]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
d44b2d06dbc719c284da8958210708dcc58f80ca
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "hw/i386/fw_cfg.h"
34 #include "sysemu/cpus.h"
35 #include "hw/block/fdc.h"
36 #include "hw/ide.h"
37 #include "hw/pci/pci.h"
38 #include "hw/pci/pci_bus.h"
39 #include "hw/nvram/fw_cfg.h"
40 #include "hw/timer/hpet.h"
41 #include "hw/firmware/smbios.h"
42 #include "hw/loader.h"
43 #include "elf.h"
44 #include "multiboot.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/dma/i8257.h"
47 #include "hw/timer/i8254.h"
48 #include "hw/input/i8042.h"
49 #include "hw/audio/pcspk.h"
50 #include "hw/pci/msi.h"
51 #include "hw/sysbus.h"
52 #include "sysemu/sysemu.h"
53 #include "sysemu/tcg.h"
54 #include "sysemu/numa.h"
55 #include "sysemu/kvm.h"
56 #include "sysemu/qtest.h"
57 #include "kvm_i386.h"
58 #include "hw/xen/xen.h"
59 #include "hw/xen/start_info.h"
60 #include "ui/qemu-spice.h"
61 #include "exec/memory.h"
62 #include "exec/address-spaces.h"
63 #include "sysemu/arch_init.h"
64 #include "qemu/bitmap.h"
65 #include "qemu/config-file.h"
66 #include "qemu/error-report.h"
67 #include "qemu/option.h"
68 #include "hw/acpi/acpi.h"
69 #include "hw/acpi/cpu_hotplug.h"
70 #include "hw/boards.h"
71 #include "acpi-build.h"
72 #include "hw/mem/pc-dimm.h"
73 #include "qapi/error.h"
74 #include "qapi/qapi-visit-common.h"
75 #include "qapi/visitor.h"
76 #include "qom/cpu.h"
77 #include "hw/nmi.h"
78 #include "hw/usb.h"
79 #include "hw/i386/intel_iommu.h"
80 #include "hw/net/ne2000-isa.h"
81 #include "standard-headers/asm-x86/bootparam.h"
82 #include "hw/virtio/virtio-pmem-pci.h"
83 #include "hw/mem/memory-device.h"
84
85 /* debug PC/ISA interrupts */
86 //#define DEBUG_IRQ
87
88 #ifdef DEBUG_IRQ
89 #define DPRINTF(fmt, ...) \
90 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
91 #else
92 #define DPRINTF(fmt, ...)
93 #endif
94
95 #define E820_NR_ENTRIES 16
96
97 struct e820_entry {
98 uint64_t address;
99 uint64_t length;
100 uint32_t type;
101 } QEMU_PACKED __attribute((__aligned__(4)));
102
103 struct e820_table {
104 uint32_t count;
105 struct e820_entry entry[E820_NR_ENTRIES];
106 } QEMU_PACKED __attribute((__aligned__(4)));
107
108 static struct e820_table e820_reserve;
109 static struct e820_entry *e820_table;
110 static unsigned e820_entries;
111 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
112
113 /* Physical Address of PVH entry point read from kernel ELF NOTE */
114 static size_t pvh_start_addr;
115
116 GlobalProperty pc_compat_4_0[] = {};
117 const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
118
119 GlobalProperty pc_compat_3_1[] = {
120 { "intel-iommu", "dma-drain", "off" },
121 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
122 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
123 { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
124 { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
125 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
126 { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
127 { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
128 { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
129 { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
130 { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
131 { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
132 { "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
133 { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
134 { "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
135 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
136 { "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
137 { "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
138 { "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
139 { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
140 { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
141 };
142 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
143
144 GlobalProperty pc_compat_3_0[] = {
145 { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
146 { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
147 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
148 };
149 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
150
151 GlobalProperty pc_compat_2_12[] = {
152 { TYPE_X86_CPU, "legacy-cache", "on" },
153 { TYPE_X86_CPU, "topoext", "off" },
154 { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
155 { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
156 };
157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
158
159 GlobalProperty pc_compat_2_11[] = {
160 { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
161 { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
162 };
163 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
164
165 GlobalProperty pc_compat_2_10[] = {
166 { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
167 { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
168 { "q35-pcihost", "x-pci-hole64-fix", "off" },
169 };
170 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
171
172 GlobalProperty pc_compat_2_9[] = {
173 { "mch", "extended-tseg-mbytes", "0" },
174 };
175 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
176
177 GlobalProperty pc_compat_2_8[] = {
178 { TYPE_X86_CPU, "tcg-cpuid", "off" },
179 { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
180 { "ICH9-LPC", "x-smi-broadcast", "off" },
181 { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
182 { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
183 };
184 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
185
186 GlobalProperty pc_compat_2_7[] = {
187 { TYPE_X86_CPU, "l3-cache", "off" },
188 { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
189 { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
190 { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
191 { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
192 { "isa-pcspk", "migrate", "off" },
193 };
194 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
195
196 GlobalProperty pc_compat_2_6[] = {
197 { TYPE_X86_CPU, "cpuid-0xb", "off" },
198 { "vmxnet3", "romfile", "" },
199 { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
200 { "apic-common", "legacy-instance-id", "on", }
201 };
202 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
203
204 GlobalProperty pc_compat_2_5[] = {};
205 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
206
207 GlobalProperty pc_compat_2_4[] = {
208 PC_CPU_MODEL_IDS("2.4.0")
209 { "Haswell-" TYPE_X86_CPU, "abm", "off" },
210 { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
211 { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
212 { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
213 { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
214 { TYPE_X86_CPU, "check", "off" },
215 { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
216 { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
217 { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
218 { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
219 { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
220 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
221 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
222 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
223 };
224 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
225
226 GlobalProperty pc_compat_2_3[] = {
227 PC_CPU_MODEL_IDS("2.3.0")
228 { TYPE_X86_CPU, "arat", "off" },
229 { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
230 { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
231 { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
232 { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
233 { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
234 { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
235 { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
236 { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
237 { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
238 { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
239 { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
240 { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
241 { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
242 { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243 { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244 { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245 { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
246 { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
247 { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
248 };
249 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
250
251 GlobalProperty pc_compat_2_2[] = {
252 PC_CPU_MODEL_IDS("2.2.0")
253 { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
254 { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
255 { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
256 { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
257 { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
258 { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
259 { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
260 { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
261 { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
262 { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
263 { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
264 { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
265 { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
266 { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
267 { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
268 { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
269 { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
270 { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
271 };
272 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
273
274 GlobalProperty pc_compat_2_1[] = {
275 PC_CPU_MODEL_IDS("2.1.0")
276 { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
277 { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
278 };
279 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
280
281 GlobalProperty pc_compat_2_0[] = {
282 PC_CPU_MODEL_IDS("2.0.0")
283 { "virtio-scsi-pci", "any_layout", "off" },
284 { "PIIX4_PM", "memory-hotplug-support", "off" },
285 { "apic", "version", "0x11" },
286 { "nec-usb-xhci", "superspeed-ports-first", "off" },
287 { "nec-usb-xhci", "force-pcie-endcap", "on" },
288 { "pci-serial", "prog_if", "0" },
289 { "pci-serial-2x", "prog_if", "0" },
290 { "pci-serial-4x", "prog_if", "0" },
291 { "virtio-net-pci", "guest_announce", "off" },
292 { "ICH9-LPC", "memory-hotplug-support", "off" },
293 { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
294 { "ioh3420", COMPAT_PROP_PCP, "off" },
295 };
296 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
297
298 GlobalProperty pc_compat_1_7[] = {
299 PC_CPU_MODEL_IDS("1.7.0")
300 { TYPE_USB_DEVICE, "msos-desc", "no" },
301 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
302 { "hpet", HPET_INTCAP, "4" },
303 };
304 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
305
306 GlobalProperty pc_compat_1_6[] = {
307 PC_CPU_MODEL_IDS("1.6.0")
308 { "e1000", "mitigation", "off" },
