]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
i386/kvm: convert hyperv enlightenments properties from bools to bits
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "hw/i386/fw_cfg.h"
34 #include "sysemu/cpus.h"
35 #include "hw/block/fdc.h"
36 #include "hw/ide.h"
37 #include "hw/pci/pci.h"
38 #include "hw/pci/pci_bus.h"
39 #include "hw/nvram/fw_cfg.h"
40 #include "hw/timer/hpet.h"
41 #include "hw/firmware/smbios.h"
42 #include "hw/loader.h"
43 #include "elf.h"
44 #include "multiboot.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/dma/i8257.h"
47 #include "hw/timer/i8254.h"
48 #include "hw/input/i8042.h"
49 #include "hw/audio/pcspk.h"
50 #include "hw/pci/msi.h"
51 #include "hw/sysbus.h"
52 #include "sysemu/sysemu.h"
53 #include "sysemu/tcg.h"
54 #include "sysemu/numa.h"
55 #include "sysemu/kvm.h"
56 #include "sysemu/qtest.h"
57 #include "kvm_i386.h"
58 #include "hw/xen/xen.h"
59 #include "hw/xen/start_info.h"
60 #include "ui/qemu-spice.h"
61 #include "exec/memory.h"
62 #include "exec/address-spaces.h"
63 #include "sysemu/arch_init.h"
64 #include "qemu/bitmap.h"
65 #include "qemu/config-file.h"
66 #include "qemu/error-report.h"
67 #include "qemu/option.h"
68 #include "hw/acpi/acpi.h"
69 #include "hw/acpi/cpu_hotplug.h"
70 #include "hw/boards.h"
71 #include "acpi-build.h"
72 #include "hw/mem/pc-dimm.h"
73 #include "qapi/error.h"
74 #include "qapi/qapi-visit-common.h"
75 #include "qapi/visitor.h"
76 #include "qom/cpu.h"
77 #include "hw/nmi.h"
78 #include "hw/usb.h"
79 #include "hw/i386/intel_iommu.h"
80 #include "hw/net/ne2000-isa.h"
81 #include "standard-headers/asm-x86/bootparam.h"
82
83 /* debug PC/ISA interrupts */
84 //#define DEBUG_IRQ
85
86 #ifdef DEBUG_IRQ
87 #define DPRINTF(fmt, ...) \
88 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
89 #else
90 #define DPRINTF(fmt, ...)
91 #endif
92
93 #define E820_NR_ENTRIES 16
94
95 struct e820_entry {
96 uint64_t address;
97 uint64_t length;
98 uint32_t type;
99 } QEMU_PACKED __attribute((__aligned__(4)));
100
101 struct e820_table {
102 uint32_t count;
103 struct e820_entry entry[E820_NR_ENTRIES];
104 } QEMU_PACKED __attribute((__aligned__(4)));
105
106 static struct e820_table e820_reserve;
107 static struct e820_entry *e820_table;
108 static unsigned e820_entries;
109 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
110
111 /* Physical Address of PVH entry point read from kernel ELF NOTE */
112 static size_t pvh_start_addr;
113
114 GlobalProperty pc_compat_4_0_1[] = {};
115 const size_t pc_compat_4_0_1_len = G_N_ELEMENTS(pc_compat_4_0_1);
116
117 GlobalProperty pc_compat_4_0[] = {};
118 const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
119
120 GlobalProperty pc_compat_3_1[] = {
121 { "intel-iommu", "dma-drain", "off" },
122 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
123 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
124 { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
125 { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
126 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
127 { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
128 { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
129 { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
130 { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
131 { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
132 { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
133 { "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
134 { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
135 { "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
136 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
137 { "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
138 { "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
139 { "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
140 { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
141 { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
142 };
143 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
144
145 GlobalProperty pc_compat_3_0[] = {
146 { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
147 { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
148 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
149 };
150 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
151
152 GlobalProperty pc_compat_2_12[] = {
153 { TYPE_X86_CPU, "legacy-cache", "on" },
154 { TYPE_X86_CPU, "topoext", "off" },
155 { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
156 { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
157 };
158 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
159
160 GlobalProperty pc_compat_2_11[] = {
161 { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
162 { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
163 };
164 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
165
166 GlobalProperty pc_compat_2_10[] = {
167 { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
168 { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
169 { "q35-pcihost", "x-pci-hole64-fix", "off" },
170 };
171 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
172
173 GlobalProperty pc_compat_2_9[] = {
174 { "mch", "extended-tseg-mbytes", "0" },
175 };
176 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
177
178 GlobalProperty pc_compat_2_8[] = {
179 { TYPE_X86_CPU, "tcg-cpuid", "off" },
180 { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
181 { "ICH9-LPC", "x-smi-broadcast", "off" },
182 { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
183 { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
184 };
185 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
186
187 GlobalProperty pc_compat_2_7[] = {
188 { TYPE_X86_CPU, "l3-cache", "off" },
189 { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
190 { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
191 { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
192 { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
193 { "isa-pcspk", "migrate", "off" },
194 };
195 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
196
197 GlobalProperty pc_compat_2_6[] = {
198 { TYPE_X86_CPU, "cpuid-0xb", "off" },
199 { "vmxnet3", "romfile", "" },
200 { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
201 { "apic-common", "legacy-instance-id", "on", }
202 };
203 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
204
205 GlobalProperty pc_compat_2_5[] = {};
206 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
207
208 GlobalProperty pc_compat_2_4[] = {
209 PC_CPU_MODEL_IDS("2.4.0")
210 { "Haswell-" TYPE_X86_CPU, "abm", "off" },
211 { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
212 { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
213 { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
214 { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
215 { TYPE_X86_CPU, "check", "off" },
216 { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
217 { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
218 { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
219 { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
220 { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
221 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
222 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
223 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
224 };
225 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
226
227 GlobalProperty pc_compat_2_3[] = {
228 PC_CPU_MODEL_IDS("2.3.0")
229 { TYPE_X86_CPU, "arat", "off" },
230 { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
231 { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
232 { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
233 { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
234 { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
235 { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
236 { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
237 { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
238 { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
239 { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
240 { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
241 { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
242 { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243 { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244 { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245 { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
246 { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
247 { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
248 { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
249 };
250 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
251
252 GlobalProperty pc_compat_2_2[] = {
253 PC_CPU_MODEL_IDS("2.2.0")
254 { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
255 { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
256 { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
257 { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
258 { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
259 { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
260 { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
261 { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
262 { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
263 { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
264 { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
265 { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
266 { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
267 { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
268 { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
269 { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
270 { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
