]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
mmap-alloc: tweak a comment on ppc64
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/hw.h"
25 #include "hw/i386/pc.h"
26 #include "hw/char/serial.h"
27 #include "hw/i386/apic.h"
28 #include "hw/i386/topology.h"
29 #include "sysemu/cpus.h"
30 #include "hw/block/fdc.h"
31 #include "hw/ide.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/pci_bus.h"
34 #include "hw/nvram/fw_cfg.h"
35 #include "hw/timer/hpet.h"
36 #include "hw/smbios/smbios.h"
37 #include "hw/loader.h"
38 #include "elf.h"
39 #include "multiboot.h"
40 #include "hw/timer/mc146818rtc.h"
41 #include "hw/timer/i8254.h"
42 #include "hw/audio/pcspk.h"
43 #include "hw/pci/msi.h"
44 #include "hw/sysbus.h"
45 #include "sysemu/sysemu.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/kvm.h"
48 #include "sysemu/qtest.h"
49 #include "kvm_i386.h"
50 #include "hw/xen/xen.h"
51 #include "sysemu/block-backend.h"
52 #include "hw/block/block.h"
53 #include "ui/qemu-spice.h"
54 #include "exec/memory.h"
55 #include "exec/address-spaces.h"
56 #include "sysemu/arch_init.h"
57 #include "qemu/bitmap.h"
58 #include "qemu/config-file.h"
59 #include "qemu/error-report.h"
60 #include "hw/acpi/acpi.h"
61 #include "hw/acpi/cpu_hotplug.h"
62 #include "hw/boards.h"
63 #include "hw/pci/pci_host.h"
64 #include "acpi-build.h"
65 #include "hw/mem/pc-dimm.h"
66 #include "qapi/visitor.h"
67 #include "qapi-visit.h"
68 #include "qom/cpu.h"
69
70 /* debug PC/ISA interrupts */
71 //#define DEBUG_IRQ
72
73 #ifdef DEBUG_IRQ
74 #define DPRINTF(fmt, ...) \
75 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
76 #else
77 #define DPRINTF(fmt, ...)
78 #endif
79
80 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables
81 * (128K) and other BIOS datastructures (less than 4K reported to be used at
82 * the moment, 32K should be enough for a while). */
83 static unsigned acpi_data_size = 0x20000 + 0x8000;
84 void pc_set_legacy_acpi_data_size(void)
85 {
86 acpi_data_size = 0x10000;
87 }
88
89 #define BIOS_CFG_IOPORT 0x510
90 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
91 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
92 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
93 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
94 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
95
96 #define E820_NR_ENTRIES 16
97
98 struct e820_entry {
99 uint64_t address;
100 uint64_t length;
101 uint32_t type;
102 } QEMU_PACKED __attribute((__aligned__(4)));
103
104 struct e820_table {
105 uint32_t count;
106 struct e820_entry entry[E820_NR_ENTRIES];
107 } QEMU_PACKED __attribute((__aligned__(4)));
108
109 static struct e820_table e820_reserve;
110 static struct e820_entry *e820_table;
111 static unsigned e820_entries;
112 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
113
114 void gsi_handler(void *opaque, int n, int level)
115 {
116 GSIState *s = opaque;
117
118 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
119 if (n < ISA_NUM_IRQS) {
120 qemu_set_irq(s->i8259_irq[n], level);
121 }
122 qemu_set_irq(s->ioapic_irq[n], level);
123 }
124
125 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
126 unsigned size)
127 {
128 }
129
130 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
131 {
132 return 0xffffffffffffffffULL;
133 }
134
135 /* MSDOS compatibility mode FPU exception support */
136 static qemu_irq ferr_irq;
137
138 void pc_register_ferr_irq(qemu_irq irq)
139 {
140 ferr_irq = irq;
141 }
142
143 /* XXX: add IGNNE support */
144 void cpu_set_ferr(CPUX86State *s)
145 {
146 qemu_irq_raise(ferr_irq);
147 }
148
149 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
150 unsigned size)
151 {
152 qemu_irq_lower(ferr_irq);
153 }
154
155 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
156 {
157 return 0xffffffffffffffffULL;
158 }
159
160 /* TSC handling */
161 uint64_t cpu_get_tsc(CPUX86State *env)
162 {
163 return cpu_get_ticks();
164 }
165
166 /* IRQ handling */
167 int cpu_get_pic_interrupt(CPUX86State *env)
168 {
169 X86CPU *cpu = x86_env_get_cpu(env);
170 int intno;
171
172 intno = apic_get_interrupt(cpu->apic_state);
173 if (intno >= 0) {
174 return intno;
175 }
176 /* read the irq from the PIC */
177 if (!apic_accept_pic_intr(cpu->apic_state)) {
178 return -1;
179 }
180
181 intno = pic_read_irq(isa_pic);
182 return intno;
183 }
184
185 static void pic_irq_request(void *opaque, int irq, int level)
186 {
187 CPUState *cs = first_cpu;
188 X86CPU *cpu = X86_CPU(cs);
189
190 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
191 if (cpu->apic_state) {
192 CPU_FOREACH(cs) {
193 cpu = X86_CPU(cs);
194 if (apic_accept_pic_intr(cpu->apic_state)) {
195 apic_deliver_pic_intr(cpu->apic_state, level);
196 }
197 }
198 } else {
199 if (level) {
200 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
201 } else {
202 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
203 }
204 }
205 }
206
207 /* PC cmos mappings */
208
209 #define REG_EQUIPMENT_BYTE 0x14
210
211 static int cmos_get_fd_drive_type(FDriveType fd0)
212 {
213 int val;
214
215 switch (fd0) {
216 case FDRIVE_DRV_144:
217 /* 1.44 Mb 3"5 drive */
218 val = 4;
219 break;
220 case FDRIVE_DRV_288:
221 /* 2.88 Mb 3"5 drive */
222 val = 5;
223 break;
224 case FDRIVE_DRV_120:
225 /* 1.2 Mb 5"5 drive */
226 val = 2;
227 break;
228 case FDRIVE_DRV_NONE:
229 default:
230 val = 0;
231 break;
232 }
233 return val;
234 }
235
236 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
237 int16_t cylinders, int8_t heads, int8_t sectors)
238 {
239 rtc_set_memory(s, type_ofs, 47);
240 rtc_set_memory(s, info_ofs, cylinders);
241 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
242 rtc_set_memory(s, info_ofs + 2, heads);
243 rtc_set_memory(s, info_ofs + 3, 0xff);
244 rtc_set_memory(s, info_ofs + 4, 0xff);
245 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
246 rtc_set_memory(s, info_ofs + 6, cylinders);
247 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
248 rtc_set_memory(s, info_ofs + 8, sectors);
249 }
250
251 /* convert boot_device letter to something recognizable by the bios */
252 static int boot_device2nibble(char boot_device)
253 {
254 switch(boot_device) {
255 case 'a':
256 case 'b':
257 return 0x01; /* floppy boot */
258 case 'c':
259 return 0x02; /* hard drive boot */
260 case 'd':
261 return 0x03; /* CD-ROM boot */
262 case 'n':
263 return 0x04; /* Network boot */
264 }
265 return 0;
266 }
267
268 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
269 {
270 #define PC_MAX_BOOT_DEVICES 3
271 int nbds, bds[3] = { 0, };
272 int i;
273
274 nbds = strlen(boot_device);
275 if (nbds > PC_MAX_BOOT_DEVICES) {
276 error_setg(errp, "Too many boot devices for PC");
277 return;
278 }
279 for (i = 0; i < nbds; i++) {
280 bds[i] = boot_device2nibble(boot_device[i]);
281 if (bds[i] == 0) {
282 error_setg(errp, "Invalid boot device for PC: '%c'",
283 boot_device[i]);
284 return;
285 }
286 }
287 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
288 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
289 }
290
291 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
292 {