309 { "qemu64-" TYPE_X86_CPU, "model", "2" },
310 { "qemu32-" TYPE_X86_CPU, "model", "3" },
311 { "i440FX-pcihost", "short_root_bus", "1" },
312 { "q35-pcihost", "short_root_bus", "1" },
313 };
314 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
315
316 GlobalProperty pc_compat_1_5[] = {
317 PC_CPU_MODEL_IDS("1.5.0")
318 { "Conroe-" TYPE_X86_CPU, "model", "2" },
319 { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
320 { "Penryn-" TYPE_X86_CPU, "model", "2" },
321 { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
322 { "Nehalem-" TYPE_X86_CPU, "model", "2" },
323 { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
324 { "virtio-net-pci", "any_layout", "off" },
325 { TYPE_X86_CPU, "pmu", "on" },
326 { "i440FX-pcihost", "short_root_bus", "0" },
327 { "q35-pcihost", "short_root_bus", "0" },
328 };
329 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
330
331 GlobalProperty pc_compat_1_4[] = {
332 PC_CPU_MODEL_IDS("1.4.0")
333 { "scsi-hd", "discard_granularity", "0" },
334 { "scsi-cd", "discard_granularity", "0" },
335 { "scsi-disk", "discard_granularity", "0" },
336 { "ide-hd", "discard_granularity", "0" },
337 { "ide-cd", "discard_granularity", "0" },
338 { "ide-drive", "discard_granularity", "0" },
339 { "virtio-blk-pci", "discard_granularity", "0" },
340 /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
341 { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
342 { "virtio-net-pci", "ctrl_guest_offloads", "off" },
343 { "e1000", "romfile", "pxe-e1000.rom" },
344 { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
345 { "pcnet", "romfile", "pxe-pcnet.rom" },
346 { "rtl8139", "romfile", "pxe-rtl8139.rom" },
347 { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
348 { "486-" TYPE_X86_CPU, "model", "0" },
349 { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
350 { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
351 };
352 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
353
354 void gsi_handler(void *opaque, int n, int level)
355 {
356 GSIState *s = opaque;
357
358 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
359 if (n < ISA_NUM_IRQS) {
360 qemu_set_irq(s->i8259_irq[n], level);
361 }
362 qemu_set_irq(s->ioapic_irq[n], level);
363 }
364
365 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
366 unsigned size)
367 {
368 }
369
370 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
371 {
372 return 0xffffffffffffffffULL;
373 }
374
375 /* MSDOS compatibility mode FPU exception support */
376 static qemu_irq ferr_irq;
377
378 void pc_register_ferr_irq(qemu_irq irq)
379 {
380 ferr_irq = irq;
381 }
382
383 /* XXX: add IGNNE support */
384 void cpu_set_ferr(CPUX86State *s)
385 {
386 qemu_irq_raise(ferr_irq);
387 }
388
389 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
390 unsigned size)
391 {
392 qemu_irq_lower(ferr_irq);
393 }
394
395 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
396 {
397 return 0xffffffffffffffffULL;
398 }
399
400 /* TSC handling */
401 uint64_t cpu_get_tsc(CPUX86State *env)
402 {
403 return cpu_get_ticks();
404 }
405
406 /* IRQ handling */
407 int cpu_get_pic_interrupt(CPUX86State *env)
408 {
409 X86CPU *cpu = env_archcpu(env);
410 int intno;
411
412 if (!kvm_irqchip_in_kernel()) {
413 intno = apic_get_interrupt(cpu->apic_state);
414 if (intno >= 0) {
415 return intno;
416 }
417 /* read the irq from the PIC */
418 if (!apic_accept_pic_intr(cpu->apic_state)) {
419 return -1;
420 }
421 }
422
423 intno = pic_read_irq(isa_pic);
424 return intno;
425 }
426
427 static void pic_irq_request(void *opaque, int irq, int level)
428 {
429 CPUState *cs = first_cpu;
430 X86CPU *cpu = X86_CPU(cs);
431
432 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
433 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
434 CPU_FOREACH(cs) {
435 cpu = X86_CPU(cs);
436 if (apic_accept_pic_intr(cpu->apic_state)) {
437 apic_deliver_pic_intr(cpu->apic_state, level);
438 }
439 }
440 } else {
441 if (level) {
442 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
443 } else {
444 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
445 }
446 }
447 }
448
449 /* PC cmos mappings */
450
451 #define REG_EQUIPMENT_BYTE 0x14
452
453 int cmos_get_fd_drive_type(FloppyDriveType fd0)
454 {
455 int val;
456
457 switch (fd0) {
458 case FLOPPY_DRIVE_TYPE_144:
459 /* 1.44 Mb 3"5 drive */
460 val = 4;
461 break;
462 case FLOPPY_DRIVE_TYPE_288:
463 /* 2.88 Mb 3"5 drive */
464 val = 5;
465 break;
466 case FLOPPY_DRIVE_TYPE_120:
467 /* 1.2 Mb 5"5 drive */
468 val = 2;
469 break;
470 case FLOPPY_DRIVE_TYPE_NONE:
471 default:
472 val = 0;
473 break;
474 }
475 return val;
476 }
477
478 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
479 int16_t cylinders, int8_t heads, int8_t sectors)
480 {
481 rtc_set_memory(s, type_ofs, 47);
482 rtc_set_memory(s, info_ofs, cylinders);
483 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
484 rtc_set_memory(s, info_ofs + 2, heads);
485 rtc_set_memory(s, info_ofs + 3, 0xff);
486 rtc_set_memory(s, info_ofs + 4, 0xff);
487 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
488 rtc_set_memory(s, info_ofs + 6, cylinders);
489 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
490 rtc_set_memory(s, info_ofs + 8, sectors);
491 }
492
493 /* convert boot_device letter to something recognizable by the bios */
494 static int boot_device2nibble(char boot_device)
495 {
496 switch(boot_device) {
497 case 'a':
498 case 'b':
499 return 0x01; /* floppy boot */
500 case 'c':
501 return 0x02; /* hard drive boot */
502 case 'd':
503 return 0x03; /* CD-ROM boot */
504 case 'n':
505 return 0x04; /* Network boot */
506 }
507 return 0;
508 }
509
510 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
511 {
512 #define PC_MAX_BOOT_DEVICES 3
513 int nbds, bds[3] = { 0, };
514 int i;
515
516 nbds = strlen(boot_device);
517 if (nbds > PC_MAX_BOOT_DEVICES) {
518 error_setg(errp, "Too many boot devices for PC");
519 return;
520 }
521 for (i = 0; i < nbds; i++) {
522 bds[i] = boot_device2nibble(boot_device[i]);
523 if (bds[i] == 0) {
524 error_setg(errp, "Invalid boot device for PC: '%c'",
525 boot_device[i]);
526 return;
527 }
528 }
529 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
530 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
531 }
532
533 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
534 {
535 set_boot_dev(opaque, boot_device, errp);
536 }
537
538 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
539 {
540 int val, nb, i;
541 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
542 FLOPPY_DRIVE_TYPE_NONE };
543
544 /* floppy type */
545 if (floppy) {
546 for (i = 0; i < 2; i++) {
547 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
548 }
549 }
550 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
551 cmos_get_fd_drive_type(fd_type[1]);
552 rtc_set_memory(rtc_state, 0x10, val);
553
554 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
555 nb = 0;
556 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
557 nb++;
558 }
559 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
560 nb++;
561 }
562 switch (nb) {
563 case 0:
564 break;
565 case 1:
566 val |= 0x01; /* 1 drive, ready for boot */
567 break;
568 case 2:
569 val |= 0x41; /* 2 drives, ready for boot */
570 break;
571 }
572 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
573 }
574
575 typedef struct pc_cmos_init_late_arg {
576 ISADevice *rtc_state;
577 BusState *idebus[2];
578 } pc_cmos_init_late_arg;
579
580 typedef struct check_fdc_state {
581 ISADevice *floppy;
582 bool multiple;
583 } CheckFdcState;
584
585 static int check_fdc(Object *obj, void *opaque)
586 {
587 CheckFdcState *state = opaque;
588 Object *fdc;
589 uint32_t iobase;
590 Error *local_err = NULL;
591
592 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
593 if (!fdc) {
594 return 0;
595 }
596
597 iobase = object_property_get_uint(obj, "iobase", &local_err);
598 if (local_err || iobase != 0x3f0) {
599 error_free(local_err);
600 return 0;
601 }
602
603 if (state->floppy) {
604 state->multiple = true;
605 } else {
606 state->floppy = ISA_DEVICE(obj);
607 }
608 return 0;
609 }
610
611 static const char * const fdc_container_path[] = {
612 "/unattached", "/peripheral", "/peripheral-anon"
613 };
614
615 /*
616 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
617 * and ACPI objects.
618 */
619 ISADevice *pc_find_fdc0(void)
620 {
621 int i;
622 Object *container;
623 CheckFdcState state = { 0 };
624
625 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
626 container = container_get(qdev_get_machine(), fdc_container_path[i]);
627 object_child_foreach(container, check_fdc, &state);
628 }
629
630 if (state.multiple) {
631 warn_report("multiple floppy disk controllers with "
632 "iobase=0x3f0 have been found");
633 error_printf("the one being picked for CMOS setup might not reflect "
634 "your intent");
635 }
636
637 return state.floppy;
638 }
639
640 static void pc_cmos_init_late(void *opaque)
641 {
642 pc_cmos_init_late_arg *arg = opaque;
643 ISADevice *s = arg->rtc_state;
644 int16_t cylinders;
645 int8_t heads, sectors;
646 int val;
647 int i, trans;
648
649 val = 0;
650 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
651 &cylinders, &heads, &sectors) >= 0) {
652 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
653 val |= 0xf0;
654 }
655 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
656 &cylinders, &heads, &sectors) >= 0) {
657 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
658 val |= 0x0f;
659 }
660 rtc_set_memory(s, 0x12, val);
661
662 val = 0;
663 for (i = 0; i < 4; i++) {
664 /* NOTE: ide_get_geometry() returns the physical
665 geometry. It is always such that: 1 <= sects <= 63, 1
666 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
667 geometry can be different if a translation is done. */
668 if (arg->idebus[i / 2] &&
669 ide_get_geometry(arg->idebus[i / 2], i % 2,
670 &cylinders, &heads, &sectors) >= 0) {
671 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
672 assert((trans & ~3) == 0);
673 val |= trans << (i * 2);
674 }
675 }
676 rtc_set_memory(s, 0x39, val);
677
678 pc_cmos_init_floppy(s, pc_find_fdc0());
679
680 qemu_unregister_reset(pc_cmos_init_late, opaque);
681 }
682
683 void pc_cmos_init(PCMachineState *pcms,
684 BusState *idebus0, BusState *idebus1,
685 ISADevice *s)
686 {
687 int val;
688 static pc_cmos_init_late_arg arg;
689
690 /* various important CMOS locations needed by PC/Bochs bios */
691
692 /* memory size */
693 /* base memory (first MiB) */
694 val = MIN(pcms->below_4g_mem_size / KiB, 640);
695 rtc_set_memory(s, 0x15, val);
696 rtc_set_memory(s, 0x16, val >> 8);
697 /* extended memory (next 64MiB) */
698 if (pcms->below_4g_mem_size > 1 * MiB) {
699 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
700 } else {
701 val = 0;
702 }
703 if (val > 65535)
704 val = 65535;
705 rtc_set_memory(s, 0x17, val);
706 rtc_set_memory(s, 0x18, val >> 8);
707 rtc_set_memory(s, 0x30, val);
708 rtc_set_memory(s, 0x31, val >> 8);
709 /* memory between 16MiB and 4GiB */
710 if (pcms->below_4g_mem_size > 16 * MiB) {
711 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
712 } else {
713 val = 0;
714 }
715 if (val > 65535)
716 val = 65535;
717 rtc_set_memory(s, 0x34, val);
