]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
Merge remote-tracking branch 'remotes/stsquad/tags/pull-testing-next-050719-3' into...
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "hw/i386/fw_cfg.h"
34 #include "sysemu/cpus.h"
35 #include "hw/block/fdc.h"
36 #include "hw/ide.h"
37 #include "hw/pci/pci.h"
38 #include "hw/pci/pci_bus.h"
39 #include "hw/nvram/fw_cfg.h"
40 #include "hw/timer/hpet.h"
41 #include "hw/firmware/smbios.h"
42 #include "hw/loader.h"
43 #include "elf.h"
44 #include "multiboot.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/dma/i8257.h"
47 #include "hw/timer/i8254.h"
48 #include "hw/input/i8042.h"
49 #include "hw/audio/pcspk.h"
50 #include "hw/pci/msi.h"
51 #include "hw/sysbus.h"
52 #include "sysemu/sysemu.h"
53 #include "sysemu/tcg.h"
54 #include "sysemu/numa.h"
55 #include "sysemu/kvm.h"
56 #include "sysemu/qtest.h"
57 #include "kvm_i386.h"
58 #include "hw/xen/xen.h"
59 #include "hw/xen/start_info.h"
60 #include "ui/qemu-spice.h"
61 #include "exec/memory.h"
62 #include "exec/address-spaces.h"
63 #include "sysemu/arch_init.h"
64 #include "qemu/bitmap.h"
65 #include "qemu/config-file.h"
66 #include "qemu/error-report.h"
67 #include "qemu/option.h"
68 #include "hw/acpi/acpi.h"
69 #include "hw/acpi/cpu_hotplug.h"
70 #include "hw/boards.h"
71 #include "acpi-build.h"
72 #include "hw/mem/pc-dimm.h"
73 #include "qapi/error.h"
74 #include "qapi/qapi-visit-common.h"
75 #include "qapi/visitor.h"
76 #include "qom/cpu.h"
77 #include "hw/nmi.h"
78 #include "hw/usb.h"
79 #include "hw/i386/intel_iommu.h"
80 #include "hw/net/ne2000-isa.h"
81 #include "standard-headers/asm-x86/bootparam.h"
82 #include "hw/virtio/virtio-pmem-pci.h"
83 #include "hw/mem/memory-device.h"
84
85 /* debug PC/ISA interrupts */
86 //#define DEBUG_IRQ
87
88 #ifdef DEBUG_IRQ
89 #define DPRINTF(fmt, ...) \
90 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
91 #else
92 #define DPRINTF(fmt, ...)
93 #endif
94
95 #define E820_NR_ENTRIES 16
96
97 struct e820_entry {
98 uint64_t address;
99 uint64_t length;
100 uint32_t type;
101 } QEMU_PACKED __attribute((__aligned__(4)));
102
103 struct e820_table {
104 uint32_t count;
105 struct e820_entry entry[E820_NR_ENTRIES];
106 } QEMU_PACKED __attribute((__aligned__(4)));
107
108 static struct e820_table e820_reserve;
109 static struct e820_entry *e820_table;
110 static unsigned e820_entries;
111 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
112
113 /* Physical Address of PVH entry point read from kernel ELF NOTE */
114 static size_t pvh_start_addr;
115
116 GlobalProperty pc_compat_4_0[] = {};
117 const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
118
119 GlobalProperty pc_compat_3_1[] = {
120 { "intel-iommu", "dma-drain", "off" },
121 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
122 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
123 { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
124 { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
125 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
126 { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
127 { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
128 { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
129 { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
130 { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
131 { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
132 { "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
133 { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
134 { "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
135 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
136 { "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
137 { "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
138 { "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
139 { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
140 { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
141 };
142 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
143
144 GlobalProperty pc_compat_3_0[] = {
145 { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
146 { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
147 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
148 };
149 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
150
151 GlobalProperty pc_compat_2_12[] = {
152 { TYPE_X86_CPU, "legacy-cache", "on" },
153 { TYPE_X86_CPU, "topoext", "off" },
154 { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
155 { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
156 };
157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
158
159 GlobalProperty pc_compat_2_11[] = {
160 { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
161 { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
162 };
163 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
164
165 GlobalProperty pc_compat_2_10[] = {
166 { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
167 { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
168 { "q35-pcihost", "x-pci-hole64-fix", "off" },
169 };
170 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
171
172 GlobalProperty pc_compat_2_9[] = {
173 { "mch", "extended-tseg-mbytes", "0" },
174 };
175 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
176
177 GlobalProperty pc_compat_2_8[] = {
178 { TYPE_X86_CPU, "tcg-cpuid", "off" },
179 { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
180 { "ICH9-LPC", "x-smi-broadcast", "off" },
181 { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
182 { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
183 };
184 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
185
186 GlobalProperty pc_compat_2_7[] = {
187 { TYPE_X86_CPU, "l3-cache", "off" },
188 { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
189 { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
190 { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
191 { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
192 { "isa-pcspk", "migrate", "off" },
193 };
194 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
195
196 GlobalProperty pc_compat_2_6[] = {
197 { TYPE_X86_CPU, "cpuid-0xb", "off" },
198 { "vmxnet3", "romfile", "" },
199 { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
200 { "apic-common", "legacy-instance-id", "on", }
201 };
202 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
203
204 GlobalProperty pc_compat_2_5[] = {};
205 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
206
207 GlobalProperty pc_compat_2_4[] = {
208 PC_CPU_MODEL_IDS("2.4.0")
209 { "Haswell-" TYPE_X86_CPU, "abm", "off" },
210 { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
211 { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
212 { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
213 { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
214 { TYPE_X86_CPU, "check", "off" },
215 { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
216 { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
217 { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
218 { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
219 { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
220 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
221 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
222 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
223 };
224 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
225
226 GlobalProperty pc_compat_2_3[] = {
227 PC_CPU_MODEL_IDS("2.3.0")
228 { TYPE_X86_CPU, "arat", "off" },
229 { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
230 { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
231 { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
232 { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
233 { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
234 { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
235 { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
236 { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
237 { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
238 { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
239 { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
240 { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
241 { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
242 { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243 { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244 { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245 { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
246 { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
247 { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
248 };
249 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
250
251 GlobalProperty pc_compat_2_2[] = {
252 PC_CPU_MODEL_IDS("2.2.0")
253 { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
254 { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
255 { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
256 { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
257 { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
258 { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
259 { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
260 { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
261 { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
262 { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
263 { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
264 { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
265 { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
266 { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
267 { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
268 { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
269 { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
270 { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
271 };
272 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
273
274 GlobalProperty pc_compat_2_1[] = {
275 PC_CPU_MODEL_IDS("2.1.0")
276 { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
277 { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
278 };
279 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
280
281 GlobalProperty pc_compat_2_0[] = {
282 PC_CPU_MODEL_IDS("2.0.0")
283 { "virtio-scsi-pci", "any_layout", "off" },
284 { "PIIX4_PM", "memory-hotplug-support", "off" },
285 { "apic", "version", "0x11" },
286 { "nec-usb-xhci", "superspeed-ports-first", "off" },
287 { "nec-usb-xhci", "force-pcie-endcap", "on" },
288 { "pci-serial", "prog_if", "0" },
289 { "pci-serial-2x", "prog_if", "0" },
290 { "pci-serial-4x", "prog_if", "0" },
291 { "virtio-net-pci", "guest_announce", "off" },
292 { "ICH9-LPC", "memory-hotplug-support", "off" },
293 { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
294 { "ioh3420", COMPAT_PROP_PCP, "off" },
295 };
296 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
297
298 GlobalProperty pc_compat_1_7[] = {
299 PC_CPU_MODEL_IDS("1.7.0")
300 { TYPE_USB_DEVICE, "msos-desc", "no" },
301 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
302 { "hpet", HPET_INTCAP, "4" },
303 };
304 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
305
306 GlobalProperty pc_compat_1_6[] = {
307 PC_CPU_MODEL_IDS("1.6.0")
