]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/x86.c
4cf107baea34f966a830f018d28ce904f1dc294e
[mirror_qemu.git] / hw / i386 / x86.c
1 /*
2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
22 */
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qmp/qerror.h"
32 #include "qapi/qapi-visit-common.h"
33 #include "qapi/clone-visitor.h"
34 #include "qapi/qapi-visit-machine.h"
35 #include "qapi/visitor.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/whpx.h"
38 #include "sysemu/numa.h"
39 #include "sysemu/replay.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/cpu-timers.h"
42 #include "trace.h"
43
44 #include "hw/i386/x86.h"
45 #include "target/i386/cpu.h"
46 #include "hw/i386/topology.h"
47 #include "hw/i386/fw_cfg.h"
48 #include "hw/intc/i8259.h"
49 #include "hw/rtc/mc146818rtc.h"
50 #include "target/i386/sev.h"
51
52 #include "hw/acpi/cpu_hotplug.h"
53 #include "hw/irq.h"
54 #include "hw/nmi.h"
55 #include "hw/loader.h"
56 #include "multiboot.h"
57 #include "elf.h"
58 #include "standard-headers/asm-x86/bootparam.h"
59 #include CONFIG_DEVICES
60 #include "kvm/kvm_i386.h"
61
62 /* Physical Address of PVH entry point read from kernel ELF NOTE */
63 static size_t pvh_start_addr;
64
65 inline void init_topo_info(X86CPUTopoInfo *topo_info,
66 const X86MachineState *x86ms)
67 {
68 MachineState *ms = MACHINE(x86ms);
69
70 topo_info->dies_per_pkg = ms->smp.dies;
71 topo_info->cores_per_die = ms->smp.cores;
72 topo_info->threads_per_core = ms->smp.threads;
73 }
74
75 /*
76 * Calculates initial APIC ID for a specific CPU index
77 *
78 * Currently we need to be able to calculate the APIC ID from the CPU index
79 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
80 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
81 * all CPUs up to max_cpus.
82 */
83 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
84 unsigned int cpu_index)
85 {
86 X86CPUTopoInfo topo_info;
87
88 init_topo_info(&topo_info, x86ms);
89
90 return x86_apicid_from_cpu_idx(&topo_info, cpu_index);
91 }
92
93
94 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
95 {
96 Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
97
98 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
99 goto out;
100 }
101 qdev_realize(DEVICE(cpu), NULL, errp);
102
103 out:
104 object_unref(cpu);
105 }
106
107 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
108 {
109 int i;
110 const CPUArchIdList *possible_cpus;
111 MachineState *ms = MACHINE(x86ms);
112 MachineClass *mc = MACHINE_GET_CLASS(x86ms);
113
114 x86_cpu_set_default_version(default_cpu_version);
115
116 /*
117 * Calculates the limit to CPU APIC ID values
118 *
119 * Limit for the APIC ID value, so that all
120 * CPU APIC IDs are < x86ms->apic_id_limit.
121 *
122 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
123 */
124 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
125 ms->smp.max_cpus - 1) + 1;
126 possible_cpus = mc->possible_cpu_arch_ids(ms);
127 for (i = 0; i < ms->smp.cpus; i++) {
128 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
129 }
130 }
131
132 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
133 {
134 if (cpus_count > 0xff) {
135 /*
136 * If the number of CPUs can't be represented in 8 bits, the
137 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
138 * to make old BIOSes fail more predictably.
139 */
140 rtc_set_memory(rtc, 0x5f, 0);
141 } else {
142 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
143 }
144 }
145
146 static int x86_apic_cmp(const void *a, const void *b)
147 {
148 CPUArchId *apic_a = (CPUArchId *)a;
149 CPUArchId *apic_b = (CPUArchId *)b;
150
151 return apic_a->arch_id - apic_b->arch_id;
152 }
153
154 /*
155 * returns pointer to CPUArchId descriptor that matches CPU's apic_id
156 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
157 * entry corresponding to CPU's apic_id returns NULL.