271 { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
272 };
273 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
274
275 GlobalProperty pc_compat_2_1[] = {
276 PC_CPU_MODEL_IDS("2.1.0")
277 { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
278 { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
279 };
280 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
281
282 GlobalProperty pc_compat_2_0[] = {
283 PC_CPU_MODEL_IDS("2.0.0")
284 { "virtio-scsi-pci", "any_layout", "off" },
285 { "PIIX4_PM", "memory-hotplug-support", "off" },
286 { "apic", "version", "0x11" },
287 { "nec-usb-xhci", "superspeed-ports-first", "off" },
288 { "nec-usb-xhci", "force-pcie-endcap", "on" },
289 { "pci-serial", "prog_if", "0" },
290 { "pci-serial-2x", "prog_if", "0" },
291 { "pci-serial-4x", "prog_if", "0" },
292 { "virtio-net-pci", "guest_announce", "off" },
293 { "ICH9-LPC", "memory-hotplug-support", "off" },
294 { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
295 { "ioh3420", COMPAT_PROP_PCP, "off" },
296 };
297 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
298
299 GlobalProperty pc_compat_1_7[] = {
300 PC_CPU_MODEL_IDS("1.7.0")
301 { TYPE_USB_DEVICE, "msos-desc", "no" },
302 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
303 { "hpet", HPET_INTCAP, "4" },
304 };
305 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
306
307 GlobalProperty pc_compat_1_6[] = {
308 PC_CPU_MODEL_IDS("1.6.0")
309 { "e1000", "mitigation", "off" },
310 { "qemu64-" TYPE_X86_CPU, "model", "2" },
311 { "qemu32-" TYPE_X86_CPU, "model", "3" },
312 { "i440FX-pcihost", "short_root_bus", "1" },
313 { "q35-pcihost", "short_root_bus", "1" },
314 };
315 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
316
317 GlobalProperty pc_compat_1_5[] = {
318 PC_CPU_MODEL_IDS("1.5.0")
319 { "Conroe-" TYPE_X86_CPU, "model", "2" },
320 { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
321 { "Penryn-" TYPE_X86_CPU, "model", "2" },
322 { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
323 { "Nehalem-" TYPE_X86_CPU, "model", "2" },
324 { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
325 { "virtio-net-pci", "any_layout", "off" },
326 { TYPE_X86_CPU, "pmu", "on" },
327 { "i440FX-pcihost", "short_root_bus", "0" },
328 { "q35-pcihost", "short_root_bus", "0" },
329 };
330 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
331
332 GlobalProperty pc_compat_1_4[] = {
333 PC_CPU_MODEL_IDS("1.4.0")
334 { "scsi-hd", "discard_granularity", "0" },
335 { "scsi-cd", "discard_granularity", "0" },
336 { "scsi-disk", "discard_granularity", "0" },
337 { "ide-hd", "discard_granularity", "0" },
338 { "ide-cd", "discard_granularity", "0" },
339 { "ide-drive", "discard_granularity", "0" },
340 { "virtio-blk-pci", "discard_granularity", "0" },
341 /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
342 { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
343 { "virtio-net-pci", "ctrl_guest_offloads", "off" },
344 { "e1000", "romfile", "pxe-e1000.rom" },
345 { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
346 { "pcnet", "romfile", "pxe-pcnet.rom" },
347 { "rtl8139", "romfile", "pxe-rtl8139.rom" },
348 { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
349 { "486-" TYPE_X86_CPU, "model", "0" },
350 { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
351 { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
352 };
353 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
354
355 void gsi_handler(void *opaque, int n, int level)
356 {
357 GSIState *s = opaque;
358
359 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
360 if (n < ISA_NUM_IRQS) {
361 qemu_set_irq(s->i8259_irq[n], level);
362 }
363 qemu_set_irq(s->ioapic_irq[n], level);
364 }
365
366 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
367 unsigned size)
368 {
369 }
370
371 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
372 {
373 return 0xffffffffffffffffULL;
374 }
375
376 /* MSDOS compatibility mode FPU exception support */
377 static qemu_irq ferr_irq;
378
379 void pc_register_ferr_irq(qemu_irq irq)
380 {
381 ferr_irq = irq;
382 }
383
384 /* XXX: add IGNNE support */
385 void cpu_set_ferr(CPUX86State *s)
386 {
387 qemu_irq_raise(ferr_irq);
388 }
389
390 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
391 unsigned size)
392 {
393 qemu_irq_lower(ferr_irq);
394 }
395
396 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
397 {
398 return 0xffffffffffffffffULL;
399 }
400
401 /* TSC handling */
402 uint64_t cpu_get_tsc(CPUX86State *env)
403 {
404 return cpu_get_ticks();
405 }
406
407 /* IRQ handling */
408 int cpu_get_pic_interrupt(CPUX86State *env)
409 {
410 X86CPU *cpu = env_archcpu(env);
411 int intno;
412
413 if (!kvm_irqchip_in_kernel()) {
414 intno = apic_get_interrupt(cpu->apic_state);
415 if (intno >= 0) {
416 return intno;
417 }
418 /* read the irq from the PIC */
419 if (!apic_accept_pic_intr(cpu->apic_state)) {
420 return -1;
421 }
422 }
423
424 intno = pic_read_irq(isa_pic);
425 return intno;
426 }
427
428 static void pic_irq_request(void *opaque, int irq, int level)
429 {
430 CPUState *cs = first_cpu;
431 X86CPU *cpu = X86_CPU(cs);
432
433 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
434 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
435 CPU_FOREACH(cs) {
436 cpu = X86_CPU(cs);
437 if (apic_accept_pic_intr(cpu->apic_state)) {
438 apic_deliver_pic_intr(cpu->apic_state, level);
439 }
440 }
441 } else {
442 if (level) {
443 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
444 } else {
445 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
446 }
447 }
448 }
449
450 /* PC cmos mappings */
451
452 #define REG_EQUIPMENT_BYTE 0x14
453
454 int cmos_get_fd_drive_type(FloppyDriveType fd0)
455 {
456 int val;
457
458 switch (fd0) {
459 case FLOPPY_DRIVE_TYPE_144:
460 /* 1.44 Mb 3"5 drive */
461 val = 4;
462 break;
463 case FLOPPY_DRIVE_TYPE_288:
464 /* 2.88 Mb 3"5 drive */
465 val = 5;
466 break;
467 case FLOPPY_DRIVE_TYPE_120:
468 /* 1.2 Mb 5"5 drive */
469 val = 2;
470 break;
471 case FLOPPY_DRIVE_TYPE_NONE:
472 default:
473 val = 0;
474 break;
475 }
476 return val;
477 }
478
479 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
480 int16_t cylinders, int8_t heads, int8_t sectors)
481 {
482 rtc_set_memory(s, type_ofs, 47);
483 rtc_set_memory(s, info_ofs, cylinders);
484 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
485 rtc_set_memory(s, info_ofs + 2, heads);
486 rtc_set_memory(s, info_ofs + 3, 0xff);
487 rtc_set_memory(s, info_ofs + 4, 0xff);
488 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
489 rtc_set_memory(s, info_ofs + 6, cylinders);
490 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
491 rtc_set_memory(s, info_ofs + 8, sectors);
492 }
493
494 /* convert boot_device letter to something recognizable by the bios */
495 static int boot_device2nibble(char boot_device)
496 {
497 switch(boot_device) {
498 case 'a':
499 case 'b':
500 return 0x01; /* floppy boot */
501 case 'c':
502 return 0x02; /* hard drive boot */
503 case 'd':
504 return 0x03; /* CD-ROM boot */
505 case 'n':
506 return 0x04; /* Network boot */
507 }
508 return 0;
509 }
510
511 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
512 {
513 #define PC_MAX_BOOT_DEVICES 3
514 int nbds, bds[3] = { 0, };
515 int i;
516
517 nbds = strlen(boot_device);
518 if (nbds > PC_MAX_BOOT_DEVICES) {
519 error_setg(errp, "Too many boot devices for PC");
520 return;
521 }
522 for (i = 0; i < nbds; i++) {
523 bds[i] = boot_device2nibble(boot_device[i]);
524 if (bds[i] == 0) {
525 error_setg(errp, "Invalid boot device for PC: '%c'",
526 boot_device[i]);
527 return;
528 }
529 }
530 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
531 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
532 }
533
534 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
535 {
536 set_boot_dev(opaque, boot_device, errp);
537 }
538
539 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
540 {
541 int val, nb, i;
542 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
543 FLOPPY_DRIVE_TYPE_NONE };
544
545 /* floppy type */
546 if (floppy) {
547 for (i = 0; i < 2; i++) {
548 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
549 }
550 }
551 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
552 cmos_get_fd_drive_type(fd_type[1]);
553 rtc_set_memory(rtc_state, 0x10, val);
554
555 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
556 nb = 0;
557 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
558 nb++;
559 }
560 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
561 nb++;
562 }
563 switch (nb) {
564 case 0:
565 break;
566 case 1:
567 val |= 0x01; /* 1 drive, ready for boot */
568 break;
569 case 2:
570 val |= 0x41; /* 2 drives, ready for boot */
571 break;
572 }
573 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
574 }
575
576 typedef struct pc_cmos_init_late_arg {
577 ISADevice *rtc_state;
578 BusState *idebus[2];
579 } pc_cmos_init_late_arg;
580
581 typedef struct check_fdc_state {
582 ISADevice *floppy;
583 bool multiple;
584 } CheckFdcState;
585
586 static int check_fdc(Object *obj, void *opaque)
587 {
588 CheckFdcState *state = opaque;
589 Object *fdc;
590 uint32_t iobase;
591 Error *local_err = NULL;
592
593 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
594 if (!fdc) {
595 return 0;
596 }
597
598 iobase = object_property_get_uint(obj, "iobase", &local_err);
599 if (local_err || iobase != 0x3f0) {
600 error_free(local_err);
601 return 0;
602 }
603
604 if (state->floppy) {
605 state->multiple = true;
606 } else {
607 state->floppy = ISA_DEVICE(obj);
608 }
609 return 0;
610 }
611
612 static const char * const fdc_container_path[] = {
613 "/unattached", "/peripheral", "/peripheral-anon"
614 };
615
616 /*
617 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
618 * and ACPI objects.