293 set_boot_dev(opaque, boot_device, errp);
294 }
295
296 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
297 {
298 int val, nb, i;
299 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
300
301 /* floppy type */
302 if (floppy) {
303 for (i = 0; i < 2; i++) {
304 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
305 }
306 }
307 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
308 cmos_get_fd_drive_type(fd_type[1]);
309 rtc_set_memory(rtc_state, 0x10, val);
310
311 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
312 nb = 0;
313 if (fd_type[0] < FDRIVE_DRV_NONE) {
314 nb++;
315 }
316 if (fd_type[1] < FDRIVE_DRV_NONE) {
317 nb++;
318 }
319 switch (nb) {
320 case 0:
321 break;
322 case 1:
323 val |= 0x01; /* 1 drive, ready for boot */
324 break;
325 case 2:
326 val |= 0x41; /* 2 drives, ready for boot */
327 break;
328 }
329 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
330 }
331
332 typedef struct pc_cmos_init_late_arg {
333 ISADevice *rtc_state;
334 BusState *idebus[2];
335 } pc_cmos_init_late_arg;
336
337 typedef struct check_fdc_state {
338 ISADevice *floppy;
339 bool multiple;
340 } CheckFdcState;
341
342 static int check_fdc(Object *obj, void *opaque)
343 {
344 CheckFdcState *state = opaque;
345 Object *fdc;
346 uint32_t iobase;
347 Error *local_err = NULL;
348
349 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
350 if (!fdc) {
351 return 0;
352 }
353
354 iobase = object_property_get_int(obj, "iobase", &local_err);
355 if (local_err || iobase != 0x3f0) {
356 error_free(local_err);
357 return 0;
358 }
359
360 if (state->floppy) {
361 state->multiple = true;
362 } else {
363 state->floppy = ISA_DEVICE(obj);
364 }
365 return 0;
366 }
367
368 static const char * const fdc_container_path[] = {
369 "/unattached", "/peripheral", "/peripheral-anon"
370 };
371
372 static void pc_cmos_init_late(void *opaque)
373 {
374 pc_cmos_init_late_arg *arg = opaque;
375 ISADevice *s = arg->rtc_state;
376 int16_t cylinders;
377 int8_t heads, sectors;
378 int val;
379 int i, trans;
380 Object *container;
381 CheckFdcState state = { 0 };
382
383 val = 0;
384 if (ide_get_geometry(arg->idebus[0], 0,
385 &cylinders, &heads, &sectors) >= 0) {
386 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
387 val |= 0xf0;
388 }
389 if (ide_get_geometry(arg->idebus[0], 1,
390 &cylinders, &heads, &sectors) >= 0) {
391 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
392 val |= 0x0f;
393 }
394 rtc_set_memory(s, 0x12, val);
395
396 val = 0;
397 for (i = 0; i < 4; i++) {
398 /* NOTE: ide_get_geometry() returns the physical
399 geometry. It is always such that: 1 <= sects <= 63, 1
400 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
401 geometry can be different if a translation is done. */
402 if (ide_get_geometry(arg->idebus[i / 2], i % 2,
403 &cylinders, &heads, &sectors) >= 0) {
404 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
405 assert((trans & ~3) == 0);
406 val |= trans << (i * 2);
407 }
408 }
409 rtc_set_memory(s, 0x39, val);
410
411 /*
412 * Locate the FDC at IO address 0x3f0, and configure the CMOS registers
413 * accordingly.
414 */
415 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
416 container = container_get(qdev_get_machine(), fdc_container_path[i]);
417 object_child_foreach(container, check_fdc, &state);
418 }
419
420 if (state.multiple) {
421 error_report("warning: multiple floppy disk controllers with "
422 "iobase=0x3f0 have been found;\n"
423 "the one being picked for CMOS setup might not reflect "
424 "your intent");
425 }
426 pc_cmos_init_floppy(s, state.floppy);
427
428 qemu_unregister_reset(pc_cmos_init_late, opaque);
429 }
430
431 void pc_cmos_init(PCMachineState *pcms,
432 BusState *idebus0, BusState *idebus1,
433 ISADevice *s)
434 {
435 int val;
436 static pc_cmos_init_late_arg arg;
437 Error *local_err = NULL;
438
439 /* various important CMOS locations needed by PC/Bochs bios */
440
441 /* memory size */
442 /* base memory (first MiB) */
443 val = MIN(pcms->below_4g_mem_size / 1024, 640);
444 rtc_set_memory(s, 0x15, val);
445 rtc_set_memory(s, 0x16, val >> 8);
446 /* extended memory (next 64MiB) */
447 if (pcms->below_4g_mem_size > 1024 * 1024) {
448 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
449 } else {
450 val = 0;
451 }
452 if (val > 65535)
453 val = 65535;
454 rtc_set_memory(s, 0x17, val);
455 rtc_set_memory(s, 0x18, val >> 8);
456 rtc_set_memory(s, 0x30, val);
457 rtc_set_memory(s, 0x31, val >> 8);
458 /* memory between 16MiB and 4GiB */
459 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
460 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
461 } else {
462 val = 0;
463 }
464 if (val > 65535)
465 val = 65535;
466 rtc_set_memory(s, 0x34, val);
467 rtc_set_memory(s, 0x35, val >> 8);
468 /* memory above 4GiB */
469 val = pcms->above_4g_mem_size / 65536;
470 rtc_set_memory(s, 0x5b, val);
471 rtc_set_memory(s, 0x5c, val >> 8);
472 rtc_set_memory(s, 0x5d, val >> 16);
473
474 /* set the number of CPU */
475 rtc_set_memory(s, 0x5f, smp_cpus - 1);
476
477 object_property_add_link(OBJECT(pcms), "rtc_state",
478 TYPE_ISA_DEVICE,
479 (Object **)&pcms->rtc,
480 object_property_allow_set_link,
481 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
482 object_property_set_link(OBJECT(pcms), OBJECT(s),
483 "rtc_state", &error_abort);
484
485 set_boot_dev(s, MACHINE(pcms)->boot_order, &local_err);
486 if (local_err) {
487 error_report_err(local_err);
488 exit(1);
489 }
490
491 val = 0;
492 val |= 0x02; /* FPU is there */
493 val |= 0x04; /* PS/2 mouse installed */
494 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
495
496 /* hard drives and FDC */
497 arg.rtc_state = s;
498 arg.idebus[0] = idebus0;
499 arg.idebus[1] = idebus1;
500 qemu_register_reset(pc_cmos_init_late, &arg);
501 }
502
503 #define TYPE_PORT92 "port92"
504 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
505
506 /* port 92 stuff: could be split off */
507 typedef struct Port92State {
508 ISADevice parent_obj;
509
510 MemoryRegion io;
511 uint8_t outport;
512 qemu_irq *a20_out;
513 } Port92State;
514
515 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
516 unsigned size)
517 {
518 Port92State *s = opaque;
519 int oldval = s->outport;
520
521 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
522 s->outport = val;
523 qemu_set_irq(*s->a20_out, (val >> 1) & 1);
524 if ((val & 1) && !(oldval & 1)) {
525 qemu_system_reset_request();
526 }
527 }
528
529 static uint64_t port92_read(void *opaque, hwaddr addr,
530 unsigned size)
531 {
532 Port92State *s = opaque;
533 uint32_t ret;
534
535 ret = s->outport;
536 DPRINTF("port92: read 0x%02x\n", ret);
537 return ret;
538 }
539
540 static void port92_init(ISADevice *dev, qemu_irq *a20_out)
541 {
542 Port92State *s = PORT92(dev);
543
544 s->a20_out = a20_out;
545 }
546
547 static const VMStateDescription vmstate_port92_isa = {
548 .name = "port92",
549 .version_id = 1,
550 .minimum_version_id = 1,
551 .fields = (VMStateField[]) {
552 VMSTATE_UINT8(outport, Port92State),
553 VMSTATE_END_OF_LIST()
554 }
555 };
556
557 static void port92_reset(DeviceState *d)
