]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
b9c55301a259a6566197960df70541c3c6f876cb
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "hw/i386/fw_cfg.h"
34 #include "sysemu/cpus.h"
35 #include "hw/block/fdc.h"
36 #include "hw/ide.h"
37 #include "hw/pci/pci.h"
38 #include "hw/pci/pci_bus.h"
39 #include "hw/nvram/fw_cfg.h"
40 #include "hw/timer/hpet.h"
41 #include "hw/firmware/smbios.h"
42 #include "hw/loader.h"
43 #include "elf.h"
44 #include "multiboot.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/dma/i8257.h"
47 #include "hw/timer/i8254.h"
48 #include "hw/input/i8042.h"
49 #include "hw/audio/pcspk.h"
50 #include "hw/pci/msi.h"
51 #include "hw/sysbus.h"
52 #include "sysemu/sysemu.h"
53 #include "sysemu/tcg.h"
54 #include "sysemu/numa.h"
55 #include "sysemu/kvm.h"
56 #include "sysemu/qtest.h"
57 #include "kvm_i386.h"
58 #include "hw/xen/xen.h"
59 #include "hw/xen/start_info.h"
60 #include "ui/qemu-spice.h"
61 #include "exec/memory.h"
62 #include "exec/address-spaces.h"
63 #include "sysemu/arch_init.h"
64 #include "qemu/bitmap.h"
65 #include "qemu/config-file.h"
66 #include "qemu/error-report.h"
67 #include "qemu/option.h"
68 #include "hw/acpi/acpi.h"
69 #include "hw/acpi/cpu_hotplug.h"
70 #include "hw/boards.h"
71 #include "acpi-build.h"
72 #include "hw/mem/pc-dimm.h"
73 #include "qapi/error.h"
74 #include "qapi/qapi-visit-common.h"
75 #include "qapi/visitor.h"
76 #include "qom/cpu.h"
77 #include "hw/nmi.h"
78 #include "hw/usb.h"
79 #include "hw/i386/intel_iommu.h"
80 #include "hw/net/ne2000-isa.h"
81 #include "standard-headers/asm-x86/bootparam.h"
82 #include "hw/virtio/virtio-pmem-pci.h"
83 #include "hw/mem/memory-device.h"
84 #include "sysemu/replay.h"
85 #include "qapi/qmp/qerror.h"
86
87 /* debug PC/ISA interrupts */
88 //#define DEBUG_IRQ
89
90 #ifdef DEBUG_IRQ
91 #define DPRINTF(fmt, ...) \
92 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
93 #else
94 #define DPRINTF(fmt, ...)
95 #endif
96
97 #define E820_NR_ENTRIES 16
98
99 struct e820_entry {
100 uint64_t address;
101 uint64_t length;
102 uint32_t type;
103 } QEMU_PACKED __attribute((__aligned__(4)));
104
105 struct e820_table {
106 uint32_t count;
107 struct e820_entry entry[E820_NR_ENTRIES];
108 } QEMU_PACKED __attribute((__aligned__(4)));
109
110 static struct e820_table e820_reserve;
111 static struct e820_entry *e820_table;
112 static unsigned e820_entries;
113 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
114
115 /* Physical Address of PVH entry point read from kernel ELF NOTE */
116 static size_t pvh_start_addr;
117
118 GlobalProperty pc_compat_4_0[] = {};
119 const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
120
121 GlobalProperty pc_compat_3_1[] = {
122 { "intel-iommu", "dma-drain", "off" },
123 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
124 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
125 { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
126 { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
127 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
128 { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
129 { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
130 { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
131 { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
132 { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
133 { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
134 { "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
135 { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
136 { "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
137 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
138 { "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
139 { "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
140 { "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
141 { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
142 { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
143 };
144 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
145
146 GlobalProperty pc_compat_3_0[] = {
147 { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
148 { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
149 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
150 };
151 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
152
153 GlobalProperty pc_compat_2_12[] = {
154 { TYPE_X86_CPU, "legacy-cache", "on" },
155 { TYPE_X86_CPU, "topoext", "off" },
156 { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
157 { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
158 };
159 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
160
161 GlobalProperty pc_compat_2_11[] = {
162 { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
163 { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
164 };
165 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
166
167 GlobalProperty pc_compat_2_10[] = {
168 { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
169 { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
170 { "q35-pcihost", "x-pci-hole64-fix", "off" },
171 };
172 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
173
174 GlobalProperty pc_compat_2_9[] = {
175 { "mch", "extended-tseg-mbytes", "0" },
176 };
177 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
178
179 GlobalProperty pc_compat_2_8[] = {
180 { TYPE_X86_CPU, "tcg-cpuid", "off" },
181 { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
182 { "ICH9-LPC", "x-smi-broadcast", "off" },
183 { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
184 { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
185 };
186 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
187
188 GlobalProperty pc_compat_2_7[] = {
189 { TYPE_X86_CPU, "l3-cache", "off" },
190 { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
191 { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
192 { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
193 { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
194 { "isa-pcspk", "migrate", "off" },
195 };
196 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
197
198 GlobalProperty pc_compat_2_6[] = {
199 { TYPE_X86_CPU, "cpuid-0xb", "off" },
200 { "vmxnet3", "romfile", "" },
201 { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
202 { "apic-common", "legacy-instance-id", "on", }
203 };
204 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
205
206 GlobalProperty pc_compat_2_5[] = {};
207 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
208
209 GlobalProperty pc_compat_2_4[] = {
210 PC_CPU_MODEL_IDS("2.4.0")
211 { "Haswell-" TYPE_X86_CPU, "abm", "off" },
212 { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
213 { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
214 { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
215 { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
216 { TYPE_X86_CPU, "check", "off" },
217 { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
218 { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
219 { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
220 { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
221 { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
222 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
223 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
224 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
225 };
226 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
227
228 GlobalProperty pc_compat_2_3[] = {
229 PC_CPU_MODEL_IDS("2.3.0")
230 { TYPE_X86_CPU, "arat", "off" },
231 { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
232 { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
233 { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
234 { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
235 { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
236 { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
237 { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
238 { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
239 { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
240 { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
241 { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
242 { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243 { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244 { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245 { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
246 { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
247 { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
248 { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
249 { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
250 };
251 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
252
253 GlobalProperty pc_compat_2_2[] = {
254 PC_CPU_MODEL_IDS("2.2.0")
255 { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
256 { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
257 { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
258 { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
259 { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
260 { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
261 { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
262 { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
263 { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
264 { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
265 { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
266 { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
267 { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
268 { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
269 { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
270 { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
271 { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
272 { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
273 };
274 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
275
276 GlobalProperty pc_compat_2_1[] = {
277 PC_CPU_MODEL_IDS("2.1.0")
278 { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
279 { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
280 };
281 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
282
283 GlobalProperty pc_compat_2_0[] = {
284 PC_CPU_MODEL_IDS("2.0.0")
285 { "virtio-scsi-pci", "any_layout", "off" },
286 { "PIIX4_PM", "memory-hotplug-support", "off" },
287 { "apic", "version", "0x11" },
288 { "nec-usb-xhci", "superspeed-ports-first", "off" },
289 { "nec-usb-xhci", "force-pcie-endcap", "on" },
290 { "pci-serial", "prog_if", "0" },
291 { "pci-serial-2x", "prog_if", "0" },
292 { "pci-serial-4x", "prog_if", "0" },
293 { "virtio-net-pci", "guest_announce", "off" },
294 { "ICH9-LPC", "memory-hotplug-support", "off" },
295 { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
296 { "ioh3420", COMPAT_PROP_PCP, "off" },
297 };
298 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
299
300 GlobalProperty pc_compat_1_7[] = {
301 PC_CPU_MODEL_IDS("1.7.0")
302 { TYPE_USB_DEVICE, "msos-desc", "no" },
303 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
304 { "hpet", HPET_INTCAP, "4" },
305 };
306 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
307
308 GlobalProperty pc_compat_1_6[] = {
309 PC_CPU_MODEL_IDS("1.6.0")
310 { "e1000", "mitigation", "off" },
311 { "qemu64-" TYPE_X86_CPU, "model", "2" },
312 { "qemu32-" TYPE_X86_CPU, "model", "3" },
313 { "i440FX-pcihost", "short_root_bus", "1" },
314 { "q35-pcihost", "short_root_bus", "1" },
315 };
316 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
317
318 GlobalProperty pc_compat_1_5[] = {
319 PC_CPU_MODEL_IDS("1.5.0")
320 { "Conroe-" TYPE_X86_CPU, "model", "2" },
321 { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
322 { "Penryn-" TYPE_X86_CPU, "model", "2" },
323 { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
324 { "Nehalem-" TYPE_X86_CPU, "model", "2" },
325 { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
326 { "virtio-net-pci", "any_layout", "off" },
327 { TYPE_X86_CPU, "pmu", "on" },
328 { "i440FX-pcihost", "short_root_bus", "0" },
329 { "q35-pcihost", "short_root_bus", "0" },
330 };
331 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
332
333 GlobalProperty pc_compat_1_4[] = {
334 PC_CPU_MODEL_IDS("1.4.0")
335 { "scsi-hd", "discard_granularity", "0" },
336 { "scsi-cd", "discard_granularity", "0" },
337 { "scsi-disk", "discard_granularity", "0" },
338 { "ide-hd", "discard_granularity", "0" },
339 { "ide-cd", "discard_granularity", "0" },
340 { "ide-drive", "discard_granularity", "0" },
341 { "virtio-blk-pci", "discard_granularity", "0" },
342 /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
343 { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
344 { "virtio-net-pci", "ctrl_guest_offloads", "off" },
345 { "e1000", "romfile", "pxe-e1000.rom" },
346 { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
347 { "pcnet", "romfile", "pxe-pcnet.rom" },
348 { "rtl8139", "romfile", "pxe-rtl8139.rom" },