718 rtc_set_memory(s, 0x35, val >> 8);
719 /* memory above 4GiB */
720 val = pcms->above_4g_mem_size / 65536;
721 rtc_set_memory(s, 0x5b, val);
722 rtc_set_memory(s, 0x5c, val >> 8);
723 rtc_set_memory(s, 0x5d, val >> 16);
724
725 object_property_add_link(OBJECT(pcms), "rtc_state",
726 TYPE_ISA_DEVICE,
727 (Object **)&pcms->rtc,
728 object_property_allow_set_link,
729 OBJ_PROP_LINK_STRONG, &error_abort);
730 object_property_set_link(OBJECT(pcms), OBJECT(s),
731 "rtc_state", &error_abort);
732
733 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
734
735 val = 0;
736 val |= 0x02; /* FPU is there */
737 val |= 0x04; /* PS/2 mouse installed */
738 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
739
740 /* hard drives and FDC */
741 arg.rtc_state = s;
742 arg.idebus[0] = idebus0;
743 arg.idebus[1] = idebus1;
744 qemu_register_reset(pc_cmos_init_late, &arg);
745 }
746
747 #define TYPE_PORT92 "port92"
748 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
749
750 /* port 92 stuff: could be split off */
751 typedef struct Port92State {
752 ISADevice parent_obj;
753
754 MemoryRegion io;
755 uint8_t outport;
756 qemu_irq a20_out;
757 } Port92State;
758
759 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
760 unsigned size)
761 {
762 Port92State *s = opaque;
763 int oldval = s->outport;
764
765 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
766 s->outport = val;
767 qemu_set_irq(s->a20_out, (val >> 1) & 1);
768 if ((val & 1) && !(oldval & 1)) {
769 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
770 }
771 }
772
773 static uint64_t port92_read(void *opaque, hwaddr addr,
774 unsigned size)
775 {
776 Port92State *s = opaque;
777 uint32_t ret;
778
779 ret = s->outport;
780 DPRINTF("port92: read 0x%02x\n", ret);
781 return ret;
782 }
783
784 static void port92_init(ISADevice *dev, qemu_irq a20_out)
785 {
786 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
787 }
788
789 static const VMStateDescription vmstate_port92_isa = {
790 .name = "port92",
791 .version_id = 1,
792 .minimum_version_id = 1,
793 .fields = (VMStateField[]) {
794 VMSTATE_UINT8(outport, Port92State),
795 VMSTATE_END_OF_LIST()
796 }
797 };
798
799 static void port92_reset(DeviceState *d)
800 {
801 Port92State *s = PORT92(d);
802
803 s->outport &= ~1;
804 }
805
806 static const MemoryRegionOps port92_ops = {
807 .read = port92_read,
808 .write = port92_write,
809 .impl = {
810 .min_access_size = 1,
811 .max_access_size = 1,
812 },
813 .endianness = DEVICE_LITTLE_ENDIAN,
814 };
815
816 static void port92_initfn(Object *obj)
817 {
818 Port92State *s = PORT92(obj);
819
820 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
821
822 s->outport = 0;
823
824 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
825 }
826
827 static void port92_realizefn(DeviceState *dev, Error **errp)
828 {
829 ISADevice *isadev = ISA_DEVICE(dev);
830 Port92State *s = PORT92(dev);
831
832 isa_register_ioport(isadev, &s->io, 0x92);
833 }
834
835 static void port92_class_initfn(ObjectClass *klass, void *data)
836 {
837 DeviceClass *dc = DEVICE_CLASS(klass);
838
839 dc->realize = port92_realizefn;
840 dc->reset = port92_reset;
841 dc->vmsd = &vmstate_port92_isa;
842 /*
843 * Reason: unlike ordinary ISA devices, this one needs additional
844 * wiring: its A20 output line needs to be wired up by
845 * port92_init().
846 */
847 dc->user_creatable = false;
848 }
849
850 static const TypeInfo port92_info = {
851 .name = TYPE_PORT92,
852 .parent = TYPE_ISA_DEVICE,
853 .instance_size = sizeof(Port92State),
854 .instance_init = port92_initfn,
855 .class_init = port92_class_initfn,
856 };
857
858 static void port92_register_types(void)
859 {
860 type_register_static(&port92_info);
861 }
862
863 type_init(port92_register_types)
864
865 static void handle_a20_line_change(void *opaque, int irq, int level)
866 {
867 X86CPU *cpu = opaque;
868
869 /* XXX: send to all CPUs ? */
870 /* XXX: add logic to handle multiple A20 line sources */
871 x86_cpu_set_a20(cpu, level);
872 }
873
874 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
875 {
876 int index = le32_to_cpu(e820_reserve.count);
877 struct e820_entry *entry;
878
879 if (type != E820_RAM) {
880 /* old FW_CFG_E820_TABLE entry -- reservations only */
881 if (index >= E820_NR_ENTRIES) {
882 return -EBUSY;
883 }
884 entry = &e820_reserve.entry[index++];
885
886 entry->address = cpu_to_le64(address);
887 entry->length = cpu_to_le64(length);
888 entry->type = cpu_to_le32(type);
889
890 e820_reserve.count = cpu_to_le32(index);
891 }
892
893 /* new "etc/e820" file -- include ram too */
894 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
895 e820_table[e820_entries].address = cpu_to_le64(address);
896 e820_table[e820_entries].length = cpu_to_le64(length);
897 e820_table[e820_entries].type = cpu_to_le32(type);
898 e820_entries++;
899
900 return e820_entries;
901 }
902
903 int e820_get_num_entries(void)
904 {
905 return e820_entries;
906 }
907
908 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
909 {
910 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
911 *address = le64_to_cpu(e820_table[idx].address);
912 *length = le64_to_cpu(e820_table[idx].length);
913 return true;
914 }
915 return false;
916 }
917
918 /* Calculates initial APIC ID for a specific CPU index
919 *
920 * Currently we need to be able to calculate the APIC ID from the CPU index
921 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
922 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
923 * all CPUs up to max_cpus.
924 */
925 static uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
926 unsigned int cpu_index)
927 {
928 MachineState *ms = MACHINE(pcms);
929 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
930 uint32_t correct_id;
931 static bool warned;
932
933 correct_id = x86_apicid_from_cpu_idx(ms->smp.cores,
934 ms->smp.threads, cpu_index);
935 if (pcmc->compat_apic_id_mode) {
936 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
937 error_report("APIC IDs set in compatibility mode, "
938 "CPU topology won't match the configuration");
939 warned = true;
940 }
941 return cpu_index;
942 } else {
943 return correct_id;
944 }
945 }
946
947 static void pc_build_smbios(PCMachineState *pcms)
948 {
949 uint8_t *smbios_tables, *smbios_anchor;
950 size_t smbios_tables_len, smbios_anchor_len;
951 struct smbios_phys_mem_area *mem_array;
952 unsigned i, array_count;
953 MachineState *ms = MACHINE(pcms);
954 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
955
956 /* tell smbios about cpuid version and features */
957 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
958
959 smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len);
960 if (smbios_tables) {
961 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
962 smbios_tables, smbios_tables_len);
963 }
964
965 /* build the array of physical mem area from e820 table */
966 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
967 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
968 uint64_t addr, len;
969
970 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
971 mem_array[array_count].address = addr;
972 mem_array[array_count].length = len;
973 array_count++;
974 }
975 }
976 smbios_get_tables(ms, mem_array, array_count,
977 &smbios_tables, &smbios_tables_len,
978 &smbios_anchor, &smbios_anchor_len);
979 g_free(mem_array);
980
981 if (smbios_anchor) {
982 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
983 smbios_tables, smbios_tables_len);
984 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
985 smbios_anchor, smbios_anchor_len);
986 }
987 }
988
989 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
990 {
991 FWCfgState *fw_cfg;
992 uint64_t *numa_fw_cfg;
993 int i;
994 const CPUArchIdList *cpus;
995 MachineClass *mc = MACHINE_GET_CLASS(pcms);
996
997 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
998 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
999
1000 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1001 *
1002 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1003 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1004 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1005 * for CPU hotplug also uses APIC ID and not "CPU index".
1006 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1007 * but the "limit to the APIC ID values SeaBIOS may see".
1008 *
1009 * So for compatibility reasons with old BIOSes we are stuck with
1010 * "etc/max-cpus" actually being apic_id_limit
1011 */
1012 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1013 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1014 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1015 acpi_tables, acpi_tables_len);
1016 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1017
1018 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1019 &e820_reserve, sizeof(e820_reserve));
1020 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1021 sizeof(struct e820_entry) * e820_entries);
1022
1023 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1024 /* allocate memory for the NUMA channel: one (64bit) word for the number
1025 * of nodes, one word for each VCPU->node and one word for each node to
1026 * hold the amount of memory.
1027 */
1028 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1029 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1030 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1031 for (i = 0; i < cpus->len; i++) {
1032 unsigned int apic_id = cpus->cpus[i].arch_id;
1033 assert(apic_id < pcms->apic_id_limit);
1034 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1035 }
1036 for (i = 0; i < nb_numa_nodes; i++) {
1037 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1038 cpu_to_le64(numa_info[i].node_mem);
1039 }
1040 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1041 (1 + pcms->apic_id_limit + nb_numa_nodes) *
1042 sizeof(*numa_fw_cfg));
1043
1044 return fw_cfg;
1045 }
1046
1047 static long get_file_size(FILE *f)
1048 {
1049 long where, size;
1050
1051 /* XXX: on Unix systems, using fstat() probably makes more sense */
1052
1053 where = ftell(f);
1054 fseek(f, 0, SEEK_END);
1055 size = ftell(f);
1056 fseek(f, where, SEEK_SET);
1057
1058 return size;
1059 }
1060
1061 struct setup_data {
1062 uint64_t next;
1063 uint32_t type;
1064 uint32_t len;
1065 uint8_t data[0];
1066 } __attribute__((packed));
1067
1068
1069 /*
1070 * The entry point into the kernel for PVH boot is different from
1071 * the native entry point. The PVH entry is defined by the x86/HVM
1072 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1073 *
1074 * This function is passed to load_elf() when it is called from
1075 * load_elfboot() which then additionally checks for an ELF Note of
1076 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1077 * parse the PVH entry address from the ELF Note.
1078 *
1079 * Due to trickery in elf_opts.h, load_elf() is actually available as
1080 * load_elf32() or load_elf64() and this routine needs to be able
1081 * to deal with being called as 32 or 64 bit.
1082 *
1083 * The address of the PVH entry point is saved to the 'pvh_start_addr'
1084 * global variable. (although the entry point is 32-bit, the kernel
1085 * binary can be either 32-bit or 64-bit).