558 {
559 Port92State *s = PORT92(d);
560
561 s->outport &= ~1;
562 }
563
564 static const MemoryRegionOps port92_ops = {
565 .read = port92_read,
566 .write = port92_write,
567 .impl = {
568 .min_access_size = 1,
569 .max_access_size = 1,
570 },
571 .endianness = DEVICE_LITTLE_ENDIAN,
572 };
573
574 static void port92_initfn(Object *obj)
575 {
576 Port92State *s = PORT92(obj);
577
578 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
579
580 s->outport = 0;
581 }
582
583 static void port92_realizefn(DeviceState *dev, Error **errp)
584 {
585 ISADevice *isadev = ISA_DEVICE(dev);
586 Port92State *s = PORT92(dev);
587
588 isa_register_ioport(isadev, &s->io, 0x92);
589 }
590
591 static void port92_class_initfn(ObjectClass *klass, void *data)
592 {
593 DeviceClass *dc = DEVICE_CLASS(klass);
594
595 dc->realize = port92_realizefn;
596 dc->reset = port92_reset;
597 dc->vmsd = &vmstate_port92_isa;
598 /*
599 * Reason: unlike ordinary ISA devices, this one needs additional
600 * wiring: its A20 output line needs to be wired up by
601 * port92_init().
602 */
603 dc->cannot_instantiate_with_device_add_yet = true;
604 }
605
606 static const TypeInfo port92_info = {
607 .name = TYPE_PORT92,
608 .parent = TYPE_ISA_DEVICE,
609 .instance_size = sizeof(Port92State),
610 .instance_init = port92_initfn,
611 .class_init = port92_class_initfn,
612 };
613
614 static void port92_register_types(void)
615 {
616 type_register_static(&port92_info);
617 }
618
619 type_init(port92_register_types)
620
621 static void handle_a20_line_change(void *opaque, int irq, int level)
622 {
623 X86CPU *cpu = opaque;
624
625 /* XXX: send to all CPUs ? */
626 /* XXX: add logic to handle multiple A20 line sources */
627 x86_cpu_set_a20(cpu, level);
628 }
629
630 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
631 {
632 int index = le32_to_cpu(e820_reserve.count);
633 struct e820_entry *entry;
634
635 if (type != E820_RAM) {
636 /* old FW_CFG_E820_TABLE entry -- reservations only */
637 if (index >= E820_NR_ENTRIES) {
638 return -EBUSY;
639 }
640 entry = &e820_reserve.entry[index++];
641
642 entry->address = cpu_to_le64(address);
643 entry->length = cpu_to_le64(length);
644 entry->type = cpu_to_le32(type);
645
646 e820_reserve.count = cpu_to_le32(index);
647 }
648
649 /* new "etc/e820" file -- include ram too */
650 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
651 e820_table[e820_entries].address = cpu_to_le64(address);
652 e820_table[e820_entries].length = cpu_to_le64(length);
653 e820_table[e820_entries].type = cpu_to_le32(type);
654 e820_entries++;
655
656 return e820_entries;
657 }
658
659 int e820_get_num_entries(void)
660 {
661 return e820_entries;
662 }
663
664 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
665 {
666 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
667 *address = le64_to_cpu(e820_table[idx].address);
668 *length = le64_to_cpu(e820_table[idx].length);
669 return true;
670 }
671 return false;
672 }
673
674 /* Enables contiguous-apic-ID mode, for compatibility */
675 static bool compat_apic_id_mode;
676
677 void enable_compat_apic_id_mode(void)
678 {
679 compat_apic_id_mode = true;
680 }
681
682 /* Calculates initial APIC ID for a specific CPU index
683 *
684 * Currently we need to be able to calculate the APIC ID from the CPU index
685 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
686 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
687 * all CPUs up to max_cpus.
688 */
689 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
690 {
691 uint32_t correct_id;
692 static bool warned;
693
694 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
695 if (compat_apic_id_mode) {
696 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
697 error_report("APIC IDs set in compatibility mode, "
698 "CPU topology won't match the configuration");
699 warned = true;
700 }
701 return cpu_index;
702 } else {
703 return correct_id;
704 }
705 }
706
707 /* Calculates the limit to CPU APIC ID values
708 *
709 * This function returns the limit for the APIC ID value, so that all
710 * CPU APIC IDs are < pc_apic_id_limit().
711 *
712 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
713 */
714 static unsigned int pc_apic_id_limit(unsigned int max_cpus)
715 {
716 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
717 }
718
719 static void pc_build_smbios(FWCfgState *fw_cfg)
720 {
721 uint8_t *smbios_tables, *smbios_anchor;
722 size_t smbios_tables_len, smbios_anchor_len;
723 struct smbios_phys_mem_area *mem_array;
724 unsigned i, array_count;
725
726 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
727 if (smbios_tables) {
728 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
729 smbios_tables, smbios_tables_len);
730 }
731
732 /* build the array of physical mem area from e820 table */
733 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
734 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
735 uint64_t addr, len;
736
737 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
738 mem_array[array_count].address = addr;
739 mem_array[array_count].length = len;
740 array_count++;
741 }
742 }
743 smbios_get_tables(mem_array, array_count,
744 &smbios_tables, &smbios_tables_len,
745 &smbios_anchor, &smbios_anchor_len);
746 g_free(mem_array);
747
748 if (smbios_anchor) {
749 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
750 smbios_tables, smbios_tables_len);
751 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
752 smbios_anchor, smbios_anchor_len);
753 }
754 }
755
756 static FWCfgState *bochs_bios_init(AddressSpace *as)
757 {
758 FWCfgState *fw_cfg;
759 uint64_t *numa_fw_cfg;
760 int i, j;
761 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
762
763 fw_cfg = fw_cfg_init_io_dma(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 4, as);
764
765 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
766 *
767 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
768 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
769 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
770 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
771 * may see".
772 *
773 * So, this means we must not use max_cpus, here, but the maximum possible
774 * APIC ID value, plus one.
775 *
776 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
777 * the APIC ID, not the "CPU index"
778 */
779 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
780 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
781 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
782 acpi_tables, acpi_tables_len);
783 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
784
785 pc_build_smbios(fw_cfg);
786
787 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
788 &e820_reserve, sizeof(e820_reserve));
789 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
790 sizeof(struct e820_entry) * e820_entries);
791
792 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
793 /* allocate memory for the NUMA channel: one (64bit) word for the number
794 * of nodes, one word for each VCPU->node and one word for each node to
795 * hold the amount of memory.
