1052 memcpy(setup, header, MIN(sizeof(header), setup_size));
1053
1054 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1055 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1056 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1057
1058 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1059 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1060 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1061
1062 option_rom[nb_option_roms].bootindex = 0;
1063 option_rom[nb_option_roms].name = "linuxboot.bin";
1064 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1065 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1066 }
1067 nb_option_roms++;
1068 }
1069
1070 #define NE2000_NB_MAX 6
1071
1072 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1073 0x280, 0x380 };
1074 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1075
1076 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1077 {
1078 static int nb_ne2k = 0;
1079
1080 if (nb_ne2k == NE2000_NB_MAX)
1081 return;
1082 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1083 ne2000_irq[nb_ne2k], nd);
1084 nb_ne2k++;
1085 }
1086
1087 DeviceState *cpu_get_current_apic(void)
1088 {
1089 if (current_cpu) {
1090 X86CPU *cpu = X86_CPU(current_cpu);
1091 return cpu->apic_state;
1092 } else {
1093 return NULL;
1094 }
1095 }
1096
1097 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1098 {
1099 X86CPU *cpu = opaque;
1100
1101 if (level) {
1102 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1103 }
1104 }
1105
1106 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1107 {
1108 Object *cpu = NULL;
1109 Error *local_err = NULL;
1110
1111 cpu = object_new(typename);
1112
1113 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1114 object_property_set_bool(cpu, true, "realized", &local_err);
1115
1116 object_unref(cpu);
1117 error_propagate(errp, local_err);
1118 }
1119
1120 void pc_hot_add_cpu(const int64_t id, Error **errp)
1121 {
1122 MachineState *ms = MACHINE(qdev_get_machine());
1123 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1124 Error *local_err = NULL;
1125
1126 if (id < 0) {
1127 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1128 return;
1129 }
1130
1131 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1132 error_setg(errp, "Unable to add CPU: %" PRIi64
1133 ", resulting APIC ID (%" PRIi64 ") is too large",
1134 id, apic_id);
1135 return;
1136 }
1137
1138 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1139 if (local_err) {
1140 error_propagate(errp, local_err);
1141 return;
1142 }
1143 }
1144
1145 void pc_cpus_init(PCMachineState *pcms)
1146 {
1147 int i;
1148 const CPUArchIdList *possible_cpus;
1149 MachineState *ms = MACHINE(pcms);
1150 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1151
1152 /* Calculates the limit to CPU APIC ID values
1153 *
1154 * Limit for the APIC ID value, so that all
1155 * CPU APIC IDs are < pcms->apic_id_limit.
1156 *
1157 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1158 */
1159 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1160 possible_cpus = mc->possible_cpu_arch_ids(ms);
1161 for (i = 0; i < smp_cpus; i++) {
1162 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1163 &error_fatal);
1164 }
1165 }
1166
1167 static void pc_build_feature_control_file(PCMachineState *pcms)
1168 {
1169 MachineState *ms = MACHINE(pcms);
1170 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1171 CPUX86State *env = &cpu->env;
1172 uint32_t unused, ecx, edx;
1173 uint64_t feature_control_bits = 0;
1174 uint64_t *val;
1175
1176 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1177 if (ecx & CPUID_EXT_VMX) {
1178 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1179 }
1180
1181 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1182 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1183 (env->mcg_cap & MCG_LMCE_P)) {
1184 feature_control_bits |= FEATURE_CONTROL_LMCE;
1185 }
1186
1187 if (!feature_control_bits) {
1188 return;
1189 }
1190
1191 val = g_malloc(sizeof(*val));
1192 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1193 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1194 }
1195
1196 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1197 {
1198 if (cpus_count > 0xff) {
1199 /* If the number of CPUs can't be represented in 8 bits, the
1200 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1201 * to make old BIOSes fail more predictably.