308 { "e1000", "mitigation", "off" },
309 { "qemu64-" TYPE_X86_CPU, "model", "2" },
310 { "qemu32-" TYPE_X86_CPU, "model", "3" },
311 { "i440FX-pcihost", "short_root_bus", "1" },
312 { "q35-pcihost", "short_root_bus", "1" },
313 };
314 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
315
316 GlobalProperty pc_compat_1_5[] = {
317 PC_CPU_MODEL_IDS("1.5.0")
318 { "Conroe-" TYPE_X86_CPU, "model", "2" },
319 { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
320 { "Penryn-" TYPE_X86_CPU, "model", "2" },
321 { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
322 { "Nehalem-" TYPE_X86_CPU, "model", "2" },
323 { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
324 { "virtio-net-pci", "any_layout", "off" },
325 { TYPE_X86_CPU, "pmu", "on" },
326 { "i440FX-pcihost", "short_root_bus", "0" },
327 { "q35-pcihost", "short_root_bus", "0" },
328 };
329 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
330
331 GlobalProperty pc_compat_1_4[] = {
332 PC_CPU_MODEL_IDS("1.4.0")
333 { "scsi-hd", "discard_granularity", "0" },
334 { "scsi-cd", "discard_granularity", "0" },
335 { "scsi-disk", "discard_granularity", "0" },
336 { "ide-hd", "discard_granularity", "0" },
337 { "ide-cd", "discard_granularity", "0" },
338 { "ide-drive", "discard_granularity", "0" },
339 { "virtio-blk-pci", "discard_granularity", "0" },
340 /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
341 { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
342 { "virtio-net-pci", "ctrl_guest_offloads", "off" },
343 { "e1000", "romfile", "pxe-e1000.rom" },
344 { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
345 { "pcnet", "romfile", "pxe-pcnet.rom" },
346 { "rtl8139", "romfile", "pxe-rtl8139.rom" },
347 { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
348 { "486-" TYPE_X86_CPU, "model", "0" },
349 { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
350 { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
351 };
352 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
353
354 void gsi_handler(void *opaque, int n, int level)
355 {
356 GSIState *s = opaque;
357
358 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
359 if (n < ISA_NUM_IRQS) {
360 qemu_set_irq(s->i8259_irq[n], level);
361 }
362 qemu_set_irq(s->ioapic_irq[n], level);
363 }
364
365 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
366 unsigned size)
367 {
368 }
369
370 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
371 {
372 return 0xffffffffffffffffULL;
373 }
374
375 /* MSDOS compatibility mode FPU exception support */
376 static qemu_irq ferr_irq;
377
378 void pc_register_ferr_irq(qemu_irq irq)
379 {
380 ferr_irq = irq;
381 }
382
383 /* XXX: add IGNNE support */
384 void cpu_set_ferr(CPUX86State *s)
385 {
386 qemu_irq_raise(ferr_irq);
387 }
388
389 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
390 unsigned size)
391 {
392 qemu_irq_lower(ferr_irq);
393 }
394
395 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
396 {
397 return 0xffffffffffffffffULL;
398 }
399
400 /* TSC handling */
401 uint64_t cpu_get_tsc(CPUX86State *env)
402 {
403 return cpu_get_ticks();
404 }
405
406 /* IRQ handling */
407 int cpu_get_pic_interrupt(CPUX86State *env)
408 {
409 X86CPU *cpu = env_archcpu(env);
410 int intno;
411
412 if (!kvm_irqchip_in_kernel()) {
413 intno = apic_get_interrupt(cpu->apic_state);
414 if (intno >= 0) {
415 return intno;
416 }
417 /* read the irq from the PIC */
418 if (!apic_accept_pic_intr(cpu->apic_state)) {
419 return -1;
420 }
421 }
422
423 intno = pic_read_irq(isa_pic);
424 return intno;
425 }
426
427 static void pic_irq_request(void *opaque, int irq, int level)
428 {
429 CPUState *cs = first_cpu;
430 X86CPU *cpu = X86_CPU(cs);
431
432 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
433 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
434 CPU_FOREACH(cs) {
435 cpu = X86_CPU(cs);
436 if (apic_accept_pic_intr(cpu->apic_state)) {
437 apic_deliver_pic_intr(cpu->apic_state, level);
438 }
439 }
440 } else {
441 if (level) {
442 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
443 } else {
444 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
445 }
446 }
447 }
448
449 /* PC cmos mappings */
450
451 #define REG_EQUIPMENT_BYTE 0x14
452
453 int cmos_get_fd_drive_type(FloppyDriveType fd0)
454 {
455 int val;
456
457 switch (fd0) {
458 case FLOPPY_DRIVE_TYPE_144:
459 /* 1.44 Mb 3"5 drive */
460 val = 4;
461 break;
462 case FLOPPY_DRIVE_TYPE_288:
463 /* 2.88 Mb 3"5 drive */
464 val = 5;
465 break;
466 case FLOPPY_DRIVE_TYPE_120:
467 /* 1.2 Mb 5"5 drive */
468 val = 2;
469 break;
470 case FLOPPY_DRIVE_TYPE_NONE:
471 default:
472 val = 0;
473 break;
474 }
475 return val;
476 }
477
478 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
479 int16_t cylinders, int8_t heads, int8_t sectors)
480 {
481 rtc_set_memory(s, type_ofs, 47);
482 rtc_set_memory(s, info_ofs, cylinders);
483 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
484 rtc_set_memory(s, info_ofs + 2, heads);
485 rtc_set_memory(s, info_ofs + 3, 0xff);
486 rtc_set_memory(s, info_ofs + 4, 0xff);
487 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
488 rtc_set_memory(s, info_ofs + 6, cylinders);
489 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
490 rtc_set_memory(s, info_ofs + 8, sectors);
491 }
492
493 /* convert boot_device letter to something recognizable by the bios */
494 static int boot_device2nibble(char boot_device)
495 {
496 switch(boot_device) {
497 case 'a':
498 case 'b':
499 return 0x01; /* floppy boot */
500 case 'c':
501 return 0x02; /* hard drive boot */
502 case 'd':
503 return 0x03; /* CD-ROM boot */
504 case 'n':
505 return 0x04; /* Network boot */
506 }
507 return 0;
508 }
509
510 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
511 {
512 #define PC_MAX_BOOT_DEVICES 3
513 int nbds, bds[3] = { 0, };
514 int i;
515
516 nbds = strlen(boot_device);
517 if (nbds > PC_MAX_BOOT_DEVICES) {
518 error_setg(errp, "Too many boot devices for PC");
519 return;
520 }
521 for (i = 0; i < nbds; i++) {
522 bds[i] = boot_device2nibble(boot_device[i]);
523 if (bds[i] == 0) {
524 error_setg(errp, "Invalid boot device for PC: '%c'",
525 boot_device[i]);
526 return;
527 }
528 }
529 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
530 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
531 }
532
533 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
534 {
535 set_boot_dev(opaque, boot_device, errp);
536 }
537
538 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
539 {
540 int val, nb, i;
541 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
542 FLOPPY_DRIVE_TYPE_NONE };
543
544 /* floppy type */
545 if (floppy) {
546 for (i = 0; i < 2; i++) {
547 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
548 }
549 }
550 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
551 cmos_get_fd_drive_type(fd_type[1]);
552 rtc_set_memory(rtc_state, 0x10, val);
553
554 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
555 nb = 0;
556 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
557 nb++;
558 }
559 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
560 nb++;
561 }
562 switch (nb) {
563 case 0:
564 break;
565 case 1:
566 val |= 0x01; /* 1 drive, ready for boot */
567 break;
568 case 2:
569 val |= 0x41; /* 2 drives, ready for boot */
570 break;
571 }
572 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
573 }
574
575 typedef struct pc_cmos_init_late_arg {
576 ISADevice *rtc_state;
577 BusState *idebus[2];
578 } pc_cmos_init_late_arg;
579
580 typedef struct check_fdc_state {
581 ISADevice *floppy;
582 bool multiple;
583 } CheckFdcState;
584
585 static int check_fdc(Object *obj, void *opaque)
586 {
587 CheckFdcState *state = opaque;
588 Object *fdc;
589 uint32_t iobase;
590 Error *local_err = NULL;
591
592 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
593 if (!fdc) {
594 return 0;
595 }
596
597 iobase = object_property_get_uint(obj, "iobase", &local_err);
598 if (local_err || iobase != 0x3f0) {
599 error_free(local_err);
600 return 0;
601 }
602
603 if (state->floppy) {
604 state->multiple = true;
605 } else {
606 state->floppy = ISA_DEVICE(obj);
607 }
608 return 0;
609 }
610
611 static const char * const fdc_container_path[] = {
612 "/unattached", "/peripheral", "/peripheral-anon"
613 };
614
615 /*
616 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
617 * and ACPI objects.
618 */
619 ISADevice *pc_find_fdc0(void)
620 {
621 int i;
622 Object *container;
623 CheckFdcState state = { 0 };
624
625 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
626 container = container_get(qdev_get_machine(), fdc_container_path[i]);
627 object_child_foreach(container, check_fdc, &state);
628 }
629
630 if (state.multiple) {
631 warn_report("multiple floppy disk controllers with "
632 "iobase=0x3f0 have been found");
633 error_printf("the one being picked for CMOS setup might not reflect "
634 "your intent");
635 }
636
637 return state.floppy;
638 }
639
640 static void pc_cmos_init_late(void *opaque)
641 {
642 pc_cmos_init_late_arg *arg = opaque;
643 ISADevice *s = arg->rtc_state;
644 int16_t cylinders;
645 int8_t heads, sectors;
646 int val;
647 int i, trans;
648
649 val = 0;
650 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
651 &cylinders, &heads, &sectors) >= 0) {
652 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
653 val |= 0xf0;
654 }
655 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
656 &cylinders, &heads, &sectors) >= 0) {
657 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
658 val |= 0x0f;
659 }
660 rtc_set_memory(s, 0x12, val);
661
662 val = 0;
663 for (i = 0; i < 4; i++) {
664 /* NOTE: ide_get_geometry() returns the physical
665 geometry. It is always such that: 1 <= sects <= 63, 1
666 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
667 geometry can be different if a translation is done. */
668 if (arg->idebus[i / 2] &&
669 ide_get_geometry(arg->idebus[i / 2], i % 2,
670 &cylinders, &heads, &sectors) >= 0) {
671 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
672 assert((trans & ~3) == 0);
673 val |= trans << (i * 2);
674 }
675 }
676 rtc_set_memory(s, 0x39, val);
677
678 pc_cmos_init_floppy(s, pc_find_fdc0());
679
680 qemu_unregister_reset(pc_cmos_init_late, opaque);
681 }
682
683 void pc_cmos_init(PCMachineState *pcms,
684 BusState *idebus0, BusState *idebus1,
685 ISADevice *s)
686 {
687 int val;
688 static pc_cmos_init_late_arg arg;
689
690 /* various important CMOS locations needed by PC/Bochs bios */
691
692 /* memory size */
693 /* base memory (first MiB) */
694 val = MIN(pcms->below_4g_mem_size / KiB, 640);
695 rtc_set_memory(s, 0x15, val);
696 rtc_set_memory(s, 0x16, val >> 8);
697 /* extended memory (next 64MiB) */
698 if (pcms->below_4g_mem_size > 1 * MiB) {
699 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
700 } else {
701 val = 0;
702 }
703 if (val > 65535)
704 val = 65535;
705 rtc_set_memory(s, 0x17, val);
706 rtc_set_memory(s, 0x18, val >> 8);
707 rtc_set_memory(s, 0x30, val);
708 rtc_set_memory(s, 0x31, val >> 8);
709 /* memory between 16MiB and 4GiB */
710 if (pcms->below_4g_mem_size > 16 * MiB) {
711 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
712 } else {
713 val = 0;
714 }
715 if (val > 65535)