796 */
797 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
798 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
799 for (i = 0; i < max_cpus; i++) {
800 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
801 assert(apic_id < apic_id_limit);
802 for (j = 0; j < nb_numa_nodes; j++) {
803 if (test_bit(i, numa_info[j].node_cpu)) {
804 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
805 break;
806 }
807 }
808 }
809 for (i = 0; i < nb_numa_nodes; i++) {
810 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(numa_info[i].node_mem);
811 }
812 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
813 (1 + apic_id_limit + nb_numa_nodes) *
814 sizeof(*numa_fw_cfg));
815
816 return fw_cfg;
817 }
818
819 static long get_file_size(FILE *f)
820 {
821 long where, size;
822
823 /* XXX: on Unix systems, using fstat() probably makes more sense */
824
825 where = ftell(f);
826 fseek(f, 0, SEEK_END);
827 size = ftell(f);
828 fseek(f, where, SEEK_SET);
829
830 return size;
831 }
832
833 static void load_linux(PCMachineState *pcms,
834 FWCfgState *fw_cfg)
835 {
836 uint16_t protocol;
837 int setup_size, kernel_size, initrd_size = 0, cmdline_size;
838 uint32_t initrd_max;
839 uint8_t header[8192], *setup, *kernel, *initrd_data;
840 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
841 FILE *f;
842 char *vmode;
843 MachineState *machine = MACHINE(pcms);
844 const char *kernel_filename = machine->kernel_filename;
845 const char *initrd_filename = machine->initrd_filename;
846 const char *kernel_cmdline = machine->kernel_cmdline;
847
848 /* Align to 16 bytes as a paranoia measure */
849 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
850
851 /* load the kernel header */
852 f = fopen(kernel_filename, "rb");
853 if (!f || !(kernel_size = get_file_size(f)) ||
854 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
855 MIN(ARRAY_SIZE(header), kernel_size)) {
856 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
857 kernel_filename, strerror(errno));
858 exit(1);
859 }
860
861 /* kernel protocol version */
862 #if 0
863 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
864 #endif
865 if (ldl_p(header+0x202) == 0x53726448) {
866 protocol = lduw_p(header+0x206);
867 } else {
868 /* This looks like a multiboot kernel. If it is, let's stop
869 treating it like a Linux kernel. */
870 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
871 kernel_cmdline, kernel_size, header)) {
872 return;
873 }
874 protocol = 0;
875 }
876
877 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
878 /* Low kernel */
879 real_addr = 0x90000;
880 cmdline_addr = 0x9a000 - cmdline_size;
881 prot_addr = 0x10000;
882 } else if (protocol < 0x202) {
883 /* High but ancient kernel */
884 real_addr = 0x90000;
885 cmdline_addr = 0x9a000 - cmdline_size;
886 prot_addr = 0x100000;
887 } else {
888 /* High and recent kernel */
889 real_addr = 0x10000;
890 cmdline_addr = 0x20000;
891 prot_addr = 0x100000;
892 }
893
894 #if 0
895 fprintf(stderr,
896 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
897 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
898 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
899 real_addr,
900 cmdline_addr,
901 prot_addr);
902 #endif
903
904 /* highest address for loading the initrd */
905 if (protocol >= 0x203) {
906 initrd_max = ldl_p(header+0x22c);
907 } else {
908 initrd_max = 0x37ffffff;
909 }
910
911 if (initrd_max >= pcms->below_4g_mem_size - acpi_data_size) {
912 initrd_max = pcms->below_4g_mem_size - acpi_data_size - 1;
913 }
914
915 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
916 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
917 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
918
919 if (protocol >= 0x202) {
920 stl_p(header+0x228, cmdline_addr);
921 } else {
922 stw_p(header+0x20, 0xA33F);
923 stw_p(header+0x22, cmdline_addr-real_addr);
924 }
925
926 /* handle vga= parameter */
927 vmode = strstr(kernel_cmdline, "vga=");
928 if (vmode) {
929 unsigned int video_mode;
930 /* skip "vga=" */
931 vmode += 4;
932 if (!strncmp(vmode, "normal", 6)) {
933 video_mode = 0xffff;
934 } else if (!strncmp(vmode, "ext", 3)) {
935 video_mode = 0xfffe;
936 } else if (!strncmp(vmode, "ask", 3)) {
937 video_mode = 0xfffd;
938 } else {
939 video_mode = strtol(vmode, NULL, 0);
940 }
941 stw_p(header+0x1fa, video_mode);
942 }
943
944 /* loader type */
945 /* High nybble = B reserved for QEMU; low nybble is revision number.
946 If this code is substantially changed, you may want to consider
947 incrementing the revision. */
948 if (protocol >= 0x200) {
949 header[0x210] = 0xB0;
950 }
951 /* heap */
952 if (protocol >= 0x201) {
953 header[0x211] |= 0x80; /* CAN_USE_HEAP */
954 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
955 }
956
957 /* load initrd */
958 if (initrd_filename) {
959 if (protocol < 0x200) {
960 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
961 exit(1);
962 }
963
964 initrd_size = get_image_size(initrd_filename);
965 if (initrd_size < 0) {
966 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
967 initrd_filename, strerror(errno));
968 exit(1);
969 }
970
971 initrd_addr = (initrd_max-initrd_size) & ~4095;
972
973 initrd_data = g_malloc(initrd_size);
974 load_image(initrd_filename, initrd_data);
975
976 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
977 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
978 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
979
980 stl_p(header+0x218, initrd_addr);
981 stl_p(header+0x21c, initrd_size);
982 }
983
984 /* load kernel and setup */
985 setup_size = header[0x1f1];
986 if (setup_size == 0) {
987 setup_size = 4;
988 }
989 setup_size = (setup_size+1)*512;
990 if (setup_size > kernel_size) {
991 fprintf(stderr, "qemu: invalid kernel header\n");
992 exit(1);
993 }
994 kernel_size -= setup_size;
995
996 setup = g_malloc(setup_size);
997 kernel = g_malloc(kernel_size);
998 fseek(f, 0, SEEK_SET);
999 if (fread(setup, 1, setup_size, f) != setup_size) {
1000 fprintf(stderr, "fread() failed\n");
1001 exit(1);
1002 }
1003 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1004 fprintf(stderr, "fread() failed\n");
1005 exit(1);
1006 }
1007 fclose(f);
1008 memcpy(setup, header, MIN(sizeof(header), setup_size));
1009
1010 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1011 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1012 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1013
1014 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1015 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1016 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1017
1018 option_rom[nb_option_roms].name = "linuxboot.bin";
1019 option_rom[nb_option_roms].bootindex = 0;
1020 nb_option_roms++;
1021 }
1022
1023 #define NE2000_NB_MAX 6
1024
1025 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1026 0x280, 0x380 };
1027 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1028
1029 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1030 {
1031 static int nb_ne2k = 0;
1032
1033 if (nb_ne2k == NE2000_NB_MAX)
1034 return;
1035 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1036 ne2000_irq[nb_ne2k], nd);
1037 nb_ne2k++;
1038 }
1039
1040 DeviceState *cpu_get_current_apic(void)
1041 {
1042 if (current_cpu) {
1043 X86CPU *cpu = X86_CPU(current_cpu);
1044 return cpu->apic_state;
1045 } else {
1046 return NULL;
1047 }
1048 }
1049
1050 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1051 {