1202 */
1203 rtc_set_memory(rtc, 0x5f, 0);
1204 } else {
1205 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1206 }
1207 }
1208
1209 static
1210 void pc_machine_done(Notifier *notifier, void *data)
1211 {
1212 PCMachineState *pcms = container_of(notifier,
1213 PCMachineState, machine_done);
1214 PCIBus *bus = pcms->bus;
1215
1216 /* set the number of CPUs */
1217 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1218
1219 if (bus) {
1220 int extra_hosts = 0;
1221
1222 QLIST_FOREACH(bus, &bus->child, sibling) {
1223 /* look for expander root buses */
1224 if (pci_bus_is_root(bus)) {
1225 extra_hosts++;
1226 }
1227 }
1228 if (extra_hosts && pcms->fw_cfg) {
1229 uint64_t *val = g_malloc(sizeof(*val));
1230 *val = cpu_to_le64(extra_hosts);
1231 fw_cfg_add_file(pcms->fw_cfg,
1232 "etc/extra-pci-roots", val, sizeof(*val));
1233 }
1234 }
1235
1236 acpi_setup();
1237 if (pcms->fw_cfg) {
1238 pc_build_smbios(pcms);
1239 pc_build_feature_control_file(pcms);
1240 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1241 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1242 }
1243
1244 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1245 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1246
1247 if (!iommu || !iommu->x86_iommu.intr_supported ||
1248 iommu->intr_eim != ON_OFF_AUTO_ON) {
1249 error_report("current -smp configuration requires "
1250 "Extended Interrupt Mode enabled. "
1251 "You can add an IOMMU using: "
1252 "-device intel-iommu,intremap=on,eim=on");
1253 exit(EXIT_FAILURE);
1254 }
1255 }
1256 }
1257
1258 void pc_guest_info_init(PCMachineState *pcms)
1259 {
1260 int i;
1261
1262 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1263 pcms->numa_nodes = nb_numa_nodes;
1264 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1265 sizeof *pcms->node_mem);
1266 for (i = 0; i < nb_numa_nodes; i++) {
1267 pcms->node_mem[i] = numa_info[i].node_mem;
1268 }
1269
1270 pcms->machine_done.notify = pc_machine_done;
1271 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1272 }
1273
1274 /* setup pci memory address space mapping into system address space */
1275 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1276 MemoryRegion *pci_address_space)
1277 {
1278 /* Set to lower priority than RAM */
1279 memory_region_add_subregion_overlap(system_memory, 0x0,
1280 pci_address_space, -1);
1281 }
1282
1283 void pc_acpi_init(const char *default_dsdt)
1284 {
1285 char *filename;
1286
1287 if (acpi_tables != NULL) {
1288 /* manually set via -acpitable, leave it alone */
1289 return;
1290 }
1291
1292 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1293 if (filename == NULL) {
1294 warn_report("failed to find %s", default_dsdt);
1295 } else {
1296 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1297 &error_abort);
1298 Error *err = NULL;
1299
1300 qemu_opt_set(opts, "file", filename, &error_abort);
1301
1302 acpi_table_add_builtin(opts, &err);
1303 if (err) {
1304 warn_reportf_err(err, "failed to load %s: ", filename);
1305 }
1306 g_free(filename);
1307 }
1308 }
1309
1310 void xen_load_linux(PCMachineState *pcms)
1311 {
1312 int i;
1313 FWCfgState *fw_cfg;
1314
1315 assert(MACHINE(pcms)->kernel_filename != NULL);
1316
1317 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1318 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1319 rom_set_fw(fw_cfg);
1320
1321 load_linux(pcms, fw_cfg);
1322 for (i = 0; i < nb_option_roms; i++) {
1323 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1324 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1325 !strcmp(option_rom[i].name, "multiboot.bin"));
1326 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1327 }
1328 pcms->fw_cfg = fw_cfg;
1329 }
1330
1331 void pc_memory_init(PCMachineState *pcms,
1332 MemoryRegion *system_memory,
1333 MemoryRegion *rom_memory,
1334 MemoryRegion **ram_memory)
1335 {
1336 int linux_boot, i;
1337 MemoryRegion *ram, *option_rom_mr;
1338 MemoryRegion *ram_below_4g, *ram_above_4g;
1339 FWCfgState *fw_cfg;
1340 MachineState *machine = MACHINE(pcms);
1341 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1342
1343 assert(machine->ram_size == pcms->below_4g_mem_size +
1344 pcms->above_4g_mem_size);
1345
1346 linux_boot = (machine->kernel_filename != NULL);
1347
1348 /* Allocate RAM. We allocate it as a single memory region and use
1349 * aliases to address portions of it, mostly for backwards compatibility
1350 * with older qemus that used qemu_ram_alloc().