716 val = 65535;
717 rtc_set_memory(s, 0x34, val);
718 rtc_set_memory(s, 0x35, val >> 8);
719 /* memory above 4GiB */
720 val = pcms->above_4g_mem_size / 65536;
721 rtc_set_memory(s, 0x5b, val);
722 rtc_set_memory(s, 0x5c, val >> 8);
723 rtc_set_memory(s, 0x5d, val >> 16);
724
725 object_property_add_link(OBJECT(pcms), "rtc_state",
726 TYPE_ISA_DEVICE,
727 (Object **)&pcms->rtc,
728 object_property_allow_set_link,
729 OBJ_PROP_LINK_STRONG, &error_abort);
730 object_property_set_link(OBJECT(pcms), OBJECT(s),
731 "rtc_state", &error_abort);
732
733 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
734
735 val = 0;
736 val |= 0x02; /* FPU is there */
737 val |= 0x04; /* PS/2 mouse installed */
738 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
739
740 /* hard drives and FDC */
741 arg.rtc_state = s;
742 arg.idebus[0] = idebus0;
743 arg.idebus[1] = idebus1;
744 qemu_register_reset(pc_cmos_init_late, &arg);
745 }
746
747 #define TYPE_PORT92 "port92"
748 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
749
750 /* port 92 stuff: could be split off */
751 typedef struct Port92State {
752 ISADevice parent_obj;
753
754 MemoryRegion io;
755 uint8_t outport;
756 qemu_irq a20_out;
757 } Port92State;
758
759 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
760 unsigned size)
761 {
762 Port92State *s = opaque;
763 int oldval = s->outport;
764
765 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
766 s->outport = val;
767 qemu_set_irq(s->a20_out, (val >> 1) & 1);
768 if ((val & 1) && !(oldval & 1)) {
769 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
770 }
771 }
772
773 static uint64_t port92_read(void *opaque, hwaddr addr,
774 unsigned size)
775 {
776 Port92State *s = opaque;
777 uint32_t ret;
778
779 ret = s->outport;
780 DPRINTF("port92: read 0x%02x\n", ret);
781 return ret;
782 }
783
784 static void port92_init(ISADevice *dev, qemu_irq a20_out)
785 {
786 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
787 }
788
789 static const VMStateDescription vmstate_port92_isa = {
790 .name = "port92",
791 .version_id = 1,
792 .minimum_version_id = 1,
793 .fields = (VMStateField[]) {
794 VMSTATE_UINT8(outport, Port92State),
795 VMSTATE_END_OF_LIST()
796 }
797 };
798
799 static void port92_reset(DeviceState *d)
800 {
801 Port92State *s = PORT92(d);
802
803 s->outport &= ~1;
804 }
805
806 static const MemoryRegionOps port92_ops = {
807 .read = port92_read,
808 .write = port92_write,
809 .impl = {
810 .min_access_size = 1,
811 .max_access_size = 1,
812 },
813 .endianness = DEVICE_LITTLE_ENDIAN,
814 };
815
816 static void port92_initfn(Object *obj)
817 {
818 Port92State *s = PORT92(obj);
819
820 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
821
822 s->outport = 0;
823
824 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
825 }
826
827 static void port92_realizefn(DeviceState *dev, Error **errp)
828 {
829 ISADevice *isadev = ISA_DEVICE(dev);
830 Port92State *s = PORT92(dev);
831
832 isa_register_ioport(isadev, &s->io, 0x92);
833 }
834
835 static void port92_class_initfn(ObjectClass *klass, void *data)
836 {
837 DeviceClass *dc = DEVICE_CLASS(klass);
838
839 dc->realize = port92_realizefn;
840 dc->reset = port92_reset;
841 dc->vmsd = &vmstate_port92_isa;
842 /*
843 * Reason: unlike ordinary ISA devices, this one needs additional
844 * wiring: its A20 output line needs to be wired up by
845 * port92_init().
846 */
847 dc->user_creatable = false;
848 }
849
850 static const TypeInfo port92_info = {
851 .name = TYPE_PORT92,
852 .parent = TYPE_ISA_DEVICE,
853 .instance_size = sizeof(Port92State),
854 .instance_init = port92_initfn,
855 .class_init = port92_class_initfn,
856 };
857
858 static void port92_register_types(void)
859 {
860 type_register_static(&port92_info);
861 }
862
863 type_init(port92_register_types)
864
865 static void handle_a20_line_change(void *opaque, int irq, int level)
866 {
867 X86CPU *cpu = opaque;
868
869 /* XXX: send to all CPUs ? */
870 /* XXX: add logic to handle multiple A20 line sources */
871 x86_cpu_set_a20(cpu, level);
872 }
873
874 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
875 {
876 int index = le32_to_cpu(e820_reserve.count);
877 struct e820_entry *entry;
878
879 if (type != E820_RAM) {
880 /* old FW_CFG_E820_TABLE entry -- reservations only */
881 if (index >= E820_NR_ENTRIES) {
882 return -EBUSY;
883 }
884 entry = &e820_reserve.entry[index++];
885
886 entry->address = cpu_to_le64(address);
887 entry->length = cpu_to_le64(length);
888 entry->type = cpu_to_le32(type);
889
890 e820_reserve.count = cpu_to_le32(index);
891 }
892
893 /* new "etc/e820" file -- include ram too */
894 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
895 e820_table[e820_entries].address = cpu_to_le64(address);
896 e820_table[e820_entries].length = cpu_to_le64(length);
897 e820_table[e820_entries].type = cpu_to_le32(type);
898 e820_entries++;
899
900 return e820_entries;
901 }
902
903 int e820_get_num_entries(void)
904 {
905 return e820_entries;
906 }
907
908 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
909 {
910 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
911 *address = le64_to_cpu(e820_table[idx].address);
912 *length = le64_to_cpu(e820_table[idx].length);
913 return true;
914 }
915 return false;
916 }
917
918 /* Calculates initial APIC ID for a specific CPU index
919 *
920 * Currently we need to be able to calculate the APIC ID from the CPU index
921 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
922 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
923 * all CPUs up to max_cpus.
924 */
925 static uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
926 unsigned int cpu_index)
927 {
928 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
929 uint32_t correct_id;
930 static bool warned;
931
932 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
933 if (pcmc->compat_apic_id_mode) {
934 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
935 error_report("APIC IDs set in compatibility mode, "
936 "CPU topology won't match the configuration");
937 warned = true;
938 }
939 return cpu_index;
940 } else {
941 return correct_id;
942 }
943 }
944
945 static void pc_build_smbios(PCMachineState *pcms)
946 {
947 uint8_t *smbios_tables, *smbios_anchor;
948 size_t smbios_tables_len, smbios_anchor_len;
949 struct smbios_phys_mem_area *mem_array;
950 unsigned i, array_count;
951 MachineState *ms = MACHINE(pcms);
952 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
953
954 /* tell smbios about cpuid version and features */
955 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
956
957 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
958 if (smbios_tables) {
959 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
960 smbios_tables, smbios_tables_len);
961 }
962
963 /* build the array of physical mem area from e820 table */
964 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
965 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
966 uint64_t addr, len;
967
968 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
969 mem_array[array_count].address = addr;
970 mem_array[array_count].length = len;
971 array_count++;
972 }
973 }
974 smbios_get_tables(mem_array, array_count,
975 &smbios_tables, &smbios_tables_len,
976 &smbios_anchor, &smbios_anchor_len);
977 g_free(mem_array);
978
979 if (smbios_anchor) {
980 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
981 smbios_tables, smbios_tables_len);
982 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
983 smbios_anchor, smbios_anchor_len);
984 }
985 }
986
987 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
988 {
989 FWCfgState *fw_cfg;
990 uint64_t *numa_fw_cfg;
991 int i;
992 const CPUArchIdList *cpus;
993 MachineClass *mc = MACHINE_GET_CLASS(pcms);
994
995 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
996 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
997
998 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
999 *
1000 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1001 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1002 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1003 * for CPU hotplug also uses APIC ID and not "CPU index".
1004 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1005 * but the "limit to the APIC ID values SeaBIOS may see".
1006 *
1007 * So for compatibility reasons with old BIOSes we are stuck with
1008 * "etc/max-cpus" actually being apic_id_limit
1009 */
1010 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1011 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1012 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1013 acpi_tables, acpi_tables_len);
1014 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1015
1016 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1017 &e820_reserve, sizeof(e820_reserve));
1018 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1019 sizeof(struct e820_entry) * e820_entries);
1020
1021 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1022 /* allocate memory for the NUMA channel: one (64bit) word for the number
1023 * of nodes, one word for each VCPU->node and one word for each node to
1024 * hold the amount of memory.
1025 */
1026 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1027 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1028 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1029 for (i = 0; i < cpus->len; i++) {
1030 unsigned int apic_id = cpus->cpus[i].arch_id;
1031 assert(apic_id < pcms->apic_id_limit);
1032 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1033 }
1034 for (i = 0; i < nb_numa_nodes; i++) {
1035 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1036 cpu_to_le64(numa_info[i].node_mem);
1037 }
1038 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1039 (1 + pcms->apic_id_limit + nb_numa_nodes) *
1040 sizeof(*numa_fw_cfg));
1041
1042 return fw_cfg;
1043 }
1044
1045 static long get_file_size(FILE *f)
1046 {
1047 long where, size;
1048
1049 /* XXX: on Unix systems, using fstat() probably makes more sense */
1050
1051 where = ftell(f);
1052 fseek(f, 0, SEEK_END);
1053 size = ftell(f);
1054 fseek(f, where, SEEK_SET);
1055
1056 return size;
1057 }
1058
1059 struct setup_data {
1060 uint64_t next;
1061 uint32_t type;
1062 uint32_t len;
1063 uint8_t data[0];
1064 } __attribute__((packed));
1065
1066
1067 /*
1068 * The entry point into the kernel for PVH boot is different from
1069 * the native entry point. The PVH entry is defined by the x86/HVM
1070 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1071 *
1072 * This function is passed to load_elf() when it is called from
1073 * load_elfboot() which then additionally checks for an ELF Note of
1074 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1075 * parse the PVH entry address from the ELF Note.
1076 *
1077 * Due to trickery in elf_opts.h, load_elf() is actually available as
1078 * load_elf32() or load_elf64() and this routine needs to be able
1079 * to deal with being called as 32 or 64 bit.
1080 *
1081 * The address of the PVH entry point is saved to the 'pvh_start_addr'
1082 * global variable. (although the entry point is 32-bit, the kernel
1083 * binary can be either 32-bit or 64-bit).