1052 X86CPU *cpu = opaque;
1053
1054 if (level) {
1055 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1056 }
1057 }
1058
1059 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
1060 Error **errp)
1061 {
1062 X86CPU *cpu = NULL;
1063 Error *local_err = NULL;
1064
1065 cpu = cpu_x86_create(cpu_model, &local_err);
1066 if (local_err != NULL) {
1067 goto out;
1068 }
1069
1070 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1071 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1072
1073 out:
1074 if (local_err) {
1075 error_propagate(errp, local_err);
1076 object_unref(OBJECT(cpu));
1077 cpu = NULL;
1078 }
1079 return cpu;
1080 }
1081
1082 void pc_hot_add_cpu(const int64_t id, Error **errp)
1083 {
1084 X86CPU *cpu;
1085 MachineState *machine = MACHINE(qdev_get_machine());
1086 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1087 Error *local_err = NULL;
1088
1089 if (id < 0) {
1090 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1091 return;
1092 }
1093
1094 if (cpu_exists(apic_id)) {
1095 error_setg(errp, "Unable to add CPU: %" PRIi64
1096 ", it already exists", id);
1097 return;
1098 }
1099
1100 if (id >= max_cpus) {
1101 error_setg(errp, "Unable to add CPU: %" PRIi64
1102 ", max allowed: %d", id, max_cpus - 1);
1103 return;
1104 }
1105
1106 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1107 error_setg(errp, "Unable to add CPU: %" PRIi64
1108 ", resulting APIC ID (%" PRIi64 ") is too large",
1109 id, apic_id);
1110 return;
1111 }
1112
1113 cpu = pc_new_cpu(machine->cpu_model, apic_id, &local_err);
1114 if (local_err) {
1115 error_propagate(errp, local_err);
1116 return;
1117 }
1118 object_unref(OBJECT(cpu));
1119 }
1120
1121 void pc_cpus_init(PCMachineState *pcms)
1122 {
1123 int i;
1124 X86CPU *cpu = NULL;
1125 MachineState *machine = MACHINE(pcms);
1126 Error *error = NULL;
1127 unsigned long apic_id_limit;
1128
1129 /* init CPUs */
1130 if (machine->cpu_model == NULL) {
1131 #ifdef TARGET_X86_64
1132 machine->cpu_model = "qemu64";
1133 #else
1134 machine->cpu_model = "qemu32";
1135 #endif
1136 }
1137
1138 apic_id_limit = pc_apic_id_limit(max_cpus);
1139 if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
1140 error_report("max_cpus is too large. APIC ID of last CPU is %lu",
1141 apic_id_limit - 1);
1142 exit(1);
1143 }
1144
1145 for (i = 0; i < smp_cpus; i++) {
1146 cpu = pc_new_cpu(machine->cpu_model, x86_cpu_apic_id_from_index(i),
1147 &error);
1148 if (error) {
1149 error_report_err(error);
1150 exit(1);
1151 }
1152 object_unref(OBJECT(cpu));
1153 }
1154
1155 /* tell smbios about cpuid version and features */
1156 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1157 }
1158
1159 /* pci-info ROM file. Little endian format */
1160 typedef struct PcRomPciInfo {
1161 uint64_t w32_min;
1162 uint64_t w32_max;
1163 uint64_t w64_min;
1164 uint64_t w64_max;
1165 } PcRomPciInfo;
1166
1167 typedef struct PcGuestInfoState {
1168 PcGuestInfo info;
1169 Notifier machine_done;
1170 } PcGuestInfoState;
1171
1172 static
1173 void pc_guest_info_machine_done(Notifier *notifier, void *data)
1174 {
1175 PcGuestInfoState *guest_info_state = container_of(notifier,
1176 PcGuestInfoState,
1177 machine_done);
1178 PCIBus *bus = find_i440fx();
1179
1180 if (bus) {
1181 int extra_hosts = 0;
1182
1183 QLIST_FOREACH(bus, &bus->child, sibling) {
1184 /* look for expander root buses */
1185 if (pci_bus_is_root(bus)) {
1186 extra_hosts++;
1187 }
1188 }
1189 if (extra_hosts && guest_info_state->info.fw_cfg) {
1190 uint64_t *val = g_malloc(sizeof(*val));
1191 *val = cpu_to_le64(extra_hosts);
1192 fw_cfg_add_file(guest_info_state->info.fw_cfg,
1193 "etc/extra-pci-roots", val, sizeof(*val));
1194 }
1195 }
1196
1197 acpi_setup(&guest_info_state->info);
1198 }
1199
1200 PcGuestInfo *pc_guest_info_init(PCMachineState *pcms)
1201 {
1202 PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1203 PcGuestInfo *guest_info = &guest_info_state->info;
1204 int i, j;
1205
1206 guest_info->ram_size_below_4g = pcms->below_4g_mem_size;
1207 guest_info->ram_size = pcms->below_4g_mem_size + pcms->above_4g_mem_size;
1208 guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
1209 guest_info->apic_xrupt_override = kvm_allows_irq0_override();
1210 guest_info->numa_nodes = nb_numa_nodes;
1211 guest_info->node_mem = g_malloc0(guest_info->numa_nodes *
1212 sizeof *guest_info->node_mem);
1213 for (i = 0; i < nb_numa_nodes; i++) {
1214 guest_info->node_mem[i] = numa_info[i].node_mem;
1215 }
1216
1217 guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
1218 sizeof *guest_info->node_cpu);
1219
1220 for (i = 0; i < max_cpus; i++) {
1221 unsigned int apic_id = x86_cpu_apic_id_from_index(i);
1222 assert(apic_id < guest_info->apic_id_limit);
1223 for (j = 0; j < nb_numa_nodes; j++) {
1224 if (test_bit(i, numa_info[j].node_cpu)) {
1225 guest_info->node_cpu[apic_id] = j;
1226 break;
1227 }
1228 }
1229 }
1230
1231 guest_info_state->machine_done.notify = pc_guest_info_machine_done;
1232 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1233 return guest_info;
1234 }
1235
1236 /* setup pci memory address space mapping into system address space */
1237 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1238 MemoryRegion *pci_address_space)
1239 {
1240 /* Set to lower priority than RAM */
1241 memory_region_add_subregion_overlap(system_memory, 0x0,
1242 pci_address_space, -1);
1243 }
1244
1245 void pc_acpi_init(const char *default_dsdt)
1246 {
1247 char *filename;
1248
1249 if (acpi_tables != NULL) {
1250 /* manually set via -acpitable, leave it alone */
1251 return;
1252 }
1253
1254 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1255 if (filename == NULL) {
1256 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1257 } else {
1258 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1259 &error_abort);
1260 Error *err = NULL;
1261
1262 qemu_opt_set(opts, "file", filename, &error_abort);
1263
1264 acpi_table_add_builtin(opts, &err);
1265 if (err) {
1266 error_report("WARNING: failed to load %s: %s", filename,
1267 error_get_pretty(err));
1268 error_free(err);
1269 }
1270 g_free(filename);
1271 }
1272 }
1273
1274 FWCfgState *xen_load_linux(PCMachineState *pcms,
1275 PcGuestInfo *guest_info)
1276 {
1277 int i;
1278 FWCfgState *fw_cfg;
1279
1280 assert(MACHINE(pcms)->kernel_filename != NULL);
1281
1282 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
1283 rom_set_fw(fw_cfg);
1284
1285 load_linux(pcms, fw_cfg);
1286 for (i = 0; i < nb_option_roms; i++) {
1287 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1288 !strcmp(option_rom[i].name, "multiboot.bin"));
1289 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1290 }
1291 guest_info->fw_cfg = fw_cfg;
1292 return fw_cfg;
1293 }
1294
1295 FWCfgState *pc_memory_init(PCMachineState *pcms,
1296 MemoryRegion *system_memory,
1297 MemoryRegion *rom_memory,
1298 MemoryRegion **ram_memory,
1299 PcGuestInfo *guest_info)
1300 {
1301 int linux_boot, i;
1302 MemoryRegion *ram, *option_rom_mr;
1303 MemoryRegion *ram_below_4g, *ram_above_4g;
1304 FWCfgState *fw_cfg;
1305 MachineState *machine = MACHINE(pcms);
1306
1307 assert(machine->ram_size == pcms->below_4g_mem_size +
1308 pcms->above_4g_mem_size);
1309
1310 linux_boot = (machine->kernel_filename != NULL);
1311
1312 /* Allocate RAM. We allocate it as a single memory region and use
1313 * aliases to address portions of it, mostly for backwards compatibility
1314 * with older qemus that used qemu_ram_alloc().