619 */
620 ISADevice *pc_find_fdc0(void)
621 {
622 int i;
623 Object *container;
624 CheckFdcState state = { 0 };
625
626 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
627 container = container_get(qdev_get_machine(), fdc_container_path[i]);
628 object_child_foreach(container, check_fdc, &state);
629 }
630
631 if (state.multiple) {
632 warn_report("multiple floppy disk controllers with "
633 "iobase=0x3f0 have been found");
634 error_printf("the one being picked for CMOS setup might not reflect "
635 "your intent");
636 }
637
638 return state.floppy;
639 }
640
641 static void pc_cmos_init_late(void *opaque)
642 {
643 pc_cmos_init_late_arg *arg = opaque;
644 ISADevice *s = arg->rtc_state;
645 int16_t cylinders;
646 int8_t heads, sectors;
647 int val;
648 int i, trans;
649
650 val = 0;
651 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
652 &cylinders, &heads, &sectors) >= 0) {
653 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
654 val |= 0xf0;
655 }
656 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
657 &cylinders, &heads, &sectors) >= 0) {
658 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
659 val |= 0x0f;
660 }
661 rtc_set_memory(s, 0x12, val);
662
663 val = 0;
664 for (i = 0; i < 4; i++) {
665 /* NOTE: ide_get_geometry() returns the physical
666 geometry. It is always such that: 1 <= sects <= 63, 1
667 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
668 geometry can be different if a translation is done. */
669 if (arg->idebus[i / 2] &&
670 ide_get_geometry(arg->idebus[i / 2], i % 2,
671 &cylinders, &heads, &sectors) >= 0) {
672 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
673 assert((trans & ~3) == 0);
674 val |= trans << (i * 2);
675 }
676 }
677 rtc_set_memory(s, 0x39, val);
678
679 pc_cmos_init_floppy(s, pc_find_fdc0());
680
681 qemu_unregister_reset(pc_cmos_init_late, opaque);
682 }
683
684 void pc_cmos_init(PCMachineState *pcms,
685 BusState *idebus0, BusState *idebus1,
686 ISADevice *s)
687 {
688 int val;
689 static pc_cmos_init_late_arg arg;
690
691 /* various important CMOS locations needed by PC/Bochs bios */
692
693 /* memory size */
694 /* base memory (first MiB) */
695 val = MIN(pcms->below_4g_mem_size / KiB, 640);
696 rtc_set_memory(s, 0x15, val);
697 rtc_set_memory(s, 0x16, val >> 8);
698 /* extended memory (next 64MiB) */
699 if (pcms->below_4g_mem_size > 1 * MiB) {
700 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
701 } else {
702 val = 0;
703 }
704 if (val > 65535)
705 val = 65535;
706 rtc_set_memory(s, 0x17, val);
707 rtc_set_memory(s, 0x18, val >> 8);
708 rtc_set_memory(s, 0x30, val);
709 rtc_set_memory(s, 0x31, val >> 8);
710 /* memory between 16MiB and 4GiB */
711 if (pcms->below_4g_mem_size > 16 * MiB) {
712 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
713 } else {
714 val = 0;
715 }
716 if (val > 65535)
717 val = 65535;
718 rtc_set_memory(s, 0x34, val);
719 rtc_set_memory(s, 0x35, val >> 8);
720 /* memory above 4GiB */
721 val = pcms->above_4g_mem_size / 65536;
722 rtc_set_memory(s, 0x5b, val);
723 rtc_set_memory(s, 0x5c, val >> 8);
724 rtc_set_memory(s, 0x5d, val >> 16);
725
726 object_property_add_link(OBJECT(pcms), "rtc_state",
727 TYPE_ISA_DEVICE,
728 (Object **)&pcms->rtc,
729 object_property_allow_set_link,
730 OBJ_PROP_LINK_STRONG, &error_abort);
731 object_property_set_link(OBJECT(pcms), OBJECT(s),
732 "rtc_state", &error_abort);
733
734 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
735
736 val = 0;
737 val |= 0x02; /* FPU is there */
738 val |= 0x04; /* PS/2 mouse installed */
739 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
740
741 /* hard drives and FDC */
742 arg.rtc_state = s;
743 arg.idebus[0] = idebus0;
744 arg.idebus[1] = idebus1;
745 qemu_register_reset(pc_cmos_init_late, &arg);
746 }
747
748 #define TYPE_PORT92 "port92"
749 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
750
751 /* port 92 stuff: could be split off */
752 typedef struct Port92State {
753 ISADevice parent_obj;
754
755 MemoryRegion io;
756 uint8_t outport;
757 qemu_irq a20_out;
758 } Port92State;
759
760 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
761 unsigned size)
762 {
763 Port92State *s = opaque;
764 int oldval = s->outport;
765
766 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
767 s->outport = val;
768 qemu_set_irq(s->a20_out, (val >> 1) & 1);
769 if ((val & 1) && !(oldval & 1)) {
770 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
771 }
772 }
773
774 static uint64_t port92_read(void *opaque, hwaddr addr,
775 unsigned size)
776 {
777 Port92State *s = opaque;
778 uint32_t ret;
779
780 ret = s->outport;
781 DPRINTF("port92: read 0x%02x\n", ret);
782 return ret;
783 }
784
785 static void port92_init(ISADevice *dev, qemu_irq a20_out)
786 {
787 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
788 }
789
790 static const VMStateDescription vmstate_port92_isa = {
791 .name = "port92",
792 .version_id = 1,
793 .minimum_version_id = 1,
794 .fields = (VMStateField[]) {
795 VMSTATE_UINT8(outport, Port92State),
796 VMSTATE_END_OF_LIST()
797 }
798 };
799
800 static void port92_reset(DeviceState *d)
801 {
802 Port92State *s = PORT92(d);
803
804 s->outport &= ~1;
805 }
806
807 static const MemoryRegionOps port92_ops = {
808 .read = port92_read,
809 .write = port92_write,
810 .impl = {
811 .min_access_size = 1,
812 .max_access_size = 1,
813 },
814 .endianness = DEVICE_LITTLE_ENDIAN,
815 };
816
817 static void port92_initfn(Object *obj)
818 {
819 Port92State *s = PORT92(obj);
820
821 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
822
823 s->outport = 0;
824
825 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
826 }
827
828 static void port92_realizefn(DeviceState *dev, Error **errp)
829 {
830 ISADevice *isadev = ISA_DEVICE(dev);
831 Port92State *s = PORT92(dev);
832
833 isa_register_ioport(isadev, &s->io, 0x92);
834 }
835
836 static void port92_class_initfn(ObjectClass *klass, void *data)
837 {
838 DeviceClass *dc = DEVICE_CLASS(klass);
839
840 dc->realize = port92_realizefn;
841 dc->reset = port92_reset;
842 dc->vmsd = &vmstate_port92_isa;
843 /*
844 * Reason: unlike ordinary ISA devices, this one needs additional
845 * wiring: its A20 output line needs to be wired up by
846 * port92_init().
847 */
848 dc->user_creatable = false;
849 }
850
851 static const TypeInfo port92_info = {
852 .name = TYPE_PORT92,
853 .parent = TYPE_ISA_DEVICE,
854 .instance_size = sizeof(Port92State),
855 .instance_init = port92_initfn,
856 .class_init = port92_class_initfn,
857 };
858
859 static void port92_register_types(void)
860 {
861 type_register_static(&port92_info);
862 }
863
864 type_init(port92_register_types)
865
866 static void handle_a20_line_change(void *opaque, int irq, int level)
867 {
868 X86CPU *cpu = opaque;
869
870 /* XXX: send to all CPUs ? */
871 /* XXX: add logic to handle multiple A20 line sources */
872 x86_cpu_set_a20(cpu, level);
873 }
874
875 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
876 {
877 int index = le32_to_cpu(e820_reserve.count);
878 struct e820_entry *entry;
879
880 if (type != E820_RAM) {
881 /* old FW_CFG_E820_TABLE entry -- reservations only */
882 if (index >= E820_NR_ENTRIES) {
883 return -EBUSY;
884 }
885 entry = &e820_reserve.entry[index++];
886
887 entry->address = cpu_to_le64(address);
888 entry->length = cpu_to_le64(length);
889 entry->type = cpu_to_le32(type);
890
891 e820_reserve.count = cpu_to_le32(index);
892 }
893
894 /* new "etc/e820" file -- include ram too */
895 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
896 e820_table[e820_entries].address = cpu_to_le64(address);
897 e820_table[e820_entries].length = cpu_to_le64(length);
898 e820_table[e820_entries].type = cpu_to_le32(type);
899 e820_entries++;
900
901 return e820_entries;
902 }
903
904 int e820_get_num_entries(void)
905 {
906 return e820_entries;
907 }
908
909 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
910 {
911 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
912 *address = le64_to_cpu(e820_table[idx].address);
913 *length = le64_to_cpu(e820_table[idx].length);
914 return true;
915 }
916 return false;
917 }
918
919 /* Enables contiguous-apic-ID mode, for compatibility */
920 static bool compat_apic_id_mode;
921
922 void enable_compat_apic_id_mode(void)
923 {
924 compat_apic_id_mode = true;
925 }
926
927 /* Calculates initial APIC ID for a specific CPU index
928 *
929 * Currently we need to be able to calculate the APIC ID from the CPU index
930 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
931 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
932 * all CPUs up to max_cpus.
933 */
934 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
935 {
936 uint32_t correct_id;
937 static bool warned;
938
939 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
940 if (compat_apic_id_mode) {
941 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
942 error_report("APIC IDs set in compatibility mode, "
943 "CPU topology won't match the configuration");
944 warned = true;
945 }
946 return cpu_index;
947 } else {
948 return correct_id;
949 }
950 }
951
952 static void pc_build_smbios(PCMachineState *pcms)
953 {
954 uint8_t *smbios_tables, *smbios_anchor;
955 size_t smbios_tables_len, smbios_anchor_len;
956 struct smbios_phys_mem_area *mem_array;
957 unsigned i, array_count;
958 MachineState *ms = MACHINE(pcms);
959 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
960
961 /* tell smbios about cpuid version and features */
962 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
963
964 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
965 if (smbios_tables) {
966 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
967 smbios_tables, smbios_tables_len);
968 }
969
970 /* build the array of physical mem area from e820 table */
971 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
972 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
973 uint64_t addr, len;
974
975 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
976 mem_array[array_count].address = addr;
977 mem_array[array_count].length = len;
978 array_count++;
979 }
980 }
981 smbios_get_tables(mem_array, array_count,
982 &smbios_tables, &smbios_tables_len,
983 &smbios_anchor, &smbios_anchor_len);
984 g_free(mem_array);
985
986 if (smbios_anchor) {
987 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
988 smbios_tables, smbios_tables_len);
989 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
990 smbios_anchor, smbios_anchor_len);
991 }
992 }
993
994 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
995 {
996 FWCfgState *fw_cfg;
997 uint64_t *numa_fw_cfg;
998 int i;
999 const CPUArchIdList *cpus;
1000 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1001
1002 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1003 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1004
1005 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1006 *
1007 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1008 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1009 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1010 * for CPU hotplug also uses APIC ID and not "CPU index".
1011 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1012 * but the "limit to the APIC ID values SeaBIOS may see".
1013 *
1014 * So for compatibility reasons with old BIOSes we are stuck with
1015 * "etc/max-cpus" actually being apic_id_limit
1016 */
1017 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1018 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1019 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1020 acpi_tables, acpi_tables_len);
1021 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1022
1023 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1024 &e820_reserve, sizeof(e820_reserve));
1025 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1026 sizeof(struct e820_entry) * e820_entries);
1027
1028 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1029 /* allocate memory for the NUMA channel: one (64bit) word for the number
1030 * of nodes, one word for each VCPU->node and one word for each node to
1031 * hold the amount of memory.
1032 */
1033 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1034 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1035 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1036 for (i = 0; i < cpus->len; i++) {
1037 unsigned int apic_id = cpus->cpus[i].arch_id;
1038 assert(apic_id < pcms->apic_id_limit);
1039 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1040 }
1041 for (i = 0; i < nb_numa_nodes; i++) {
1042 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1043 cpu_to_le64(numa_info[i].node_mem);
1044 }
1045 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1046 (1 + pcms->apic_id_limit + nb_numa_nodes) *
1047 sizeof(*numa_fw_cfg));
1048
1049 return fw_cfg;
1050 }
1051
1052 static long get_file_size(FILE *f)
1053 {
1054 long where, size;
1055
1056 /* XXX: on Unix systems, using fstat() probably makes more sense */
1057
1058 where = ftell(f);
1059 fseek(f, 0, SEEK_END);
1060 size = ftell(f);
1061 fseek(f, where, SEEK_SET);
1062
1063 return size;
1064 }
1065
1066 struct setup_data {
1067 uint64_t next;
1068 uint32_t type;
1069 uint32_t len;
1070 uint8_t data[0];
1071 } __attribute__((packed));
1072
1073
1074 /*
1075 * The entry point into the kernel for PVH boot is different from
1076 * the native entry point. The PVH entry is defined by the x86/HVM
1077 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1078 *
1079 * This function is passed to load_elf() when it is called from
1080 * load_elfboot() which then additionally checks for an ELF Note of
1081 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1082 * parse the PVH entry address from the ELF Note.