1351 */
1352 ram = g_malloc(sizeof(*ram));
1353 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1354 machine->ram_size);
1355 *ram_memory = ram;
1356 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1357 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1358 0, pcms->below_4g_mem_size);
1359 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1360 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1361 if (pcms->above_4g_mem_size > 0) {
1362 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1363 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1364 pcms->below_4g_mem_size,
1365 pcms->above_4g_mem_size);
1366 memory_region_add_subregion(system_memory, 0x100000000ULL,
1367 ram_above_4g);
1368 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1369 }
1370
1371 if (!pcmc->has_reserved_memory &&
1372 (machine->ram_slots ||
1373 (machine->maxram_size > machine->ram_size))) {
1374 MachineClass *mc = MACHINE_GET_CLASS(machine);
1375
1376 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1377 mc->name);
1378 exit(EXIT_FAILURE);
1379 }
1380
1381 /* always allocate the device memory information */
1382 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1383
1384 /* initialize device memory address space */
1385 if (pcmc->has_reserved_memory &&
1386 (machine->ram_size < machine->maxram_size)) {
1387 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1388
1389 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1390 error_report("unsupported amount of memory slots: %"PRIu64,
1391 machine->ram_slots);
1392 exit(EXIT_FAILURE);
1393 }
1394
1395 if (QEMU_ALIGN_UP(machine->maxram_size,
1396 TARGET_PAGE_SIZE) != machine->maxram_size) {
1397 error_report("maximum memory size must by aligned to multiple of "
1398 "%d bytes", TARGET_PAGE_SIZE);
1399 exit(EXIT_FAILURE);
1400 }
1401
1402 machine->device_memory->base =
1403 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1404
1405 if (pcmc->enforce_aligned_dimm) {
1406 /* size device region assuming 1G page max alignment per slot */
1407 device_mem_size += (1 * GiB) * machine->ram_slots;
1408 }
1409
1410 if ((machine->device_memory->base + device_mem_size) <
1411 device_mem_size) {
1412 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1413 machine->maxram_size);
1414 exit(EXIT_FAILURE);
1415 }
1416
1417 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1418 "device-memory", device_mem_size);
1419 memory_region_add_subregion(system_memory, machine->device_memory->base,
1420 &machine->device_memory->mr);
1421 }
1422
1423 /* Initialize PC system firmware */
1424 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1425
1426 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1427 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1428 &error_fatal);
1429 if (pcmc->pci_enabled) {
1430 memory_region_set_readonly(option_rom_mr, true);
1431 }
1432 memory_region_add_subregion_overlap(rom_memory,
1433 PC_ROM_MIN_VGA,
1434 option_rom_mr,
1435 1);
1436
1437 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1438
1439 rom_set_fw(fw_cfg);
1440
1441 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1442 uint64_t *val = g_malloc(sizeof(*val));
1443 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1444 uint64_t res_mem_end = machine->device_memory->base;
1445
1446 if (!pcmc->broken_reserved_end) {
1447 res_mem_end += memory_region_size(&machine->device_memory->mr);
1448 }
1449 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1450 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1451 }
1452
1453 if (linux_boot) {
1454 load_linux(pcms, fw_cfg);
1455 }
1456
1457 for (i = 0; i < nb_option_roms; i++) {
1458 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1459 }
1460 pcms->fw_cfg = fw_cfg;
1461
1462 /* Init default IOAPIC address space */
1463 pcms->ioapic_as = &address_space_memory;
1464 }
1465
1466 /*
1467 * The 64bit pci hole starts after "above 4G RAM" and
1468 * potentially the space reserved for memory hotplug.
1469 */
1470 uint64_t pc_pci_hole64_start(void)
1471 {
1472 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1473 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1474 MachineState *ms = MACHINE(pcms);
1475 uint64_t hole64_start = 0;
1476
1477 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1478 hole64_start = ms->device_memory->base;
1479 if (!pcmc->broken_reserved_end) {
1480 hole64_start += memory_region_size(&ms->device_memory->mr);
1481 }
1482 } else {
1483 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1484 }
1485
1486 return ROUND_UP(hole64_start, 1 * GiB);
1487 }
1488
1489 qemu_irq pc_allocate_cpu_irq(void)
1490 {
1491 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1492 }
1493
1494 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1495 {
1496 DeviceState *dev = NULL;
1497
1498 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1499 if (pci_bus) {
1500 PCIDevice *pcidev = pci_vga_init(pci_bus);
1501 dev = pcidev ? &pcidev->qdev : NULL;
1502 } else if (isa_bus) {
1503 ISADevice *isadev = isa_vga_init(isa_bus);
1504 dev = isadev ? DEVICE(isadev) : NULL;
1505 }
1506 rom_reset_order_override();
1507 return dev;
1508 }
1509
1510 static const MemoryRegionOps ioport80_io_ops = {
1511 .write = ioport80_write,
1512 .read = ioport80_read,
1513 .endianness = DEVICE_NATIVE_ENDIAN,
1514 .impl = {
1515 .min_access_size = 1,
1516 .max_access_size = 1,
1517 },
1518 };
1519
1520 static const MemoryRegionOps ioportF0_io_ops = {
1521 .write = ioportF0_write,
1522 .read = ioportF0_read,
1523 .endianness = DEVICE_NATIVE_ENDIAN,
1524 .impl = {
1525 .min_access_size = 1,
1526 .max_access_size = 1,
1527 },
1528 };
1529
1530 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1531 {
1532 int i;
1533 DriveInfo *fd[MAX_FD];
1534 qemu_irq *a20_line;
1535 ISADevice *i8042, *port92, *vmmouse;
1536
1537 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1538 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1539
1540 for (i = 0; i < MAX_FD; i++) {
1541 fd[i] = drive_get(IF_FLOPPY, 0, i);
1542 create_fdctrl |= !!fd[i];
1543 }
1544 if (create_fdctrl) {
1545 fdctrl_init_isa(isa_bus, fd);
1546 }
1547
1548 i8042 = isa_create_simple(isa_bus, "i8042");
1549 if (!no_vmport) {
1550 vmport_init(isa_bus);
1551 vmmouse = isa_try_create(isa_bus, "vmmouse");
1552 } else {
1553 vmmouse = NULL;
1554 }
1555 if (vmmouse) {
1556 DeviceState *dev = DEVICE(vmmouse);
1557 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1558 qdev_init_nofail(dev);
1559 }
1560 port92 = isa_create_simple(isa_bus, "port92");
1561
1562 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1563 i8042_setup_a20_line(i8042, a20_line[0]);
1564 port92_init(port92, a20_line[1]);
1565 g_free(a20_line);
1566 }
1567
1568 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1569 ISADevice **rtc_state,
1570 bool create_fdctrl,
1571 bool no_vmport,
1572 bool has_pit,
1573 uint32_t hpet_irqs)
1574 {
1575 int i;
1576 DeviceState *hpet = NULL;
1577 int pit_isa_irq = 0;
1578 qemu_irq pit_alt_irq = NULL;
1579 qemu_irq rtc_irq = NULL;
1580 ISADevice *pit = NULL;
1581 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1582 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1583
1584 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1585 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1586
1587 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1588 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1589
1590 /*
1591 * Check if an HPET shall be created.