1315 */
1316 ram = g_malloc(sizeof(*ram));
1317 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1318 machine->ram_size);
1319 *ram_memory = ram;
1320 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1321 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1322 0, pcms->below_4g_mem_size);
1323 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1324 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1325 if (pcms->above_4g_mem_size > 0) {
1326 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1327 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1328 pcms->below_4g_mem_size,
1329 pcms->above_4g_mem_size);
1330 memory_region_add_subregion(system_memory, 0x100000000ULL,
1331 ram_above_4g);
1332 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1333 }
1334
1335 if (!guest_info->has_reserved_memory &&
1336 (machine->ram_slots ||
1337 (machine->maxram_size > machine->ram_size))) {
1338 MachineClass *mc = MACHINE_GET_CLASS(machine);
1339
1340 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1341 mc->name);
1342 exit(EXIT_FAILURE);
1343 }
1344
1345 /* initialize hotplug memory address space */
1346 if (guest_info->has_reserved_memory &&
1347 (machine->ram_size < machine->maxram_size)) {
1348 ram_addr_t hotplug_mem_size =
1349 machine->maxram_size - machine->ram_size;
1350
1351 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1352 error_report("unsupported amount of memory slots: %"PRIu64,
1353 machine->ram_slots);
1354 exit(EXIT_FAILURE);
1355 }
1356
1357 if (QEMU_ALIGN_UP(machine->maxram_size,
1358 TARGET_PAGE_SIZE) != machine->maxram_size) {
1359 error_report("maximum memory size must by aligned to multiple of "
1360 "%d bytes", TARGET_PAGE_SIZE);
1361 exit(EXIT_FAILURE);
1362 }
1363
1364 pcms->hotplug_memory.base =
1365 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1366
1367 if (pcms->enforce_aligned_dimm) {
1368 /* size hotplug region assuming 1G page max alignment per slot */
1369 hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1370 }
1371
1372 if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1373 hotplug_mem_size) {
1374 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1375 machine->maxram_size);
1376 exit(EXIT_FAILURE);
1377 }
1378
1379 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1380 "hotplug-memory", hotplug_mem_size);
1381 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1382 &pcms->hotplug_memory.mr);
1383 }
1384
1385 /* Initialize PC system firmware */
1386 pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
1387
1388 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1389 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1390 &error_fatal);
1391 vmstate_register_ram_global(option_rom_mr);
1392 memory_region_add_subregion_overlap(rom_memory,
1393 PC_ROM_MIN_VGA,
1394 option_rom_mr,
1395 1);
1396
1397 fw_cfg = bochs_bios_init(&address_space_memory);
1398
1399 rom_set_fw(fw_cfg);
1400
1401 if (guest_info->has_reserved_memory && pcms->hotplug_memory.base) {
1402 uint64_t *val = g_malloc(sizeof(*val));
1403 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1404 uint64_t res_mem_end = pcms->hotplug_memory.base;
1405
1406 if (!pcmc->broken_reserved_end) {
1407 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1408 }
1409 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1410 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1411 }
1412
1413 if (linux_boot) {
1414 load_linux(pcms, fw_cfg);
1415 }
1416
1417 for (i = 0; i < nb_option_roms; i++) {
1418 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1419 }
1420 guest_info->fw_cfg = fw_cfg;
1421 return fw_cfg;
1422 }
1423
1424 qemu_irq pc_allocate_cpu_irq(void)
1425 {
1426 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1427 }
1428
1429 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1430 {
1431 DeviceState *dev = NULL;
1432
1433 if (pci_bus) {
1434 PCIDevice *pcidev = pci_vga_init(pci_bus);
1435 dev = pcidev ? &pcidev->qdev : NULL;
1436 } else if (isa_bus) {
1437 ISADevice *isadev = isa_vga_init(isa_bus);
1438 dev = isadev ? DEVICE(isadev) : NULL;
1439 }
1440 return dev;
1441 }
1442
1443 static const MemoryRegionOps ioport80_io_ops = {
1444 .write = ioport80_write,
1445 .read = ioport80_read,
1446 .endianness = DEVICE_NATIVE_ENDIAN,
1447 .impl = {
1448 .min_access_size = 1,
1449 .max_access_size = 1,
1450 },
1451 };
1452
1453 static const MemoryRegionOps ioportF0_io_ops = {
1454 .write = ioportF0_write,
1455 .read = ioportF0_read,
1456 .endianness = DEVICE_NATIVE_ENDIAN,
1457 .impl = {
1458 .min_access_size = 1,
1459 .max_access_size = 1,
1460 },
1461 };
1462
1463 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1464 ISADevice **rtc_state,
1465 bool create_fdctrl,
1466 bool no_vmport,
1467 uint32 hpet_irqs)
1468 {
1469 int i;
1470 DriveInfo *fd[MAX_FD];
1471 DeviceState *hpet = NULL;
1472 int pit_isa_irq = 0;
1473 qemu_irq pit_alt_irq = NULL;
1474 qemu_irq rtc_irq = NULL;
1475 qemu_irq *a20_line;
1476 ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1477 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1478 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1479
1480 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1481 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1482
1483 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1484 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1485
1486 /*
1487 * Check if an HPET shall be created.
1488 *
1489 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1490 * when the HPET wants to take over. Thus we have to disable the latter.
1491 */
1492 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1493 /* In order to set property, here not using sysbus_try_create_simple */
1494 hpet = qdev_try_create(NULL, TYPE_HPET);
1495 if (hpet) {
1496 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1497 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1498 * IRQ8 and IRQ2.