1083 *
1084 * Due to trickery in elf_opts.h, load_elf() is actually available as
1085 * load_elf32() or load_elf64() and this routine needs to be able
1086 * to deal with being called as 32 or 64 bit.
1087 *
1088 * The address of the PVH entry point is saved to the 'pvh_start_addr'
1089 * global variable. (although the entry point is 32-bit, the kernel
1090 * binary can be either 32-bit or 64-bit).
1091 */
1092 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1093 {
1094 size_t *elf_note_data_addr;
1095
1096 /* Check if ELF Note header passed in is valid */
1097 if (arg1 == NULL) {
1098 return 0;
1099 }
1100
1101 if (is64) {
1102 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1103 uint64_t nhdr_size64 = sizeof(struct elf64_note);
1104 uint64_t phdr_align = *(uint64_t *)arg2;
1105 uint64_t nhdr_namesz = nhdr64->n_namesz;
1106
1107 elf_note_data_addr =
1108 ((void *)nhdr64) + nhdr_size64 +
1109 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1110 } else {
1111 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1112 uint32_t nhdr_size32 = sizeof(struct elf32_note);
1113 uint32_t phdr_align = *(uint32_t *)arg2;
1114 uint32_t nhdr_namesz = nhdr32->n_namesz;
1115
1116 elf_note_data_addr =
1117 ((void *)nhdr32) + nhdr_size32 +
1118 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1119 }
1120
1121 pvh_start_addr = *elf_note_data_addr;
1122
1123 return pvh_start_addr;
1124 }
1125
1126 static bool load_elfboot(const char *kernel_filename,
1127 int kernel_file_size,
1128 uint8_t *header,
1129 size_t pvh_xen_start_addr,
1130 FWCfgState *fw_cfg)
1131 {
1132 uint32_t flags = 0;
1133 uint32_t mh_load_addr = 0;
1134 uint32_t elf_kernel_size = 0;
1135 uint64_t elf_entry;
1136 uint64_t elf_low, elf_high;
1137 int kernel_size;
1138
1139 if (ldl_p(header) != 0x464c457f) {
1140 return false; /* no elfboot */
1141 }
1142
1143 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1144 flags = elf_is64 ?
1145 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1146
1147 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1148 error_report("elfboot unsupported flags = %x", flags);
1149 exit(1);
1150 }
1151
1152 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1153 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1154 NULL, &elf_note_type, &elf_entry,
1155 &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1156 0, 0);
1157
1158 if (kernel_size < 0) {
1159 error_report("Error while loading elf kernel");
1160 exit(1);
1161 }
1162 mh_load_addr = elf_low;
1163 elf_kernel_size = elf_high - elf_low;
1164
1165 if (pvh_start_addr == 0) {
1166 error_report("Error loading uncompressed kernel without PVH ELF Note");
1167 exit(1);
1168 }
1169 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1170 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1171 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1172
1173 return true;
1174 }
1175
1176 static void load_linux(PCMachineState *pcms,
1177 FWCfgState *fw_cfg)
1178 {
1179 uint16_t protocol;
1180 int setup_size, kernel_size, cmdline_size;
1181 int dtb_size, setup_data_offset;
1182 uint32_t initrd_max;
1183 uint8_t header[8192], *setup, *kernel;
1184 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1185 FILE *f;
1186 char *vmode;
1187 MachineState *machine = MACHINE(pcms);
1188 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1189 struct setup_data *setup_data;
1190 const char *kernel_filename = machine->kernel_filename;
1191 const char *initrd_filename = machine->initrd_filename;
1192 const char *dtb_filename = machine->dtb;
1193 const char *kernel_cmdline = machine->kernel_cmdline;
1194
1195 /* Align to 16 bytes as a paranoia measure */
1196 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1197
1198 /* load the kernel header */
1199 f = fopen(kernel_filename, "rb");
1200 if (!f || !(kernel_size = get_file_size(f)) ||
1201 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1202 MIN(ARRAY_SIZE(header), kernel_size)) {
1203 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1204 kernel_filename, strerror(errno));
1205 exit(1);
1206 }
1207
1208 /* kernel protocol version */
1209 #if 0
1210 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1211 #endif
1212 if (ldl_p(header+0x202) == 0x53726448) {
1213 protocol = lduw_p(header+0x206);
1214 } else {
1215 /*
1216 * This could be a multiboot kernel. If it is, let's stop treating it
1217 * like a Linux kernel.
1218 * Note: some multiboot images could be in the ELF format (the same of
1219 * PVH), so we try multiboot first since we check the multiboot magic
1220 * header before to load it.
1221 */
1222 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1223 kernel_cmdline, kernel_size, header)) {
1224 return;
1225 }
1226 /*
1227 * Check if the file is an uncompressed kernel file (ELF) and load it,
1228 * saving the PVH entry point used by the x86/HVM direct boot ABI.
1229 * If load_elfboot() is successful, populate the fw_cfg info.
1230 */
1231 if (pcmc->pvh_enabled &&
1232 load_elfboot(kernel_filename, kernel_size,
1233 header, pvh_start_addr, fw_cfg)) {
1234 fclose(f);
1235
1236 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1237 strlen(kernel_cmdline) + 1);
1238 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1239
1240 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1241 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1242 header, sizeof(header));
1243
1244 /* load initrd */
1245 if (initrd_filename) {
1246 gsize initrd_size;
1247 gchar *initrd_data;
1248 GError *gerr = NULL;
1249
1250 if (!g_file_get_contents(initrd_filename, &initrd_data,
1251 &initrd_size, &gerr)) {
1252 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1253 initrd_filename, gerr->message);
1254 exit(1);
1255 }
1256
1257 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1258 if (initrd_size >= initrd_max) {
1259 fprintf(stderr, "qemu: initrd is too large, cannot support."
1260 "(max: %"PRIu32", need %"PRId64")\n",
1261 initrd_max, (uint64_t)initrd_size);
1262 exit(1);
1263 }
1264
1265 initrd_addr = (initrd_max - initrd_size) & ~4095;
1266
1267 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1268 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1269 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1270 initrd_size);
1271 }
1272
1273 option_rom[nb_option_roms].bootindex = 0;
1274 option_rom[nb_option_roms].name = "pvh.bin";
1275 nb_option_roms++;
1276
1277 return;
1278 }
1279 protocol = 0;
1280 }
1281
1282 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1283 /* Low kernel */
1284 real_addr = 0x90000;
1285 cmdline_addr = 0x9a000 - cmdline_size;
1286 prot_addr = 0x10000;
1287 } else if (protocol < 0x202) {
1288 /* High but ancient kernel */
1289 real_addr = 0x90000;
1290 cmdline_addr = 0x9a000 - cmdline_size;
1291 prot_addr = 0x100000;
1292 } else {
1293 /* High and recent kernel */
1294 real_addr = 0x10000;
1295 cmdline_addr = 0x20000;
1296 prot_addr = 0x100000;
1297 }
1298
1299 #if 0
1300 fprintf(stderr,
1301 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
1302 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
1303 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
1304 real_addr,
1305 cmdline_addr,
1306 prot_addr);
1307 #endif
1308
1309 /* highest address for loading the initrd */
1310 if (protocol >= 0x20c &&
1311 lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1312 /*
1313 * Linux has supported initrd up to 4 GB for a very long time (2007,
1314 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1315 * though it only sets initrd_max to 2 GB to "work around bootloader
1316 * bugs". Luckily, QEMU firmware(which does something like bootloader)
1317 * has supported this.
1318 *
1319 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1320 * be loaded into any address.
1321 *
1322 * In addition, initrd_max is uint32_t simply because QEMU doesn't
1323 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1324 * field).
1325 *
1326 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1327 */
1328 initrd_max = UINT32_MAX;
1329 } else if (protocol >= 0x203) {
1330 initrd_max = ldl_p(header+0x22c);
1331 } else {
1332 initrd_max = 0x37ffffff;
1333 }
1334
1335 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1336 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1337 }
1338
1339 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1340 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1341 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1342
1343 if (protocol >= 0x202) {
1344 stl_p(header+0x228, cmdline_addr);
1345 } else {
1346 stw_p(header+0x20, 0xA33F);
1347 stw_p(header+0x22, cmdline_addr-real_addr);
1348 }
1349
1350 /* handle vga= parameter */
1351 vmode = strstr(kernel_cmdline, "vga=");
1352 if (vmode) {
1353 unsigned int video_mode;
1354 /* skip "vga=" */
1355 vmode += 4;
1356 if (!strncmp(vmode, "normal", 6)) {
1357 video_mode = 0xffff;
1358 } else if (!strncmp(vmode, "ext", 3)) {
1359 video_mode = 0xfffe;
1360 } else if (!strncmp(vmode, "ask", 3)) {
1361 video_mode = 0xfffd;
1362 } else {
1363 video_mode = strtol(vmode, NULL, 0);
1364 }
1365 stw_p(header+0x1fa, video_mode);
1366 }
1367
1368 /* loader type */
1369 /* High nybble = B reserved for QEMU; low nybble is revision number.