349 { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
350 { "486-" TYPE_X86_CPU, "model", "0" },
351 { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
352 { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
353 };
354 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
355
356 void gsi_handler(void *opaque, int n, int level)
357 {
358 GSIState *s = opaque;
359
360 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
361 if (n < ISA_NUM_IRQS) {
362 qemu_set_irq(s->i8259_irq[n], level);
363 }
364 qemu_set_irq(s->ioapic_irq[n], level);
365 }
366
367 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
368 unsigned size)
369 {
370 }
371
372 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
373 {
374 return 0xffffffffffffffffULL;
375 }
376
377 /* MSDOS compatibility mode FPU exception support */
378 static qemu_irq ferr_irq;
379
380 void pc_register_ferr_irq(qemu_irq irq)
381 {
382 ferr_irq = irq;
383 }
384
385 /* XXX: add IGNNE support */
386 void cpu_set_ferr(CPUX86State *s)
387 {
388 qemu_irq_raise(ferr_irq);
389 }
390
391 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
392 unsigned size)
393 {
394 qemu_irq_lower(ferr_irq);
395 }
396
397 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
398 {
399 return 0xffffffffffffffffULL;
400 }
401
402 /* TSC handling */
403 uint64_t cpu_get_tsc(CPUX86State *env)
404 {
405 return cpu_get_ticks();
406 }
407
408 /* IRQ handling */
409 int cpu_get_pic_interrupt(CPUX86State *env)
410 {
411 X86CPU *cpu = env_archcpu(env);
412 int intno;
413
414 if (!kvm_irqchip_in_kernel()) {
415 intno = apic_get_interrupt(cpu->apic_state);
416 if (intno >= 0) {
417 return intno;
418 }
419 /* read the irq from the PIC */
420 if (!apic_accept_pic_intr(cpu->apic_state)) {
421 return -1;
422 }
423 }
424
425 intno = pic_read_irq(isa_pic);
426 return intno;
427 }
428
429 static void pic_irq_request(void *opaque, int irq, int level)
430 {
431 CPUState *cs = first_cpu;
432 X86CPU *cpu = X86_CPU(cs);
433
434 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
435 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
436 CPU_FOREACH(cs) {
437 cpu = X86_CPU(cs);
438 if (apic_accept_pic_intr(cpu->apic_state)) {
439 apic_deliver_pic_intr(cpu->apic_state, level);
440 }
441 }
442 } else {
443 if (level) {
444 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
445 } else {
446 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
447 }
448 }
449 }
450
451 /* PC cmos mappings */
452
453 #define REG_EQUIPMENT_BYTE 0x14
454
455 int cmos_get_fd_drive_type(FloppyDriveType fd0)
456 {
457 int val;
458
459 switch (fd0) {
460 case FLOPPY_DRIVE_TYPE_144:
461 /* 1.44 Mb 3"5 drive */
462 val = 4;
463 break;
464 case FLOPPY_DRIVE_TYPE_288:
465 /* 2.88 Mb 3"5 drive */
466 val = 5;
467 break;
468 case FLOPPY_DRIVE_TYPE_120:
469 /* 1.2 Mb 5"5 drive */
470 val = 2;
471 break;
472 case FLOPPY_DRIVE_TYPE_NONE:
473 default:
474 val = 0;
475 break;
476 }
477 return val;
478 }
479
480 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
481 int16_t cylinders, int8_t heads, int8_t sectors)
482 {
483 rtc_set_memory(s, type_ofs, 47);
484 rtc_set_memory(s, info_ofs, cylinders);
485 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
486 rtc_set_memory(s, info_ofs + 2, heads);
487 rtc_set_memory(s, info_ofs + 3, 0xff);
488 rtc_set_memory(s, info_ofs + 4, 0xff);
489 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
490 rtc_set_memory(s, info_ofs + 6, cylinders);
491 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
492 rtc_set_memory(s, info_ofs + 8, sectors);
493 }
494
495 /* convert boot_device letter to something recognizable by the bios */
496 static int boot_device2nibble(char boot_device)
497 {
498 switch(boot_device) {
499 case 'a':
500 case 'b':
501 return 0x01; /* floppy boot */
502 case 'c':
503 return 0x02; /* hard drive boot */
504 case 'd':
505 return 0x03; /* CD-ROM boot */
506 case 'n':
507 return 0x04; /* Network boot */
508 }
509 return 0;
510 }
511
512 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
513 {
514 #define PC_MAX_BOOT_DEVICES 3
515 int nbds, bds[3] = { 0, };
516 int i;
517
518 nbds = strlen(boot_device);
519 if (nbds > PC_MAX_BOOT_DEVICES) {
520 error_setg(errp, "Too many boot devices for PC");
521 return;
522 }
523 for (i = 0; i < nbds; i++) {
524 bds[i] = boot_device2nibble(boot_device[i]);
525 if (bds[i] == 0) {
526 error_setg(errp, "Invalid boot device for PC: '%c'",
527 boot_device[i]);
528 return;
529 }
530 }
531 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
532 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
533 }
534
535 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
536 {
537 set_boot_dev(opaque, boot_device, errp);
538 }
539
540 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
541 {
542 int val, nb, i;
543 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
544 FLOPPY_DRIVE_TYPE_NONE };
545
546 /* floppy type */
547 if (floppy) {
548 for (i = 0; i < 2; i++) {
549 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
550 }
551 }
552 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
553 cmos_get_fd_drive_type(fd_type[1]);
554 rtc_set_memory(rtc_state, 0x10, val);
555
556 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
557 nb = 0;
558 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
559 nb++;
560 }
561 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
562 nb++;
563 }
564 switch (nb) {
565 case 0:
566 break;
567 case 1:
568 val |= 0x01; /* 1 drive, ready for boot */
569 break;
570 case 2:
571 val |= 0x41; /* 2 drives, ready for boot */
572 break;
573 }
574 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
575 }
576
577 typedef struct pc_cmos_init_late_arg {
578 ISADevice *rtc_state;
579 BusState *idebus[2];
580 } pc_cmos_init_late_arg;
581
582 typedef struct check_fdc_state {
583 ISADevice *floppy;
584 bool multiple;
585 } CheckFdcState;
586
587 static int check_fdc(Object *obj, void *opaque)
588 {
589 CheckFdcState *state = opaque;
590 Object *fdc;
591 uint32_t iobase;
592 Error *local_err = NULL;
593
594 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
595 if (!fdc) {
596 return 0;
597 }
598
599 iobase = object_property_get_uint(obj, "iobase", &local_err);
600 if (local_err || iobase != 0x3f0) {
601 error_free(local_err);
602 return 0;
603 }
604
605 if (state->floppy) {
606 state->multiple = true;
607 } else {
608 state->floppy = ISA_DEVICE(obj);
609 }
610 return 0;
611 }
612
613 static const char * const fdc_container_path[] = {
614 "/unattached", "/peripheral", "/peripheral-anon"
615 };
616
617 /*
618 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
619 * and ACPI objects.
620 */
621 ISADevice *pc_find_fdc0(void)
622 {
623 int i;
624 Object *container;
625 CheckFdcState state = { 0 };
626
627 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
628 container = container_get(qdev_get_machine(), fdc_container_path[i]);
629 object_child_foreach(container, check_fdc, &state);
630 }
631
632 if (state.multiple) {
633 warn_report("multiple floppy disk controllers with "
634 "iobase=0x3f0 have been found");
635 error_printf("the one being picked for CMOS setup might not reflect "
636 "your intent");
637 }
638
639 return state.floppy;
640 }
641
642 static void pc_cmos_init_late(void *opaque)
643 {
644 pc_cmos_init_late_arg *arg = opaque;
645 ISADevice *s = arg->rtc_state;
646 int16_t cylinders;
647 int8_t heads, sectors;
648 int val;
649 int i, trans;
650
651 val = 0;
652 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
653 &cylinders, &heads, &sectors) >= 0) {
654 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
655 val |= 0xf0;
656 }
657 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
658 &cylinders, &heads, &sectors) >= 0) {
659 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
660 val |= 0x0f;
661 }
662 rtc_set_memory(s, 0x12, val);
663
664 val = 0;
665 for (i = 0; i < 4; i++) {
666 /* NOTE: ide_get_geometry() returns the physical
667 geometry. It is always such that: 1 <= sects <= 63, 1
668 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
669 geometry can be different if a translation is done. */
670 if (arg->idebus[i / 2] &&
671 ide_get_geometry(arg->idebus[i / 2], i % 2,
672 &cylinders, &heads, &sectors) >= 0) {
673 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
674 assert((trans & ~3) == 0);
675 val |= trans << (i * 2);
676 }
677 }
678 rtc_set_memory(s, 0x39, val);
679
680 pc_cmos_init_floppy(s, pc_find_fdc0());
681
682 qemu_unregister_reset(pc_cmos_init_late, opaque);
683 }
684
685 void pc_cmos_init(PCMachineState *pcms,
686 BusState *idebus0, BusState *idebus1,
687 ISADevice *s)
688 {
689 int val;
690 static pc_cmos_init_late_arg arg;
691
692 /* various important CMOS locations needed by PC/Bochs bios */
693
694 /* memory size */
695 /* base memory (first MiB) */
696 val = MIN(pcms->below_4g_mem_size / KiB, 640);
697 rtc_set_memory(s, 0x15, val);
698 rtc_set_memory(s, 0x16, val >> 8);
699 /* extended memory (next 64MiB) */
700 if (pcms->below_4g_mem_size > 1 * MiB) {
701 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
702 } else {
703 val = 0;
704 }
705 if (val > 65535)
706 val = 65535;
707 rtc_set_memory(s, 0x17, val);
708 rtc_set_memory(s, 0x18, val >> 8);
709 rtc_set_memory(s, 0x30, val);
710 rtc_set_memory(s, 0x31, val >> 8);
711 /* memory between 16MiB and 4GiB */
712 if (pcms->below_4g_mem_size > 16 * MiB) {
713 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
714 } else {
715 val = 0;
716 }
717 if (val > 65535)
718 val = 65535;
719 rtc_set_memory(s, 0x34, val);
720 rtc_set_memory(s, 0x35, val >> 8);
721 /* memory above 4GiB */
722 val = pcms->above_4g_mem_size / 65536;
723 rtc_set_memory(s, 0x5b, val);
724 rtc_set_memory(s, 0x5c, val >> 8);
725 rtc_set_memory(s, 0x5d, val >> 16);
726
727 object_property_add_link(OBJECT(pcms), "rtc_state",
728 TYPE_ISA_DEVICE,
729 (Object **)&pcms->rtc,
730 object_property_allow_set_link,
731 OBJ_PROP_LINK_STRONG, &error_abort);
732 object_property_set_link(OBJECT(pcms), OBJECT(s),
733 "rtc_state", &error_abort);
734
735 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
736
737 val = 0;
738 val |= 0x02; /* FPU is there */
739 val |= 0x04; /* PS/2 mouse installed */
740 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
741
742 /* hard drives and FDC */
743 arg.rtc_state = s;
744 arg.idebus[0] = idebus0;
745 arg.idebus[1] = idebus1;
746 qemu_register_reset(pc_cmos_init_late, &arg);
747 }
748
749 #define TYPE_PORT92 "port92"
750 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
751
752 /* port 92 stuff: could be split off */
753 typedef struct Port92State {
754 ISADevice parent_obj;
755
756 MemoryRegion io;
757 uint8_t outport;
758 qemu_irq a20_out;
759 } Port92State;
760
761 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
762 unsigned size)
763 {
764 Port92State *s = opaque;
765 int oldval = s->outport;
766
767 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
768 s->outport = val;
769 qemu_set_irq(s->a20_out, (val >> 1) & 1);
770 if ((val & 1) && !(oldval & 1)) {
771 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
772 }
773 }
774
775 static uint64_t port92_read(void *opaque, hwaddr addr,
776 unsigned size)
777 {
778 Port92State *s = opaque;
779 uint32_t ret;
780
781 ret = s->outport;
782 DPRINTF("port92: read 0x%02x\n", ret);
783 return ret;
784 }
785
786 static void port92_init(ISADevice *dev, qemu_irq a20_out)
787 {
788 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
789 }
790
791 static const VMStateDescription vmstate_port92_isa = {
792 .name = "port92",
793 .version_id = 1,
794 .minimum_version_id = 1,
795 .fields = (VMStateField[]) {
796 VMSTATE_UINT8(outport, Port92State),
797 VMSTATE_END_OF_LIST()
798 }
799 };
800
801 static void port92_reset(DeviceState *d)
802 {
803 Port92State *s = PORT92(d);
804
805 s->outport &= ~1;
806 }
807
808 static const MemoryRegionOps port92_ops = {
809 .read = port92_read,
810 .write = port92_write,
811 .impl = {
812 .min_access_size = 1,
813 .max_access_size = 1,
814 },
815 .endianness = DEVICE_LITTLE_ENDIAN,
816 };
817
818 static void port92_initfn(Object *obj)
819 {
820 Port92State *s = PORT92(obj);
821
822 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
823
824 s->outport = 0;
825
826 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
827 }
828
829 static void port92_realizefn(DeviceState *dev, Error **errp)
830 {
831 ISADevice *isadev = ISA_DEVICE(dev);
832 Port92State *s = PORT92(dev);
833
834 isa_register_ioport(isadev, &s->io, 0x92);
835 }
836
837 static void port92_class_initfn(ObjectClass *klass, void *data)
838 {
839 DeviceClass *dc = DEVICE_CLASS(klass);
840
841 dc->realize = port92_realizefn;
842 dc->reset = port92_reset;
843 dc->vmsd = &vmstate_port92_isa;
844 /*
845 * Reason: unlike ordinary ISA devices, this one needs additional
846 * wiring: its A20 output line needs to be wired up by
847 * port92_init().