1499 */
1500 uint8_t compat = object_property_get_int(OBJECT(hpet),
1501 HPET_INTCAP, NULL);
1502 if (!compat) {
1503 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1504 }
1505 qdev_init_nofail(hpet);
1506 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1507
1508 for (i = 0; i < GSI_NUM_PINS; i++) {
1509 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1510 }
1511 pit_isa_irq = -1;
1512 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1513 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1514 }
1515 }
1516 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1517
1518 qemu_register_boot_set(pc_boot_set, *rtc_state);
1519
1520 if (!xen_enabled()) {
1521 if (kvm_pit_in_kernel()) {
1522 pit = kvm_pit_init(isa_bus, 0x40);
1523 } else {
1524 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1525 }
1526 if (hpet) {
1527 /* connect PIT to output control line of the HPET */
1528 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1529 }
1530 pcspk_init(isa_bus, pit);
1531 }
1532
1533 serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
1534 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1535
1536 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1537 i8042 = isa_create_simple(isa_bus, "i8042");
1538 i8042_setup_a20_line(i8042, &a20_line[0]);
1539 if (!no_vmport) {
1540 vmport_init(isa_bus);
1541 vmmouse = isa_try_create(isa_bus, "vmmouse");
1542 } else {
1543 vmmouse = NULL;
1544 }
1545 if (vmmouse) {
1546 DeviceState *dev = DEVICE(vmmouse);
1547 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1548 qdev_init_nofail(dev);
1549 }
1550 port92 = isa_create_simple(isa_bus, "port92");
1551 port92_init(port92, &a20_line[1]);
1552
1553 DMA_init(0);
1554
1555 for(i = 0; i < MAX_FD; i++) {
1556 fd[i] = drive_get(IF_FLOPPY, 0, i);
1557 create_fdctrl |= !!fd[i];
1558 }
1559 if (create_fdctrl) {
1560 fdctrl_init_isa(isa_bus, fd);
1561 }
1562 }
1563
1564 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1565 {
1566 int i;
1567
1568 for (i = 0; i < nb_nics; i++) {
1569 NICInfo *nd = &nd_table[i];
1570
1571 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1572 pc_init_ne2k_isa(isa_bus, nd);
1573 } else {
1574 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1575 }
1576 }
1577 }
1578
1579 void pc_pci_device_init(PCIBus *pci_bus)
1580 {
1581 int max_bus;
1582 int bus;
1583
1584 max_bus = drive_get_max_bus(IF_SCSI);
1585 for (bus = 0; bus <= max_bus; bus++) {
1586 pci_create_simple(pci_bus, -1, "lsi53c895a");
1587 }
1588 }
1589
1590 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1591 {
1592 DeviceState *dev;
1593 SysBusDevice *d;
1594 unsigned int i;
1595
1596 if (kvm_ioapic_in_kernel()) {
1597 dev = qdev_create(NULL, "kvm-ioapic");
1598 } else {
1599 dev = qdev_create(NULL, "ioapic");
1600 }
1601 if (parent_name) {
1602 object_property_add_child(object_resolve_path(parent_name, NULL),
1603 "ioapic", OBJECT(dev), NULL);
1604 }
1605 qdev_init_nofail(dev);
1606 d = SYS_BUS_DEVICE(dev);
1607 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1608
1609 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1610 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1611 }
1612 }
1613
1614 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1615 DeviceState *dev, Error **errp)
1616 {
1617 HotplugHandlerClass *hhc;
1618 Error *local_err = NULL;
1619 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1620 PCDIMMDevice *dimm = PC_DIMM(dev);
1621 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1622 MemoryRegion *mr = ddc->get_memory_region(dimm);
1623 uint64_t align = TARGET_PAGE_SIZE;
1624
1625 if (memory_region_get_alignment(mr) && pcms->enforce_aligned_dimm) {
1626 align = memory_region_get_alignment(mr);
1627 }
1628
1629 if (!pcms->acpi_dev) {
1630 error_setg(&local_err,
1631 "memory hotplug is not enabled: missing acpi device");
1632 goto out;
1633 }
1634
1635 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1636 if (local_err) {
1637 goto out;
1638 }
1639
1640 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1641 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1642 out:
1643 error_propagate(errp, local_err);
1644 }
1645
1646 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1647 DeviceState *dev, Error **errp)
1648 {
1649 HotplugHandlerClass *hhc;
1650 Error *local_err = NULL;
1651 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1652
1653 if (!pcms->acpi_dev) {
1654 error_setg(&local_err,
1655 "memory hotplug is not enabled: missing acpi device");
1656 goto out;
1657 }
1658
1659 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1660 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1661
1662 out:
1663 error_propagate(errp, local_err);
1664 }
1665
1666 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1667 DeviceState *dev, Error **errp)
1668 {
1669 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1670 PCDIMMDevice *dimm = PC_DIMM(dev);
1671 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1672 MemoryRegion *mr = ddc->get_memory_region(dimm);
1673 HotplugHandlerClass *hhc;
1674 Error *local_err = NULL;
1675
1676 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1677 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1678
1679 if (local_err) {
1680 goto out;
1681 }
1682
1683 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1684 object_unparent(OBJECT(dev));
1685
1686 out:
1687 error_propagate(errp, local_err);
1688 }
1689
1690 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1691 DeviceState *dev, Error **errp)
1692 {
1693 HotplugHandlerClass *hhc;
1694 Error *local_err = NULL;
1695 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1696
1697 if (!dev->hotplugged) {
1698 goto out;
1699 }
1700
1701 if (!pcms->acpi_dev) {
1702 error_setg(&local_err,
1703 "cpu hotplug is not enabled: missing acpi device");
1704 goto out;
1705 }
1706
1707 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1708 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1709 if (local_err) {
1710 goto out;
1711 }
1712
1713 /* increment the number of CPUs */
1714 rtc_set_memory(pcms->rtc, 0x5f, rtc_get_memory(pcms->rtc, 0x5f) + 1);
1715 out:
1716 error_propagate(errp, local_err);
1717 }
1718
1719 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1720 DeviceState *dev, Error **errp)
1721 {
1722 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1723 pc_dimm_plug(hotplug_dev, dev, errp);
1724 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1725 pc_cpu_plug(hotplug_dev, dev, errp);
1726 }
1727 }
1728
1729 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1730 DeviceState *dev, Error **errp)
1731 {
1732 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1733 pc_dimm_unplug_request(hotplug_dev, dev, errp);
1734 } else {
1735 error_setg(errp, "acpi: device unplug request for not supported device"
1736 " type: %s", object_get_typename(OBJECT(dev)));
1737 }
1738 }
1739
1740 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
1741 DeviceState *dev, Error **errp)
1742 {
1743 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1744 pc_dimm_unplug(hotplug_dev, dev, errp);
1745 } else {
1746 error_setg(errp, "acpi: device unplug for not supported device"
1747 " type: %s", object_get_typename(OBJECT(dev)));
1748 }
1749 }
1750
1751 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
1752 DeviceState *dev)
1753 {
1754 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
1755
1756 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
1757 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1758 return HOTPLUG_HANDLER(machine);
1759 }
1760
1761 return pcmc->get_hotplug_handler ?