1370 If this code is substantially changed, you may want to consider
1371 incrementing the revision. */
1372 if (protocol >= 0x200) {
1373 header[0x210] = 0xB0;
1374 }
1375 /* heap */
1376 if (protocol >= 0x201) {
1377 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1378 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1379 }
1380
1381 /* load initrd */
1382 if (initrd_filename) {
1383 gsize initrd_size;
1384 gchar *initrd_data;
1385 GError *gerr = NULL;
1386
1387 if (protocol < 0x200) {
1388 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1389 exit(1);
1390 }
1391
1392 if (!g_file_get_contents(initrd_filename, &initrd_data,
1393 &initrd_size, &gerr)) {
1394 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1395 initrd_filename, gerr->message);
1396 exit(1);
1397 }
1398 if (initrd_size >= initrd_max) {
1399 fprintf(stderr, "qemu: initrd is too large, cannot support."
1400 "(max: %"PRIu32", need %"PRId64")\n",
1401 initrd_max, (uint64_t)initrd_size);
1402 exit(1);
1403 }
1404
1405 initrd_addr = (initrd_max-initrd_size) & ~4095;
1406
1407 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1408 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1409 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1410
1411 stl_p(header+0x218, initrd_addr);
1412 stl_p(header+0x21c, initrd_size);
1413 }
1414
1415 /* load kernel and setup */
1416 setup_size = header[0x1f1];
1417 if (setup_size == 0) {
1418 setup_size = 4;
1419 }
1420 setup_size = (setup_size+1)*512;
1421 if (setup_size > kernel_size) {
1422 fprintf(stderr, "qemu: invalid kernel header\n");
1423 exit(1);
1424 }
1425 kernel_size -= setup_size;
1426
1427 setup = g_malloc(setup_size);
1428 kernel = g_malloc(kernel_size);
1429 fseek(f, 0, SEEK_SET);
1430 if (fread(setup, 1, setup_size, f) != setup_size) {
1431 fprintf(stderr, "fread() failed\n");
1432 exit(1);
1433 }
1434 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1435 fprintf(stderr, "fread() failed\n");
1436 exit(1);
1437 }
1438 fclose(f);
1439
1440 /* append dtb to kernel */
1441 if (dtb_filename) {
1442 if (protocol < 0x209) {
1443 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1444 exit(1);
1445 }
1446
1447 dtb_size = get_image_size(dtb_filename);
1448 if (dtb_size <= 0) {
1449 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1450 dtb_filename, strerror(errno));
1451 exit(1);
1452 }
1453
1454 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1455 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1456 kernel = g_realloc(kernel, kernel_size);
1457
1458 stq_p(header+0x250, prot_addr + setup_data_offset);
1459
1460 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1461 setup_data->next = 0;
1462 setup_data->type = cpu_to_le32(SETUP_DTB);
1463 setup_data->len = cpu_to_le32(dtb_size);
1464
1465 load_image_size(dtb_filename, setup_data->data, dtb_size);
1466 }
1467
1468 memcpy(setup, header, MIN(sizeof(header), setup_size));
1469
1470 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1471 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1472 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1473
1474 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1475 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1476 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1477
1478 option_rom[nb_option_roms].bootindex = 0;
1479 option_rom[nb_option_roms].name = "linuxboot.bin";
1480 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1481 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1482 }
1483 nb_option_roms++;
1484 }
1485
1486 #define NE2000_NB_MAX 6
1487
1488 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1489 0x280, 0x380 };
1490 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1491
1492 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1493 {
1494 static int nb_ne2k = 0;
1495
1496 if (nb_ne2k == NE2000_NB_MAX)
1497 return;
1498 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1499 ne2000_irq[nb_ne2k], nd);
1500 nb_ne2k++;
1501 }
1502
1503 DeviceState *cpu_get_current_apic(void)
1504 {
1505 if (current_cpu) {
1506 X86CPU *cpu = X86_CPU(current_cpu);
1507 return cpu->apic_state;
1508 } else {
1509 return NULL;
1510 }
1511 }
1512
1513 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1514 {
1515 X86CPU *cpu = opaque;
1516
1517 if (level) {
1518 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1519 }
1520 }
1521
1522 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1523 {
1524 Object *cpu = NULL;
1525 Error *local_err = NULL;
1526
1527 cpu = object_new(typename);
1528
1529 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1530 object_property_set_bool(cpu, true, "realized", &local_err);
1531
1532 object_unref(cpu);
1533 error_propagate(errp, local_err);
1534 }
1535
1536 void pc_hot_add_cpu(const int64_t id, Error **errp)
1537 {
1538 MachineState *ms = MACHINE(qdev_get_machine());
1539 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1540 Error *local_err = NULL;
1541
1542 if (id < 0) {
1543 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1544 return;
1545 }
1546
1547 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1548 error_setg(errp, "Unable to add CPU: %" PRIi64
1549 ", resulting APIC ID (%" PRIi64 ") is too large",
1550 id, apic_id);
1551 return;
1552 }
1553
1554 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1555 if (local_err) {
1556 error_propagate(errp, local_err);
1557 return;
1558 }
1559 }
1560
1561 void pc_cpus_init(PCMachineState *pcms)
1562 {
1563 int i;
1564 const CPUArchIdList *possible_cpus;
1565 MachineState *ms = MACHINE(pcms);
1566 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1567
1568 /* Calculates the limit to CPU APIC ID values
1569 *
1570 * Limit for the APIC ID value, so that all
1571 * CPU APIC IDs are < pcms->apic_id_limit.
1572 *
1573 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1574 */
1575 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1576 possible_cpus = mc->possible_cpu_arch_ids(ms);
1577 for (i = 0; i < smp_cpus; i++) {
1578 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1579 &error_fatal);
1580 }
1581 }
1582
1583 static void pc_build_feature_control_file(PCMachineState *pcms)
1584 {
1585 MachineState *ms = MACHINE(pcms);
1586 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1587 CPUX86State *env = &cpu->env;
1588 uint32_t unused, ecx, edx;
1589 uint64_t feature_control_bits = 0;
1590 uint64_t *val;
1591
1592 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1593 if (ecx & CPUID_EXT_VMX) {
1594 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1595 }
1596
1597 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1598 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1599 (env->mcg_cap & MCG_LMCE_P)) {
1600 feature_control_bits |= FEATURE_CONTROL_LMCE;
1601 }
1602
1603 if (!feature_control_bits) {
1604 return;
1605 }
1606
1607 val = g_malloc(sizeof(*val));
1608 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1609 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1610 }
1611
1612 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1613 {
1614 if (cpus_count > 0xff) {
1615 /* If the number of CPUs can't be represented in 8 bits, the
1616 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1617 * to make old BIOSes fail more predictably.
1618 */
1619 rtc_set_memory(rtc, 0x5f, 0);
1620 } else {
1621 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1622 }
1623 }
1624
1625 static
1626 void pc_machine_done(Notifier *notifier, void *data)
1627 {
1628 PCMachineState *pcms = container_of(notifier,
1629 PCMachineState, machine_done);
1630 PCIBus *bus = pcms->bus;
1631
1632 /* set the number of CPUs */
1633 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1634
1635 if (bus) {
1636 int extra_hosts = 0;
1637
1638 QLIST_FOREACH(bus, &bus->child, sibling) {
1639 /* look for expander root buses */
1640 if (pci_bus_is_root(bus)) {
1641 extra_hosts++;
1642 }
1643 }
1644 if (extra_hosts && pcms->fw_cfg) {
1645 uint64_t *val = g_malloc(sizeof(*val));
1646 *val = cpu_to_le64(extra_hosts);
1647 fw_cfg_add_file(pcms->fw_cfg,
1648 "etc/extra-pci-roots", val, sizeof(*val));
1649 }
1650 }
1651
1652 acpi_setup();
1653 if (pcms->fw_cfg) {
1654 pc_build_smbios(pcms);
1655 pc_build_feature_control_file(pcms);
1656 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1657 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1658 }
1659
1660 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1661 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1662
1663 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1664 iommu->intr_eim != ON_OFF_AUTO_ON) {
1665 error_report("current -smp configuration requires "
1666 "Extended Interrupt Mode enabled. "
1667 "You can add an IOMMU using: "
1668 "-device intel-iommu,intremap=on,eim=on");
1669 exit(EXIT_FAILURE);
1670 }
1671 }
1672 }
1673
1674 void pc_guest_info_init(PCMachineState *pcms)
1675 {
1676 int i;
1677
1678 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1679 pcms->numa_nodes = nb_numa_nodes;
1680 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1681 sizeof *pcms->node_mem);
1682 for (i = 0; i < nb_numa_nodes; i++) {
1683 pcms->node_mem[i] = numa_info[i].node_mem;
1684 }
1685
1686 pcms->machine_done.notify = pc_machine_done;
1687 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1688 }
1689
1690 /* setup pci memory address space mapping into system address space */
1691 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1692 MemoryRegion *pci_address_space)
1693 {
1694 /* Set to lower priority than RAM */
1695 memory_region_add_subregion_overlap(system_memory, 0x0,
1696 pci_address_space, -1);
1697 }
1698
1699 void xen_load_linux(PCMachineState *pcms)
1700 {
1701 int i;
1702 FWCfgState *fw_cfg;
1703
1704 assert(MACHINE(pcms)->kernel_filename != NULL);
1705
1706 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1707 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1708 rom_set_fw(fw_cfg);
1709
1710 load_linux(pcms, fw_cfg);
1711 for (i = 0; i < nb_option_roms; i++) {
1712 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1713 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1714 !strcmp(option_rom[i].name, "pvh.bin") ||
1715 !strcmp(option_rom[i].name, "multiboot.bin"));
1716 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1717 }
1718 pcms->fw_cfg = fw_cfg;
1719 }
1720
1721 void pc_memory_init(PCMachineState *pcms,
1722 MemoryRegion *system_memory,
1723 MemoryRegion *rom_memory,
1724 MemoryRegion **ram_memory)
1725 {
1726 int linux_boot, i;
1727 MemoryRegion *ram, *option_rom_mr;
1728 MemoryRegion *ram_below_4g, *ram_above_4g;
1729 FWCfgState *fw_cfg;
1730 MachineState *machine = MACHINE(pcms);
1731 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1732
1733 assert(machine->ram_size == pcms->below_4g_mem_size +
1734 pcms->above_4g_mem_size);
1735
1736 linux_boot = (machine->kernel_filename != NULL);
1737
1738 /* Allocate RAM. We allocate it as a single memory region and use
1739 * aliases to address portions of it, mostly for backwards compatibility
1740 * with older qemus that used qemu_ram_alloc().