1592 *
1593 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1594 * when the HPET wants to take over. Thus we have to disable the latter.
1595 */
1596 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1597 /* In order to set property, here not using sysbus_try_create_simple */
1598 hpet = qdev_try_create(NULL, TYPE_HPET);
1599 if (hpet) {
1600 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1601 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1602 * IRQ8 and IRQ2.
1603 */
1604 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1605 HPET_INTCAP, NULL);
1606 if (!compat) {
1607 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1608 }
1609 qdev_init_nofail(hpet);
1610 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1611
1612 for (i = 0; i < GSI_NUM_PINS; i++) {
1613 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1614 }
1615 pit_isa_irq = -1;
1616 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1617 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1618 }
1619 }
1620 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1621
1622 qemu_register_boot_set(pc_boot_set, *rtc_state);
1623
1624 if (!xen_enabled() && has_pit) {
1625 if (kvm_pit_in_kernel()) {
1626 pit = kvm_pit_init(isa_bus, 0x40);
1627 } else {
1628 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1629 }
1630 if (hpet) {
1631 /* connect PIT to output control line of the HPET */
1632 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1633 }
1634 pcspk_init(isa_bus, pit);
1635 }
1636
1637 i8257_dma_init(isa_bus, 0);
1638
1639 /* Super I/O */
1640 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1641 }
1642
1643 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1644 {
1645 int i;
1646
1647 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1648 for (i = 0; i < nb_nics; i++) {
1649 NICInfo *nd = &nd_table[i];
1650 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1651
1652 if (g_str_equal(model, "ne2k_isa")) {
1653 pc_init_ne2k_isa(isa_bus, nd);
1654 } else {
1655 pci_nic_init_nofail(nd, pci_bus, model, NULL);
1656 }
1657 }
1658 rom_reset_order_override();
1659 }
1660
1661 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1662 {
1663 DeviceState *dev;
1664 SysBusDevice *d;
1665 unsigned int i;
1666
1667 if (kvm_ioapic_in_kernel()) {
1668 dev = qdev_create(NULL, "kvm-ioapic");
1669 } else {
1670 dev = qdev_create(NULL, "ioapic");
1671 }
1672 if (parent_name) {
1673 object_property_add_child(object_resolve_path(parent_name, NULL),
1674 "ioapic", OBJECT(dev), NULL);
1675 }
1676 qdev_init_nofail(dev);
1677 d = SYS_BUS_DEVICE(dev);
1678 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1679
1680 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1681 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1682 }
1683 }
1684
1685 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1686 Error **errp)
1687 {
1688 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1689 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1690 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1691 const uint64_t legacy_align = TARGET_PAGE_SIZE;
1692
1693 /*
1694 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1695 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1696 * addition to cover this case.
1697 */
1698 if (!pcms->acpi_dev || !acpi_enabled) {
1699 error_setg(errp,
1700 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1701 return;
1702 }
1703
1704 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1705 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1706 return;
1707 }
1708
1709 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
1710 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1711 }
1712
1713 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1714 DeviceState *dev, Error **errp)
1715 {
1716 HotplugHandlerClass *hhc;
1717 Error *local_err = NULL;
1718 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1719 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1720
1721 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
1722 if (local_err) {
1723 goto out;
1724 }
1725
1726 if (is_nvdimm) {
1727 nvdimm_plug(&pcms->acpi_nvdimm_state);
1728 }
1729
1730 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1731 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1732 out:
1733 error_propagate(errp, local_err);
1734 }
1735
1736 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1737 DeviceState *dev, Error **errp)
1738 {
1739 HotplugHandlerClass *hhc;
1740 Error *local_err = NULL;
1741 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1742
1743 /*
1744 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1745 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1746 * addition to cover this case.