848 */
849 dc->user_creatable = false;
850 }
851
852 static const TypeInfo port92_info = {
853 .name = TYPE_PORT92,
854 .parent = TYPE_ISA_DEVICE,
855 .instance_size = sizeof(Port92State),
856 .instance_init = port92_initfn,
857 .class_init = port92_class_initfn,
858 };
859
860 static void port92_register_types(void)
861 {
862 type_register_static(&port92_info);
863 }
864
865 type_init(port92_register_types)
866
867 static void handle_a20_line_change(void *opaque, int irq, int level)
868 {
869 X86CPU *cpu = opaque;
870
871 /* XXX: send to all CPUs ? */
872 /* XXX: add logic to handle multiple A20 line sources */
873 x86_cpu_set_a20(cpu, level);
874 }
875
876 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
877 {
878 int index = le32_to_cpu(e820_reserve.count);
879 struct e820_entry *entry;
880
881 if (type != E820_RAM) {
882 /* old FW_CFG_E820_TABLE entry -- reservations only */
883 if (index >= E820_NR_ENTRIES) {
884 return -EBUSY;
885 }
886 entry = &e820_reserve.entry[index++];
887
888 entry->address = cpu_to_le64(address);
889 entry->length = cpu_to_le64(length);
890 entry->type = cpu_to_le32(type);
891
892 e820_reserve.count = cpu_to_le32(index);
893 }
894
895 /* new "etc/e820" file -- include ram too */
896 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
897 e820_table[e820_entries].address = cpu_to_le64(address);
898 e820_table[e820_entries].length = cpu_to_le64(length);
899 e820_table[e820_entries].type = cpu_to_le32(type);
900 e820_entries++;
901
902 return e820_entries;
903 }
904
905 int e820_get_num_entries(void)
906 {
907 return e820_entries;
908 }
909
910 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
911 {
912 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
913 *address = le64_to_cpu(e820_table[idx].address);
914 *length = le64_to_cpu(e820_table[idx].length);
915 return true;
916 }
917 return false;
918 }
919
920 /* Calculates initial APIC ID for a specific CPU index
921 *
922 * Currently we need to be able to calculate the APIC ID from the CPU index
923 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
924 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
925 * all CPUs up to max_cpus.
926 */
927 static uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
928 unsigned int cpu_index)
929 {
930 MachineState *ms = MACHINE(pcms);
931 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
932 uint32_t correct_id;
933 static bool warned;
934
935 correct_id = x86_apicid_from_cpu_idx(pcms->smp_dies, ms->smp.cores,
936 ms->smp.threads, cpu_index);
937 if (pcmc->compat_apic_id_mode) {
938 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
939 error_report("APIC IDs set in compatibility mode, "
940 "CPU topology won't match the configuration");
941 warned = true;
942 }
943 return cpu_index;
944 } else {
945 return correct_id;
946 }
947 }
948
949 static void pc_build_smbios(PCMachineState *pcms)
950 {
951 uint8_t *smbios_tables, *smbios_anchor;
952 size_t smbios_tables_len, smbios_anchor_len;
953 struct smbios_phys_mem_area *mem_array;
954 unsigned i, array_count;
955 MachineState *ms = MACHINE(pcms);
956 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
957
958 /* tell smbios about cpuid version and features */
959 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
960
961 smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len);
962 if (smbios_tables) {
963 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
964 smbios_tables, smbios_tables_len);
965 }
966
967 /* build the array of physical mem area from e820 table */
968 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
969 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
970 uint64_t addr, len;
971
972 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
973 mem_array[array_count].address = addr;
974 mem_array[array_count].length = len;
975 array_count++;
976 }
977 }
978 smbios_get_tables(ms, mem_array, array_count,
979 &smbios_tables, &smbios_tables_len,
980 &smbios_anchor, &smbios_anchor_len);
981 g_free(mem_array);
982
983 if (smbios_anchor) {
984 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
985 smbios_tables, smbios_tables_len);
986 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
987 smbios_anchor, smbios_anchor_len);
988 }
989 }
990
991 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
992 {
993 FWCfgState *fw_cfg;
994 uint64_t *numa_fw_cfg;
995 int i;
996 const CPUArchIdList *cpus;
997 MachineClass *mc = MACHINE_GET_CLASS(pcms);
998
999 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1000 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1001
1002 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1003 *
1004 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1005 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1006 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1007 * for CPU hotplug also uses APIC ID and not "CPU index".
1008 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1009 * but the "limit to the APIC ID values SeaBIOS may see".
1010 *
1011 * So for compatibility reasons with old BIOSes we are stuck with
1012 * "etc/max-cpus" actually being apic_id_limit
1013 */
1014 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1015 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1016 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1017 acpi_tables, acpi_tables_len);
1018 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1019
1020 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1021 &e820_reserve, sizeof(e820_reserve));
1022 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1023 sizeof(struct e820_entry) * e820_entries);
1024
1025 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1026 /* allocate memory for the NUMA channel: one (64bit) word for the number
1027 * of nodes, one word for each VCPU->node and one word for each node to
1028 * hold the amount of memory.
1029 */
1030 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1031 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1032 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1033 for (i = 0; i < cpus->len; i++) {
1034 unsigned int apic_id = cpus->cpus[i].arch_id;
1035 assert(apic_id < pcms->apic_id_limit);
1036 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1037 }
1038 for (i = 0; i < nb_numa_nodes; i++) {
1039 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1040 cpu_to_le64(numa_info[i].node_mem);
1041 }
1042 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1043 (1 + pcms->apic_id_limit + nb_numa_nodes) *
1044 sizeof(*numa_fw_cfg));
1045
1046 return fw_cfg;
1047 }
1048
1049 static long get_file_size(FILE *f)
1050 {
1051 long where, size;
1052
1053 /* XXX: on Unix systems, using fstat() probably makes more sense */
1054
1055 where = ftell(f);
1056 fseek(f, 0, SEEK_END);
1057 size = ftell(f);
1058 fseek(f, where, SEEK_SET);
1059
1060 return size;
1061 }
1062
1063 struct setup_data {
1064 uint64_t next;
1065 uint32_t type;
1066 uint32_t len;
1067 uint8_t data[0];
1068 } __attribute__((packed));
1069
1070
1071 /*
1072 * The entry point into the kernel for PVH boot is different from
1073 * the native entry point. The PVH entry is defined by the x86/HVM
1074 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1075 *
1076 * This function is passed to load_elf() when it is called from
1077 * load_elfboot() which then additionally checks for an ELF Note of
1078 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1079 * parse the PVH entry address from the ELF Note.
1080 *
1081 * Due to trickery in elf_opts.h, load_elf() is actually available as
1082 * load_elf32() or load_elf64() and this routine needs to be able
1083 * to deal with being called as 32 or 64 bit.
1084 *
1085 * The address of the PVH entry point is saved to the 'pvh_start_addr'
1086 * global variable. (although the entry point is 32-bit, the kernel
1087 * binary can be either 32-bit or 64-bit).
1088 */
1089 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1090 {
1091 size_t *elf_note_data_addr;
1092
1093 /* Check if ELF Note header passed in is valid */
1094 if (arg1 == NULL) {
1095 return 0;
1096 }
1097
1098 if (is64) {
1099 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1100 uint64_t nhdr_size64 = sizeof(struct elf64_note);
1101 uint64_t phdr_align = *(uint64_t *)arg2;
1102 uint64_t nhdr_namesz = nhdr64->n_namesz;
1103
1104 elf_note_data_addr =
1105 ((void *)nhdr64) + nhdr_size64 +
1106 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1107 } else {
1108 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1109 uint32_t nhdr_size32 = sizeof(struct elf32_note);
1110 uint32_t phdr_align = *(uint32_t *)arg2;
1111 uint32_t nhdr_namesz = nhdr32->n_namesz;
1112
1113 elf_note_data_addr =
1114 ((void *)nhdr32) + nhdr_size32 +
1115 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1116 }
1117
1118 pvh_start_addr = *elf_note_data_addr;
1119
1120 return pvh_start_addr;
1121 }
1122
1123 static bool load_elfboot(const char *kernel_filename,
1124 int kernel_file_size,
1125 uint8_t *header,
1126 size_t pvh_xen_start_addr,
1127 FWCfgState *fw_cfg)
1128 {
1129 uint32_t flags = 0;
1130 uint32_t mh_load_addr = 0;
1131 uint32_t elf_kernel_size = 0;
1132 uint64_t elf_entry;
1133 uint64_t elf_low, elf_high;
1134 int kernel_size;
1135
1136 if (ldl_p(header) != 0x464c457f) {
1137 return false; /* no elfboot */
1138 }
1139
1140 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1141 flags = elf_is64 ?