1084 */
1085 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1086 {
1087 size_t *elf_note_data_addr;
1088
1089 /* Check if ELF Note header passed in is valid */
1090 if (arg1 == NULL) {
1091 return 0;
1092 }
1093
1094 if (is64) {
1095 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1096 uint64_t nhdr_size64 = sizeof(struct elf64_note);
1097 uint64_t phdr_align = *(uint64_t *)arg2;
1098 uint64_t nhdr_namesz = nhdr64->n_namesz;
1099
1100 elf_note_data_addr =
1101 ((void *)nhdr64) + nhdr_size64 +
1102 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1103 } else {
1104 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1105 uint32_t nhdr_size32 = sizeof(struct elf32_note);
1106 uint32_t phdr_align = *(uint32_t *)arg2;
1107 uint32_t nhdr_namesz = nhdr32->n_namesz;
1108
1109 elf_note_data_addr =
1110 ((void *)nhdr32) + nhdr_size32 +
1111 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1112 }
1113
1114 pvh_start_addr = *elf_note_data_addr;
1115
1116 return pvh_start_addr;
1117 }
1118
1119 static bool load_elfboot(const char *kernel_filename,
1120 int kernel_file_size,
1121 uint8_t *header,
1122 size_t pvh_xen_start_addr,
1123 FWCfgState *fw_cfg)
1124 {
1125 uint32_t flags = 0;
1126 uint32_t mh_load_addr = 0;
1127 uint32_t elf_kernel_size = 0;
1128 uint64_t elf_entry;
1129 uint64_t elf_low, elf_high;
1130 int kernel_size;
1131
1132 if (ldl_p(header) != 0x464c457f) {
1133 return false; /* no elfboot */
1134 }
1135
1136 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1137 flags = elf_is64 ?
1138 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1139
1140 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1141 error_report("elfboot unsupported flags = %x", flags);
1142 exit(1);
1143 }
1144
1145 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1146 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1147 NULL, &elf_note_type, &elf_entry,
1148 &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1149 0, 0);
1150
1151 if (kernel_size < 0) {
1152 error_report("Error while loading elf kernel");
1153 exit(1);
1154 }
1155 mh_load_addr = elf_low;
1156 elf_kernel_size = elf_high - elf_low;
1157
1158 if (pvh_start_addr == 0) {
1159 error_report("Error loading uncompressed kernel without PVH ELF Note");
1160 exit(1);
1161 }
1162 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1163 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1164 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1165
1166 return true;
1167 }
1168
1169 static void load_linux(PCMachineState *pcms,
1170 FWCfgState *fw_cfg)
1171 {
1172 uint16_t protocol;
1173 int setup_size, kernel_size, cmdline_size;
1174 int dtb_size, setup_data_offset;
1175 uint32_t initrd_max;
1176 uint8_t header[8192], *setup, *kernel;
1177 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1178 FILE *f;
1179 char *vmode;
1180 MachineState *machine = MACHINE(pcms);
1181 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1182 struct setup_data *setup_data;
1183 const char *kernel_filename = machine->kernel_filename;
1184 const char *initrd_filename = machine->initrd_filename;
1185 const char *dtb_filename = machine->dtb;
1186 const char *kernel_cmdline = machine->kernel_cmdline;
1187
1188 /* Align to 16 bytes as a paranoia measure */
1189 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1190
1191 /* load the kernel header */
1192 f = fopen(kernel_filename, "rb");
1193 if (!f || !(kernel_size = get_file_size(f)) ||
1194 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1195 MIN(ARRAY_SIZE(header), kernel_size)) {
1196 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1197 kernel_filename, strerror(errno));
1198 exit(1);
1199 }
1200
1201 /* kernel protocol version */
1202 #if 0
1203 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1204 #endif
1205 if (ldl_p(header+0x202) == 0x53726448) {
1206 protocol = lduw_p(header+0x206);
1207 } else {
1208 /*
1209 * This could be a multiboot kernel. If it is, let's stop treating it
1210 * like a Linux kernel.
1211 * Note: some multiboot images could be in the ELF format (the same of
1212 * PVH), so we try multiboot first since we check the multiboot magic
1213 * header before to load it.
1214 */
1215 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1216 kernel_cmdline, kernel_size, header)) {
1217 return;
1218 }
1219 /*
1220 * Check if the file is an uncompressed kernel file (ELF) and load it,
1221 * saving the PVH entry point used by the x86/HVM direct boot ABI.
1222 * If load_elfboot() is successful, populate the fw_cfg info.
1223 */
1224 if (pcmc->pvh_enabled &&
1225 load_elfboot(kernel_filename, kernel_size,
1226 header, pvh_start_addr, fw_cfg)) {
1227 fclose(f);
1228
1229 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1230 strlen(kernel_cmdline) + 1);
1231 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1232
1233 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1234 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1235 header, sizeof(header));
1236
1237 /* load initrd */
1238 if (initrd_filename) {
1239 gsize initrd_size;
1240 gchar *initrd_data;
1241 GError *gerr = NULL;
1242
1243 if (!g_file_get_contents(initrd_filename, &initrd_data,
1244 &initrd_size, &gerr)) {
1245 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1246 initrd_filename, gerr->message);
1247 exit(1);
1248 }
1249
1250 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1251 if (initrd_size >= initrd_max) {
1252 fprintf(stderr, "qemu: initrd is too large, cannot support."
1253 "(max: %"PRIu32", need %"PRId64")\n",
1254 initrd_max, (uint64_t)initrd_size);
1255 exit(1);
1256 }
1257
1258 initrd_addr = (initrd_max - initrd_size) & ~4095;
1259
1260 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1261 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1262 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1263 initrd_size);
1264 }
1265
1266 option_rom[nb_option_roms].bootindex = 0;
1267 option_rom[nb_option_roms].name = "pvh.bin";
1268 nb_option_roms++;
1269
1270 return;
1271 }
1272 protocol = 0;
1273 }
1274
1275 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1276 /* Low kernel */
1277 real_addr = 0x90000;
1278 cmdline_addr = 0x9a000 - cmdline_size;
1279 prot_addr = 0x10000;
1280 } else if (protocol < 0x202) {
1281 /* High but ancient kernel */
1282 real_addr = 0x90000;
1283 cmdline_addr = 0x9a000 - cmdline_size;
1284 prot_addr = 0x100000;
1285 } else {
1286 /* High and recent kernel */
1287 real_addr = 0x10000;
1288 cmdline_addr = 0x20000;
1289 prot_addr = 0x100000;
1290 }
1291
1292 #if 0
1293 fprintf(stderr,
1294 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
1295 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
1296 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
1297 real_addr,
1298 cmdline_addr,
1299 prot_addr);
1300 #endif
1301
1302 /* highest address for loading the initrd */
1303 if (protocol >= 0x20c &&
1304 lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1305 /*
1306 * Linux has supported initrd up to 4 GB for a very long time (2007,
1307 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1308 * though it only sets initrd_max to 2 GB to "work around bootloader
1309 * bugs". Luckily, QEMU firmware(which does something like bootloader)
1310 * has supported this.
1311 *
1312 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1313 * be loaded into any address.
1314 *
1315 * In addition, initrd_max is uint32_t simply because QEMU doesn't
1316 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1317 * field).
1318 *
1319 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1320 */
1321 initrd_max = UINT32_MAX;
1322 } else if (protocol >= 0x203) {
1323 initrd_max = ldl_p(header+0x22c);
1324 } else {
1325 initrd_max = 0x37ffffff;
1326 }
1327
1328 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1329 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1330 }
1331
1332 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1333 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1334 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1335
1336 if (protocol >= 0x202) {
1337 stl_p(header+0x228, cmdline_addr);
1338 } else {
1339 stw_p(header+0x20, 0xA33F);
1340 stw_p(header+0x22, cmdline_addr-real_addr);
1341 }
1342
1343 /* handle vga= parameter */
1344 vmode = strstr(kernel_cmdline, "vga=");
1345 if (vmode) {
1346 unsigned int video_mode;
1347 /* skip "vga=" */
1348 vmode += 4;
1349 if (!strncmp(vmode, "normal", 6)) {
1350 video_mode = 0xffff;
1351 } else if (!strncmp(vmode, "ext", 3)) {
1352 video_mode = 0xfffe;
1353 } else if (!strncmp(vmode, "ask", 3)) {
1354 video_mode = 0xfffd;
1355 } else {
1356 video_mode = strtol(vmode, NULL, 0);
1357 }
1358 stw_p(header+0x1fa, video_mode);
1359 }
1360
1361 /* loader type */
1362 /* High nybble = B reserved for QEMU; low nybble is revision number.
1363 If this code is substantially changed, you may want to consider
1364 incrementing the revision. */
1365 if (protocol >= 0x200) {
1366 header[0x210] = 0xB0;
1367 }
1368 /* heap */
1369 if (protocol >= 0x201) {
1370 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1371 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1372 }
1373
1374 /* load initrd */
1375 if (initrd_filename) {
1376 gsize initrd_size;
1377 gchar *initrd_data;
1378 GError *gerr = NULL;
1379
1380 if (protocol < 0x200) {
1381 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1382 exit(1);
1383 }
1384
1385 if (!g_file_get_contents(initrd_filename, &initrd_data,
1386 &initrd_size, &gerr)) {
1387 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1388 initrd_filename, gerr->message);
1389 exit(1);
1390 }
1391 if (initrd_size >= initrd_max) {
1392 fprintf(stderr, "qemu: initrd is too large, cannot support."