1747 */
1748 if (!pcms->acpi_dev || !acpi_enabled) {
1749 error_setg(&local_err,
1750 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1751 goto out;
1752 }
1753
1754 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1755 error_setg(&local_err,
1756 "nvdimm device hot unplug is not supported yet.");
1757 goto out;
1758 }
1759
1760 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1761 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1762
1763 out:
1764 error_propagate(errp, local_err);
1765 }
1766
1767 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
1768 DeviceState *dev, Error **errp)
1769 {
1770 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1771 HotplugHandlerClass *hhc;
1772 Error *local_err = NULL;
1773
1774 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1775 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1776
1777 if (local_err) {
1778 goto out;
1779 }
1780
1781 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
1782 object_unparent(OBJECT(dev));
1783
1784 out:
1785 error_propagate(errp, local_err);
1786 }
1787
1788 static int pc_apic_cmp(const void *a, const void *b)
1789 {
1790 CPUArchId *apic_a = (CPUArchId *)a;
1791 CPUArchId *apic_b = (CPUArchId *)b;
1792
1793 return apic_a->arch_id - apic_b->arch_id;
1794 }
1795
1796 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1797 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1798 * entry corresponding to CPU's apic_id returns NULL.
1799 */
1800 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1801 {
1802 CPUArchId apic_id, *found_cpu;
1803
1804 apic_id.arch_id = id;
1805 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1806 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1807 pc_apic_cmp);
1808 if (found_cpu && idx) {
1809 *idx = found_cpu - ms->possible_cpus->cpus;
1810 }
1811 return found_cpu;
1812 }
1813
1814 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1815 DeviceState *dev, Error **errp)
1816 {
1817 CPUArchId *found_cpu;
1818 HotplugHandlerClass *hhc;
1819 Error *local_err = NULL;
1820 X86CPU *cpu = X86_CPU(dev);
1821 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1822
1823 if (pcms->acpi_dev) {
1824 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1825 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1826 if (local_err) {
1827 goto out;
1828 }
1829 }
1830
1831 /* increment the number of CPUs */
1832 pcms->boot_cpus++;
1833 if (pcms->rtc) {
1834 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1835 }
1836 if (pcms->fw_cfg) {
1837 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1838 }
1839
1840 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1841 found_cpu->cpu = OBJECT(dev);
1842 out:
1843 error_propagate(errp, local_err);
1844 }
1845 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1846 DeviceState *dev, Error **errp)
1847 {
1848 int idx = -1;
1849 HotplugHandlerClass *hhc;
1850 Error *local_err = NULL;
1851 X86CPU *cpu = X86_CPU(dev);
1852 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1853
1854 if (!pcms->acpi_dev) {
1855 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1856 goto out;
1857 }
1858
1859 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1860 assert(idx != -1);
1861 if (idx == 0) {
1862 error_setg(&local_err, "Boot CPU is unpluggable");
1863 goto out;
1864 }
1865
1866 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1867 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1868
1869 if (local_err) {
1870 goto out;
1871 }
1872
1873 out:
1874 error_propagate(errp, local_err);
1875
1876 }
1877
1878 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1879 DeviceState *dev, Error **errp)
1880 {
1881 CPUArchId *found_cpu;
1882 HotplugHandlerClass *hhc;
1883 Error *local_err = NULL;
1884 X86CPU *cpu = X86_CPU(dev);
1885 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1886
1887 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1888 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1889
1890 if (local_err) {
1891 goto out;
1892 }
1893
1894 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1895 found_cpu->cpu = NULL;
1896 object_unparent(OBJECT(dev));
1897
1898 /* decrement the number of CPUs */
1899 pcms->boot_cpus--;
1900 /* Update the number of CPUs in CMOS */
1901 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1902 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1903 out:
1904 error_propagate(errp, local_err);
1905 }
1906
1907 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1908 DeviceState *dev, Error **errp)
1909 {
1910 int idx;
1911 CPUState *cs;
1912 CPUArchId *cpu_slot;
1913 X86CPUTopoInfo topo;
1914 X86CPU *cpu = X86_CPU(dev);
1915 MachineState *ms = MACHINE(hotplug_dev);
1916 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1917
1918 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
1919 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
1920 ms->cpu_type);
1921 return;
1922 }
1923
1924 /* if APIC ID is not set, set it based on socket/core/thread properties */
1925 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1926 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1927
1928 if (cpu->socket_id < 0) {
1929 error_setg(errp, "CPU socket-id is not set");
1930 return;
1931 } else if (cpu->socket_id > max_socket) {
1932 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1933 cpu->socket_id, max_socket);
1934 return;
1935 }
1936 if (cpu->core_id < 0) {
1937 error_setg(errp, "CPU core-id is not set");
1938 return;
1939 } else if (cpu->core_id > (smp_cores - 1)) {