1142 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1143
1144 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1145 error_report("elfboot unsupported flags = %x", flags);
1146 exit(1);
1147 }
1148
1149 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1150 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1151 NULL, &elf_note_type, &elf_entry,
1152 &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1153 0, 0);
1154
1155 if (kernel_size < 0) {
1156 error_report("Error while loading elf kernel");
1157 exit(1);
1158 }
1159 mh_load_addr = elf_low;
1160 elf_kernel_size = elf_high - elf_low;
1161
1162 if (pvh_start_addr == 0) {
1163 error_report("Error loading uncompressed kernel without PVH ELF Note");
1164 exit(1);
1165 }
1166 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1167 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1168 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1169
1170 return true;
1171 }
1172
1173 static void load_linux(PCMachineState *pcms,
1174 FWCfgState *fw_cfg)
1175 {
1176 uint16_t protocol;
1177 int setup_size, kernel_size, cmdline_size;
1178 int dtb_size, setup_data_offset;
1179 uint32_t initrd_max;
1180 uint8_t header[8192], *setup, *kernel;
1181 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1182 FILE *f;
1183 char *vmode;
1184 MachineState *machine = MACHINE(pcms);
1185 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1186 struct setup_data *setup_data;
1187 const char *kernel_filename = machine->kernel_filename;
1188 const char *initrd_filename = machine->initrd_filename;
1189 const char *dtb_filename = machine->dtb;
1190 const char *kernel_cmdline = machine->kernel_cmdline;
1191
1192 /* Align to 16 bytes as a paranoia measure */
1193 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1194
1195 /* load the kernel header */
1196 f = fopen(kernel_filename, "rb");
1197 if (!f || !(kernel_size = get_file_size(f)) ||
1198 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1199 MIN(ARRAY_SIZE(header), kernel_size)) {
1200 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1201 kernel_filename, strerror(errno));
1202 exit(1);
1203 }
1204
1205 /* kernel protocol version */
1206 #if 0
1207 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1208 #endif
1209 if (ldl_p(header+0x202) == 0x53726448) {
1210 protocol = lduw_p(header+0x206);
1211 } else {
1212 /*
1213 * This could be a multiboot kernel. If it is, let's stop treating it
1214 * like a Linux kernel.
1215 * Note: some multiboot images could be in the ELF format (the same of
1216 * PVH), so we try multiboot first since we check the multiboot magic
1217 * header before to load it.
1218 */
1219 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1220 kernel_cmdline, kernel_size, header)) {
1221 return;
1222 }
1223 /*
1224 * Check if the file is an uncompressed kernel file (ELF) and load it,
1225 * saving the PVH entry point used by the x86/HVM direct boot ABI.
1226 * If load_elfboot() is successful, populate the fw_cfg info.
1227 */
1228 if (pcmc->pvh_enabled &&
1229 load_elfboot(kernel_filename, kernel_size,
1230 header, pvh_start_addr, fw_cfg)) {
1231 fclose(f);
1232
1233 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1234 strlen(kernel_cmdline) + 1);
1235 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1236
1237 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1238 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1239 header, sizeof(header));
1240
1241 /* load initrd */
1242 if (initrd_filename) {
1243 gsize initrd_size;
1244 gchar *initrd_data;
1245 GError *gerr = NULL;
1246
1247 if (!g_file_get_contents(initrd_filename, &initrd_data,
1248 &initrd_size, &gerr)) {
1249 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1250 initrd_filename, gerr->message);
1251 exit(1);
1252 }
1253
1254 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1255 if (initrd_size >= initrd_max) {
1256 fprintf(stderr, "qemu: initrd is too large, cannot support."
1257 "(max: %"PRIu32", need %"PRId64")\n",
1258 initrd_max, (uint64_t)initrd_size);
1259 exit(1);
1260 }
1261
1262 initrd_addr = (initrd_max - initrd_size) & ~4095;
1263
1264 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1265 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1266 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1267 initrd_size);
1268 }
1269
1270 option_rom[nb_option_roms].bootindex = 0;
1271 option_rom[nb_option_roms].name = "pvh.bin";
1272 nb_option_roms++;
1273
1274 return;
1275 }
1276 protocol = 0;
1277 }
1278
1279 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1280 /* Low kernel */
1281 real_addr = 0x90000;
1282 cmdline_addr = 0x9a000 - cmdline_size;
1283 prot_addr = 0x10000;
1284 } else if (protocol < 0x202) {
1285 /* High but ancient kernel */
1286 real_addr = 0x90000;
1287 cmdline_addr = 0x9a000 - cmdline_size;
1288 prot_addr = 0x100000;
1289 } else {
1290 /* High and recent kernel */
1291 real_addr = 0x10000;
1292 cmdline_addr = 0x20000;
1293 prot_addr = 0x100000;
1294 }
1295
1296 #if 0
1297 fprintf(stderr,
1298 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
1299 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
1300 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
1301 real_addr,
1302 cmdline_addr,
1303 prot_addr);
1304 #endif
1305
1306 /* highest address for loading the initrd */
1307 if (protocol >= 0x20c &&
1308 lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1309 /*
1310 * Linux has supported initrd up to 4 GB for a very long time (2007,
1311 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1312 * though it only sets initrd_max to 2 GB to "work around bootloader
1313 * bugs". Luckily, QEMU firmware(which does something like bootloader)
1314 * has supported this.
1315 *
1316 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1317 * be loaded into any address.
1318 *
1319 * In addition, initrd_max is uint32_t simply because QEMU doesn't
1320 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1321 * field).
1322 *
1323 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1324 */
1325 initrd_max = UINT32_MAX;
1326 } else if (protocol >= 0x203) {
1327 initrd_max = ldl_p(header+0x22c);
1328 } else {
1329 initrd_max = 0x37ffffff;
1330 }
1331
1332 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1333 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1334 }
1335
1336 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1337 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1338 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1339
1340 if (protocol >= 0x202) {
1341 stl_p(header+0x228, cmdline_addr);
1342 } else {
1343 stw_p(header+0x20, 0xA33F);
1344 stw_p(header+0x22, cmdline_addr-real_addr);
1345 }
1346
1347 /* handle vga= parameter */
1348 vmode = strstr(kernel_cmdline, "vga=");
1349 if (vmode) {
1350 unsigned int video_mode;
1351 /* skip "vga=" */
1352 vmode += 4;
1353 if (!strncmp(vmode, "normal", 6)) {
1354 video_mode = 0xffff;
1355 } else if (!strncmp(vmode, "ext", 3)) {
1356 video_mode = 0xfffe;
1357 } else if (!strncmp(vmode, "ask", 3)) {
1358 video_mode = 0xfffd;
1359 } else {
1360 video_mode = strtol(vmode, NULL, 0);
1361 }
1362 stw_p(header+0x1fa, video_mode);
1363 }
1364
1365 /* loader type */
1366 /* High nybble = B reserved for QEMU; low nybble is revision number.
1367 If this code is substantially changed, you may want to consider
1368 incrementing the revision. */
1369 if (protocol >= 0x200) {
1370 header[0x210] = 0xB0;
1371 }
1372 /* heap */
1373 if (protocol >= 0x201) {
1374 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1375 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1376 }
1377
1378 /* load initrd */
1379 if (initrd_filename) {
1380 gsize initrd_size;
1381 gchar *initrd_data;
1382 GError *gerr = NULL;
1383
1384 if (protocol < 0x200) {
1385 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1386 exit(1);
1387 }
1388
1389 if (!g_file_get_contents(initrd_filename, &initrd_data,
1390 &initrd_size, &gerr)) {
1391 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1392 initrd_filename, gerr->message);
1393 exit(1);
1394 }
1395 if (initrd_size >= initrd_max) {
1396 fprintf(stderr, "qemu: initrd is too large, cannot support."
1397 "(max: %"PRIu32", need %"PRId64")\n",
1398 initrd_max, (uint64_t)initrd_size);
1399 exit(1);
1400 }
1401
1402 initrd_addr = (initrd_max-initrd_size) & ~4095;
1403
1404 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1405 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1406 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1407
1408 stl_p(header+0x218, initrd_addr);
1409 stl_p(header+0x21c, initrd_size);
1410 }
1411
1412 /* load kernel and setup */
1413 setup_size = header[0x1f1];
1414 if (setup_size == 0) {
1415 setup_size = 4;
1416 }
1417 setup_size = (setup_size+1)*512;
1418 if (setup_size > kernel_size) {
1419 fprintf(stderr, "qemu: invalid kernel header\n");
1420 exit(1);
1421 }
1422 kernel_size -= setup_size;
1423
1424 setup = g_malloc(setup_size);
1425 kernel = g_malloc(kernel_size);
1426 fseek(f, 0, SEEK_SET);
1427 if (fread(setup, 1, setup_size, f) != setup_size) {
1428 fprintf(stderr, "fread() failed\n");
1429 exit(1);
1430 }
1431 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1432 fprintf(stderr, "fread() failed\n");
1433 exit(1);
1434 }
1435 fclose(f);
1436
1437 /* append dtb to kernel */
1438 if (dtb_filename) {
1439 if (protocol < 0x209) {
1440 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1441 exit(1);
1442 }
1443
1444 dtb_size = get_image_size(dtb_filename);
1445 if (dtb_size <= 0) {
1446 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1447 dtb_filename, strerror(errno));
1448 exit(1);
1449 }
1450
1451 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1452 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1453 kernel = g_realloc(kernel, kernel_size);
1454
1455 stq_p(header+0x250, prot_addr + setup_data_offset);
1456
1457 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1458 setup_data->next = 0;
1459 setup_data->type = cpu_to_le32(SETUP_DTB);
1460 setup_data->len = cpu_to_le32(dtb_size);
1461
1462 load_image_size(dtb_filename, setup_data->data, dtb_size);
1463 }
1464
1465 memcpy(setup, header, MIN(sizeof(header), setup_size));
1466
1467 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1468 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1469 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1470
1471 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1472 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1473 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1474
1475 option_rom[nb_option_roms].bootindex = 0;
1476 option_rom[nb_option_roms].name = "linuxboot.bin";
1477 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1478 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1479 }
1480 nb_option_roms++;
1481 }
1482
1483 #define NE2000_NB_MAX 6
1484
1485 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1486 0x280, 0x380 };
1487 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1488
1489 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1490 {
1491 static int nb_ne2k = 0;
1492
1493 if (nb_ne2k == NE2000_NB_MAX)
1494 return;
1495 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1496 ne2000_irq[nb_ne2k], nd);
1497 nb_ne2k++;
1498 }
1499
1500 DeviceState *cpu_get_current_apic(void)
1501 {
1502 if (current_cpu) {
1503 X86CPU *cpu = X86_CPU(current_cpu);
1504 return cpu->apic_state;
1505 } else {
1506 return NULL;
1507 }
1508 }
1509
1510 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1511 {
1512 X86CPU *cpu = opaque;
1513
1514 if (level) {
1515 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1516 }
1517 }
1518
1519 static void pc_new_cpu(PCMachineState *pcms, int64_t apic_id, Error **errp)
1520 {
1521 Object *cpu = NULL;
1522 Error *local_err = NULL;
1523 CPUX86State *env = NULL;
1524
1525 cpu = object_new(MACHINE(pcms)->cpu_type);
1526
1527 env = &X86_CPU(cpu)->env;
1528 env->nr_dies = pcms->smp_dies;
1529
1530 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1531 object_property_set_bool(cpu, true, "realized", &local_err);
1532
1533 object_unref(cpu);
1534 error_propagate(errp, local_err);
1535 }
1536
1537 /*
1538 * This function is very similar to smp_parse()
1539 * in hw/core/machine.c but includes CPU die support.