1393 "(max: %"PRIu32", need %"PRId64")\n",
1394 initrd_max, (uint64_t)initrd_size);
1395 exit(1);
1396 }
1397
1398 initrd_addr = (initrd_max-initrd_size) & ~4095;
1399
1400 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1401 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1402 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1403
1404 stl_p(header+0x218, initrd_addr);
1405 stl_p(header+0x21c, initrd_size);
1406 }
1407
1408 /* load kernel and setup */
1409 setup_size = header[0x1f1];
1410 if (setup_size == 0) {
1411 setup_size = 4;
1412 }
1413 setup_size = (setup_size+1)*512;
1414 if (setup_size > kernel_size) {
1415 fprintf(stderr, "qemu: invalid kernel header\n");
1416 exit(1);
1417 }
1418 kernel_size -= setup_size;
1419
1420 setup = g_malloc(setup_size);
1421 kernel = g_malloc(kernel_size);
1422 fseek(f, 0, SEEK_SET);
1423 if (fread(setup, 1, setup_size, f) != setup_size) {
1424 fprintf(stderr, "fread() failed\n");
1425 exit(1);
1426 }
1427 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1428 fprintf(stderr, "fread() failed\n");
1429 exit(1);
1430 }
1431 fclose(f);
1432
1433 /* append dtb to kernel */
1434 if (dtb_filename) {
1435 if (protocol < 0x209) {
1436 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1437 exit(1);
1438 }
1439
1440 dtb_size = get_image_size(dtb_filename);
1441 if (dtb_size <= 0) {
1442 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1443 dtb_filename, strerror(errno));
1444 exit(1);
1445 }
1446
1447 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1448 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1449 kernel = g_realloc(kernel, kernel_size);
1450
1451 stq_p(header+0x250, prot_addr + setup_data_offset);
1452
1453 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1454 setup_data->next = 0;
1455 setup_data->type = cpu_to_le32(SETUP_DTB);
1456 setup_data->len = cpu_to_le32(dtb_size);
1457
1458 load_image_size(dtb_filename, setup_data->data, dtb_size);
1459 }
1460
1461 memcpy(setup, header, MIN(sizeof(header), setup_size));
1462
1463 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1464 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1465 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1466
1467 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1468 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1469 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1470
1471 option_rom[nb_option_roms].bootindex = 0;
1472 option_rom[nb_option_roms].name = "linuxboot.bin";
1473 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1474 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1475 }
1476 nb_option_roms++;
1477 }
1478
1479 #define NE2000_NB_MAX 6
1480
1481 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1482 0x280, 0x380 };
1483 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1484
1485 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1486 {
1487 static int nb_ne2k = 0;
1488
1489 if (nb_ne2k == NE2000_NB_MAX)
1490 return;
1491 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1492 ne2000_irq[nb_ne2k], nd);
1493 nb_ne2k++;
1494 }
1495
1496 DeviceState *cpu_get_current_apic(void)
1497 {
1498 if (current_cpu) {
1499 X86CPU *cpu = X86_CPU(current_cpu);
1500 return cpu->apic_state;
1501 } else {
1502 return NULL;
1503 }
1504 }
1505
1506 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1507 {
1508 X86CPU *cpu = opaque;
1509
1510 if (level) {
1511 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1512 }
1513 }
1514
1515 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1516 {
1517 Object *cpu = NULL;
1518 Error *local_err = NULL;
1519
1520 cpu = object_new(typename);
1521
1522 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1523 object_property_set_bool(cpu, true, "realized", &local_err);
1524
1525 object_unref(cpu);
1526 error_propagate(errp, local_err);
1527 }
1528
1529 void pc_hot_add_cpu(const int64_t id, Error **errp)
1530 {
1531 MachineState *ms = MACHINE(qdev_get_machine());
1532 PCMachineState *pcms = PC_MACHINE(ms);
1533 int64_t apic_id = x86_cpu_apic_id_from_index(pcms, id);
1534 Error *local_err = NULL;
1535
1536 if (id < 0) {
1537 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1538 return;
1539 }
1540
1541 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1542 error_setg(errp, "Unable to add CPU: %" PRIi64
1543 ", resulting APIC ID (%" PRIi64 ") is too large",
1544 id, apic_id);
1545 return;
1546 }
1547
1548 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1549 if (local_err) {
1550 error_propagate(errp, local_err);
1551 return;
1552 }
1553 }
1554
1555 void pc_cpus_init(PCMachineState *pcms)
1556 {
1557 int i;
1558 const CPUArchIdList *possible_cpus;
1559 MachineState *ms = MACHINE(pcms);
1560 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1561
1562 /* Calculates the limit to CPU APIC ID values
1563 *
1564 * Limit for the APIC ID value, so that all
1565 * CPU APIC IDs are < pcms->apic_id_limit.
1566 *
1567 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1568 */
1569 pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms, max_cpus - 1) + 1;
1570 possible_cpus = mc->possible_cpu_arch_ids(ms);
1571 for (i = 0; i < smp_cpus; i++) {
1572 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1573 &error_fatal);
1574 }
1575 }
1576
1577 static void pc_build_feature_control_file(PCMachineState *pcms)
1578 {
1579 MachineState *ms = MACHINE(pcms);
1580 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1581 CPUX86State *env = &cpu->env;
1582 uint32_t unused, ecx, edx;
1583 uint64_t feature_control_bits = 0;
1584 uint64_t *val;
1585
1586 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1587 if (ecx & CPUID_EXT_VMX) {
1588 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1589 }
1590
1591 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1592 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1593 (env->mcg_cap & MCG_LMCE_P)) {
1594 feature_control_bits |= FEATURE_CONTROL_LMCE;
1595 }
1596
1597 if (!feature_control_bits) {
1598 return;
1599 }
1600
1601 val = g_malloc(sizeof(*val));
1602 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1603 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1604 }
1605
1606 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1607 {
1608 if (cpus_count > 0xff) {
1609 /* If the number of CPUs can't be represented in 8 bits, the
1610 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1611 * to make old BIOSes fail more predictably.
1612 */
1613 rtc_set_memory(rtc, 0x5f, 0);
1614 } else {
1615 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1616 }
1617 }
1618
1619 static
1620 void pc_machine_done(Notifier *notifier, void *data)
1621 {
1622 PCMachineState *pcms = container_of(notifier,
1623 PCMachineState, machine_done);
1624 PCIBus *bus = pcms->bus;
1625
1626 /* set the number of CPUs */
1627 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1628
1629 if (bus) {
1630 int extra_hosts = 0;
1631
1632 QLIST_FOREACH(bus, &bus->child, sibling) {
1633 /* look for expander root buses */
1634 if (pci_bus_is_root(bus)) {
1635 extra_hosts++;
1636 }
1637 }
1638 if (extra_hosts && pcms->fw_cfg) {
1639 uint64_t *val = g_malloc(sizeof(*val));
1640 *val = cpu_to_le64(extra_hosts);
1641 fw_cfg_add_file(pcms->fw_cfg,
1642 "etc/extra-pci-roots", val, sizeof(*val));
1643 }
1644 }
1645
1646 acpi_setup();
1647 if (pcms->fw_cfg) {
1648 pc_build_smbios(pcms);
1649 pc_build_feature_control_file(pcms);
1650 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1651 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1652 }
1653
1654 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1655 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1656
1657 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1658 iommu->intr_eim != ON_OFF_AUTO_ON) {
1659 error_report("current -smp configuration requires "
1660 "Extended Interrupt Mode enabled. "
1661 "You can add an IOMMU using: "
1662 "-device intel-iommu,intremap=on,eim=on");
1663 exit(EXIT_FAILURE);
1664 }
1665 }
1666 }
1667
1668 void pc_guest_info_init(PCMachineState *pcms)
1669 {
1670 int i;
1671
1672 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1673 pcms->numa_nodes = nb_numa_nodes;
1674 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1675 sizeof *pcms->node_mem);
1676 for (i = 0; i < nb_numa_nodes; i++) {
1677 pcms->node_mem[i] = numa_info[i].node_mem;
1678 }
1679
1680 pcms->machine_done.notify = pc_machine_done;
1681 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1682 }
1683
1684 /* setup pci memory address space mapping into system address space */
1685 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1686 MemoryRegion *pci_address_space)
1687 {
1688 /* Set to lower priority than RAM */
1689 memory_region_add_subregion_overlap(system_memory, 0x0,
1690 pci_address_space, -1);
1691 }
1692
1693 void xen_load_linux(PCMachineState *pcms)
1694 {
1695 int i;
1696 FWCfgState *fw_cfg;
1697
1698 assert(MACHINE(pcms)->kernel_filename != NULL);
1699
1700 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1701 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1702 rom_set_fw(fw_cfg);
1703
1704 load_linux(pcms, fw_cfg);
1705 for (i = 0; i < nb_option_roms; i++) {
1706 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1707 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1708 !strcmp(option_rom[i].name, "pvh.bin") ||
1709 !strcmp(option_rom[i].name, "multiboot.bin"));
1710 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1711 }
1712 pcms->fw_cfg = fw_cfg;
1713 }
1714
1715 void pc_memory_init(PCMachineState *pcms,
1716 MemoryRegion *system_memory,
1717 MemoryRegion *rom_memory,
1718 MemoryRegion **ram_memory)
1719 {
1720 int linux_boot, i;
1721 MemoryRegion *ram, *option_rom_mr;
1722 MemoryRegion *ram_below_4g, *ram_above_4g;
1723 FWCfgState *fw_cfg;
1724 MachineState *machine = MACHINE(pcms);
1725 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1726
1727 assert(machine->ram_size == pcms->below_4g_mem_size +
1728 pcms->above_4g_mem_size);
1729
1730 linux_boot = (machine->kernel_filename != NULL);
1731
1732 /* Allocate RAM. We allocate it as a single memory region and use
1733 * aliases to address portions of it, mostly for backwards compatibility
1734 * with older qemus that used qemu_ram_alloc().