1940 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1941 cpu->core_id, smp_cores - 1);
1942 return;
1943 }
1944 if (cpu->thread_id < 0) {
1945 error_setg(errp, "CPU thread-id is not set");
1946 return;
1947 } else if (cpu->thread_id > (smp_threads - 1)) {
1948 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1949 cpu->thread_id, smp_threads - 1);
1950 return;
1951 }
1952
1953 topo.pkg_id = cpu->socket_id;
1954 topo.core_id = cpu->core_id;
1955 topo.smt_id = cpu->thread_id;
1956 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1957 }
1958
1959 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1960 if (!cpu_slot) {
1961 MachineState *ms = MACHINE(pcms);
1962
1963 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1964 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1965 " APIC ID %" PRIu32 ", valid index range 0:%d",
1966 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1967 ms->possible_cpus->len - 1);
1968 return;
1969 }
1970
1971 if (cpu_slot->cpu) {
1972 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1973 idx, cpu->apic_id);
1974 return;
1975 }
1976
1977 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1978 * so that machine_query_hotpluggable_cpus would show correct values
1979 */
1980 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1981 * once -smp refactoring is complete and there will be CPU private
1982 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1983 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1984 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1985 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1986 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1987 return;
1988 }
1989 cpu->socket_id = topo.pkg_id;
1990
1991 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1992 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1993 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1994 return;
1995 }
1996 cpu->core_id = topo.core_id;
1997
1998 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1999 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2000 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2001 return;
2002 }
2003 cpu->thread_id = topo.smt_id;
2004
2005 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2006 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2007 return;
2008 }
2009
2010 cs = CPU(cpu);
2011 cs->cpu_index = idx;
2012
2013 numa_cpu_pre_plug(cpu_slot, dev, errp);
2014 }
2015
2016 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2017 DeviceState *dev, Error **errp)
2018 {
2019 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2020 pc_memory_pre_plug(hotplug_dev, dev, errp);
2021 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2022 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2023 }
2024 }
2025
2026 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2027 DeviceState *dev, Error **errp)
2028 {
2029 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2030 pc_memory_plug(hotplug_dev, dev, errp);
2031 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2032 pc_cpu_plug(hotplug_dev, dev, errp);
2033 }
2034 }
2035
2036 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2037 DeviceState *dev, Error **errp)
2038 {
2039 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2040 pc_memory_unplug_request(hotplug_dev, dev, errp);
2041 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2042 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2043 } else {
2044 error_setg(errp, "acpi: device unplug request for not supported device"
2045 " type: %s", object_get_typename(OBJECT(dev)));
2046 }
2047 }
2048
2049 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2050 DeviceState *dev, Error **errp)
2051 {
2052 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2053 pc_memory_unplug(hotplug_dev, dev, errp);
2054 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2055 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2056 } else {
2057 error_setg(errp, "acpi: device unplug for not supported device"
2058 " type: %s", object_get_typename(OBJECT(dev)));
2059 }
2060 }
2061
2062 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2063 DeviceState *dev)
2064 {
2065 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2066 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2067 return HOTPLUG_HANDLER(machine);
2068 }
2069
2070 return NULL;
2071 }
2072
2073 static void
2074 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2075 const char *name, void *opaque,
2076 Error **errp)
2077 {
2078 MachineState *ms = MACHINE(obj);
2079 int64_t value = memory_region_size(&ms->device_memory->mr);
2080
2081 visit_type_int(v, name, &value, errp);
2082 }
2083
2084 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2085 const char *name, void *opaque,
2086 Error **errp)
2087 {
2088 PCMachineState *pcms = PC_MACHINE(obj);
2089 uint64_t value = pcms->max_ram_below_4g;
2090
2091 visit_type_size(v, name, &value, errp);
2092 }
2093
2094 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2095 const char *name, void *opaque,
2096 Error **errp)
2097 {
2098 PCMachineState *pcms = PC_MACHINE(obj);
2099 Error *error = NULL;
2100 uint64_t value;
2101
2102 visit_type_size(v, name, &value, &error);
2103 if (error) {
2104 error_propagate(errp, error);
2105 return;
2106 }
2107 if (value > 4 * GiB) {
2108 error_setg(&error,
2109 "Machine option 'max-ram-below-4g=%"PRIu64
2110 "' expects size less than or equal to 4G", value);
2111 error_propagate(errp, error);
2112 return;
2113 }
2114