1741 */
1742 ram = g_malloc(sizeof(*ram));
1743 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1744 machine->ram_size);
1745 *ram_memory = ram;
1746 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1747 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1748 0, pcms->below_4g_mem_size);
1749 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1750 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1751 if (pcms->above_4g_mem_size > 0) {
1752 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1753 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1754 pcms->below_4g_mem_size,
1755 pcms->above_4g_mem_size);
1756 memory_region_add_subregion(system_memory, 0x100000000ULL,
1757 ram_above_4g);
1758 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1759 }
1760
1761 if (!pcmc->has_reserved_memory &&
1762 (machine->ram_slots ||
1763 (machine->maxram_size > machine->ram_size))) {
1764 MachineClass *mc = MACHINE_GET_CLASS(machine);
1765
1766 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1767 mc->name);
1768 exit(EXIT_FAILURE);
1769 }
1770
1771 /* always allocate the device memory information */
1772 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1773
1774 /* initialize device memory address space */
1775 if (pcmc->has_reserved_memory &&
1776 (machine->ram_size < machine->maxram_size)) {
1777 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1778
1779 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1780 error_report("unsupported amount of memory slots: %"PRIu64,
1781 machine->ram_slots);
1782 exit(EXIT_FAILURE);
1783 }
1784
1785 if (QEMU_ALIGN_UP(machine->maxram_size,
1786 TARGET_PAGE_SIZE) != machine->maxram_size) {
1787 error_report("maximum memory size must by aligned to multiple of "
1788 "%d bytes", TARGET_PAGE_SIZE);
1789 exit(EXIT_FAILURE);
1790 }
1791
1792 machine->device_memory->base =
1793 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1794
1795 if (pcmc->enforce_aligned_dimm) {
1796 /* size device region assuming 1G page max alignment per slot */
1797 device_mem_size += (1 * GiB) * machine->ram_slots;
1798 }
1799
1800 if ((machine->device_memory->base + device_mem_size) <
1801 device_mem_size) {
1802 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1803 machine->maxram_size);
1804 exit(EXIT_FAILURE);
1805 }
1806
1807 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1808 "device-memory", device_mem_size);
1809 memory_region_add_subregion(system_memory, machine->device_memory->base,
1810 &machine->device_memory->mr);
1811 }
1812
1813 /* Initialize PC system firmware */
1814 pc_system_firmware_init(pcms, rom_memory);
1815
1816 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1817 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1818 &error_fatal);
1819 if (pcmc->pci_enabled) {
1820 memory_region_set_readonly(option_rom_mr, true);
1821 }
1822 memory_region_add_subregion_overlap(rom_memory,
1823 PC_ROM_MIN_VGA,
1824 option_rom_mr,
1825 1);
1826
1827 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1828
1829 rom_set_fw(fw_cfg);
1830
1831 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1832 uint64_t *val = g_malloc(sizeof(*val));
1833 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1834 uint64_t res_mem_end = machine->device_memory->base;
1835
1836 if (!pcmc->broken_reserved_end) {
1837 res_mem_end += memory_region_size(&machine->device_memory->mr);
1838 }
1839 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1840 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1841 }
1842
1843 if (linux_boot) {
1844 load_linux(pcms, fw_cfg);
1845 }
1846
1847 for (i = 0; i < nb_option_roms; i++) {
1848 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1849 }
1850 pcms->fw_cfg = fw_cfg;
1851
1852 /* Init default IOAPIC address space */
1853 pcms->ioapic_as = &address_space_memory;
1854 }
1855
1856 /*
1857 * The 64bit pci hole starts after "above 4G RAM" and
1858 * potentially the space reserved for memory hotplug.
1859 */
1860 uint64_t pc_pci_hole64_start(void)
1861 {
1862 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1863 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1864 MachineState *ms = MACHINE(pcms);
1865 uint64_t hole64_start = 0;
1866
1867 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1868 hole64_start = ms->device_memory->base;
1869 if (!pcmc->broken_reserved_end) {
1870 hole64_start += memory_region_size(&ms->device_memory->mr);
1871 }
1872 } else {
1873 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1874 }
1875
1876 return ROUND_UP(hole64_start, 1 * GiB);
1877 }
1878
1879 qemu_irq pc_allocate_cpu_irq(void)
1880 {
1881 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1882 }
1883
1884 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1885 {
1886 DeviceState *dev = NULL;
1887
1888 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1889 if (pci_bus) {
1890 PCIDevice *pcidev = pci_vga_init(pci_bus);
1891 dev = pcidev ? &pcidev->qdev : NULL;
1892 } else if (isa_bus) {
1893 ISADevice *isadev = isa_vga_init(isa_bus);
1894 dev = isadev ? DEVICE(isadev) : NULL;
1895 }
1896 rom_reset_order_override();
1897 return dev;
1898 }
1899
1900 static const MemoryRegionOps ioport80_io_ops = {
1901 .write = ioport80_write,
1902 .read = ioport80_read,
1903 .endianness = DEVICE_NATIVE_ENDIAN,
1904 .impl = {
1905 .min_access_size = 1,
1906 .max_access_size = 1,
1907 },
1908 };
1909
1910 static const MemoryRegionOps ioportF0_io_ops = {
1911 .write = ioportF0_write,
1912 .read = ioportF0_read,
1913 .endianness = DEVICE_NATIVE_ENDIAN,
1914 .impl = {
1915 .min_access_size = 1,
1916 .max_access_size = 1,
1917 },
1918 };
1919
1920 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1921 {
1922 int i;
1923 DriveInfo *fd[MAX_FD];
1924 qemu_irq *a20_line;
1925 ISADevice *i8042, *port92, *vmmouse;
1926
1927 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1928 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1929
1930 for (i = 0; i < MAX_FD; i++) {
1931 fd[i] = drive_get(IF_FLOPPY, 0, i);
1932 create_fdctrl |= !!fd[i];
1933 }
1934 if (create_fdctrl) {
1935 fdctrl_init_isa(isa_bus, fd);
1936 }
1937
1938 i8042 = isa_create_simple(isa_bus, "i8042");
1939 if (!no_vmport) {
1940 vmport_init(isa_bus);
1941 vmmouse = isa_try_create(isa_bus, "vmmouse");
1942 } else {
1943 vmmouse = NULL;
1944 }
1945 if (vmmouse) {
1946 DeviceState *dev = DEVICE(vmmouse);
1947 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1948 qdev_init_nofail(dev);
1949 }
1950 port92 = isa_create_simple(isa_bus, "port92");
1951
1952 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1953 i8042_setup_a20_line(i8042, a20_line[0]);
1954 port92_init(port92, a20_line[1]);
1955 g_free(a20_line);
1956 }
1957
1958 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1959 ISADevice **rtc_state,
1960 bool create_fdctrl,
1961 bool no_vmport,
1962 bool has_pit,
1963 uint32_t hpet_irqs)
1964 {
1965 int i;
1966 DeviceState *hpet = NULL;
1967 int pit_isa_irq = 0;
1968 qemu_irq pit_alt_irq = NULL;
1969 qemu_irq rtc_irq = NULL;
1970 ISADevice *pit = NULL;
1971 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1972 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1973
1974 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1975 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1976
1977 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1978 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1979
1980 /*
1981 * Check if an HPET shall be created.
1982 *
1983 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1984 * when the HPET wants to take over. Thus we have to disable the latter.
1985 */
1986 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1987 /* In order to set property, here not using sysbus_try_create_simple */
1988 hpet = qdev_try_create(NULL, TYPE_HPET);
1989 if (hpet) {
1990 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1991 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1992 * IRQ8 and IRQ2.
1993 */
1994 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1995 HPET_INTCAP, NULL);
1996 if (!compat) {
1997 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1998 }
1999 qdev_init_nofail(hpet);
2000 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
2001
2002 for (i = 0; i < GSI_NUM_PINS; i++) {
2003 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2004 }
2005 pit_isa_irq = -1;
2006 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2007 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2008 }
2009 }
2010 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2011
2012 qemu_register_boot_set(pc_boot_set, *rtc_state);
2013
2014 if (!xen_enabled() && has_pit) {
2015 if (kvm_pit_in_kernel()) {
2016 pit = kvm_pit_init(isa_bus, 0x40);
2017 } else {
2018 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2019 }
2020 if (hpet) {
2021 /* connect PIT to output control line of the HPET */
2022 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2023 }
2024 pcspk_init(isa_bus, pit);
2025 }
2026
2027 i8257_dma_init(isa_bus, 0);
2028
2029 /* Super I/O */
2030 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2031 }
2032
2033 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2034 {
2035 int i;
2036
2037 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2038 for (i = 0; i < nb_nics; i++) {
2039 NICInfo *nd = &nd_table[i];
2040 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2041
2042 if (g_str_equal(model, "ne2k_isa")) {
2043 pc_init_ne2k_isa(isa_bus, nd);
2044 } else {
2045 pci_nic_init_nofail(nd, pci_bus, model, NULL);
2046 }
2047 }
2048 rom_reset_order_override();
2049 }
2050
2051 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2052 {
2053 DeviceState *dev;
2054 SysBusDevice *d;
2055 unsigned int i;
2056
2057 if (kvm_ioapic_in_kernel()) {
2058 dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2059 } else {
2060 dev = qdev_create(NULL, TYPE_IOAPIC);
2061 }
2062 if (parent_name) {
2063 object_property_add_child(object_resolve_path(parent_name, NULL),
2064 "ioapic", OBJECT(dev), NULL);
2065 }
2066 qdev_init_nofail(dev);
2067 d = SYS_BUS_DEVICE(dev);
2068 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2069
2070 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2071 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2072 }
2073 }
2074
2075 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2076 Error **errp)
2077 {
2078 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2079 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2080 const MachineState *ms = MACHINE(hotplug_dev);
2081 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2082 const uint64_t legacy_align = TARGET_PAGE_SIZE;
2083 Error *local_err = NULL;
2084
2085 /*
2086 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2087 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2088 * addition to cover this case.