1735 */
1736 ram = g_malloc(sizeof(*ram));
1737 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1738 machine->ram_size);
1739 *ram_memory = ram;
1740 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1741 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1742 0, pcms->below_4g_mem_size);
1743 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1744 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1745 if (pcms->above_4g_mem_size > 0) {
1746 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1747 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1748 pcms->below_4g_mem_size,
1749 pcms->above_4g_mem_size);
1750 memory_region_add_subregion(system_memory, 0x100000000ULL,
1751 ram_above_4g);
1752 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1753 }
1754
1755 if (!pcmc->has_reserved_memory &&
1756 (machine->ram_slots ||
1757 (machine->maxram_size > machine->ram_size))) {
1758 MachineClass *mc = MACHINE_GET_CLASS(machine);
1759
1760 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1761 mc->name);
1762 exit(EXIT_FAILURE);
1763 }
1764
1765 /* always allocate the device memory information */
1766 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1767
1768 /* initialize device memory address space */
1769 if (pcmc->has_reserved_memory &&
1770 (machine->ram_size < machine->maxram_size)) {
1771 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1772
1773 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1774 error_report("unsupported amount of memory slots: %"PRIu64,
1775 machine->ram_slots);
1776 exit(EXIT_FAILURE);
1777 }
1778
1779 if (QEMU_ALIGN_UP(machine->maxram_size,
1780 TARGET_PAGE_SIZE) != machine->maxram_size) {
1781 error_report("maximum memory size must by aligned to multiple of "
1782 "%d bytes", TARGET_PAGE_SIZE);
1783 exit(EXIT_FAILURE);
1784 }
1785
1786 machine->device_memory->base =
1787 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1788
1789 if (pcmc->enforce_aligned_dimm) {
1790 /* size device region assuming 1G page max alignment per slot */
1791 device_mem_size += (1 * GiB) * machine->ram_slots;
1792 }
1793
1794 if ((machine->device_memory->base + device_mem_size) <
1795 device_mem_size) {
1796 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1797 machine->maxram_size);
1798 exit(EXIT_FAILURE);
1799 }
1800
1801 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1802 "device-memory", device_mem_size);
1803 memory_region_add_subregion(system_memory, machine->device_memory->base,
1804 &machine->device_memory->mr);
1805 }
1806
1807 /* Initialize PC system firmware */
1808 pc_system_firmware_init(pcms, rom_memory);
1809
1810 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1811 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1812 &error_fatal);
1813 if (pcmc->pci_enabled) {
1814 memory_region_set_readonly(option_rom_mr, true);
1815 }
1816 memory_region_add_subregion_overlap(rom_memory,
1817 PC_ROM_MIN_VGA,
1818 option_rom_mr,
1819 1);
1820
1821 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1822
1823 rom_set_fw(fw_cfg);
1824
1825 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1826 uint64_t *val = g_malloc(sizeof(*val));
1827 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1828 uint64_t res_mem_end = machine->device_memory->base;
1829
1830 if (!pcmc->broken_reserved_end) {
1831 res_mem_end += memory_region_size(&machine->device_memory->mr);
1832 }
1833 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1834 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1835 }
1836
1837 if (linux_boot) {
1838 load_linux(pcms, fw_cfg);
1839 }
1840
1841 for (i = 0; i < nb_option_roms; i++) {
1842 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1843 }
1844 pcms->fw_cfg = fw_cfg;
1845
1846 /* Init default IOAPIC address space */
1847 pcms->ioapic_as = &address_space_memory;
1848 }
1849
1850 /*
1851 * The 64bit pci hole starts after "above 4G RAM" and
1852 * potentially the space reserved for memory hotplug.
1853 */
1854 uint64_t pc_pci_hole64_start(void)
1855 {
1856 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1857 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1858 MachineState *ms = MACHINE(pcms);
1859 uint64_t hole64_start = 0;
1860
1861 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1862 hole64_start = ms->device_memory->base;
1863 if (!pcmc->broken_reserved_end) {
1864 hole64_start += memory_region_size(&ms->device_memory->mr);
1865 }
1866 } else {
1867 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1868 }
1869
1870 return ROUND_UP(hole64_start, 1 * GiB);
1871 }
1872
1873 qemu_irq pc_allocate_cpu_irq(void)
1874 {
1875 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1876 }
1877
1878 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1879 {
1880 DeviceState *dev = NULL;
1881
1882 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1883 if (pci_bus) {
1884 PCIDevice *pcidev = pci_vga_init(pci_bus);
1885 dev = pcidev ? &pcidev->qdev : NULL;
1886 } else if (isa_bus) {
1887 ISADevice *isadev = isa_vga_init(isa_bus);
1888 dev = isadev ? DEVICE(isadev) : NULL;
1889 }
1890 rom_reset_order_override();
1891 return dev;
1892 }
1893
1894 static const MemoryRegionOps ioport80_io_ops = {
1895 .write = ioport80_write,
1896 .read = ioport80_read,
1897 .endianness = DEVICE_NATIVE_ENDIAN,
1898 .impl = {
1899 .min_access_size = 1,
1900 .max_access_size = 1,
1901 },
1902 };
1903
1904 static const MemoryRegionOps ioportF0_io_ops = {
1905 .write = ioportF0_write,
1906 .read = ioportF0_read,
1907 .endianness = DEVICE_NATIVE_ENDIAN,
1908 .impl = {
1909 .min_access_size = 1,
1910 .max_access_size = 1,
1911 },
1912 };
1913
1914 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1915 {
1916 int i;
1917 DriveInfo *fd[MAX_FD];
1918 qemu_irq *a20_line;
1919 ISADevice *i8042, *port92, *vmmouse;
1920
1921 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1922 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1923
1924 for (i = 0; i < MAX_FD; i++) {
1925 fd[i] = drive_get(IF_FLOPPY, 0, i);
1926 create_fdctrl |= !!fd[i];
1927 }
1928 if (create_fdctrl) {
1929 fdctrl_init_isa(isa_bus, fd);
1930 }
1931
1932 i8042 = isa_create_simple(isa_bus, "i8042");
1933 if (!no_vmport) {
1934 vmport_init(isa_bus);
1935 vmmouse = isa_try_create(isa_bus, "vmmouse");
1936 } else {
1937 vmmouse = NULL;
1938 }
1939 if (vmmouse) {
1940 DeviceState *dev = DEVICE(vmmouse);
1941 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1942 qdev_init_nofail(dev);
1943 }
1944 port92 = isa_create_simple(isa_bus, "port92");
1945
1946 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1947 i8042_setup_a20_line(i8042, a20_line[0]);
1948 port92_init(port92, a20_line[1]);
1949 g_free(a20_line);
1950 }
1951
1952 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1953 ISADevice **rtc_state,
1954 bool create_fdctrl,
1955 bool no_vmport,
1956 bool has_pit,
1957 uint32_t hpet_irqs)
1958 {
1959 int i;
1960 DeviceState *hpet = NULL;
1961 int pit_isa_irq = 0;
1962 qemu_irq pit_alt_irq = NULL;
1963 qemu_irq rtc_irq = NULL;
1964 ISADevice *pit = NULL;
1965 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1966 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1967
1968 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1969 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1970
1971 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1972 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1973
1974 /*
1975 * Check if an HPET shall be created.
1976 *
1977 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1978 * when the HPET wants to take over. Thus we have to disable the latter.
1979 */
1980 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1981 /* In order to set property, here not using sysbus_try_create_simple */
1982 hpet = qdev_try_create(NULL, TYPE_HPET);
1983 if (hpet) {
1984 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1985 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1986 * IRQ8 and IRQ2.
1987 */
1988 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1989 HPET_INTCAP, NULL);
1990 if (!compat) {
1991 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1992 }
1993 qdev_init_nofail(hpet);
1994 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1995
1996 for (i = 0; i < GSI_NUM_PINS; i++) {
1997 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1998 }
1999 pit_isa_irq = -1;
2000 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2001 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2002 }
2003 }
2004 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2005
2006 qemu_register_boot_set(pc_boot_set, *rtc_state);
2007
2008 if (!xen_enabled() && has_pit) {
2009 if (kvm_pit_in_kernel()) {
2010 pit = kvm_pit_init(isa_bus, 0x40);
2011 } else {
2012 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2013 }
2014 if (hpet) {
2015 /* connect PIT to output control line of the HPET */
2016 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2017 }
2018 pcspk_init(isa_bus, pit);
2019 }
2020
2021 i8257_dma_init(isa_bus, 0);
2022
2023 /* Super I/O */
2024 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2025 }
2026
2027 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2028 {
2029 int i;
2030
2031 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2032 for (i = 0; i < nb_nics; i++) {
2033 NICInfo *nd = &nd_table[i];
2034 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2035
2036 if (g_str_equal(model, "ne2k_isa")) {
2037 pc_init_ne2k_isa(isa_bus, nd);
2038 } else {
2039 pci_nic_init_nofail(nd, pci_bus, model, NULL);
2040 }
2041 }
2042 rom_reset_order_override();
2043 }
2044
2045 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2046 {
2047 DeviceState *dev;
2048 SysBusDevice *d;
2049 unsigned int i;
2050
2051 if (kvm_ioapic_in_kernel()) {
2052 dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2053 } else {
2054 dev = qdev_create(NULL, TYPE_IOAPIC);
2055 }
2056 if (parent_name) {
2057 object_property_add_child(object_resolve_path(parent_name, NULL),
2058 "ioapic", OBJECT(dev), NULL);
2059 }
2060 qdev_init_nofail(dev);
2061 d = SYS_BUS_DEVICE(dev);
2062 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2063
2064 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2065 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2066 }
2067 }
2068
2069 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2070 Error **errp)
2071 {
2072 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2073 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2074 const MachineState *ms = MACHINE(hotplug_dev);
2075 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2076 const uint64_t legacy_align = TARGET_PAGE_SIZE;
2077 Error *local_err = NULL;
2078
2079 /*
2080 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2081 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2082 * addition to cover this case.
2083 */
2084 if (!pcms->acpi_dev || !acpi_enabled) {
2085 error_setg(errp,
2086 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2087 return;
2088 }
2089
2090 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2091 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2092 return;
2093 }
2094
2095 hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2096 if (local_err) {
2097 error_propagate(errp, local_err);
2098 return;
2099 }
2100
2101 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2102 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2103 }
2104
2105 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2106 DeviceState *dev, Error **errp)
2107 {
2108 Error *local_err = NULL;
2109 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2110 MachineState *ms = MACHINE(hotplug_dev);
2111 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2112
2113 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2114 if (local_err) {
2115 goto out;
2116 }
2117
2118 if (is_nvdimm) {
2119 nvdimm_plug(ms->nvdimms_state);
2120 }
2121
2122 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2123 out:
2124 error_propagate(errp, local_err);
2125 }
2126
2127 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2128 DeviceState *dev, Error **errp)
2129 {
2130 Error *local_err = NULL;
2131 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2132
2133 /*
2134 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2135 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2136 * addition to cover this case.