1086 */
1087 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1088 {
1089 size_t *elf_note_data_addr;
1090
1091 /* Check if ELF Note header passed in is valid */
1092 if (arg1 == NULL) {
1093 return 0;
1094 }
1095
1096 if (is64) {
1097 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1098 uint64_t nhdr_size64 = sizeof(struct elf64_note);
1099 uint64_t phdr_align = *(uint64_t *)arg2;
1100 uint64_t nhdr_namesz = nhdr64->n_namesz;
1101
1102 elf_note_data_addr =
1103 ((void *)nhdr64) + nhdr_size64 +
1104 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1105 } else {
1106 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1107 uint32_t nhdr_size32 = sizeof(struct elf32_note);
1108 uint32_t phdr_align = *(uint32_t *)arg2;
1109 uint32_t nhdr_namesz = nhdr32->n_namesz;
1110
1111 elf_note_data_addr =
1112 ((void *)nhdr32) + nhdr_size32 +
1113 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1114 }
1115
1116 pvh_start_addr = *elf_note_data_addr;
1117
1118 return pvh_start_addr;
1119 }
1120
1121 static bool load_elfboot(const char *kernel_filename,
1122 int kernel_file_size,
1123 uint8_t *header,
1124 size_t pvh_xen_start_addr,
1125 FWCfgState *fw_cfg)
1126 {
1127 uint32_t flags = 0;
1128 uint32_t mh_load_addr = 0;
1129 uint32_t elf_kernel_size = 0;
1130 uint64_t elf_entry;
1131 uint64_t elf_low, elf_high;
1132 int kernel_size;
1133
1134 if (ldl_p(header) != 0x464c457f) {
1135 return false; /* no elfboot */
1136 }
1137
1138 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1139 flags = elf_is64 ?
1140 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1141
1142 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1143 error_report("elfboot unsupported flags = %x", flags);
1144 exit(1);
1145 }
1146
1147 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1148 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1149 NULL, &elf_note_type, &elf_entry,
1150 &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1151 0, 0);
1152
1153 if (kernel_size < 0) {
1154 error_report("Error while loading elf kernel");
1155 exit(1);
1156 }
1157 mh_load_addr = elf_low;
1158 elf_kernel_size = elf_high - elf_low;
1159
1160 if (pvh_start_addr == 0) {
1161 error_report("Error loading uncompressed kernel without PVH ELF Note");
1162 exit(1);
1163 }
1164 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1165 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1166 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1167
1168 return true;
1169 }
1170
1171 static void load_linux(PCMachineState *pcms,
1172 FWCfgState *fw_cfg)
1173 {
1174 uint16_t protocol;
1175 int setup_size, kernel_size, cmdline_size;
1176 int dtb_size, setup_data_offset;
1177 uint32_t initrd_max;
1178 uint8_t header[8192], *setup, *kernel;
1179 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1180 FILE *f;
1181 char *vmode;
1182 MachineState *machine = MACHINE(pcms);
1183 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1184 struct setup_data *setup_data;
1185 const char *kernel_filename = machine->kernel_filename;
1186 const char *initrd_filename = machine->initrd_filename;
1187 const char *dtb_filename = machine->dtb;
1188 const char *kernel_cmdline = machine->kernel_cmdline;
1189
1190 /* Align to 16 bytes as a paranoia measure */
1191 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1192
1193 /* load the kernel header */
1194 f = fopen(kernel_filename, "rb");
1195 if (!f || !(kernel_size = get_file_size(f)) ||
1196 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1197 MIN(ARRAY_SIZE(header), kernel_size)) {
1198 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1199 kernel_filename, strerror(errno));
1200 exit(1);
1201 }
1202
1203 /* kernel protocol version */
1204 #if 0
1205 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1206 #endif
1207 if (ldl_p(header+0x202) == 0x53726448) {
1208 protocol = lduw_p(header+0x206);
1209 } else {
1210 /*
1211 * This could be a multiboot kernel. If it is, let's stop treating it
1212 * like a Linux kernel.
1213 * Note: some multiboot images could be in the ELF format (the same of
1214 * PVH), so we try multiboot first since we check the multiboot magic
1215 * header before to load it.
1216 */
1217 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1218 kernel_cmdline, kernel_size, header)) {
1219 return;
1220 }
1221 /*
1222 * Check if the file is an uncompressed kernel file (ELF) and load it,
1223 * saving the PVH entry point used by the x86/HVM direct boot ABI.
1224 * If load_elfboot() is successful, populate the fw_cfg info.
1225 */
1226 if (pcmc->pvh_enabled &&
1227 load_elfboot(kernel_filename, kernel_size,
1228 header, pvh_start_addr, fw_cfg)) {
1229 fclose(f);
1230
1231 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1232 strlen(kernel_cmdline) + 1);
1233 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1234
1235 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1236 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1237 header, sizeof(header));
1238
1239 /* load initrd */
1240 if (initrd_filename) {
1241 gsize initrd_size;
1242 gchar *initrd_data;
1243 GError *gerr = NULL;
1244
1245 if (!g_file_get_contents(initrd_filename, &initrd_data,
1246 &initrd_size, &gerr)) {
1247 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1248 initrd_filename, gerr->message);
1249 exit(1);
1250 }
1251
1252 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1253 if (initrd_size >= initrd_max) {
1254 fprintf(stderr, "qemu: initrd is too large, cannot support."
1255 "(max: %"PRIu32", need %"PRId64")\n",
1256 initrd_max, (uint64_t)initrd_size);
1257 exit(1);
1258 }
1259
1260 initrd_addr = (initrd_max - initrd_size) & ~4095;
1261
1262 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1263 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1264 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1265 initrd_size);
1266 }
1267
1268 option_rom[nb_option_roms].bootindex = 0;
1269 option_rom[nb_option_roms].name = "pvh.bin";
1270 nb_option_roms++;
1271
1272 return;
1273 }
1274 protocol = 0;
1275 }
1276
1277 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1278 /* Low kernel */
1279 real_addr = 0x90000;
1280 cmdline_addr = 0x9a000 - cmdline_size;
1281 prot_addr = 0x10000;
1282 } else if (protocol < 0x202) {
1283 /* High but ancient kernel */
1284 real_addr = 0x90000;
1285 cmdline_addr = 0x9a000 - cmdline_size;
1286 prot_addr = 0x100000;
1287 } else {
1288 /* High and recent kernel */
1289 real_addr = 0x10000;
1290 cmdline_addr = 0x20000;
1291 prot_addr = 0x100000;
1292 }
1293
1294 #if 0
1295 fprintf(stderr,
1296 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
1297 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
1298 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
1299 real_addr,
1300 cmdline_addr,
1301 prot_addr);
1302 #endif
1303
1304 /* highest address for loading the initrd */
1305 if (protocol >= 0x20c &&
1306 lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1307 /*
1308 * Linux has supported initrd up to 4 GB for a very long time (2007,
1309 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1310 * though it only sets initrd_max to 2 GB to "work around bootloader
1311 * bugs". Luckily, QEMU firmware(which does something like bootloader)
1312 * has supported this.
1313 *
1314 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1315 * be loaded into any address.
1316 *
1317 * In addition, initrd_max is uint32_t simply because QEMU doesn't
1318 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1319 * field).
1320 *
1321 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1322 */
1323 initrd_max = UINT32_MAX;
1324 } else if (protocol >= 0x203) {
1325 initrd_max = ldl_p(header+0x22c);
1326 } else {
1327 initrd_max = 0x37ffffff;
1328 }
1329
1330 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1331 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1332 }
1333
1334 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1335 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1336 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1337
1338 if (protocol >= 0x202) {
1339 stl_p(header+0x228, cmdline_addr);
1340 } else {
1341 stw_p(header+0x20, 0xA33F);
1342 stw_p(header+0x22, cmdline_addr-real_addr);
1343 }
1344
1345 /* handle vga= parameter */
1346 vmode = strstr(kernel_cmdline, "vga=");
1347 if (vmode) {
1348 unsigned int video_mode;
1349 /* skip "vga=" */
1350 vmode += 4;
1351 if (!strncmp(vmode, "normal", 6)) {
1352 video_mode = 0xffff;
1353 } else if (!strncmp(vmode, "ext", 3)) {
1354 video_mode = 0xfffe;
1355 } else if (!strncmp(vmode, "ask", 3)) {
1356 video_mode = 0xfffd;
1357 } else {
1358 video_mode = strtol(vmode, NULL, 0);
1359 }
1360 stw_p(header+0x1fa, video_mode);
1361 }
1362
1363 /* loader type */
1364 /* High nybble = B reserved for QEMU; low nybble is revision number.
1365 If this code is substantially changed, you may want to consider
1366 incrementing the revision. */
1367 if (protocol >= 0x200) {
1368 header[0x210] = 0xB0;
1369 }
1370 /* heap */
1371 if (protocol >= 0x201) {
1372 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1373 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1374 }
1375
1376 /* load initrd */
1377 if (initrd_filename) {
1378 gsize initrd_size;
1379 gchar *initrd_data;
1380 GError *gerr = NULL;
1381
1382 if (protocol < 0x200) {
1383 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1384 exit(1);
1385 }
1386
1387 if (!g_file_get_contents(initrd_filename, &initrd_data,
1388 &initrd_size, &gerr)) {
1389 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1390 initrd_filename, gerr->message);
1391 exit(1);
1392 }
1393 if (initrd_size >= initrd_max) {
1394 fprintf(stderr, "qemu: initrd is too large, cannot support."