2115 if (value < 1 * MiB) {
2116 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2117 "BIOS may not work with less than 1MiB", value);
2118 }
2119
2120 pcms->max_ram_below_4g = value;
2121 }
2122
2123 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2124 void *opaque, Error **errp)
2125 {
2126 PCMachineState *pcms = PC_MACHINE(obj);
2127 OnOffAuto vmport = pcms->vmport;
2128
2129 visit_type_OnOffAuto(v, name, &vmport, errp);
2130 }
2131
2132 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2133 void *opaque, Error **errp)
2134 {
2135 PCMachineState *pcms = PC_MACHINE(obj);
2136
2137 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2138 }
2139
2140 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2141 {
2142 bool smm_available = false;
2143
2144 if (pcms->smm == ON_OFF_AUTO_OFF) {
2145 return false;
2146 }
2147
2148 if (tcg_enabled() || qtest_enabled()) {
2149 smm_available = true;
2150 } else if (kvm_enabled()) {
2151 smm_available = kvm_has_smm();
2152 }
2153
2154 if (smm_available) {
2155 return true;
2156 }
2157
2158 if (pcms->smm == ON_OFF_AUTO_ON) {
2159 error_report("System Management Mode not supported by this hypervisor.");
2160 exit(1);
2161 }
2162 return false;
2163 }
2164
2165 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2166 void *opaque, Error **errp)
2167 {
2168 PCMachineState *pcms = PC_MACHINE(obj);
2169 OnOffAuto smm = pcms->smm;
2170
2171 visit_type_OnOffAuto(v, name, &smm, errp);
2172 }
2173
2174 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2175 void *opaque, Error **errp)
2176 {
2177 PCMachineState *pcms = PC_MACHINE(obj);
2178
2179 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2180 }
2181
2182 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2183 {
2184 PCMachineState *pcms = PC_MACHINE(obj);
2185
2186 return pcms->acpi_nvdimm_state.is_enabled;
2187 }
2188
2189 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2190 {
2191 PCMachineState *pcms = PC_MACHINE(obj);
2192
2193 pcms->acpi_nvdimm_state.is_enabled = value;
2194 }
2195
2196 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2197 {
2198 PCMachineState *pcms = PC_MACHINE(obj);
2199
2200 return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2201 }
2202
2203 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2204 Error **errp)
2205 {
2206 PCMachineState *pcms = PC_MACHINE(obj);
2207 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2208
2209 if (strcmp(value, "cpu") == 0)
2210 nvdimm_state->persistence = 3;
2211 else if (strcmp(value, "mem-ctrl") == 0)
2212 nvdimm_state->persistence = 2;
2213 else {
2214 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2215 value);
2216 return;
2217 }
2218
2219 g_free(nvdimm_state->persistence_string);
2220 nvdimm_state->persistence_string = g_strdup(value);
2221 }
2222
2223 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2224 {
2225 PCMachineState *pcms = PC_MACHINE(obj);
2226
2227 return pcms->smbus_enabled;
2228 }
2229
2230 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2231 {
2232 PCMachineState *pcms = PC_MACHINE(obj);
2233
2234 pcms->smbus_enabled = value;
2235 }
2236
2237 static bool pc_machine_get_sata(Object *obj, Error **errp)
2238 {
2239 PCMachineState *pcms = PC_MACHINE(obj);
2240
2241 return pcms->sata_enabled;
2242 }
2243
2244 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2245 {
2246 PCMachineState *pcms = PC_MACHINE(obj);
2247
2248 pcms->sata_enabled = value;
2249 }
2250
2251 static bool pc_machine_get_pit(Object *obj, Error **errp)
2252 {
2253 PCMachineState *pcms = PC_MACHINE(obj);
2254
2255 return pcms->pit_enabled;
2256 }
2257
2258 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2259 {
2260 PCMachineState *pcms = PC_MACHINE(obj);
2261
2262 pcms->pit_enabled = value;
2263 }
2264
2265 static void pc_machine_initfn(Object *obj)
2266 {
2267 PCMachineState *pcms = PC_MACHINE(obj);
2268
2269 pcms->max_ram_below_4g = 0; /* use default */
2270 pcms->smm = ON_OFF_AUTO_AUTO;
2271 pcms->vmport = ON_OFF_AUTO_AUTO;
2272 /* nvdimm is disabled on default. */
2273 pcms->acpi_nvdimm_state.is_enabled = false;
2274 /* acpi build is enabled by default if machine supports it */
2275 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2276 pcms->smbus_enabled = true;
2277 pcms->sata_enabled = true;
2278 pcms->pit_enabled = true;
2279 }
2280
2281 static void pc_machine_reset(void)
2282 {
2283 CPUState *cs;
2284 X86CPU *cpu;
2285
2286 qemu_devices_reset();
2287
2288 /* Reset APIC after devices have been reset to cancel
2289 * any changes that qemu_devices_reset() might have done.
2290 */
2291 CPU_FOREACH(cs) {
2292 cpu = X86_CPU(cs);
2293
2294 if (cpu->apic_state) {
2295 device_reset(cpu->apic_state);
2296 }
2297 }
2298 }
2299
2300 static CpuInstanceProperties
2301 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2302 {
2303 MachineClass *mc = MACHINE_GET_CLASS(ms);
2304 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2305
2306 assert(cpu_index < possible_cpus->len);
2307 return possible_cpus->cpus[cpu_index].props;
2308 }
2309
2310 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2311 {
2312 X86CPUTopoInfo topo;
2313
2314 assert(idx < ms->possible_cpus->len);
2315 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2316 smp_cores, smp_threads, &topo);
2317 return topo.pkg_id % nb_numa_nodes;
2318 }
2319
2320 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2321 {
2322 int i;
2323
2324 if (ms->possible_cpus) {
2325 /*
2326 * make sure that max_cpus hasn't changed since the first use, i.e.