2137 */
2138 if (!pcms->acpi_dev || !acpi_enabled) {
2139 error_setg(&local_err,
2140 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2141 goto out;
2142 }
2143
2144 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2145 error_setg(&local_err,
2146 "nvdimm device hot unplug is not supported yet.");
2147 goto out;
2148 }
2149
2150 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2151 &local_err);
2152 out:
2153 error_propagate(errp, local_err);
2154 }
2155
2156 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2157 DeviceState *dev, Error **errp)
2158 {
2159 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2160 Error *local_err = NULL;
2161
2162 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2163 if (local_err) {
2164 goto out;
2165 }
2166
2167 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2168 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2169 out:
2170 error_propagate(errp, local_err);
2171 }
2172
2173 static int pc_apic_cmp(const void *a, const void *b)
2174 {
2175 CPUArchId *apic_a = (CPUArchId *)a;
2176 CPUArchId *apic_b = (CPUArchId *)b;
2177
2178 return apic_a->arch_id - apic_b->arch_id;
2179 }
2180
2181 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2182 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2183 * entry corresponding to CPU's apic_id returns NULL.
2184 */
2185 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2186 {
2187 CPUArchId apic_id, *found_cpu;
2188
2189 apic_id.arch_id = id;
2190 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2191 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2192 pc_apic_cmp);
2193 if (found_cpu && idx) {
2194 *idx = found_cpu - ms->possible_cpus->cpus;
2195 }
2196 return found_cpu;
2197 }
2198
2199 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2200 DeviceState *dev, Error **errp)
2201 {
2202 CPUArchId *found_cpu;
2203 Error *local_err = NULL;
2204 X86CPU *cpu = X86_CPU(dev);
2205 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2206
2207 if (pcms->acpi_dev) {
2208 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2209 if (local_err) {
2210 goto out;
2211 }
2212 }
2213
2214 /* increment the number of CPUs */
2215 pcms->boot_cpus++;
2216 if (pcms->rtc) {
2217 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2218 }
2219 if (pcms->fw_cfg) {
2220 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2221 }
2222
2223 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2224 found_cpu->cpu = OBJECT(dev);
2225 out:
2226 error_propagate(errp, local_err);
2227 }
2228 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2229 DeviceState *dev, Error **errp)
2230 {
2231 int idx = -1;
2232 Error *local_err = NULL;
2233 X86CPU *cpu = X86_CPU(dev);
2234 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2235
2236 if (!pcms->acpi_dev) {
2237 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2238 goto out;
2239 }
2240
2241 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2242 assert(idx != -1);
2243 if (idx == 0) {
2244 error_setg(&local_err, "Boot CPU is unpluggable");
2245 goto out;
2246 }
2247
2248 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2249 &local_err);
2250 if (local_err) {
2251 goto out;
2252 }
2253
2254 out:
2255 error_propagate(errp, local_err);
2256
2257 }
2258
2259 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2260 DeviceState *dev, Error **errp)
2261 {
2262 CPUArchId *found_cpu;
2263 Error *local_err = NULL;
2264 X86CPU *cpu = X86_CPU(dev);
2265 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2266
2267 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2268 if (local_err) {
2269 goto out;
2270 }
2271
2272 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2273 found_cpu->cpu = NULL;
2274 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2275
2276 /* decrement the number of CPUs */
2277 pcms->boot_cpus--;
2278 /* Update the number of CPUs in CMOS */
2279 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2280 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2281 out:
2282 error_propagate(errp, local_err);
2283 }
2284
2285 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2286 DeviceState *dev, Error **errp)
2287 {
2288 int idx;
2289 CPUState *cs;
2290 CPUArchId *cpu_slot;
2291 X86CPUTopoInfo topo;
2292 X86CPU *cpu = X86_CPU(dev);
2293 MachineState *ms = MACHINE(hotplug_dev);
2294 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2295
2296 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2297 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2298 ms->cpu_type);
2299 return;
2300 }
2301
2302 /* if APIC ID is not set, set it based on socket/core/thread properties */
2303 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2304 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2305
2306 if (cpu->socket_id < 0) {
2307 error_setg(errp, "CPU socket-id is not set");
2308 return;
2309 } else if (cpu->socket_id > max_socket) {
2310 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2311 cpu->socket_id, max_socket);
2312 return;
2313 }
2314 if (cpu->core_id < 0) {
2315 error_setg(errp, "CPU core-id is not set");
2316 return;
2317 } else if (cpu->core_id > (smp_cores - 1)) {
2318 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2319 cpu->core_id, smp_cores - 1);
2320 return;
2321 }
2322 if (cpu->thread_id < 0) {
2323 error_setg(errp, "CPU thread-id is not set");
2324 return;
2325 } else if (cpu->thread_id > (smp_threads - 1)) {
2326 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2327 cpu->thread_id, smp_threads - 1);
2328 return;
2329 }
2330
2331 topo.pkg_id = cpu->socket_id;
2332 topo.core_id = cpu->core_id;
2333 topo.smt_id = cpu->thread_id;
2334 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2335 }
2336
2337 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2338 if (!cpu_slot) {
2339 MachineState *ms = MACHINE(pcms);
2340
2341 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2342 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2343 " APIC ID %" PRIu32 ", valid index range 0:%d",
2344 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2345 ms->possible_cpus->len - 1);
2346 return;
2347 }
2348
2349 if (cpu_slot->cpu) {
2350 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2351 idx, cpu->apic_id);
2352 return;
2353 }
2354
2355 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2356 * so that machine_query_hotpluggable_cpus would show correct values
2357 */
2358 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2359 * once -smp refactoring is complete and there will be CPU private
2360 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2361 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2362 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2363 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2364 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2365 return;
2366 }
2367 cpu->socket_id = topo.pkg_id;
2368
2369 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2370 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2371 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2372 return;
2373 }
2374 cpu->core_id = topo.core_id;
2375
2376 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2377 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2378 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2379 return;
2380 }
2381 cpu->thread_id = topo.smt_id;
2382
2383 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
2384 !kvm_hv_vpindex_settable()) {
2385 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2386 return;
2387 }
2388
2389 cs = CPU(cpu);
2390 cs->cpu_index = idx;
2391
2392 numa_cpu_pre_plug(cpu_slot, dev, errp);
2393 }
2394
2395 static void pc_virtio_pmem_pci_pre_plug(HotplugHandler *hotplug_dev,
2396 DeviceState *dev, Error **errp)
2397 {
2398 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2399 Error *local_err = NULL;
2400
2401 if (!hotplug_dev2) {
2402 /*
2403 * Without a bus hotplug handler, we cannot control the plug/unplug
2404 * order. This should never be the case on x86, however better add
2405 * a safety net.
2406 */
2407 error_setg(errp, "virtio-pmem-pci not supported on this bus.");
2408 return;
2409 }
2410 /*
2411 * First, see if we can plug this memory device at all. If that
2412 * succeeds, branch of to the actual hotplug handler.
2413 */
2414 memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2415 &local_err);
2416 if (!local_err) {
2417 hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2418 }
2419 error_propagate(errp, local_err);
2420 }
2421
2422 static void pc_virtio_pmem_pci_plug(HotplugHandler *hotplug_dev,
2423 DeviceState *dev, Error **errp)
2424 {
2425 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2426 Error *local_err = NULL;
2427
2428 /*
2429 * Plug the memory device first and then branch off to the actual
2430 * hotplug handler. If that one fails, we can easily undo the memory
2431 * device bits.