1395 "(max: %"PRIu32", need %"PRId64")\n",
1396 initrd_max, (uint64_t)initrd_size);
1397 exit(1);
1398 }
1399
1400 initrd_addr = (initrd_max-initrd_size) & ~4095;
1401
1402 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1403 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1404 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1405
1406 stl_p(header+0x218, initrd_addr);
1407 stl_p(header+0x21c, initrd_size);
1408 }
1409
1410 /* load kernel and setup */
1411 setup_size = header[0x1f1];
1412 if (setup_size == 0) {
1413 setup_size = 4;
1414 }
1415 setup_size = (setup_size+1)*512;
1416 if (setup_size > kernel_size) {
1417 fprintf(stderr, "qemu: invalid kernel header\n");
1418 exit(1);
1419 }
1420 kernel_size -= setup_size;
1421
1422 setup = g_malloc(setup_size);
1423 kernel = g_malloc(kernel_size);
1424 fseek(f, 0, SEEK_SET);
1425 if (fread(setup, 1, setup_size, f) != setup_size) {
1426 fprintf(stderr, "fread() failed\n");
1427 exit(1);
1428 }
1429 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1430 fprintf(stderr, "fread() failed\n");
1431 exit(1);
1432 }
1433 fclose(f);
1434
1435 /* append dtb to kernel */
1436 if (dtb_filename) {
1437 if (protocol < 0x209) {
1438 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1439 exit(1);
1440 }
1441
1442 dtb_size = get_image_size(dtb_filename);
1443 if (dtb_size <= 0) {
1444 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1445 dtb_filename, strerror(errno));
1446 exit(1);
1447 }
1448
1449 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1450 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1451 kernel = g_realloc(kernel, kernel_size);
1452
1453 stq_p(header+0x250, prot_addr + setup_data_offset);
1454
1455 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1456 setup_data->next = 0;
1457 setup_data->type = cpu_to_le32(SETUP_DTB);
1458 setup_data->len = cpu_to_le32(dtb_size);
1459
1460 load_image_size(dtb_filename, setup_data->data, dtb_size);
1461 }
1462
1463 memcpy(setup, header, MIN(sizeof(header), setup_size));
1464
1465 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1466 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1467 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1468
1469 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1470 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1471 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1472
1473 option_rom[nb_option_roms].bootindex = 0;
1474 option_rom[nb_option_roms].name = "linuxboot.bin";
1475 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1476 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1477 }
1478 nb_option_roms++;
1479 }
1480
1481 #define NE2000_NB_MAX 6
1482
1483 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1484 0x280, 0x380 };
1485 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1486
1487 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1488 {
1489 static int nb_ne2k = 0;
1490
1491 if (nb_ne2k == NE2000_NB_MAX)
1492 return;
1493 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1494 ne2000_irq[nb_ne2k], nd);
1495 nb_ne2k++;
1496 }
1497
1498 DeviceState *cpu_get_current_apic(void)
1499 {
1500 if (current_cpu) {
1501 X86CPU *cpu = X86_CPU(current_cpu);
1502 return cpu->apic_state;
1503 } else {
1504 return NULL;
1505 }
1506 }
1507
1508 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1509 {
1510 X86CPU *cpu = opaque;
1511
1512 if (level) {
1513 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1514 }
1515 }
1516
1517 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1518 {
1519 Object *cpu = NULL;
1520 Error *local_err = NULL;
1521
1522 cpu = object_new(typename);
1523
1524 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1525 object_property_set_bool(cpu, true, "realized", &local_err);
1526
1527 object_unref(cpu);
1528 error_propagate(errp, local_err);
1529 }
1530
1531 void pc_hot_add_cpu(MachineState *ms, const int64_t id, Error **errp)
1532 {
1533 PCMachineState *pcms = PC_MACHINE(ms);
1534 int64_t apic_id = x86_cpu_apic_id_from_index(pcms, id);
1535 Error *local_err = NULL;
1536
1537 if (id < 0) {
1538 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1539 return;
1540 }
1541
1542 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1543 error_setg(errp, "Unable to add CPU: %" PRIi64
1544 ", resulting APIC ID (%" PRIi64 ") is too large",
1545 id, apic_id);
1546 return;
1547 }
1548
1549 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1550 if (local_err) {
1551 error_propagate(errp, local_err);
1552 return;
1553 }
1554 }
1555
1556 void pc_cpus_init(PCMachineState *pcms)
1557 {
1558 int i;
1559 const CPUArchIdList *possible_cpus;
1560 MachineState *ms = MACHINE(pcms);
1561 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1562
1563 /* Calculates the limit to CPU APIC ID values
1564 *
1565 * Limit for the APIC ID value, so that all
1566 * CPU APIC IDs are < pcms->apic_id_limit.
1567 *
1568 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1569 */
1570 pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms,
1571 ms->smp.max_cpus - 1) + 1;
1572 possible_cpus = mc->possible_cpu_arch_ids(ms);
1573 for (i = 0; i < ms->smp.cpus; i++) {
1574 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1575 &error_fatal);
1576 }
1577 }
1578
1579 static void pc_build_feature_control_file(PCMachineState *pcms)
1580 {
1581 MachineState *ms = MACHINE(pcms);
1582 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1583 CPUX86State *env = &cpu->env;
1584 uint32_t unused, ecx, edx;
1585 uint64_t feature_control_bits = 0;
1586 uint64_t *val;
1587
1588 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1589 if (ecx & CPUID_EXT_VMX) {
1590 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1591 }
1592
1593 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1594 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1595 (env->mcg_cap & MCG_LMCE_P)) {
1596 feature_control_bits |= FEATURE_CONTROL_LMCE;
1597 }
1598
1599 if (!feature_control_bits) {
1600 return;
1601 }
1602
1603 val = g_malloc(sizeof(*val));
1604 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1605 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1606 }
1607
1608 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1609 {
1610 if (cpus_count > 0xff) {
1611 /* If the number of CPUs can't be represented in 8 bits, the
1612 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1613 * to make old BIOSes fail more predictably.
1614 */
1615 rtc_set_memory(rtc, 0x5f, 0);
1616 } else {
1617 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1618 }
1619 }
1620
1621 static
1622 void pc_machine_done(Notifier *notifier, void *data)
1623 {
1624 PCMachineState *pcms = container_of(notifier,
1625 PCMachineState, machine_done);
1626 PCIBus *bus = pcms->bus;
1627
1628 /* set the number of CPUs */
1629 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1630
1631 if (bus) {
1632 int extra_hosts = 0;
1633
1634 QLIST_FOREACH(bus, &bus->child, sibling) {
1635 /* look for expander root buses */
1636 if (pci_bus_is_root(bus)) {
1637 extra_hosts++;
1638 }
1639 }
1640 if (extra_hosts && pcms->fw_cfg) {
1641 uint64_t *val = g_malloc(sizeof(*val));
1642 *val = cpu_to_le64(extra_hosts);
1643 fw_cfg_add_file(pcms->fw_cfg,
1644 "etc/extra-pci-roots", val, sizeof(*val));
1645 }
1646 }
1647
1648 acpi_setup();
1649 if (pcms->fw_cfg) {
1650 pc_build_smbios(pcms);
1651 pc_build_feature_control_file(pcms);
1652 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1653 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1654 }
1655
1656 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1657 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1658
1659 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1660 iommu->intr_eim != ON_OFF_AUTO_ON) {
1661 error_report("current -smp configuration requires "
1662 "Extended Interrupt Mode enabled. "
1663 "You can add an IOMMU using: "
1664 "-device intel-iommu,intremap=on,eim=on");
1665 exit(EXIT_FAILURE);
1666 }
1667 }
1668 }
1669
1670 void pc_guest_info_init(PCMachineState *pcms)
1671 {
1672 int i;
1673
1674 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1675 pcms->numa_nodes = nb_numa_nodes;
1676 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1677 sizeof *pcms->node_mem);
1678 for (i = 0; i < nb_numa_nodes; i++) {
1679 pcms->node_mem[i] = numa_info[i].node_mem;
1680 }
1681
1682 pcms->machine_done.notify = pc_machine_done;
1683 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1684 }
1685
1686 /* setup pci memory address space mapping into system address space */
1687 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1688 MemoryRegion *pci_address_space)
1689 {
1690 /* Set to lower priority than RAM */
1691 memory_region_add_subregion_overlap(system_memory, 0x0,
1692 pci_address_space, -1);
1693 }
1694
1695 void xen_load_linux(PCMachineState *pcms)
1696 {
1697 int i;
1698 FWCfgState *fw_cfg;
1699
1700 assert(MACHINE(pcms)->kernel_filename != NULL);
1701
1702 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1703 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1704 rom_set_fw(fw_cfg);
1705
1706 load_linux(pcms, fw_cfg);
1707 for (i = 0; i < nb_option_roms; i++) {
1708 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1709 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1710 !strcmp(option_rom[i].name, "pvh.bin") ||
1711 !strcmp(option_rom[i].name, "multiboot.bin"));
1712 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1713 }
1714 pcms->fw_cfg = fw_cfg;
1715 }
1716
1717 void pc_memory_init(PCMachineState *pcms,
1718 MemoryRegion *system_memory,
1719 MemoryRegion *rom_memory,
1720 MemoryRegion **ram_memory)
1721 {
1722 int linux_boot, i;
1723 MemoryRegion *ram, *option_rom_mr;
1724 MemoryRegion *ram_below_4g, *ram_above_4g;
1725 FWCfgState *fw_cfg;
1726 MachineState *machine = MACHINE(pcms);
1727 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1728
1729 assert(machine->ram_size == pcms->below_4g_mem_size +
1730 pcms->above_4g_mem_size);
1731
1732 linux_boot = (machine->kernel_filename != NULL);
1733
1734 /* Allocate RAM. We allocate it as a single memory region and use
1735 * aliases to address portions of it, mostly for backwards compatibility
1736 * with older qemus that used qemu_ram_alloc().