1540 */
1541 void pc_smp_parse(MachineState *ms, QemuOpts *opts)
1542 {
1543 PCMachineState *pcms = PC_MACHINE(ms);
1544
1545 if (opts) {
1546 unsigned cpus = qemu_opt_get_number(opts, "cpus", 0);
1547 unsigned sockets = qemu_opt_get_number(opts, "sockets", 0);
1548 unsigned dies = qemu_opt_get_number(opts, "dies", 1);
1549 unsigned cores = qemu_opt_get_number(opts, "cores", 0);
1550 unsigned threads = qemu_opt_get_number(opts, "threads", 0);
1551
1552 /* compute missing values, prefer sockets over cores over threads */
1553 if (cpus == 0 || sockets == 0) {
1554 cores = cores > 0 ? cores : 1;
1555 threads = threads > 0 ? threads : 1;
1556 if (cpus == 0) {
1557 sockets = sockets > 0 ? sockets : 1;
1558 cpus = cores * threads * dies * sockets;
1559 } else {
1560 ms->smp.max_cpus =
1561 qemu_opt_get_number(opts, "maxcpus", cpus);
1562 sockets = ms->smp.max_cpus / (cores * threads * dies);
1563 }
1564 } else if (cores == 0) {
1565 threads = threads > 0 ? threads : 1;
1566 cores = cpus / (sockets * dies * threads);
1567 cores = cores > 0 ? cores : 1;
1568 } else if (threads == 0) {
1569 threads = cpus / (cores * dies * sockets);
1570 threads = threads > 0 ? threads : 1;
1571 } else if (sockets * dies * cores * threads < cpus) {
1572 error_report("cpu topology: "
1573 "sockets (%u) * dies (%u) * cores (%u) * threads (%u) < "
1574 "smp_cpus (%u)",
1575 sockets, dies, cores, threads, cpus);
1576 exit(1);
1577 }
1578
1579 ms->smp.max_cpus =
1580 qemu_opt_get_number(opts, "maxcpus", cpus);
1581
1582 if (ms->smp.max_cpus < cpus) {
1583 error_report("maxcpus must be equal to or greater than smp");
1584 exit(1);
1585 }
1586
1587 if (sockets * dies * cores * threads > ms->smp.max_cpus) {
1588 error_report("cpu topology: "
1589 "sockets (%u) * dies (%u) * cores (%u) * threads (%u) > "
1590 "maxcpus (%u)",
1591 sockets, dies, cores, threads,
1592 ms->smp.max_cpus);
1593 exit(1);
1594 }
1595
1596 if (sockets * dies * cores * threads != ms->smp.max_cpus) {
1597 warn_report("Invalid CPU topology deprecated: "
1598 "sockets (%u) * dies (%u) * cores (%u) * threads (%u) "
1599 "!= maxcpus (%u)",
1600 sockets, dies, cores, threads,
1601 ms->smp.max_cpus);
1602 }
1603
1604 ms->smp.cpus = cpus;
1605 ms->smp.cores = cores;
1606 ms->smp.threads = threads;
1607 pcms->smp_dies = dies;
1608 }
1609
1610 if (ms->smp.cpus > 1) {
1611 Error *blocker = NULL;
1612 error_setg(&blocker, QERR_REPLAY_NOT_SUPPORTED, "smp");
1613 replay_add_blocker(blocker);
1614 }
1615 }
1616
1617 void pc_hot_add_cpu(MachineState *ms, const int64_t id, Error **errp)
1618 {
1619 PCMachineState *pcms = PC_MACHINE(ms);
1620 int64_t apic_id = x86_cpu_apic_id_from_index(pcms, id);
1621 Error *local_err = NULL;
1622
1623 if (id < 0) {
1624 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1625 return;
1626 }
1627
1628 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1629 error_setg(errp, "Unable to add CPU: %" PRIi64
1630 ", resulting APIC ID (%" PRIi64 ") is too large",
1631 id, apic_id);
1632 return;
1633 }
1634
1635 pc_new_cpu(PC_MACHINE(ms), apic_id, &local_err);
1636 if (local_err) {
1637 error_propagate(errp, local_err);
1638 return;
1639 }
1640 }
1641
1642 void pc_cpus_init(PCMachineState *pcms)
1643 {
1644 int i;
1645 const CPUArchIdList *possible_cpus;
1646 MachineState *ms = MACHINE(pcms);
1647 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1648
1649 /* Calculates the limit to CPU APIC ID values
1650 *
1651 * Limit for the APIC ID value, so that all
1652 * CPU APIC IDs are < pcms->apic_id_limit.
1653 *
1654 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1655 */
1656 pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms,
1657 ms->smp.max_cpus - 1) + 1;
1658 possible_cpus = mc->possible_cpu_arch_ids(ms);
1659 for (i = 0; i < ms->smp.cpus; i++) {
1660 pc_new_cpu(pcms, possible_cpus->cpus[i].arch_id, &error_fatal);
1661 }
1662 }
1663
1664 static void pc_build_feature_control_file(PCMachineState *pcms)
1665 {
1666 MachineState *ms = MACHINE(pcms);
1667 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1668 CPUX86State *env = &cpu->env;
1669 uint32_t unused, ecx, edx;
1670 uint64_t feature_control_bits = 0;
1671 uint64_t *val;
1672
1673 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1674 if (ecx & CPUID_EXT_VMX) {
1675 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1676 }
1677
1678 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1679 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1680 (env->mcg_cap & MCG_LMCE_P)) {
1681 feature_control_bits |= FEATURE_CONTROL_LMCE;
1682 }
1683
1684 if (!feature_control_bits) {
1685 return;
1686 }
1687
1688 val = g_malloc(sizeof(*val));
1689 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1690 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1691 }
1692
1693 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1694 {
1695 if (cpus_count > 0xff) {
1696 /* If the number of CPUs can't be represented in 8 bits, the
1697 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1698 * to make old BIOSes fail more predictably.
1699 */
1700 rtc_set_memory(rtc, 0x5f, 0);
1701 } else {
1702 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1703 }
1704 }
1705
1706 static
1707 void pc_machine_done(Notifier *notifier, void *data)
1708 {
1709 PCMachineState *pcms = container_of(notifier,
1710 PCMachineState, machine_done);
1711 PCIBus *bus = pcms->bus;
1712
1713 /* set the number of CPUs */
1714 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1715
1716 if (bus) {
1717 int extra_hosts = 0;
1718
1719 QLIST_FOREACH(bus, &bus->child, sibling) {
1720 /* look for expander root buses */
1721 if (pci_bus_is_root(bus)) {
1722 extra_hosts++;
1723 }
1724 }
1725 if (extra_hosts && pcms->fw_cfg) {
1726 uint64_t *val = g_malloc(sizeof(*val));
1727 *val = cpu_to_le64(extra_hosts);
1728 fw_cfg_add_file(pcms->fw_cfg,
1729 "etc/extra-pci-roots", val, sizeof(*val));
1730 }
1731 }
1732
1733 acpi_setup();
1734 if (pcms->fw_cfg) {
1735 pc_build_smbios(pcms);
1736 pc_build_feature_control_file(pcms);
1737 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1738 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1739 }
1740
1741 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1742 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1743
1744 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1745 iommu->intr_eim != ON_OFF_AUTO_ON) {
1746 error_report("current -smp configuration requires "
1747 "Extended Interrupt Mode enabled. "
1748 "You can add an IOMMU using: "
1749 "-device intel-iommu,intremap=on,eim=on");
1750 exit(EXIT_FAILURE);
1751 }
1752 }
1753 }
1754
1755 void pc_guest_info_init(PCMachineState *pcms)
1756 {
1757 int i;
1758
1759 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1760 pcms->numa_nodes = nb_numa_nodes;
1761 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1762 sizeof *pcms->node_mem);
1763 for (i = 0; i < nb_numa_nodes; i++) {
1764 pcms->node_mem[i] = numa_info[i].node_mem;
1765 }
1766
1767 pcms->machine_done.notify = pc_machine_done;
1768 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1769 }
1770
1771 /* setup pci memory address space mapping into system address space */
1772 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1773 MemoryRegion *pci_address_space)
1774 {
1775 /* Set to lower priority than RAM */
1776 memory_region_add_subregion_overlap(system_memory, 0x0,
1777 pci_address_space, -1);
1778 }
1779
1780 void xen_load_linux(PCMachineState *pcms)
1781 {
1782 int i;
1783 FWCfgState *fw_cfg;
1784
1785 assert(MACHINE(pcms)->kernel_filename != NULL);
1786
1787 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1788 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1789 rom_set_fw(fw_cfg);
1790
1791 load_linux(pcms, fw_cfg);
1792 for (i = 0; i < nb_option_roms; i++) {
1793 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1794 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1795 !strcmp(option_rom[i].name, "pvh.bin") ||
1796 !strcmp(option_rom[i].name, "multiboot.bin"));
1797 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1798 }
1799 pcms->fw_cfg = fw_cfg;
1800 }
1801
1802 void pc_memory_init(PCMachineState *pcms,
1803 MemoryRegion *system_memory,
1804 MemoryRegion *rom_memory,
1805 MemoryRegion **ram_memory)
1806 {
1807 int linux_boot, i;
1808 MemoryRegion *ram, *option_rom_mr;
1809 MemoryRegion *ram_below_4g, *ram_above_4g;
1810 FWCfgState *fw_cfg;
1811 MachineState *machine = MACHINE(pcms);
1812 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1813
1814 assert(machine->ram_size == pcms->below_4g_mem_size +
1815 pcms->above_4g_mem_size);
1816
1817 linux_boot = (machine->kernel_filename != NULL);
1818
1819 /* Allocate RAM. We allocate it as a single memory region and use
1820 * aliases to address portions of it, mostly for backwards compatibility
1821 * with older qemus that used qemu_ram_alloc().