2089 */
2090 if (!pcms->acpi_dev || !acpi_enabled) {
2091 error_setg(errp,
2092 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2093 return;
2094 }
2095
2096 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2097 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2098 return;
2099 }
2100
2101 hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2102 if (local_err) {
2103 error_propagate(errp, local_err);
2104 return;
2105 }
2106
2107 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2108 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2109 }
2110
2111 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2112 DeviceState *dev, Error **errp)
2113 {
2114 Error *local_err = NULL;
2115 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2116 MachineState *ms = MACHINE(hotplug_dev);
2117 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2118
2119 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2120 if (local_err) {
2121 goto out;
2122 }
2123
2124 if (is_nvdimm) {
2125 nvdimm_plug(ms->nvdimms_state);
2126 }
2127
2128 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2129 out:
2130 error_propagate(errp, local_err);
2131 }
2132
2133 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2134 DeviceState *dev, Error **errp)
2135 {
2136 Error *local_err = NULL;
2137 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2138
2139 /*
2140 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2141 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2142 * addition to cover this case.
2143 */
2144 if (!pcms->acpi_dev || !acpi_enabled) {
2145 error_setg(&local_err,
2146 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2147 goto out;
2148 }
2149
2150 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2151 error_setg(&local_err,
2152 "nvdimm device hot unplug is not supported yet.");
2153 goto out;
2154 }
2155
2156 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2157 &local_err);
2158 out:
2159 error_propagate(errp, local_err);
2160 }
2161
2162 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2163 DeviceState *dev, Error **errp)
2164 {
2165 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2166 Error *local_err = NULL;
2167
2168 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2169 if (local_err) {
2170 goto out;
2171 }
2172
2173 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2174 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2175 out:
2176 error_propagate(errp, local_err);
2177 }
2178
2179 static int pc_apic_cmp(const void *a, const void *b)
2180 {
2181 CPUArchId *apic_a = (CPUArchId *)a;
2182 CPUArchId *apic_b = (CPUArchId *)b;
2183
2184 return apic_a->arch_id - apic_b->arch_id;
2185 }
2186
2187 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2188 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2189 * entry corresponding to CPU's apic_id returns NULL.
2190 */
2191 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2192 {
2193 CPUArchId apic_id, *found_cpu;
2194
2195 apic_id.arch_id = id;
2196 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2197 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2198 pc_apic_cmp);
2199 if (found_cpu && idx) {
2200 *idx = found_cpu - ms->possible_cpus->cpus;
2201 }
2202 return found_cpu;
2203 }
2204
2205 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2206 DeviceState *dev, Error **errp)
2207 {
2208 CPUArchId *found_cpu;
2209 Error *local_err = NULL;
2210 X86CPU *cpu = X86_CPU(dev);
2211 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2212
2213 if (pcms->acpi_dev) {
2214 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2215 if (local_err) {
2216 goto out;
2217 }
2218 }
2219
2220 /* increment the number of CPUs */
2221 pcms->boot_cpus++;
2222 if (pcms->rtc) {
2223 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2224 }
2225 if (pcms->fw_cfg) {
2226 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2227 }
2228
2229 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2230 found_cpu->cpu = OBJECT(dev);
2231 out:
2232 error_propagate(errp, local_err);
2233 }
2234 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2235 DeviceState *dev, Error **errp)
2236 {
2237 int idx = -1;
2238 Error *local_err = NULL;
2239 X86CPU *cpu = X86_CPU(dev);
2240 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2241
2242 if (!pcms->acpi_dev) {
2243 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2244 goto out;
2245 }
2246
2247 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2248 assert(idx != -1);
2249 if (idx == 0) {
2250 error_setg(&local_err, "Boot CPU is unpluggable");
2251 goto out;
2252 }
2253
2254 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2255 &local_err);
2256 if (local_err) {
2257 goto out;
2258 }
2259
2260 out:
2261 error_propagate(errp, local_err);
2262
2263 }
2264
2265 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2266 DeviceState *dev, Error **errp)
2267 {
2268 CPUArchId *found_cpu;
2269 Error *local_err = NULL;
2270 X86CPU *cpu = X86_CPU(dev);
2271 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2272
2273 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2274 if (local_err) {
2275 goto out;
2276 }
2277
2278 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2279 found_cpu->cpu = NULL;
2280 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2281
2282 /* decrement the number of CPUs */
2283 pcms->boot_cpus--;
2284 /* Update the number of CPUs in CMOS */
2285 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2286 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2287 out:
2288 error_propagate(errp, local_err);
2289 }
2290
2291 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2292 DeviceState *dev, Error **errp)
2293 {
2294 int idx;
2295 CPUState *cs;
2296 CPUArchId *cpu_slot;
2297 X86CPUTopoInfo topo;
2298 X86CPU *cpu = X86_CPU(dev);
2299 MachineState *ms = MACHINE(hotplug_dev);
2300 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2301
2302 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2303 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2304 ms->cpu_type);
2305 return;
2306 }
2307
2308 /* if APIC ID is not set, set it based on socket/core/thread properties */
2309 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2310 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2311
2312 if (cpu->socket_id < 0) {
2313 error_setg(errp, "CPU socket-id is not set");
2314 return;
2315 } else if (cpu->socket_id > max_socket) {
2316 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2317 cpu->socket_id, max_socket);
2318 return;
2319 }
2320 if (cpu->core_id < 0) {
2321 error_setg(errp, "CPU core-id is not set");
2322 return;
2323 } else if (cpu->core_id > (smp_cores - 1)) {
2324 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2325 cpu->core_id, smp_cores - 1);
2326 return;
2327 }
2328 if (cpu->thread_id < 0) {
2329 error_setg(errp, "CPU thread-id is not set");
2330 return;
2331 } else if (cpu->thread_id > (smp_threads - 1)) {
2332 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2333 cpu->thread_id, smp_threads - 1);
2334 return;
2335 }
2336
2337 topo.pkg_id = cpu->socket_id;
2338 topo.core_id = cpu->core_id;
2339 topo.smt_id = cpu->thread_id;
2340 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2341 }
2342
2343 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2344 if (!cpu_slot) {
2345 MachineState *ms = MACHINE(pcms);
2346
2347 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2348 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2349 " APIC ID %" PRIu32 ", valid index range 0:%d",
2350 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2351 ms->possible_cpus->len - 1);
2352 return;
2353 }
2354
2355 if (cpu_slot->cpu) {
2356 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2357 idx, cpu->apic_id);
2358 return;
2359 }
2360
2361 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2362 * so that machine_query_hotpluggable_cpus would show correct values
2363 */
2364 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2365 * once -smp refactoring is complete and there will be CPU private
2366 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2367 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2368 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2369 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2370 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2371 return;
2372 }
2373 cpu->socket_id = topo.pkg_id;
2374
2375 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2376 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2377 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2378 return;
2379 }
2380 cpu->core_id = topo.core_id;
2381
2382 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2383 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2384 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2385 return;
2386 }
2387 cpu->thread_id = topo.smt_id;
2388
2389 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
2390 !kvm_hv_vpindex_settable()) {
2391 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2392 return;
2393 }
2394
2395 cs = CPU(cpu);
2396 cs->cpu_index = idx;
2397
2398 numa_cpu_pre_plug(cpu_slot, dev, errp);
2399 }
2400
2401 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2402 DeviceState *dev, Error **errp)
2403 {
2404 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2405 pc_memory_pre_plug(hotplug_dev, dev, errp);
2406 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2407 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2408 }
2409 }
2410
2411 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2412 DeviceState *dev, Error **errp)
2413 {
2414 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2415 pc_memory_plug(hotplug_dev, dev, errp);
2416 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2417 pc_cpu_plug(hotplug_dev, dev, errp);
2418 }
2419 }
2420
2421 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2422 DeviceState *dev, Error **errp)
2423 {
2424 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2425 pc_memory_unplug_request(hotplug_dev, dev, errp);
2426 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2427 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2428 } else {
2429 error_setg(errp, "acpi: device unplug request for not supported device"
2430 " type: %s", object_get_typename(OBJECT(dev)));
2431 }
2432 }
2433
2434 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2435 DeviceState *dev, Error **errp)
2436 {
2437 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2438 pc_memory_unplug(hotplug_dev, dev, errp);
2439 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2440 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2441 } else {
2442 error_setg(errp, "acpi: device unplug for not supported device"
2443 " type: %s", object_get_typename(OBJECT(dev)));