1737 */
1738 ram = g_malloc(sizeof(*ram));
1739 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1740 machine->ram_size);
1741 *ram_memory = ram;
1742 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1743 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1744 0, pcms->below_4g_mem_size);
1745 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1746 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1747 if (pcms->above_4g_mem_size > 0) {
1748 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1749 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1750 pcms->below_4g_mem_size,
1751 pcms->above_4g_mem_size);
1752 memory_region_add_subregion(system_memory, 0x100000000ULL,
1753 ram_above_4g);
1754 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1755 }
1756
1757 if (!pcmc->has_reserved_memory &&
1758 (machine->ram_slots ||
1759 (machine->maxram_size > machine->ram_size))) {
1760 MachineClass *mc = MACHINE_GET_CLASS(machine);
1761
1762 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1763 mc->name);
1764 exit(EXIT_FAILURE);
1765 }
1766
1767 /* always allocate the device memory information */
1768 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1769
1770 /* initialize device memory address space */
1771 if (pcmc->has_reserved_memory &&
1772 (machine->ram_size < machine->maxram_size)) {
1773 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1774
1775 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1776 error_report("unsupported amount of memory slots: %"PRIu64,
1777 machine->ram_slots);
1778 exit(EXIT_FAILURE);
1779 }
1780
1781 if (QEMU_ALIGN_UP(machine->maxram_size,
1782 TARGET_PAGE_SIZE) != machine->maxram_size) {
1783 error_report("maximum memory size must by aligned to multiple of "
1784 "%d bytes", TARGET_PAGE_SIZE);
1785 exit(EXIT_FAILURE);
1786 }
1787
1788 machine->device_memory->base =
1789 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1790
1791 if (pcmc->enforce_aligned_dimm) {
1792 /* size device region assuming 1G page max alignment per slot */
1793 device_mem_size += (1 * GiB) * machine->ram_slots;
1794 }
1795
1796 if ((machine->device_memory->base + device_mem_size) <
1797 device_mem_size) {
1798 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1799 machine->maxram_size);
1800 exit(EXIT_FAILURE);
1801 }
1802
1803 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1804 "device-memory", device_mem_size);
1805 memory_region_add_subregion(system_memory, machine->device_memory->base,
1806 &machine->device_memory->mr);
1807 }
1808
1809 /* Initialize PC system firmware */
1810 pc_system_firmware_init(pcms, rom_memory);
1811
1812 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1813 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1814 &error_fatal);
1815 if (pcmc->pci_enabled) {
1816 memory_region_set_readonly(option_rom_mr, true);
1817 }
1818 memory_region_add_subregion_overlap(rom_memory,
1819 PC_ROM_MIN_VGA,
1820 option_rom_mr,
1821 1);
1822
1823 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1824
1825 rom_set_fw(fw_cfg);
1826
1827 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1828 uint64_t *val = g_malloc(sizeof(*val));
1829 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1830 uint64_t res_mem_end = machine->device_memory->base;
1831
1832 if (!pcmc->broken_reserved_end) {
1833 res_mem_end += memory_region_size(&machine->device_memory->mr);
1834 }
1835 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1836 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1837 }
1838
1839 if (linux_boot) {
1840 load_linux(pcms, fw_cfg);
1841 }
1842
1843 for (i = 0; i < nb_option_roms; i++) {
1844 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1845 }
1846 pcms->fw_cfg = fw_cfg;
1847
1848 /* Init default IOAPIC address space */
1849 pcms->ioapic_as = &address_space_memory;
1850 }
1851
1852 /*
1853 * The 64bit pci hole starts after "above 4G RAM" and
1854 * potentially the space reserved for memory hotplug.
1855 */
1856 uint64_t pc_pci_hole64_start(void)
1857 {
1858 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1859 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1860 MachineState *ms = MACHINE(pcms);
1861 uint64_t hole64_start = 0;
1862
1863 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1864 hole64_start = ms->device_memory->base;
1865 if (!pcmc->broken_reserved_end) {
1866 hole64_start += memory_region_size(&ms->device_memory->mr);
1867 }
1868 } else {
1869 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1870 }
1871
1872 return ROUND_UP(hole64_start, 1 * GiB);
1873 }
1874
1875 qemu_irq pc_allocate_cpu_irq(void)
1876 {
1877 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1878 }
1879
1880 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1881 {
1882 DeviceState *dev = NULL;
1883
1884 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1885 if (pci_bus) {
1886 PCIDevice *pcidev = pci_vga_init(pci_bus);
1887 dev = pcidev ? &pcidev->qdev : NULL;
1888 } else if (isa_bus) {
1889 ISADevice *isadev = isa_vga_init(isa_bus);
1890 dev = isadev ? DEVICE(isadev) : NULL;
1891 }
1892 rom_reset_order_override();
1893 return dev;
1894 }
1895
1896 static const MemoryRegionOps ioport80_io_ops = {
1897 .write = ioport80_write,
1898 .read = ioport80_read,
1899 .endianness = DEVICE_NATIVE_ENDIAN,
1900 .impl = {
1901 .min_access_size = 1,
1902 .max_access_size = 1,
1903 },
1904 };
1905
1906 static const MemoryRegionOps ioportF0_io_ops = {
1907 .write = ioportF0_write,
1908 .read = ioportF0_read,
1909 .endianness = DEVICE_NATIVE_ENDIAN,
1910 .impl = {
1911 .min_access_size = 1,
1912 .max_access_size = 1,
1913 },
1914 };
1915
1916 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1917 {
1918 int i;
1919 DriveInfo *fd[MAX_FD];
1920 qemu_irq *a20_line;
1921 ISADevice *i8042, *port92, *vmmouse;
1922
1923 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1924 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1925
1926 for (i = 0; i < MAX_FD; i++) {
1927 fd[i] = drive_get(IF_FLOPPY, 0, i);
1928 create_fdctrl |= !!fd[i];
1929 }
1930 if (create_fdctrl) {
1931 fdctrl_init_isa(isa_bus, fd);
1932 }
1933
1934 i8042 = isa_create_simple(isa_bus, "i8042");
1935 if (!no_vmport) {
1936 vmport_init(isa_bus);
1937 vmmouse = isa_try_create(isa_bus, "vmmouse");
1938 } else {
1939 vmmouse = NULL;
1940 }
1941 if (vmmouse) {
1942 DeviceState *dev = DEVICE(vmmouse);
1943 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1944 qdev_init_nofail(dev);
1945 }
1946 port92 = isa_create_simple(isa_bus, "port92");
1947
1948 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1949 i8042_setup_a20_line(i8042, a20_line[0]);
1950 port92_init(port92, a20_line[1]);
1951 g_free(a20_line);
1952 }
1953
1954 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1955 ISADevice **rtc_state,
1956 bool create_fdctrl,
1957 bool no_vmport,
1958 bool has_pit,
1959 uint32_t hpet_irqs)
1960 {
1961 int i;
1962 DeviceState *hpet = NULL;
1963 int pit_isa_irq = 0;
1964 qemu_irq pit_alt_irq = NULL;
1965 qemu_irq rtc_irq = NULL;
1966 ISADevice *pit = NULL;
1967 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1968 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1969
1970 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1971 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1972
1973 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1974 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1975
1976 /*
1977 * Check if an HPET shall be created.
1978 *
1979 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1980 * when the HPET wants to take over. Thus we have to disable the latter.
1981 */
1982 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1983 /* In order to set property, here not using sysbus_try_create_simple */
1984 hpet = qdev_try_create(NULL, TYPE_HPET);
1985 if (hpet) {
1986 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1987 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1988 * IRQ8 and IRQ2.
1989 */
1990 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1991 HPET_INTCAP, NULL);
1992 if (!compat) {
1993 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1994 }
1995 qdev_init_nofail(hpet);
1996 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1997
1998 for (i = 0; i < GSI_NUM_PINS; i++) {
1999 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2000 }
2001 pit_isa_irq = -1;
2002 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2003 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2004 }
2005 }
2006 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2007
2008 qemu_register_boot_set(pc_boot_set, *rtc_state);
2009
2010 if (!xen_enabled() && has_pit) {
2011 if (kvm_pit_in_kernel()) {
2012 pit = kvm_pit_init(isa_bus, 0x40);
2013 } else {
2014 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2015 }
2016 if (hpet) {
2017 /* connect PIT to output control line of the HPET */
2018 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2019 }
2020 pcspk_init(isa_bus, pit);
2021 }
2022
2023 i8257_dma_init(isa_bus, 0);
2024
2025 /* Super I/O */
2026 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2027 }
2028
2029 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2030 {
2031 int i;
2032
2033 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2034 for (i = 0; i < nb_nics; i++) {
2035 NICInfo *nd = &nd_table[i];
2036 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2037
2038 if (g_str_equal(model, "ne2k_isa")) {
2039 pc_init_ne2k_isa(isa_bus, nd);
2040 } else {
2041 pci_nic_init_nofail(nd, pci_bus, model, NULL);
2042 }
2043 }
2044 rom_reset_order_override();
2045 }
2046
2047 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2048 {
2049 DeviceState *dev;
2050 SysBusDevice *d;
2051 unsigned int i;
2052
2053 if (kvm_ioapic_in_kernel()) {
2054 dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2055 } else {
2056 dev = qdev_create(NULL, TYPE_IOAPIC);
2057 }
2058 if (parent_name) {
2059 object_property_add_child(object_resolve_path(parent_name, NULL),
2060 "ioapic", OBJECT(dev), NULL);
2061 }
2062 qdev_init_nofail(dev);
2063 d = SYS_BUS_DEVICE(dev);
2064 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2065
2066 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2067 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2068 }
2069 }
2070
2071 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2072 Error **errp)
2073 {
2074 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2075 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2076 const MachineState *ms = MACHINE(hotplug_dev);
2077 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2078 const uint64_t legacy_align = TARGET_PAGE_SIZE;
2079 Error *local_err = NULL;
2080
2081 /*
2082 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2083 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2084 * addition to cover this case.
2085 */
2086 if (!pcms->acpi_dev || !acpi_enabled) {
2087 error_setg(errp,
2088 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2089 return;
2090 }
2091
2092 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2093 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2094 return;
2095 }
2096
2097 hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2098 if (local_err) {
2099 error_propagate(errp, local_err);
2100 return;
2101 }
2102
2103 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2104 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2105 }
2106
2107 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2108 DeviceState *dev, Error **errp)
2109 {
2110 Error *local_err = NULL;
2111 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2112 MachineState *ms = MACHINE(hotplug_dev);
2113 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2114
2115 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2116 if (local_err) {
2117 goto out;
2118 }
2119
2120 if (is_nvdimm) {
2121 nvdimm_plug(ms->nvdimms_state);
2122 }
2123
2124 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2125 out:
2126 error_propagate(errp, local_err);
2127 }
2128
2129 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2130 DeviceState *dev, Error **errp)
2131 {
2132 Error *local_err = NULL;
2133 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2134
2135 /*
2136 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2137 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2138 * addition to cover this case.