2432 */
2433 memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2434 hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2435 if (local_err) {
2436 memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2437 }
2438 error_propagate(errp, local_err);
2439 }
2440
2441 static void pc_virtio_pmem_pci_unplug_request(HotplugHandler *hotplug_dev,
2442 DeviceState *dev, Error **errp)
2443 {
2444 /* We don't support virtio pmem hot unplug */
2445 error_setg(errp, "virtio pmem device unplug not supported.");
2446 }
2447
2448 static void pc_virtio_pmem_pci_unplug(HotplugHandler *hotplug_dev,
2449 DeviceState *dev, Error **errp)
2450 {
2451 /* We don't support virtio pmem hot unplug */
2452 }
2453
2454 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2455 DeviceState *dev, Error **errp)
2456 {
2457 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2458 pc_memory_pre_plug(hotplug_dev, dev, errp);
2459 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2460 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2461 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2462 pc_virtio_pmem_pci_pre_plug(hotplug_dev, dev, errp);
2463 }
2464 }
2465
2466 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2467 DeviceState *dev, Error **errp)
2468 {
2469 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2470 pc_memory_plug(hotplug_dev, dev, errp);
2471 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2472 pc_cpu_plug(hotplug_dev, dev, errp);
2473 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2474 pc_virtio_pmem_pci_plug(hotplug_dev, dev, errp);
2475 }
2476 }
2477
2478 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2479 DeviceState *dev, Error **errp)
2480 {
2481 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2482 pc_memory_unplug_request(hotplug_dev, dev, errp);
2483 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2484 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2485 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2486 pc_virtio_pmem_pci_unplug_request(hotplug_dev, dev, errp);
2487 } else {
2488 error_setg(errp, "acpi: device unplug request for not supported device"
2489 " type: %s", object_get_typename(OBJECT(dev)));
2490 }
2491 }
2492
2493 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2494 DeviceState *dev, Error **errp)
2495 {
2496 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2497 pc_memory_unplug(hotplug_dev, dev, errp);
2498 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2499 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2500 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2501 pc_virtio_pmem_pci_unplug(hotplug_dev, dev, errp);
2502 } else {
2503 error_setg(errp, "acpi: device unplug for not supported device"
2504 " type: %s", object_get_typename(OBJECT(dev)));
2505 }
2506 }
2507
2508 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2509 DeviceState *dev)
2510 {
2511 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2512 object_dynamic_cast(OBJECT(dev), TYPE_CPU) ||
2513 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2514 return HOTPLUG_HANDLER(machine);
2515 }
2516
2517 return NULL;
2518 }
2519
2520 static void
2521 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2522 const char *name, void *opaque,
2523 Error **errp)
2524 {
2525 MachineState *ms = MACHINE(obj);
2526 int64_t value = memory_region_size(&ms->device_memory->mr);
2527
2528 visit_type_int(v, name, &value, errp);
2529 }
2530
2531 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2532 const char *name, void *opaque,
2533 Error **errp)
2534 {
2535 PCMachineState *pcms = PC_MACHINE(obj);
2536 uint64_t value = pcms->max_ram_below_4g;
2537
2538 visit_type_size(v, name, &value, errp);
2539 }
2540
2541 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2542 const char *name, void *opaque,
2543 Error **errp)
2544 {
2545 PCMachineState *pcms = PC_MACHINE(obj);
2546 Error *error = NULL;
2547 uint64_t value;
2548
2549 visit_type_size(v, name, &value, &error);
2550 if (error) {
2551 error_propagate(errp, error);
2552 return;
2553 }
2554 if (value > 4 * GiB) {
2555 error_setg(&error,
2556 "Machine option 'max-ram-below-4g=%"PRIu64
2557 "' expects size less than or equal to 4G", value);
2558 error_propagate(errp, error);
2559 return;
2560 }
2561
2562 if (value < 1 * MiB) {
2563 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2564 "BIOS may not work with less than 1MiB", value);
2565 }
2566
2567 pcms->max_ram_below_4g = value;
2568 }
2569
2570 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2571 void *opaque, Error **errp)
2572 {
2573 PCMachineState *pcms = PC_MACHINE(obj);
2574 OnOffAuto vmport = pcms->vmport;
2575
2576 visit_type_OnOffAuto(v, name, &vmport, errp);
2577 }
2578
2579 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2580 void *opaque, Error **errp)
2581 {
2582 PCMachineState *pcms = PC_MACHINE(obj);
2583
2584 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2585 }
2586
2587 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2588 {
2589 bool smm_available = false;
2590
2591 if (pcms->smm == ON_OFF_AUTO_OFF) {
2592 return false;
2593 }
2594
2595 if (tcg_enabled() || qtest_enabled()) {
2596 smm_available = true;
2597 } else if (kvm_enabled()) {
2598 smm_available = kvm_has_smm();
2599 }
2600
2601 if (smm_available) {
2602 return true;
2603 }
2604
2605 if (pcms->smm == ON_OFF_AUTO_ON) {
2606 error_report("System Management Mode not supported by this hypervisor.");
2607 exit(1);
2608 }
2609 return false;
2610 }
2611
2612 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2613 void *opaque, Error **errp)
2614 {
2615 PCMachineState *pcms = PC_MACHINE(obj);
2616 OnOffAuto smm = pcms->smm;
2617
2618 visit_type_OnOffAuto(v, name, &smm, errp);
2619 }
2620
2621 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2622 void *opaque, Error **errp)
2623 {
2624 PCMachineState *pcms = PC_MACHINE(obj);
2625
2626 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2627 }
2628
2629 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2630 {
2631 PCMachineState *pcms = PC_MACHINE(obj);
2632
2633 return pcms->smbus_enabled;
2634 }
2635
2636 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2637 {
2638 PCMachineState *pcms = PC_MACHINE(obj);
2639
2640 pcms->smbus_enabled = value;
2641 }
2642
2643 static bool pc_machine_get_sata(Object *obj, Error **errp)
2644 {
2645 PCMachineState *pcms = PC_MACHINE(obj);
2646
2647 return pcms->sata_enabled;
2648 }
2649
2650 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2651 {
2652 PCMachineState *pcms = PC_MACHINE(obj);
2653
2654 pcms->sata_enabled = value;
2655 }
2656
2657 static bool pc_machine_get_pit(Object *obj, Error **errp)
2658 {
2659 PCMachineState *pcms = PC_MACHINE(obj);
2660
2661 return pcms->pit_enabled;
2662 }
2663
2664 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2665 {
2666 PCMachineState *pcms = PC_MACHINE(obj);
2667
2668 pcms->pit_enabled = value;
2669 }
2670
2671 static void pc_machine_initfn(Object *obj)
2672 {
2673 PCMachineState *pcms = PC_MACHINE(obj);
2674
2675 pcms->max_ram_below_4g = 0; /* use default */
2676 pcms->smm = ON_OFF_AUTO_AUTO;
2677 pcms->vmport = ON_OFF_AUTO_AUTO;
2678 /* acpi build is enabled by default if machine supports it */
2679 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2680 pcms->smbus_enabled = true;
2681 pcms->sata_enabled = true;
2682 pcms->pit_enabled = true;
2683
2684 pc_system_flash_create(pcms);
2685 }
2686
2687 static void pc_machine_reset(void)
2688 {
2689 CPUState *cs;
2690 X86CPU *cpu;
2691
2692 qemu_devices_reset();
2693
2694 /* Reset APIC after devices have been reset to cancel
2695 * any changes that qemu_devices_reset() might have done.
2696 */
2697 CPU_FOREACH(cs) {
2698 cpu = X86_CPU(cs);
2699
2700 if (cpu->apic_state) {
2701 device_reset(cpu->apic_state);
2702 }
2703 }
2704 }
2705
2706 static CpuInstanceProperties
2707 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2708 {
2709 MachineClass *mc = MACHINE_GET_CLASS(ms);
2710 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2711
2712 assert(cpu_index < possible_cpus->len);
2713 return possible_cpus->cpus[cpu_index].props;
2714 }
2715
2716 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2717 {
2718 X86CPUTopoInfo topo;
2719
2720 assert(idx < ms->possible_cpus->len);
2721 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2722 smp_cores, smp_threads, &topo);
2723 return topo.pkg_id % nb_numa_nodes;
2724 }
2725
2726 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2727 {
2728 PCMachineState *pcms = PC_MACHINE(ms);
2729 int i;
2730
2731 if (ms->possible_cpus) {
2732 /*
2733 * make sure that max_cpus hasn't changed since the first use, i.e.
2734 * -smp hasn't been parsed after it
2735 */
2736 assert(ms->possible_cpus->len == max_cpus);
2737 return ms->possible_cpus;
2738 }
2739
2740 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2741 sizeof(CPUArchId) * max_cpus);
2742 ms->possible_cpus->len = max_cpus;
2743 for (i = 0; i < ms->possible_cpus->len; i++) {
2744 X86CPUTopoInfo topo;
2745
2746 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2747 ms->possible_cpus->cpus[i].vcpus_count = 1;
2748 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(pcms, i);
2749 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2750 smp_cores, smp_threads, &topo);
2751 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2752 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2753 ms->possible_cpus->cpus[i].props.has_core_id = true;
2754 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2755 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2756 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2757 }
2758 return ms->possible_cpus;
2759 }
2760
2761 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2762 {
2763 /* cpu index isn't used */
2764 CPUState *cs;
2765
2766 CPU_FOREACH(cs) {
2767 X86CPU *cpu = X86_CPU(cs);
2768
2769 if (!cpu->apic_state) {
2770 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2771 } else {
2772 apic_deliver_nmi(cpu->apic_state);
2773 }
2774 }
2775 }
2776
2777 static void pc_machine_class_init(ObjectClass *oc, void *data)
2778 {
2779 MachineClass *mc = MACHINE_CLASS(oc);
2780 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2781 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2782 NMIClass *nc = NMI_CLASS(oc);
2783
2784 pcmc->pci_enabled = true;
2785 pcmc->has_acpi_build = true;
2786 pcmc->rsdp_in_ram = true;
2787 pcmc->smbios_defaults = true;
2788 pcmc->smbios_uuid_encoded = true;
2789 pcmc->gigabyte_align = true;
2790 pcmc->has_reserved_memory = true;
2791 pcmc->kvmclock_enabled = true;
2792 pcmc->enforce_aligned_dimm = true;
2793 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2794 * to be used at the moment, 32K should be enough for a while. */
2795 pcmc->acpi_data_size = 0x20000 + 0x8000;
2796 pcmc->save_tsc_khz = true;
2797 pcmc->linuxboot_dma_enabled = true;
2798 pcmc->pvh_enabled = true;
2799 assert(!mc->get_hotplug_handler);
2800 mc->get_hotplug_handler = pc_get_hotplug_handler;
2801 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2802 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2803 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2804 mc->auto_enable_numa_with_memhp = true;
2805 mc->has_hotpluggable_cpus = true;
2806 mc->default_boot_order = "cad";
2807 mc->hot_add_cpu = pc_hot_add_cpu;
2808 mc->block_default_type = IF_IDE;
2809 mc->max_cpus = 255;
2810 mc->reset = pc_machine_reset;
2811 hc->pre_plug = pc_machine_device_pre_plug_cb;
2812 hc->plug = pc_machine_device_plug_cb;
2813 hc->unplug_request = pc_machine_device_unplug_request_cb;
2814 hc->unplug = pc_machine_device_unplug_cb;
2815 nc->nmi_monitor_handler = x86_nmi;
2816 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2817 mc->nvdimm_supported = true;
2818
2819 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2820 pc_machine_get_device_memory_region_size, NULL,
2821 NULL, NULL, &error_abort);
2822
2823 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2824 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2825 NULL, NULL, &error_abort);
2826
2827 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2828 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2829
2830 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2831 pc_machine_get_smm, pc_machine_set_smm,
2832 NULL, NULL, &error_abort);
2833 object_class_property_set_description(oc, PC_MACHINE_SMM,
2834 "Enable SMM (pc & q35)", &error_abort);
2835
2836 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2837 pc_machine_get_vmport, pc_machine_set_vmport,
2838 NULL, NULL, &error_abort);
2839 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2840 "Enable vmport (pc & q35)", &error_abort);
2841
2842 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2843 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2844
2845 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2846 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2847
2848 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2849 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2850 }
2851
2852 static const TypeInfo pc_machine_info = {
2853 .name = TYPE_PC_MACHINE,
2854 .parent = TYPE_MACHINE,
2855 .abstract = true,
2856 .instance_size = sizeof(PCMachineState),
2857 .instance_init = pc_machine_initfn,
2858 .class_size = sizeof(PCMachineClass),
2859 .class_init = pc_machine_class_init,
2860 .interfaces = (InterfaceInfo[]) {
2861 { TYPE_HOTPLUG_HANDLER },
2862 { TYPE_NMI },
2863 { }
2864 },
2865 };
2866
2867 static void pc_machine_register_types(void)
2868 {
2869 type_register_static(&pc_machine_info);
2870 }
2871
2872 type_init(pc_machine_register_types)