1822 */
1823 ram = g_malloc(sizeof(*ram));
1824 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1825 machine->ram_size);
1826 *ram_memory = ram;
1827 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1828 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1829 0, pcms->below_4g_mem_size);
1830 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1831 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1832 if (pcms->above_4g_mem_size > 0) {
1833 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1834 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1835 pcms->below_4g_mem_size,
1836 pcms->above_4g_mem_size);
1837 memory_region_add_subregion(system_memory, 0x100000000ULL,
1838 ram_above_4g);
1839 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1840 }
1841
1842 if (!pcmc->has_reserved_memory &&
1843 (machine->ram_slots ||
1844 (machine->maxram_size > machine->ram_size))) {
1845 MachineClass *mc = MACHINE_GET_CLASS(machine);
1846
1847 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1848 mc->name);
1849 exit(EXIT_FAILURE);
1850 }
1851
1852 /* always allocate the device memory information */
1853 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1854
1855 /* initialize device memory address space */
1856 if (pcmc->has_reserved_memory &&
1857 (machine->ram_size < machine->maxram_size)) {
1858 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1859
1860 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1861 error_report("unsupported amount of memory slots: %"PRIu64,
1862 machine->ram_slots);
1863 exit(EXIT_FAILURE);
1864 }
1865
1866 if (QEMU_ALIGN_UP(machine->maxram_size,
1867 TARGET_PAGE_SIZE) != machine->maxram_size) {
1868 error_report("maximum memory size must by aligned to multiple of "
1869 "%d bytes", TARGET_PAGE_SIZE);
1870 exit(EXIT_FAILURE);
1871 }
1872
1873 machine->device_memory->base =
1874 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1875
1876 if (pcmc->enforce_aligned_dimm) {
1877 /* size device region assuming 1G page max alignment per slot */
1878 device_mem_size += (1 * GiB) * machine->ram_slots;
1879 }
1880
1881 if ((machine->device_memory->base + device_mem_size) <
1882 device_mem_size) {
1883 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1884 machine->maxram_size);
1885 exit(EXIT_FAILURE);
1886 }
1887
1888 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1889 "device-memory", device_mem_size);
1890 memory_region_add_subregion(system_memory, machine->device_memory->base,
1891 &machine->device_memory->mr);
1892 }
1893
1894 /* Initialize PC system firmware */
1895 pc_system_firmware_init(pcms, rom_memory);
1896
1897 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1898 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1899 &error_fatal);
1900 if (pcmc->pci_enabled) {
1901 memory_region_set_readonly(option_rom_mr, true);
1902 }
1903 memory_region_add_subregion_overlap(rom_memory,
1904 PC_ROM_MIN_VGA,
1905 option_rom_mr,
1906 1);
1907
1908 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1909
1910 rom_set_fw(fw_cfg);
1911
1912 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1913 uint64_t *val = g_malloc(sizeof(*val));
1914 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1915 uint64_t res_mem_end = machine->device_memory->base;
1916
1917 if (!pcmc->broken_reserved_end) {
1918 res_mem_end += memory_region_size(&machine->device_memory->mr);
1919 }
1920 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1921 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1922 }
1923
1924 if (linux_boot) {
1925 load_linux(pcms, fw_cfg);
1926 }
1927
1928 for (i = 0; i < nb_option_roms; i++) {
1929 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1930 }
1931 pcms->fw_cfg = fw_cfg;
1932
1933 /* Init default IOAPIC address space */
1934 pcms->ioapic_as = &address_space_memory;
1935 }
1936
1937 /*
1938 * The 64bit pci hole starts after "above 4G RAM" and
1939 * potentially the space reserved for memory hotplug.
1940 */
1941 uint64_t pc_pci_hole64_start(void)
1942 {
1943 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1944 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1945 MachineState *ms = MACHINE(pcms);
1946 uint64_t hole64_start = 0;
1947
1948 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1949 hole64_start = ms->device_memory->base;
1950 if (!pcmc->broken_reserved_end) {
1951 hole64_start += memory_region_size(&ms->device_memory->mr);
1952 }
1953 } else {
1954 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1955 }
1956
1957 return ROUND_UP(hole64_start, 1 * GiB);
1958 }
1959
1960 qemu_irq pc_allocate_cpu_irq(void)
1961 {
1962 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1963 }
1964
1965 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1966 {
1967 DeviceState *dev = NULL;
1968
1969 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1970 if (pci_bus) {
1971 PCIDevice *pcidev = pci_vga_init(pci_bus);
1972 dev = pcidev ? &pcidev->qdev : NULL;
1973 } else if (isa_bus) {
1974 ISADevice *isadev = isa_vga_init(isa_bus);
1975 dev = isadev ? DEVICE(isadev) : NULL;
1976 }
1977 rom_reset_order_override();
1978 return dev;
1979 }
1980
1981 static const MemoryRegionOps ioport80_io_ops = {
1982 .write = ioport80_write,
1983 .read = ioport80_read,
1984 .endianness = DEVICE_NATIVE_ENDIAN,
1985 .impl = {
1986 .min_access_size = 1,
1987 .max_access_size = 1,
1988 },
1989 };
1990
1991 static const MemoryRegionOps ioportF0_io_ops = {
1992 .write = ioportF0_write,
1993 .read = ioportF0_read,
1994 .endianness = DEVICE_NATIVE_ENDIAN,
1995 .impl = {
1996 .min_access_size = 1,
1997 .max_access_size = 1,
1998 },
1999 };
2000
2001 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
2002 {
2003 int i;
2004 DriveInfo *fd[MAX_FD];
2005 qemu_irq *a20_line;
2006 ISADevice *i8042, *port92, *vmmouse;
2007
2008 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
2009 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
2010
2011 for (i = 0; i < MAX_FD; i++) {
2012 fd[i] = drive_get(IF_FLOPPY, 0, i);
2013 create_fdctrl |= !!fd[i];
2014 }
2015 if (create_fdctrl) {
2016 fdctrl_init_isa(isa_bus, fd);
2017 }
2018
2019 i8042 = isa_create_simple(isa_bus, "i8042");
2020 if (!no_vmport) {
2021 vmport_init(isa_bus);
2022 vmmouse = isa_try_create(isa_bus, "vmmouse");
2023 } else {
2024 vmmouse = NULL;
2025 }
2026 if (vmmouse) {
2027 DeviceState *dev = DEVICE(vmmouse);
2028 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
2029 qdev_init_nofail(dev);
2030 }
2031 port92 = isa_create_simple(isa_bus, "port92");
2032
2033 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
2034 i8042_setup_a20_line(i8042, a20_line[0]);
2035 port92_init(port92, a20_line[1]);
2036 g_free(a20_line);
2037 }
2038
2039 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
2040 ISADevice **rtc_state,
2041 bool create_fdctrl,
2042 bool no_vmport,
2043 bool has_pit,
2044 uint32_t hpet_irqs)
2045 {
2046 int i;
2047 DeviceState *hpet = NULL;
2048 int pit_isa_irq = 0;
2049 qemu_irq pit_alt_irq = NULL;
2050 qemu_irq rtc_irq = NULL;
2051 ISADevice *pit = NULL;
2052 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
2053 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
2054
2055 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
2056 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
2057
2058 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
2059 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
2060
2061 /*
2062 * Check if an HPET shall be created.
2063 *
2064 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
2065 * when the HPET wants to take over. Thus we have to disable the latter.
2066 */
2067 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
2068 /* In order to set property, here not using sysbus_try_create_simple */
2069 hpet = qdev_try_create(NULL, TYPE_HPET);
2070 if (hpet) {
2071 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
2072 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
2073 * IRQ8 and IRQ2.
2074 */
2075 uint8_t compat = object_property_get_uint(OBJECT(hpet),
2076 HPET_INTCAP, NULL);
2077 if (!compat) {
2078 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
2079 }
2080 qdev_init_nofail(hpet);
2081 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
2082
2083 for (i = 0; i < GSI_NUM_PINS; i++) {
2084 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2085 }
2086 pit_isa_irq = -1;
2087 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2088 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2089 }
2090 }
2091 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2092
2093 qemu_register_boot_set(pc_boot_set, *rtc_state);
2094
2095 if (!xen_enabled() && has_pit) {
2096 if (kvm_pit_in_kernel()) {
2097 pit = kvm_pit_init(isa_bus, 0x40);
2098 } else {
2099 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2100 }
2101 if (hpet) {
2102 /* connect PIT to output control line of the HPET */
2103 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2104 }
2105 pcspk_init(isa_bus, pit);
2106 }
2107
2108 i8257_dma_init(isa_bus, 0);
2109
2110 /* Super I/O */
2111 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2112 }
2113
2114 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2115 {
2116 int i;
2117
2118 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2119 for (i = 0; i < nb_nics; i++) {
2120 NICInfo *nd = &nd_table[i];
2121 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2122
2123 if (g_str_equal(model, "ne2k_isa")) {
2124 pc_init_ne2k_isa(isa_bus, nd);
2125 } else {
2126 pci_nic_init_nofail(nd, pci_bus, model, NULL);
2127 }
2128 }
2129 rom_reset_order_override();
2130 }
2131
2132 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2133 {
2134 DeviceState *dev;
2135 SysBusDevice *d;
2136 unsigned int i;
2137
2138 if (kvm_ioapic_in_kernel()) {
2139 dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2140 } else {
2141 dev = qdev_create(NULL, TYPE_IOAPIC);
2142 }
2143 if (parent_name) {
2144 object_property_add_child(object_resolve_path(parent_name, NULL),
2145 "ioapic", OBJECT(dev), NULL);
2146 }
2147 qdev_init_nofail(dev);
2148 d = SYS_BUS_DEVICE(dev);
2149 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2150
2151 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2152 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2153 }
2154 }
2155
2156 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2157 Error **errp)
2158 {
2159 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2160 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2161 const MachineState *ms = MACHINE(hotplug_dev);
2162 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2163 const uint64_t legacy_align = TARGET_PAGE_SIZE;
2164 Error *local_err = NULL;
2165
2166 /*
2167 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2168 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2169 * addition to cover this case.
2170 */
2171 if (!pcms->acpi_dev || !acpi_enabled) {
2172 error_setg(errp,
2173 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2174 return;
2175 }
2176
2177 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2178 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2179 return;
2180 }
2181
2182 hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2183 if (local_err) {
2184 error_propagate(errp, local_err);
2185 return;
2186 }
2187
2188 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2189 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2190 }
2191
2192 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2193 DeviceState *dev, Error **errp)
2194 {
2195 Error *local_err = NULL;
2196 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2197 MachineState *ms = MACHINE(hotplug_dev);
2198 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2199
2200 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2201 if (local_err) {
2202 goto out;
2203 }
2204
2205 if (is_nvdimm) {
2206 nvdimm_plug(ms->nvdimms_state);
2207 }
2208
2209 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2210 out:
2211 error_propagate(errp, local_err);
2212 }
2213
2214 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2215 DeviceState *dev, Error **errp)
2216 {
2217 Error *local_err = NULL;
2218 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2219
2220 /*
2221 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2222 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2223 * addition to cover this case.