2139 */
2140 if (!pcms->acpi_dev || !acpi_enabled) {
2141 error_setg(&local_err,
2142 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2143 goto out;
2144 }
2145
2146 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2147 error_setg(&local_err,
2148 "nvdimm device hot unplug is not supported yet.");
2149 goto out;
2150 }
2151
2152 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2153 &local_err);
2154 out:
2155 error_propagate(errp, local_err);
2156 }
2157
2158 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2159 DeviceState *dev, Error **errp)
2160 {
2161 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2162 Error *local_err = NULL;
2163
2164 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2165 if (local_err) {
2166 goto out;
2167 }
2168
2169 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2170 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2171 out:
2172 error_propagate(errp, local_err);
2173 }
2174
2175 static int pc_apic_cmp(const void *a, const void *b)
2176 {
2177 CPUArchId *apic_a = (CPUArchId *)a;
2178 CPUArchId *apic_b = (CPUArchId *)b;
2179
2180 return apic_a->arch_id - apic_b->arch_id;
2181 }
2182
2183 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2184 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2185 * entry corresponding to CPU's apic_id returns NULL.
2186 */
2187 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2188 {
2189 CPUArchId apic_id, *found_cpu;
2190
2191 apic_id.arch_id = id;
2192 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2193 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2194 pc_apic_cmp);
2195 if (found_cpu && idx) {
2196 *idx = found_cpu - ms->possible_cpus->cpus;
2197 }
2198 return found_cpu;
2199 }
2200
2201 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2202 DeviceState *dev, Error **errp)
2203 {
2204 CPUArchId *found_cpu;
2205 Error *local_err = NULL;
2206 X86CPU *cpu = X86_CPU(dev);
2207 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2208
2209 if (pcms->acpi_dev) {
2210 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2211 if (local_err) {
2212 goto out;
2213 }
2214 }
2215
2216 /* increment the number of CPUs */
2217 pcms->boot_cpus++;
2218 if (pcms->rtc) {
2219 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2220 }
2221 if (pcms->fw_cfg) {
2222 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2223 }
2224
2225 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2226 found_cpu->cpu = OBJECT(dev);
2227 out:
2228 error_propagate(errp, local_err);
2229 }
2230 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2231 DeviceState *dev, Error **errp)
2232 {
2233 int idx = -1;
2234 Error *local_err = NULL;
2235 X86CPU *cpu = X86_CPU(dev);
2236 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2237
2238 if (!pcms->acpi_dev) {
2239 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2240 goto out;
2241 }
2242
2243 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2244 assert(idx != -1);
2245 if (idx == 0) {
2246 error_setg(&local_err, "Boot CPU is unpluggable");
2247 goto out;
2248 }
2249
2250 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2251 &local_err);
2252 if (local_err) {
2253 goto out;
2254 }
2255
2256 out:
2257 error_propagate(errp, local_err);
2258
2259 }
2260
2261 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2262 DeviceState *dev, Error **errp)
2263 {
2264 CPUArchId *found_cpu;
2265 Error *local_err = NULL;
2266 X86CPU *cpu = X86_CPU(dev);
2267 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2268
2269 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2270 if (local_err) {
2271 goto out;
2272 }
2273
2274 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2275 found_cpu->cpu = NULL;
2276 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2277
2278 /* decrement the number of CPUs */
2279 pcms->boot_cpus--;
2280 /* Update the number of CPUs in CMOS */
2281 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2282 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2283 out:
2284 error_propagate(errp, local_err);
2285 }
2286
2287 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2288 DeviceState *dev, Error **errp)
2289 {
2290 int idx;
2291 CPUState *cs;
2292 CPUArchId *cpu_slot;
2293 X86CPUTopoInfo topo;
2294 X86CPU *cpu = X86_CPU(dev);
2295 MachineState *ms = MACHINE(hotplug_dev);
2296 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2297 unsigned int smp_cores = ms->smp.cores;
2298 unsigned int smp_threads = ms->smp.threads;
2299
2300 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2301 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2302 ms->cpu_type);
2303 return;
2304 }
2305
2306 /*
2307 * If APIC ID is not set,
2308 * set it based on socket/die/core/thread properties.
2309 */
2310 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2311 int max_socket = (ms->smp.max_cpus - 1) /
2312 smp_threads / smp_cores / pcms->smp_dies;
2313
2314 if (cpu->socket_id < 0) {
2315 error_setg(errp, "CPU socket-id is not set");
2316 return;
2317 } else if (cpu->socket_id > max_socket) {
2318 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2319 cpu->socket_id, max_socket);
2320 return;
2321 }
2322 if (cpu->core_id < 0) {
2323 error_setg(errp, "CPU core-id is not set");
2324 return;
2325 } else if (cpu->core_id > (smp_cores - 1)) {
2326 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2327 cpu->core_id, smp_cores - 1);
2328 return;
2329 }
2330 if (cpu->thread_id < 0) {
2331 error_setg(errp, "CPU thread-id is not set");
2332 return;
2333 } else if (cpu->thread_id > (smp_threads - 1)) {
2334 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2335 cpu->thread_id, smp_threads - 1);
2336 return;
2337 }
2338
2339 topo.pkg_id = cpu->socket_id;
2340 topo.core_id = cpu->core_id;
2341 topo.smt_id = cpu->thread_id;
2342 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2343 }
2344
2345 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2346 if (!cpu_slot) {
2347 MachineState *ms = MACHINE(pcms);
2348
2349 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2350 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2351 " APIC ID %" PRIu32 ", valid index range 0:%d",
2352 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2353 ms->possible_cpus->len - 1);
2354 return;
2355 }
2356
2357 if (cpu_slot->cpu) {
2358 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2359 idx, cpu->apic_id);
2360 return;
2361 }
2362
2363 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2364 * so that machine_query_hotpluggable_cpus would show correct values
2365 */
2366 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2367 * once -smp refactoring is complete and there will be CPU private
2368 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2369 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2370 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2371 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2372 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2373 return;
2374 }
2375 cpu->socket_id = topo.pkg_id;
2376
2377 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2378 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2379 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2380 return;
2381 }
2382 cpu->core_id = topo.core_id;
2383
2384 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2385 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2386 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2387 return;
2388 }
2389 cpu->thread_id = topo.smt_id;
2390
2391 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
2392 !kvm_hv_vpindex_settable()) {
2393 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2394 return;
2395 }
2396
2397 cs = CPU(cpu);
2398 cs->cpu_index = idx;
2399
2400 numa_cpu_pre_plug(cpu_slot, dev, errp);
2401 }
2402
2403 static void pc_virtio_pmem_pci_pre_plug(HotplugHandler *hotplug_dev,
2404 DeviceState *dev, Error **errp)
2405 {
2406 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2407 Error *local_err = NULL;
2408
2409 if (!hotplug_dev2) {
2410 /*
2411 * Without a bus hotplug handler, we cannot control the plug/unplug
2412 * order. This should never be the case on x86, however better add
2413 * a safety net.
2414 */
2415 error_setg(errp, "virtio-pmem-pci not supported on this bus.");
2416 return;
2417 }
2418 /*
2419 * First, see if we can plug this memory device at all. If that
2420 * succeeds, branch of to the actual hotplug handler.
2421 */
2422 memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2423 &local_err);
2424 if (!local_err) {
2425 hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2426 }
2427 error_propagate(errp, local_err);
2428 }
2429
2430 static void pc_virtio_pmem_pci_plug(HotplugHandler *hotplug_dev,
2431 DeviceState *dev, Error **errp)
2432 {
2433 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2434 Error *local_err = NULL;
2435
2436 /*
2437 * Plug the memory device first and then branch off to the actual
2438 * hotplug handler. If that one fails, we can easily undo the memory
2439 * device bits.