2327 * -smp hasn't been parsed after it
2328 */
2329 assert(ms->possible_cpus->len == max_cpus);
2330 return ms->possible_cpus;
2331 }
2332
2333 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2334 sizeof(CPUArchId) * max_cpus);
2335 ms->possible_cpus->len = max_cpus;
2336 for (i = 0; i < ms->possible_cpus->len; i++) {
2337 X86CPUTopoInfo topo;
2338
2339 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2340 ms->possible_cpus->cpus[i].vcpus_count = 1;
2341 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2342 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2343 smp_cores, smp_threads, &topo);
2344 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2345 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2346 ms->possible_cpus->cpus[i].props.has_core_id = true;
2347 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2348 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2349 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2350 }
2351 return ms->possible_cpus;
2352 }
2353
2354 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2355 {
2356 /* cpu index isn't used */
2357 CPUState *cs;
2358
2359 CPU_FOREACH(cs) {
2360 X86CPU *cpu = X86_CPU(cs);
2361
2362 if (!cpu->apic_state) {
2363 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2364 } else {
2365 apic_deliver_nmi(cpu->apic_state);
2366 }
2367 }
2368 }
2369
2370 static void pc_machine_class_init(ObjectClass *oc, void *data)
2371 {
2372 MachineClass *mc = MACHINE_CLASS(oc);
2373 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2374 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2375 NMIClass *nc = NMI_CLASS(oc);
2376
2377 pcmc->pci_enabled = true;
2378 pcmc->has_acpi_build = true;
2379 pcmc->rsdp_in_ram = true;
2380 pcmc->smbios_defaults = true;
2381 pcmc->smbios_uuid_encoded = true;
2382 pcmc->gigabyte_align = true;
2383 pcmc->has_reserved_memory = true;
2384 pcmc->kvmclock_enabled = true;
2385 pcmc->enforce_aligned_dimm = true;
2386 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2387 * to be used at the moment, 32K should be enough for a while. */
2388 pcmc->acpi_data_size = 0x20000 + 0x8000;
2389 pcmc->save_tsc_khz = true;
2390 pcmc->linuxboot_dma_enabled = true;
2391 assert(!mc->get_hotplug_handler);
2392 mc->get_hotplug_handler = pc_get_hotpug_handler;
2393 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2394 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2395 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2396 mc->auto_enable_numa_with_memhp = true;
2397 mc->has_hotpluggable_cpus = true;
2398 mc->default_boot_order = "cad";
2399 mc->hot_add_cpu = pc_hot_add_cpu;
2400 mc->block_default_type = IF_IDE;
2401 mc->max_cpus = 255;
2402 mc->reset = pc_machine_reset;
2403 hc->pre_plug = pc_machine_device_pre_plug_cb;
2404 hc->plug = pc_machine_device_plug_cb;
2405 hc->unplug_request = pc_machine_device_unplug_request_cb;
2406 hc->unplug = pc_machine_device_unplug_cb;
2407 nc->nmi_monitor_handler = x86_nmi;
2408 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2409
2410 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2411 pc_machine_get_device_memory_region_size, NULL,
2412 NULL, NULL, &error_abort);
2413
2414 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2415 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2416 NULL, NULL, &error_abort);
2417
2418 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2419 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2420
2421 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2422 pc_machine_get_smm, pc_machine_set_smm,
2423 NULL, NULL, &error_abort);
2424 object_class_property_set_description(oc, PC_MACHINE_SMM,
2425 "Enable SMM (pc & q35)", &error_abort);
2426
2427 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2428 pc_machine_get_vmport, pc_machine_set_vmport,
2429 NULL, NULL, &error_abort);
2430 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2431 "Enable vmport (pc & q35)", &error_abort);
2432
2433 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2434 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2435
2436 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2437 pc_machine_get_nvdimm_persistence,
2438 pc_machine_set_nvdimm_persistence, &error_abort);
2439
2440 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2441 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2442
2443 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2444 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2445
2446 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2447 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2448 }
2449
2450 static const TypeInfo pc_machine_info = {
2451 .name = TYPE_PC_MACHINE,
2452 .parent = TYPE_MACHINE,
2453 .abstract = true,
2454 .instance_size = sizeof(PCMachineState),
2455 .instance_init = pc_machine_initfn,
2456 .class_size = sizeof(PCMachineClass),
2457 .class_init = pc_machine_class_init,
2458 .interfaces = (InterfaceInfo[]) {
2459 { TYPE_HOTPLUG_HANDLER },
2460 { TYPE_NMI },
2461 { }
2462 },
2463 };
2464
2465 static void pc_machine_register_types(void)
2466 {
2467 type_register_static(&pc_machine_info);
2468 }
2469
2470 type_init(pc_machine_register_types)