2224 */
2225 if (!pcms->acpi_dev || !acpi_enabled) {
2226 error_setg(&local_err,
2227 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2228 goto out;
2229 }
2230
2231 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2232 error_setg(&local_err,
2233 "nvdimm device hot unplug is not supported yet.");
2234 goto out;
2235 }
2236
2237 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2238 &local_err);
2239 out:
2240 error_propagate(errp, local_err);
2241 }
2242
2243 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2244 DeviceState *dev, Error **errp)
2245 {
2246 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2247 Error *local_err = NULL;
2248
2249 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2250 if (local_err) {
2251 goto out;
2252 }
2253
2254 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2255 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2256 out:
2257 error_propagate(errp, local_err);
2258 }
2259
2260 static int pc_apic_cmp(const void *a, const void *b)
2261 {
2262 CPUArchId *apic_a = (CPUArchId *)a;
2263 CPUArchId *apic_b = (CPUArchId *)b;
2264
2265 return apic_a->arch_id - apic_b->arch_id;
2266 }
2267
2268 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2269 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2270 * entry corresponding to CPU's apic_id returns NULL.
2271 */
2272 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2273 {
2274 CPUArchId apic_id, *found_cpu;
2275
2276 apic_id.arch_id = id;
2277 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2278 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2279 pc_apic_cmp);
2280 if (found_cpu && idx) {
2281 *idx = found_cpu - ms->possible_cpus->cpus;
2282 }
2283 return found_cpu;
2284 }
2285
2286 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2287 DeviceState *dev, Error **errp)
2288 {
2289 CPUArchId *found_cpu;
2290 Error *local_err = NULL;
2291 X86CPU *cpu = X86_CPU(dev);
2292 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2293
2294 if (pcms->acpi_dev) {
2295 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2296 if (local_err) {
2297 goto out;
2298 }
2299 }
2300
2301 /* increment the number of CPUs */
2302 pcms->boot_cpus++;
2303 if (pcms->rtc) {
2304 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2305 }
2306 if (pcms->fw_cfg) {
2307 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2308 }
2309
2310 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2311 found_cpu->cpu = OBJECT(dev);
2312 out:
2313 error_propagate(errp, local_err);
2314 }
2315 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2316 DeviceState *dev, Error **errp)
2317 {
2318 int idx = -1;
2319 Error *local_err = NULL;
2320 X86CPU *cpu = X86_CPU(dev);
2321 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2322
2323 if (!pcms->acpi_dev) {
2324 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2325 goto out;
2326 }
2327
2328 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2329 assert(idx != -1);
2330 if (idx == 0) {
2331 error_setg(&local_err, "Boot CPU is unpluggable");
2332 goto out;
2333 }
2334
2335 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2336 &local_err);
2337 if (local_err) {
2338 goto out;
2339 }
2340
2341 out:
2342 error_propagate(errp, local_err);
2343
2344 }
2345
2346 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2347 DeviceState *dev, Error **errp)
2348 {
2349 CPUArchId *found_cpu;
2350 Error *local_err = NULL;
2351 X86CPU *cpu = X86_CPU(dev);
2352 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2353
2354 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2355 if (local_err) {
2356 goto out;
2357 }
2358
2359 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2360 found_cpu->cpu = NULL;
2361 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2362
2363 /* decrement the number of CPUs */
2364 pcms->boot_cpus--;
2365 /* Update the number of CPUs in CMOS */
2366 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2367 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2368 out:
2369 error_propagate(errp, local_err);
2370 }
2371
2372 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2373 DeviceState *dev, Error **errp)
2374 {
2375 int idx;
2376 CPUState *cs;
2377 CPUArchId *cpu_slot;
2378 X86CPUTopoInfo topo;
2379 X86CPU *cpu = X86_CPU(dev);
2380 CPUX86State *env = &cpu->env;
2381 MachineState *ms = MACHINE(hotplug_dev);
2382 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2383 unsigned int smp_cores = ms->smp.cores;
2384 unsigned int smp_threads = ms->smp.threads;
2385
2386 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2387 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2388 ms->cpu_type);
2389 return;
2390 }
2391
2392 env->nr_dies = pcms->smp_dies;
2393
2394 /*
2395 * If APIC ID is not set,
2396 * set it based on socket/die/core/thread properties.
2397 */
2398 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2399 int max_socket = (ms->smp.max_cpus - 1) /
2400 smp_threads / smp_cores / pcms->smp_dies;
2401
2402 if (cpu->socket_id < 0) {
2403 error_setg(errp, "CPU socket-id is not set");
2404 return;
2405 } else if (cpu->socket_id > max_socket) {
2406 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2407 cpu->socket_id, max_socket);
2408 return;
2409 } else if (cpu->die_id > pcms->smp_dies - 1) {
2410 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
2411 cpu->die_id, max_socket);
2412 return;
2413 }
2414 if (cpu->core_id < 0) {
2415 error_setg(errp, "CPU core-id is not set");
2416 return;
2417 } else if (cpu->core_id > (smp_cores - 1)) {
2418 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2419 cpu->core_id, smp_cores - 1);
2420 return;
2421 }
2422 if (cpu->thread_id < 0) {
2423 error_setg(errp, "CPU thread-id is not set");
2424 return;
2425 } else if (cpu->thread_id > (smp_threads - 1)) {
2426 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2427 cpu->thread_id, smp_threads - 1);
2428 return;
2429 }
2430
2431 topo.pkg_id = cpu->socket_id;
2432 topo.die_id = cpu->die_id;
2433 topo.core_id = cpu->core_id;
2434 topo.smt_id = cpu->thread_id;
2435 cpu->apic_id = apicid_from_topo_ids(pcms->smp_dies, smp_cores,
2436 smp_threads, &topo);
2437 }
2438
2439 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2440 if (!cpu_slot) {
2441 MachineState *ms = MACHINE(pcms);
2442
2443 x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
2444 smp_cores, smp_threads, &topo);
2445 error_setg(errp,
2446 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
2447 " APIC ID %" PRIu32 ", valid index range 0:%d",
2448 topo.pkg_id, topo.die_id, topo.core_id, topo.smt_id,
2449 cpu->apic_id, ms->possible_cpus->len - 1);
2450 return;
2451 }
2452
2453 if (cpu_slot->cpu) {
2454 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2455 idx, cpu->apic_id);
2456 return;
2457 }
2458
2459 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2460 * so that machine_query_hotpluggable_cpus would show correct values
2461 */
2462 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2463 * once -smp refactoring is complete and there will be CPU private
2464 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2465 x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
2466 smp_cores, smp_threads, &topo);
2467 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2468 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2469 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2470 return;
2471 }
2472 cpu->socket_id = topo.pkg_id;
2473
2474 if (cpu->die_id != -1 && cpu->die_id != topo.die_id) {
2475 error_setg(errp, "property die-id: %u doesn't match set apic-id:"
2476 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo.die_id);
2477 return;
2478 }
2479 cpu->die_id = topo.die_id;
2480
2481 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2482 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2483 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2484 return;
2485 }
2486 cpu->core_id = topo.core_id;
2487
2488 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2489 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2490 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2491 return;
2492 }
2493 cpu->thread_id = topo.smt_id;
2494
2495 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
2496 !kvm_hv_vpindex_settable()) {
2497 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2498 return;
2499 }
2500
2501 cs = CPU(cpu);
2502 cs->cpu_index = idx;
2503
2504 numa_cpu_pre_plug(cpu_slot, dev, errp);
2505 }
2506
2507 static void pc_virtio_pmem_pci_pre_plug(HotplugHandler *hotplug_dev,
2508 DeviceState *dev, Error **errp)
2509 {
2510 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2511 Error *local_err = NULL;
2512
2513 if (!hotplug_dev2) {
2514 /*
2515 * Without a bus hotplug handler, we cannot control the plug/unplug
2516 * order. This should never be the case on x86, however better add
2517 * a safety net.
2518 */
2519 error_setg(errp, "virtio-pmem-pci not supported on this bus.");
2520 return;
2521 }
2522 /*
2523 * First, see if we can plug this memory device at all. If that
2524 * succeeds, branch of to the actual hotplug handler.
2525 */
2526 memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2527 &local_err);
2528 if (!local_err) {
2529 hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2530 }
2531 error_propagate(errp, local_err);
2532 }
2533
2534 static void pc_virtio_pmem_pci_plug(HotplugHandler *hotplug_dev,
2535 DeviceState *dev, Error **errp)
2536 {
2537 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2538 Error *local_err = NULL;
2539
2540 /*
2541 * Plug the memory device first and then branch off to the actual
2542 * hotplug handler. If that one fails, we can easily undo the memory
2543 * device bits.