2440 */
2441 memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2442 hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2443 if (local_err) {
2444 memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2445 }
2446 error_propagate(errp, local_err);
2447 }
2448
2449 static void pc_virtio_pmem_pci_unplug_request(HotplugHandler *hotplug_dev,
2450 DeviceState *dev, Error **errp)
2451 {
2452 /* We don't support virtio pmem hot unplug */
2453 error_setg(errp, "virtio pmem device unplug not supported.");
2454 }
2455
2456 static void pc_virtio_pmem_pci_unplug(HotplugHandler *hotplug_dev,
2457 DeviceState *dev, Error **errp)
2458 {
2459 /* We don't support virtio pmem hot unplug */
2460 }
2461
2462 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2463 DeviceState *dev, Error **errp)
2464 {
2465 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2466 pc_memory_pre_plug(hotplug_dev, dev, errp);
2467 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2468 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2469 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2470 pc_virtio_pmem_pci_pre_plug(hotplug_dev, dev, errp);
2471 }
2472 }
2473
2474 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2475 DeviceState *dev, Error **errp)
2476 {
2477 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2478 pc_memory_plug(hotplug_dev, dev, errp);
2479 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2480 pc_cpu_plug(hotplug_dev, dev, errp);
2481 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2482 pc_virtio_pmem_pci_plug(hotplug_dev, dev, errp);
2483 }
2484 }
2485
2486 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2487 DeviceState *dev, Error **errp)
2488 {
2489 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2490 pc_memory_unplug_request(hotplug_dev, dev, errp);
2491 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2492 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2493 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2494 pc_virtio_pmem_pci_unplug_request(hotplug_dev, dev, errp);
2495 } else {
2496 error_setg(errp, "acpi: device unplug request for not supported device"
2497 " type: %s", object_get_typename(OBJECT(dev)));
2498 }
2499 }
2500
2501 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2502 DeviceState *dev, Error **errp)
2503 {
2504 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2505 pc_memory_unplug(hotplug_dev, dev, errp);
2506 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2507 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2508 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2509 pc_virtio_pmem_pci_unplug(hotplug_dev, dev, errp);
2510 } else {
2511 error_setg(errp, "acpi: device unplug for not supported device"
2512 " type: %s", object_get_typename(OBJECT(dev)));
2513 }
2514 }
2515
2516 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2517 DeviceState *dev)
2518 {
2519 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2520 object_dynamic_cast(OBJECT(dev), TYPE_CPU) ||
2521 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2522 return HOTPLUG_HANDLER(machine);
2523 }
2524
2525 return NULL;
2526 }
2527
2528 static void
2529 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2530 const char *name, void *opaque,
2531 Error **errp)
2532 {
2533 MachineState *ms = MACHINE(obj);
2534 int64_t value = memory_region_size(&ms->device_memory->mr);
2535
2536 visit_type_int(v, name, &value, errp);
2537 }
2538
2539 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2540 const char *name, void *opaque,
2541 Error **errp)
2542 {
2543 PCMachineState *pcms = PC_MACHINE(obj);
2544 uint64_t value = pcms->max_ram_below_4g;
2545
2546 visit_type_size(v, name, &value, errp);
2547 }
2548
2549 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2550 const char *name, void *opaque,
2551 Error **errp)
2552 {
2553 PCMachineState *pcms = PC_MACHINE(obj);
2554 Error *error = NULL;
2555 uint64_t value;
2556
2557 visit_type_size(v, name, &value, &error);
2558 if (error) {
2559 error_propagate(errp, error);
2560 return;
2561 }
2562 if (value > 4 * GiB) {
2563 error_setg(&error,
2564 "Machine option 'max-ram-below-4g=%"PRIu64
2565 "' expects size less than or equal to 4G", value);
2566 error_propagate(errp, error);
2567 return;
2568 }
2569
2570 if (value < 1 * MiB) {
2571 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2572 "BIOS may not work with less than 1MiB", value);
2573 }
2574
2575 pcms->max_ram_below_4g = value;
2576 }
2577
2578 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2579 void *opaque, Error **errp)
2580 {
2581 PCMachineState *pcms = PC_MACHINE(obj);
2582 OnOffAuto vmport = pcms->vmport;
2583
2584 visit_type_OnOffAuto(v, name, &vmport, errp);
2585 }
2586
2587 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2588 void *opaque, Error **errp)
2589 {
2590 PCMachineState *pcms = PC_MACHINE(obj);
2591
2592 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2593 }
2594
2595 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2596 {
2597 bool smm_available = false;
2598
2599 if (pcms->smm == ON_OFF_AUTO_OFF) {
2600 return false;
2601 }
2602
2603 if (tcg_enabled() || qtest_enabled()) {
2604 smm_available = true;
2605 } else if (kvm_enabled()) {
2606 smm_available = kvm_has_smm();
2607 }
2608
2609 if (smm_available) {
2610 return true;
2611 }
2612
2613 if (pcms->smm == ON_OFF_AUTO_ON) {
2614 error_report("System Management Mode not supported by this hypervisor.");
2615 exit(1);
2616 }
2617 return false;
2618 }
2619
2620 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2621 void *opaque, Error **errp)
2622 {
2623 PCMachineState *pcms = PC_MACHINE(obj);
2624 OnOffAuto smm = pcms->smm;
2625
2626 visit_type_OnOffAuto(v, name, &smm, errp);
2627 }
2628
2629 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2630 void *opaque, Error **errp)
2631 {
2632 PCMachineState *pcms = PC_MACHINE(obj);
2633
2634 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2635 }
2636
2637 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2638 {
2639 PCMachineState *pcms = PC_MACHINE(obj);
2640
2641 return pcms->smbus_enabled;
2642 }
2643
2644 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2645 {
2646 PCMachineState *pcms = PC_MACHINE(obj);
2647
2648 pcms->smbus_enabled = value;
2649 }
2650
2651 static bool pc_machine_get_sata(Object *obj, Error **errp)
2652 {
2653 PCMachineState *pcms = PC_MACHINE(obj);
2654
2655 return pcms->sata_enabled;
2656 }
2657
2658 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2659 {
2660 PCMachineState *pcms = PC_MACHINE(obj);
2661
2662 pcms->sata_enabled = value;
2663 }
2664
2665 static bool pc_machine_get_pit(Object *obj, Error **errp)
2666 {
2667 PCMachineState *pcms = PC_MACHINE(obj);
2668
2669 return pcms->pit_enabled;
2670 }
2671
2672 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2673 {
2674 PCMachineState *pcms = PC_MACHINE(obj);
2675
2676 pcms->pit_enabled = value;
2677 }
2678
2679 static void pc_machine_initfn(Object *obj)
2680 {
2681 PCMachineState *pcms = PC_MACHINE(obj);
2682
2683 pcms->max_ram_below_4g = 0; /* use default */
2684 pcms->smm = ON_OFF_AUTO_AUTO;
2685 pcms->vmport = ON_OFF_AUTO_AUTO;
2686 /* acpi build is enabled by default if machine supports it */
2687 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2688 pcms->smbus_enabled = true;
2689 pcms->sata_enabled = true;
2690 pcms->pit_enabled = true;
2691 pcms->smp_dies = 1;
2692
2693 pc_system_flash_create(pcms);
2694 }
2695
2696 static void pc_machine_reset(MachineState *machine)
2697 {
2698 CPUState *cs;
2699 X86CPU *cpu;
2700
2701 qemu_devices_reset();
2702
2703 /* Reset APIC after devices have been reset to cancel
2704 * any changes that qemu_devices_reset() might have done.
2705 */
2706 CPU_FOREACH(cs) {
2707 cpu = X86_CPU(cs);
2708
2709 if (cpu->apic_state) {
2710 device_reset(cpu->apic_state);
2711 }
2712 }
2713 }
2714
2715 static CpuInstanceProperties
2716 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2717 {
2718 MachineClass *mc = MACHINE_GET_CLASS(ms);
2719 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2720
2721 assert(cpu_index < possible_cpus->len);
2722 return possible_cpus->cpus[cpu_index].props;
2723 }
2724
2725 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2726 {
2727 X86CPUTopoInfo topo;
2728
2729 assert(idx < ms->possible_cpus->len);
2730 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2731 ms->smp.cores, ms->smp.threads, &topo);
2732 return topo.pkg_id % nb_numa_nodes;
2733 }
2734
2735 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2736 {
2737 PCMachineState *pcms = PC_MACHINE(ms);
2738 int i;
2739 unsigned int max_cpus = ms->smp.max_cpus;
2740
2741 if (ms->possible_cpus) {
2742 /*
2743 * make sure that max_cpus hasn't changed since the first use, i.e.
2744 * -smp hasn't been parsed after it
2745 */
2746 assert(ms->possible_cpus->len == max_cpus);
2747 return ms->possible_cpus;
2748 }
2749
2750 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2751 sizeof(CPUArchId) * max_cpus);
2752 ms->possible_cpus->len = max_cpus;
2753 for (i = 0; i < ms->possible_cpus->len; i++) {
2754 X86CPUTopoInfo topo;
2755
2756 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2757 ms->possible_cpus->cpus[i].vcpus_count = 1;
2758 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(pcms, i);
2759 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2760 ms->smp.cores, ms->smp.threads, &topo);
2761 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2762 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2763 ms->possible_cpus->cpus[i].props.has_core_id = true;
2764 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2765 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2766 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2767 }
2768 return ms->possible_cpus;
2769 }
2770
2771 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2772 {
2773 /* cpu index isn't used */
2774 CPUState *cs;
2775
2776 CPU_FOREACH(cs) {
2777 X86CPU *cpu = X86_CPU(cs);
2778
2779 if (!cpu->apic_state) {
2780 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2781 } else {
2782 apic_deliver_nmi(cpu->apic_state);
2783 }
2784 }
2785 }
2786
2787 static void pc_machine_class_init(ObjectClass *oc, void *data)
2788 {
2789 MachineClass *mc = MACHINE_CLASS(oc);
2790 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2791 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2792 NMIClass *nc = NMI_CLASS(oc);
2793
2794 pcmc->pci_enabled = true;
2795 pcmc->has_acpi_build = true;
2796 pcmc->rsdp_in_ram = true;
2797 pcmc->smbios_defaults = true;
2798 pcmc->smbios_uuid_encoded = true;
2799 pcmc->gigabyte_align = true;
2800 pcmc->has_reserved_memory = true;
2801 pcmc->kvmclock_enabled = true;
2802 pcmc->enforce_aligned_dimm = true;
2803 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2804 * to be used at the moment, 32K should be enough for a while. */
2805 pcmc->acpi_data_size = 0x20000 + 0x8000;
2806 pcmc->save_tsc_khz = true;
2807 pcmc->linuxboot_dma_enabled = true;
2808 pcmc->pvh_enabled = true;
2809 assert(!mc->get_hotplug_handler);
2810 mc->get_hotplug_handler = pc_get_hotplug_handler;
2811 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2812 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2813 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2814 mc->auto_enable_numa_with_memhp = true;
2815 mc->has_hotpluggable_cpus = true;
2816 mc->default_boot_order = "cad";
2817 mc->hot_add_cpu = pc_hot_add_cpu;
2818 mc->block_default_type = IF_IDE;
2819 mc->max_cpus = 255;
2820 mc->reset = pc_machine_reset;
2821 hc->pre_plug = pc_machine_device_pre_plug_cb;
2822 hc->plug = pc_machine_device_plug_cb;
2823 hc->unplug_request = pc_machine_device_unplug_request_cb;
2824 hc->unplug = pc_machine_device_unplug_cb;
2825 nc->nmi_monitor_handler = x86_nmi;
2826 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2827 mc->nvdimm_supported = true;
2828
2829 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2830 pc_machine_get_device_memory_region_size, NULL,
2831 NULL, NULL, &error_abort);
2832
2833 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2834 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2835 NULL, NULL, &error_abort);
2836
2837 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2838 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2839
2840 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2841 pc_machine_get_smm, pc_machine_set_smm,
2842 NULL, NULL, &error_abort);
2843 object_class_property_set_description(oc, PC_MACHINE_SMM,
2844 "Enable SMM (pc & q35)", &error_abort);
2845
2846 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2847 pc_machine_get_vmport, pc_machine_set_vmport,
2848 NULL, NULL, &error_abort);
2849 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2850 "Enable vmport (pc & q35)", &error_abort);
2851
2852 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2853 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2854
2855 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2856 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2857
2858 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2859 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2860 }
2861
2862 static const TypeInfo pc_machine_info = {
2863 .name = TYPE_PC_MACHINE,
2864 .parent = TYPE_MACHINE,
2865 .abstract = true,
2866 .instance_size = sizeof(PCMachineState),
2867 .instance_init = pc_machine_initfn,
2868 .class_size = sizeof(PCMachineClass),
2869 .class_init = pc_machine_class_init,
2870 .interfaces = (InterfaceInfo[]) {
2871 { TYPE_HOTPLUG_HANDLER },
2872 { TYPE_NMI },
2873 { }
2874 },
2875 };
2876
2877 static void pc_machine_register_types(void)
2878 {
2879 type_register_static(&pc_machine_info);
2880 }
2881
2882 type_init(pc_machine_register_types)