1762 pcmc->get_hotplug_handler(machine, dev) : NULL;
1763 }
1764
1765 static void
1766 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, void *opaque,
1767 const char *name, Error **errp)
1768 {
1769 PCMachineState *pcms = PC_MACHINE(obj);
1770 int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
1771
1772 visit_type_int(v, &value, name, errp);
1773 }
1774
1775 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
1776 void *opaque, const char *name,
1777 Error **errp)
1778 {
1779 PCMachineState *pcms = PC_MACHINE(obj);
1780 uint64_t value = pcms->max_ram_below_4g;
1781
1782 visit_type_size(v, &value, name, errp);
1783 }
1784
1785 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
1786 void *opaque, const char *name,
1787 Error **errp)
1788 {
1789 PCMachineState *pcms = PC_MACHINE(obj);
1790 Error *error = NULL;
1791 uint64_t value;
1792
1793 visit_type_size(v, &value, name, &error);
1794 if (error) {
1795 error_propagate(errp, error);
1796 return;
1797 }
1798 if (value > (1ULL << 32)) {
1799 error_setg(&error,
1800 "Machine option 'max-ram-below-4g=%"PRIu64
1801 "' expects size less than or equal to 4G", value);
1802 error_propagate(errp, error);
1803 return;
1804 }
1805
1806 if (value < (1ULL << 20)) {
1807 error_report("Warning: small max_ram_below_4g(%"PRIu64
1808 ") less than 1M. BIOS may not work..",
1809 value);
1810 }
1811
1812 pcms->max_ram_below_4g = value;
1813 }
1814
1815 static void pc_machine_get_vmport(Object *obj, Visitor *v, void *opaque,
1816 const char *name, Error **errp)
1817 {
1818 PCMachineState *pcms = PC_MACHINE(obj);
1819 OnOffAuto vmport = pcms->vmport;
1820
1821 visit_type_OnOffAuto(v, &vmport, name, errp);
1822 }
1823
1824 static void pc_machine_set_vmport(Object *obj, Visitor *v, void *opaque,
1825 const char *name, Error **errp)
1826 {
1827 PCMachineState *pcms = PC_MACHINE(obj);
1828
1829 visit_type_OnOffAuto(v, &pcms->vmport, name, errp);
1830 }
1831
1832 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
1833 {
1834 bool smm_available = false;
1835
1836 if (pcms->smm == ON_OFF_AUTO_OFF) {
1837 return false;
1838 }
1839
1840 if (tcg_enabled() || qtest_enabled()) {
1841 smm_available = true;
1842 } else if (kvm_enabled()) {
1843 smm_available = kvm_has_smm();
1844 }
1845
1846 if (smm_available) {
1847 return true;
1848 }
1849
1850 if (pcms->smm == ON_OFF_AUTO_ON) {
1851 error_report("System Management Mode not supported by this hypervisor.");
1852 exit(1);
1853 }
1854 return false;
1855 }
1856
1857 static void pc_machine_get_smm(Object *obj, Visitor *v, void *opaque,
1858 const char *name, Error **errp)
1859 {
1860 PCMachineState *pcms = PC_MACHINE(obj);
1861 OnOffAuto smm = pcms->smm;
1862
1863 visit_type_OnOffAuto(v, &smm, name, errp);
1864 }
1865
1866 static void pc_machine_set_smm(Object *obj, Visitor *v, void *opaque,
1867 const char *name, Error **errp)
1868 {
1869 PCMachineState *pcms = PC_MACHINE(obj);
1870
1871 visit_type_OnOffAuto(v, &pcms->smm, name, errp);
1872 }
1873
1874 static bool pc_machine_get_aligned_dimm(Object *obj, Error **errp)
1875 {
1876 PCMachineState *pcms = PC_MACHINE(obj);
1877
1878 return pcms->enforce_aligned_dimm;
1879 }
1880
1881 static void pc_machine_initfn(Object *obj)
1882 {
1883 PCMachineState *pcms = PC_MACHINE(obj);
1884
1885 object_property_add(obj, PC_MACHINE_MEMHP_REGION_SIZE, "int",
1886 pc_machine_get_hotplug_memory_region_size,
1887 NULL, NULL, NULL, &error_abort);
1888
1889 pcms->max_ram_below_4g = 1ULL << 32; /* 4G */
1890 object_property_add(obj, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
1891 pc_machine_get_max_ram_below_4g,
1892 pc_machine_set_max_ram_below_4g,
1893 NULL, NULL, &error_abort);
1894 object_property_set_description(obj, PC_MACHINE_MAX_RAM_BELOW_4G,
1895 "Maximum ram below the 4G boundary (32bit boundary)",
1896 &error_abort);
1897
1898 pcms->smm = ON_OFF_AUTO_AUTO;
1899 object_property_add(obj, PC_MACHINE_SMM, "OnOffAuto",
1900 pc_machine_get_smm,
1901 pc_machine_set_smm,
1902 NULL, NULL, &error_abort);
1903 object_property_set_description(obj, PC_MACHINE_SMM,
1904 "Enable SMM (pc & q35)",
1905 &error_abort);
1906
1907 pcms->vmport = ON_OFF_AUTO_AUTO;
1908 object_property_add(obj, PC_MACHINE_VMPORT, "OnOffAuto",
1909 pc_machine_get_vmport,
1910 pc_machine_set_vmport,
1911 NULL, NULL, &error_abort);
1912 object_property_set_description(obj, PC_MACHINE_VMPORT,
1913 "Enable vmport (pc & q35)",
1914 &error_abort);
1915
1916 pcms->enforce_aligned_dimm = true;
1917 object_property_add_bool(obj, PC_MACHINE_ENFORCE_ALIGNED_DIMM,
1918 pc_machine_get_aligned_dimm,
1919 NULL, &error_abort);
1920 }
1921
1922 static void pc_machine_reset(void)
1923 {
1924 CPUState *cs;
1925 X86CPU *cpu;
1926
1927 qemu_devices_reset();
1928
1929 /* Reset APIC after devices have been reset to cancel
1930 * any changes that qemu_devices_reset() might have done.
1931 */
1932 CPU_FOREACH(cs) {
1933 cpu = X86_CPU(cs);
1934
1935 if (cpu->apic_state) {
1936 device_reset(cpu->apic_state);
1937 }
1938 }
1939 }
1940
1941 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
1942 {
1943 X86CPUTopoInfo topo;
1944 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
1945 &topo);
1946 return topo.pkg_id;
1947 }
1948
1949 static void pc_machine_class_init(ObjectClass *oc, void *data)
1950 {
1951 MachineClass *mc = MACHINE_CLASS(oc);
1952 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
1953 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1954
1955 pcmc->get_hotplug_handler = mc->get_hotplug_handler;
1956 mc->get_hotplug_handler = pc_get_hotpug_handler;
1957 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
1958 mc->default_boot_order = "cad";
1959 mc->hot_add_cpu = pc_hot_add_cpu;
1960 mc->max_cpus = 255;
1961 mc->reset = pc_machine_reset;
1962 hc->plug = pc_machine_device_plug_cb;
1963 hc->unplug_request = pc_machine_device_unplug_request_cb;
1964 hc->unplug = pc_machine_device_unplug_cb;
1965 }
1966
1967 static const TypeInfo pc_machine_info = {
1968 .name = TYPE_PC_MACHINE,
1969 .parent = TYPE_MACHINE,
1970 .abstract = true,
1971 .instance_size = sizeof(PCMachineState),
1972 .instance_init = pc_machine_initfn,
1973 .class_size = sizeof(PCMachineClass),
1974 .class_init = pc_machine_class_init,
1975 .interfaces = (InterfaceInfo[]) {
1976 { TYPE_HOTPLUG_HANDLER },
1977 { }
1978 },
1979 };
1980
1981 static void pc_machine_register_types(void)
1982 {
1983 type_register_static(&pc_machine_info);
1984 }
1985
1986 type_init(pc_machine_register_types)