2544 */
2545 memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2546 hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2547 if (local_err) {
2548 memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2549 }
2550 error_propagate(errp, local_err);
2551 }
2552
2553 static void pc_virtio_pmem_pci_unplug_request(HotplugHandler *hotplug_dev,
2554 DeviceState *dev, Error **errp)
2555 {
2556 /* We don't support virtio pmem hot unplug */
2557 error_setg(errp, "virtio pmem device unplug not supported.");
2558 }
2559
2560 static void pc_virtio_pmem_pci_unplug(HotplugHandler *hotplug_dev,
2561 DeviceState *dev, Error **errp)
2562 {
2563 /* We don't support virtio pmem hot unplug */
2564 }
2565
2566 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2567 DeviceState *dev, Error **errp)
2568 {
2569 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2570 pc_memory_pre_plug(hotplug_dev, dev, errp);
2571 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2572 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2573 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2574 pc_virtio_pmem_pci_pre_plug(hotplug_dev, dev, errp);
2575 }
2576 }
2577
2578 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2579 DeviceState *dev, Error **errp)
2580 {
2581 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2582 pc_memory_plug(hotplug_dev, dev, errp);
2583 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2584 pc_cpu_plug(hotplug_dev, dev, errp);
2585 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2586 pc_virtio_pmem_pci_plug(hotplug_dev, dev, errp);
2587 }
2588 }
2589
2590 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2591 DeviceState *dev, Error **errp)
2592 {
2593 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2594 pc_memory_unplug_request(hotplug_dev, dev, errp);
2595 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2596 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2597 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2598 pc_virtio_pmem_pci_unplug_request(hotplug_dev, dev, errp);
2599 } else {
2600 error_setg(errp, "acpi: device unplug request for not supported device"
2601 " type: %s", object_get_typename(OBJECT(dev)));
2602 }
2603 }
2604
2605 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2606 DeviceState *dev, Error **errp)
2607 {
2608 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2609 pc_memory_unplug(hotplug_dev, dev, errp);
2610 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2611 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2612 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2613 pc_virtio_pmem_pci_unplug(hotplug_dev, dev, errp);
2614 } else {
2615 error_setg(errp, "acpi: device unplug for not supported device"
2616 " type: %s", object_get_typename(OBJECT(dev)));
2617 }
2618 }
2619
2620 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2621 DeviceState *dev)
2622 {
2623 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2624 object_dynamic_cast(OBJECT(dev), TYPE_CPU) ||
2625 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2626 return HOTPLUG_HANDLER(machine);
2627 }
2628
2629 return NULL;
2630 }
2631
2632 static void
2633 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2634 const char *name, void *opaque,
2635 Error **errp)
2636 {
2637 MachineState *ms = MACHINE(obj);
2638 int64_t value = 0;
2639
2640 if (ms->device_memory) {
2641 value = memory_region_size(&ms->device_memory->mr);
2642 }
2643
2644 visit_type_int(v, name, &value, errp);
2645 }
2646
2647 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2648 const char *name, void *opaque,
2649 Error **errp)
2650 {
2651 PCMachineState *pcms = PC_MACHINE(obj);
2652 uint64_t value = pcms->max_ram_below_4g;
2653
2654 visit_type_size(v, name, &value, errp);
2655 }
2656
2657 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2658 const char *name, void *opaque,
2659 Error **errp)
2660 {
2661 PCMachineState *pcms = PC_MACHINE(obj);
2662 Error *error = NULL;
2663 uint64_t value;
2664
2665 visit_type_size(v, name, &value, &error);
2666 if (error) {
2667 error_propagate(errp, error);
2668 return;
2669 }
2670 if (value > 4 * GiB) {
2671 error_setg(&error,
2672 "Machine option 'max-ram-below-4g=%"PRIu64
2673 "' expects size less than or equal to 4G", value);
2674 error_propagate(errp, error);
2675 return;
2676 }
2677
2678 if (value < 1 * MiB) {
2679 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2680 "BIOS may not work with less than 1MiB", value);
2681 }
2682
2683 pcms->max_ram_below_4g = value;
2684 }
2685
2686 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2687 void *opaque, Error **errp)
2688 {
2689 PCMachineState *pcms = PC_MACHINE(obj);
2690 OnOffAuto vmport = pcms->vmport;
2691
2692 visit_type_OnOffAuto(v, name, &vmport, errp);
2693 }
2694
2695 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2696 void *opaque, Error **errp)
2697 {
2698 PCMachineState *pcms = PC_MACHINE(obj);
2699
2700 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2701 }
2702
2703 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2704 {
2705 bool smm_available = false;
2706
2707 if (pcms->smm == ON_OFF_AUTO_OFF) {
2708 return false;
2709 }
2710
2711 if (tcg_enabled() || qtest_enabled()) {
2712 smm_available = true;
2713 } else if (kvm_enabled()) {
2714 smm_available = kvm_has_smm();
2715 }
2716
2717 if (smm_available) {
2718 return true;
2719 }
2720
2721 if (pcms->smm == ON_OFF_AUTO_ON) {
2722 error_report("System Management Mode not supported by this hypervisor.");
2723 exit(1);
2724 }
2725 return false;
2726 }
2727
2728 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2729 void *opaque, Error **errp)
2730 {
2731 PCMachineState *pcms = PC_MACHINE(obj);
2732 OnOffAuto smm = pcms->smm;
2733
2734 visit_type_OnOffAuto(v, name, &smm, errp);
2735 }
2736
2737 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2738 void *opaque, Error **errp)
2739 {
2740 PCMachineState *pcms = PC_MACHINE(obj);
2741
2742 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2743 }
2744
2745 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2746 {
2747 PCMachineState *pcms = PC_MACHINE(obj);
2748
2749 return pcms->smbus_enabled;
2750 }
2751
2752 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2753 {
2754 PCMachineState *pcms = PC_MACHINE(obj);
2755
2756 pcms->smbus_enabled = value;
2757 }
2758
2759 static bool pc_machine_get_sata(Object *obj, Error **errp)
2760 {
2761 PCMachineState *pcms = PC_MACHINE(obj);
2762
2763 return pcms->sata_enabled;
2764 }
2765
2766 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2767 {
2768 PCMachineState *pcms = PC_MACHINE(obj);
2769
2770 pcms->sata_enabled = value;
2771 }
2772
2773 static bool pc_machine_get_pit(Object *obj, Error **errp)
2774 {
2775 PCMachineState *pcms = PC_MACHINE(obj);
2776
2777 return pcms->pit_enabled;
2778 }
2779
2780 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2781 {
2782 PCMachineState *pcms = PC_MACHINE(obj);
2783
2784 pcms->pit_enabled = value;
2785 }
2786
2787 static void pc_machine_initfn(Object *obj)
2788 {
2789 PCMachineState *pcms = PC_MACHINE(obj);
2790
2791 pcms->max_ram_below_4g = 0; /* use default */
2792 pcms->smm = ON_OFF_AUTO_AUTO;
2793 pcms->vmport = ON_OFF_AUTO_AUTO;
2794 /* acpi build is enabled by default if machine supports it */
2795 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2796 pcms->smbus_enabled = true;
2797 pcms->sata_enabled = true;
2798 pcms->pit_enabled = true;
2799 pcms->smp_dies = 1;
2800
2801 pc_system_flash_create(pcms);
2802 }
2803
2804 static void pc_machine_reset(MachineState *machine)
2805 {
2806 CPUState *cs;
2807 X86CPU *cpu;
2808
2809 qemu_devices_reset();
2810
2811 /* Reset APIC after devices have been reset to cancel
2812 * any changes that qemu_devices_reset() might have done.
2813 */
2814 CPU_FOREACH(cs) {
2815 cpu = X86_CPU(cs);
2816
2817 if (cpu->apic_state) {
2818 device_reset(cpu->apic_state);
2819 }
2820 }
2821 }
2822
2823 static CpuInstanceProperties
2824 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2825 {
2826 MachineClass *mc = MACHINE_GET_CLASS(ms);
2827 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2828
2829 assert(cpu_index < possible_cpus->len);
2830 return possible_cpus->cpus[cpu_index].props;
2831 }
2832
2833 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2834 {
2835 X86CPUTopoInfo topo;
2836 PCMachineState *pcms = PC_MACHINE(ms);
2837
2838 assert(idx < ms->possible_cpus->len);
2839 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2840 pcms->smp_dies, ms->smp.cores,
2841 ms->smp.threads, &topo);
2842 return topo.pkg_id % nb_numa_nodes;
2843 }
2844
2845 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2846 {
2847 PCMachineState *pcms = PC_MACHINE(ms);
2848 int i;
2849 unsigned int max_cpus = ms->smp.max_cpus;
2850
2851 if (ms->possible_cpus) {
2852 /*
2853 * make sure that max_cpus hasn't changed since the first use, i.e.
2854 * -smp hasn't been parsed after it
2855 */
2856 assert(ms->possible_cpus->len == max_cpus);
2857 return ms->possible_cpus;
2858 }
2859
2860 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2861 sizeof(CPUArchId) * max_cpus);
2862 ms->possible_cpus->len = max_cpus;
2863 for (i = 0; i < ms->possible_cpus->len; i++) {
2864 X86CPUTopoInfo topo;
2865
2866 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2867 ms->possible_cpus->cpus[i].vcpus_count = 1;
2868 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(pcms, i);
2869 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2870 pcms->smp_dies, ms->smp.cores,
2871 ms->smp.threads, &topo);
2872 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2873 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2874 ms->possible_cpus->cpus[i].props.has_die_id = true;
2875 ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
2876 ms->possible_cpus->cpus[i].props.has_core_id = true;
2877 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2878 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2879 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2880 }
2881 return ms->possible_cpus;
2882 }
2883
2884 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2885 {
2886 /* cpu index isn't used */
2887 CPUState *cs;
2888
2889 CPU_FOREACH(cs) {
2890 X86CPU *cpu = X86_CPU(cs);
2891
2892 if (!cpu->apic_state) {
2893 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2894 } else {
2895 apic_deliver_nmi(cpu->apic_state);
2896 }
2897 }
2898 }
2899
2900 static void pc_machine_class_init(ObjectClass *oc, void *data)
2901 {
2902 MachineClass *mc = MACHINE_CLASS(oc);
2903 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2904 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2905 NMIClass *nc = NMI_CLASS(oc);
2906
2907 pcmc->pci_enabled = true;
2908 pcmc->has_acpi_build = true;
2909 pcmc->rsdp_in_ram = true;
2910 pcmc->smbios_defaults = true;
2911 pcmc->smbios_uuid_encoded = true;
2912 pcmc->gigabyte_align = true;
2913 pcmc->has_reserved_memory = true;
2914 pcmc->kvmclock_enabled = true;
2915 pcmc->enforce_aligned_dimm = true;
2916 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2917 * to be used at the moment, 32K should be enough for a while. */
2918 pcmc->acpi_data_size = 0x20000 + 0x8000;
2919 pcmc->save_tsc_khz = true;
2920 pcmc->linuxboot_dma_enabled = true;
2921 pcmc->pvh_enabled = true;
2922 assert(!mc->get_hotplug_handler);
2923 mc->get_hotplug_handler = pc_get_hotplug_handler;
2924 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2925 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2926 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2927 mc->auto_enable_numa_with_memhp = true;
2928 mc->has_hotpluggable_cpus = true;
2929 mc->default_boot_order = "cad";
2930 mc->hot_add_cpu = pc_hot_add_cpu;
2931 mc->smp_parse = pc_smp_parse;
2932 mc->block_default_type = IF_IDE;
2933 mc->max_cpus = 255;
2934 mc->reset = pc_machine_reset;
2935 hc->pre_plug = pc_machine_device_pre_plug_cb;
2936 hc->plug = pc_machine_device_plug_cb;
2937 hc->unplug_request = pc_machine_device_unplug_request_cb;
2938 hc->unplug = pc_machine_device_unplug_cb;
2939 nc->nmi_monitor_handler = x86_nmi;
2940 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2941 mc->nvdimm_supported = true;
2942 mc->numa_mem_supported = true;
2943
2944 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2945 pc_machine_get_device_memory_region_size, NULL,
2946 NULL, NULL, &error_abort);
2947
2948 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2949 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2950 NULL, NULL, &error_abort);
2951
2952 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2953 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2954
2955 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2956 pc_machine_get_smm, pc_machine_set_smm,
2957 NULL, NULL, &error_abort);
2958 object_class_property_set_description(oc, PC_MACHINE_SMM,
2959 "Enable SMM (pc & q35)", &error_abort);
2960
2961 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2962 pc_machine_get_vmport, pc_machine_set_vmport,
2963 NULL, NULL, &error_abort);
2964 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2965 "Enable vmport (pc & q35)", &error_abort);
2966
2967 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2968 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2969
2970 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2971 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2972
2973 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2974 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2975 }
2976
2977 static const TypeInfo pc_machine_info = {
2978 .name = TYPE_PC_MACHINE,
2979 .parent = TYPE_MACHINE,
2980 .abstract = true,
2981 .instance_size = sizeof(PCMachineState),
2982 .instance_init = pc_machine_initfn,
2983 .class_size = sizeof(PCMachineClass),
2984 .class_init = pc_machine_class_init,
2985 .interfaces = (InterfaceInfo[]) {
2986 { TYPE_HOTPLUG_HANDLER },
2987 { TYPE_NMI },
2988 { }
2989 },
2990 };
2991
2992 static void pc_machine_register_types(void)
2993 {
2994 type_register_static(&pc_machine_info);
2995 }
2996
2997 type_init(pc_machine_register_types)