2444 }
2445 }
2446
2447 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2448 DeviceState *dev)
2449 {
2450 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2451 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2452 return HOTPLUG_HANDLER(machine);
2453 }
2454
2455 return NULL;
2456 }
2457
2458 static void
2459 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2460 const char *name, void *opaque,
2461 Error **errp)
2462 {
2463 MachineState *ms = MACHINE(obj);
2464 int64_t value = memory_region_size(&ms->device_memory->mr);
2465
2466 visit_type_int(v, name, &value, errp);
2467 }
2468
2469 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2470 const char *name, void *opaque,
2471 Error **errp)
2472 {
2473 PCMachineState *pcms = PC_MACHINE(obj);
2474 uint64_t value = pcms->max_ram_below_4g;
2475
2476 visit_type_size(v, name, &value, errp);
2477 }
2478
2479 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2480 const char *name, void *opaque,
2481 Error **errp)
2482 {
2483 PCMachineState *pcms = PC_MACHINE(obj);
2484 Error *error = NULL;
2485 uint64_t value;
2486
2487 visit_type_size(v, name, &value, &error);
2488 if (error) {
2489 error_propagate(errp, error);
2490 return;
2491 }
2492 if (value > 4 * GiB) {
2493 error_setg(&error,
2494 "Machine option 'max-ram-below-4g=%"PRIu64
2495 "' expects size less than or equal to 4G", value);
2496 error_propagate(errp, error);
2497 return;
2498 }
2499
2500 if (value < 1 * MiB) {
2501 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2502 "BIOS may not work with less than 1MiB", value);
2503 }
2504
2505 pcms->max_ram_below_4g = value;
2506 }
2507
2508 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2509 void *opaque, Error **errp)
2510 {
2511 PCMachineState *pcms = PC_MACHINE(obj);
2512 OnOffAuto vmport = pcms->vmport;
2513
2514 visit_type_OnOffAuto(v, name, &vmport, errp);
2515 }
2516
2517 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2518 void *opaque, Error **errp)
2519 {
2520 PCMachineState *pcms = PC_MACHINE(obj);
2521
2522 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2523 }
2524
2525 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2526 {
2527 bool smm_available = false;
2528
2529 if (pcms->smm == ON_OFF_AUTO_OFF) {
2530 return false;
2531 }
2532
2533 if (tcg_enabled() || qtest_enabled()) {
2534 smm_available = true;
2535 } else if (kvm_enabled()) {
2536 smm_available = kvm_has_smm();
2537 }
2538
2539 if (smm_available) {
2540 return true;
2541 }
2542
2543 if (pcms->smm == ON_OFF_AUTO_ON) {
2544 error_report("System Management Mode not supported by this hypervisor.");
2545 exit(1);
2546 }
2547 return false;
2548 }
2549
2550 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2551 void *opaque, Error **errp)
2552 {
2553 PCMachineState *pcms = PC_MACHINE(obj);
2554 OnOffAuto smm = pcms->smm;
2555
2556 visit_type_OnOffAuto(v, name, &smm, errp);
2557 }
2558
2559 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2560 void *opaque, Error **errp)
2561 {
2562 PCMachineState *pcms = PC_MACHINE(obj);
2563
2564 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2565 }
2566
2567 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2568 {
2569 PCMachineState *pcms = PC_MACHINE(obj);
2570
2571 return pcms->smbus_enabled;
2572 }
2573
2574 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2575 {
2576 PCMachineState *pcms = PC_MACHINE(obj);
2577
2578 pcms->smbus_enabled = value;
2579 }
2580
2581 static bool pc_machine_get_sata(Object *obj, Error **errp)
2582 {
2583 PCMachineState *pcms = PC_MACHINE(obj);
2584
2585 return pcms->sata_enabled;
2586 }
2587
2588 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2589 {
2590 PCMachineState *pcms = PC_MACHINE(obj);
2591
2592 pcms->sata_enabled = value;
2593 }
2594
2595 static bool pc_machine_get_pit(Object *obj, Error **errp)
2596 {
2597 PCMachineState *pcms = PC_MACHINE(obj);
2598
2599 return pcms->pit_enabled;
2600 }
2601
2602 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2603 {
2604 PCMachineState *pcms = PC_MACHINE(obj);
2605
2606 pcms->pit_enabled = value;
2607 }
2608
2609 static void pc_machine_initfn(Object *obj)
2610 {
2611 PCMachineState *pcms = PC_MACHINE(obj);
2612
2613 pcms->max_ram_below_4g = 0; /* use default */
2614 pcms->smm = ON_OFF_AUTO_AUTO;
2615 pcms->vmport = ON_OFF_AUTO_AUTO;
2616 /* acpi build is enabled by default if machine supports it */
2617 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2618 pcms->smbus_enabled = true;
2619 pcms->sata_enabled = true;
2620 pcms->pit_enabled = true;
2621
2622 pc_system_flash_create(pcms);
2623 }
2624
2625 static void pc_machine_reset(void)
2626 {
2627 CPUState *cs;
2628 X86CPU *cpu;
2629
2630 qemu_devices_reset();
2631
2632 /* Reset APIC after devices have been reset to cancel
2633 * any changes that qemu_devices_reset() might have done.
2634 */
2635 CPU_FOREACH(cs) {
2636 cpu = X86_CPU(cs);
2637
2638 if (cpu->apic_state) {
2639 device_reset(cpu->apic_state);
2640 }
2641 }
2642 }
2643
2644 static CpuInstanceProperties
2645 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2646 {
2647 MachineClass *mc = MACHINE_GET_CLASS(ms);
2648 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2649
2650 assert(cpu_index < possible_cpus->len);
2651 return possible_cpus->cpus[cpu_index].props;
2652 }
2653
2654 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2655 {
2656 X86CPUTopoInfo topo;
2657
2658 assert(idx < ms->possible_cpus->len);
2659 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2660 smp_cores, smp_threads, &topo);
2661 return topo.pkg_id % nb_numa_nodes;
2662 }
2663
2664 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2665 {
2666 int i;
2667
2668 if (ms->possible_cpus) {
2669 /*
2670 * make sure that max_cpus hasn't changed since the first use, i.e.
2671 * -smp hasn't been parsed after it
2672 */
2673 assert(ms->possible_cpus->len == max_cpus);
2674 return ms->possible_cpus;
2675 }
2676
2677 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2678 sizeof(CPUArchId) * max_cpus);
2679 ms->possible_cpus->len = max_cpus;
2680 for (i = 0; i < ms->possible_cpus->len; i++) {
2681 X86CPUTopoInfo topo;
2682
2683 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2684 ms->possible_cpus->cpus[i].vcpus_count = 1;
2685 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2686 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2687 smp_cores, smp_threads, &topo);
2688 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2689 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2690 ms->possible_cpus->cpus[i].props.has_core_id = true;
2691 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2692 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2693 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2694 }
2695 return ms->possible_cpus;
2696 }
2697
2698 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2699 {
2700 /* cpu index isn't used */
2701 CPUState *cs;
2702
2703 CPU_FOREACH(cs) {
2704 X86CPU *cpu = X86_CPU(cs);
2705
2706 if (!cpu->apic_state) {
2707 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2708 } else {
2709 apic_deliver_nmi(cpu->apic_state);
2710 }
2711 }
2712 }
2713
2714 static void pc_machine_class_init(ObjectClass *oc, void *data)
2715 {
2716 MachineClass *mc = MACHINE_CLASS(oc);
2717 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2718 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2719 NMIClass *nc = NMI_CLASS(oc);
2720
2721 pcmc->pci_enabled = true;
2722 pcmc->has_acpi_build = true;
2723 pcmc->rsdp_in_ram = true;
2724 pcmc->smbios_defaults = true;
2725 pcmc->smbios_uuid_encoded = true;
2726 pcmc->gigabyte_align = true;
2727 pcmc->has_reserved_memory = true;
2728 pcmc->kvmclock_enabled = true;
2729 pcmc->enforce_aligned_dimm = true;
2730 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2731 * to be used at the moment, 32K should be enough for a while. */
2732 pcmc->acpi_data_size = 0x20000 + 0x8000;
2733 pcmc->save_tsc_khz = true;
2734 pcmc->linuxboot_dma_enabled = true;
2735 pcmc->pvh_enabled = true;
2736 assert(!mc->get_hotplug_handler);
2737 mc->get_hotplug_handler = pc_get_hotplug_handler;
2738 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2739 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2740 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2741 mc->auto_enable_numa_with_memhp = true;
2742 mc->has_hotpluggable_cpus = true;
2743 mc->default_boot_order = "cad";
2744 mc->hot_add_cpu = pc_hot_add_cpu;
2745 mc->block_default_type = IF_IDE;
2746 mc->max_cpus = 255;
2747 mc->reset = pc_machine_reset;
2748 hc->pre_plug = pc_machine_device_pre_plug_cb;
2749 hc->plug = pc_machine_device_plug_cb;
2750 hc->unplug_request = pc_machine_device_unplug_request_cb;
2751 hc->unplug = pc_machine_device_unplug_cb;
2752 nc->nmi_monitor_handler = x86_nmi;
2753 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2754 mc->nvdimm_supported = true;
2755
2756 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2757 pc_machine_get_device_memory_region_size, NULL,
2758 NULL, NULL, &error_abort);
2759
2760 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2761 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2762 NULL, NULL, &error_abort);
2763
2764 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2765 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2766
2767 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2768 pc_machine_get_smm, pc_machine_set_smm,
2769 NULL, NULL, &error_abort);
2770 object_class_property_set_description(oc, PC_MACHINE_SMM,
2771 "Enable SMM (pc & q35)", &error_abort);
2772
2773 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2774 pc_machine_get_vmport, pc_machine_set_vmport,
2775 NULL, NULL, &error_abort);
2776 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2777 "Enable vmport (pc & q35)", &error_abort);
2778
2779 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2780 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2781
2782 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2783 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2784
2785 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2786 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2787 }
2788
2789 static const TypeInfo pc_machine_info = {
2790 .name = TYPE_PC_MACHINE,
2791 .parent = TYPE_MACHINE,
2792 .abstract = true,
2793 .instance_size = sizeof(PCMachineState),
2794 .instance_init = pc_machine_initfn,
2795 .class_size = sizeof(PCMachineClass),
2796 .class_init = pc_machine_class_init,
2797 .interfaces = (InterfaceInfo[]) {
2798 { TYPE_HOTPLUG_HANDLER },
2799 { TYPE_NMI },
2800 { }
2801 },
2802 };
2803
2804 static void pc_machine_register_types(void)
2805 {
2806 type_register_static(&pc_machine_info);
2807 }
2808
2809 type_init(pc_machine_register_types)