158 */
159 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
160 {
161 CPUArchId apic_id, *found_cpu;
162
163 apic_id.arch_id = id;
164 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
165 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
166 x86_apic_cmp);
167 if (found_cpu && idx) {
168 *idx = found_cpu - ms->possible_cpus->cpus;
169 }
170 return found_cpu;
171 }
172
173 void x86_cpu_plug(HotplugHandler *hotplug_dev,
174 DeviceState *dev, Error **errp)
175 {
176 CPUArchId *found_cpu;
177 Error *local_err = NULL;
178 X86CPU *cpu = X86_CPU(dev);
179 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
180
181 if (x86ms->acpi_dev) {
182 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
183 if (local_err) {
184 goto out;
185 }
186 }
187
188 /* increment the number of CPUs */
189 x86ms->boot_cpus++;
190 if (x86ms->rtc) {
191 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
192 }
193 if (x86ms->fw_cfg) {
194 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
195 }
196
197 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
198 found_cpu->cpu = OBJECT(dev);
199 out:
200 error_propagate(errp, local_err);
201 }
202
203 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
204 DeviceState *dev, Error **errp)
205 {
206 int idx = -1;
207 X86CPU *cpu = X86_CPU(dev);
208 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
209
210 if (!x86ms->acpi_dev) {
211 error_setg(errp, "CPU hot unplug not supported without ACPI");
212 return;
213 }
214
215 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
216 assert(idx != -1);
217 if (idx == 0) {
218 error_setg(errp, "Boot CPU is unpluggable");
219 return;
220 }
221
222 hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
223 errp);
224 }
225
226 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
227 DeviceState *dev, Error **errp)
228 {
229 CPUArchId *found_cpu;
230 Error *local_err = NULL;
231 X86CPU *cpu = X86_CPU(dev);
232 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
233
234 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
235 if (local_err) {
236 goto out;
237 }
238
239 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
240 found_cpu->cpu = NULL;
241 qdev_unrealize(dev);
242
243 /* decrement the number of CPUs */
244 x86ms->boot_cpus--;
245 /* Update the number of CPUs in CMOS */
246 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
247 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
248 out:
249 error_propagate(errp, local_err);
250 }
251
252 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
253 DeviceState *dev, Error **errp)
254 {
255 int idx;
256 CPUState *cs;
257 CPUArchId *cpu_slot;
258 X86CPUTopoIDs topo_ids;
259 X86CPU *cpu = X86_CPU(dev);
260 CPUX86State *env = &cpu->env;
261 MachineState *ms = MACHINE(hotplug_dev);
262 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
263 unsigned int smp_cores = ms->smp.cores;
264 unsigned int smp_threads = ms->smp.threads;
265 X86CPUTopoInfo topo_info;
266
267 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
268 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
269 ms->cpu_type);
270 return;
271 }
272
273 if (x86ms->acpi_dev) {
274 Error *local_err = NULL;
275
276 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
277 &local_err);
278 if (local_err) {
279 error_propagate(errp, local_err);
280 return;
281 }
282 }
283
284 init_topo_info(&topo_info, x86ms);
285
286 env->nr_dies = ms->smp.dies;
287
288 /*
289 * If APIC ID is not set,
290 * set it based on socket/die/core/thread properties.
291 */
292 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
293 int max_socket = (ms->smp.max_cpus - 1) /
294 smp_threads / smp_cores / ms->smp.dies;
295
296 /*
297 * die-id was optional in QEMU 4.0 and older, so keep it optional
298 * if there's only one die per socket.
299 */
300 if (cpu->die_id < 0 && ms->smp.dies == 1) {
301 cpu->die_id = 0;
302 }
303
304 if (cpu->socket_id < 0) {
305 error_setg(errp, "CPU socket-id is not set");
306 return;
307 } else if (cpu->socket_id > max_socket) {
308 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
309 cpu->socket_id, max_socket);
310 return;
311 }
312 if (cpu->die_id < 0) {
313 error_setg(errp, "CPU die-id is not set");
314 return;
315 } else if (cpu->die_id > ms->smp.dies - 1) {
316 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
317 cpu->die_id, ms->smp.dies - 1);
318 return;
319 }
320 if (cpu->core_id < 0) {
321 error_setg(errp, "CPU core-id is not set");
322 return;
323 } else if (cpu->core_id > (smp_cores - 1)) {
324 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
325 cpu->core_id, smp_cores - 1);
326 return;
327 }
328 if (cpu->thread_id < 0) {
329 error_setg(errp, "CPU thread-id is not set");
330 return;
331 } else if (cpu->thread_id > (smp_threads - 1)) {
332 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
333 cpu->thread_id, smp_threads - 1);
334 return;
335 }
336
337 topo_ids.pkg_id = cpu->socket_id;
338 topo_ids.die_id = cpu->die_id;
339 topo_ids.core_id = cpu->core_id;
340 topo_ids.smt_id = cpu->thread_id;
341 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
342 }
343
344 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
345 if (!cpu_slot) {
346 MachineState *ms = MACHINE(x86ms);
347
348 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
349 error_setg(errp,
350 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
351 " APIC ID %" PRIu32 ", valid index range 0:%d",
352 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
353 cpu->apic_id, ms->possible_cpus->len - 1);
354 return;
355 }
356
357 if (cpu_slot->cpu) {
358 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
359 idx, cpu->apic_id);
360 return;
361 }
362
363 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
364 * so that machine_query_hotpluggable_cpus would show correct values
365 */
366 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
367 * once -smp refactoring is complete and there will be CPU private
368 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
369 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
370 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
371 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
372 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
373 topo_ids.pkg_id);
374 return;
375 }
376 cpu->socket_id = topo_ids.pkg_id;
377
378 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
379 error_setg(errp, "property die-id: %u doesn't match set apic-id:"
380 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
381 return;
382 }
383 cpu->die_id = topo_ids.die_id;
384
385 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
386 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
387 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
388 topo_ids.core_id);
389 return;
390 }
391 cpu->core_id = topo_ids.core_id;
392
393 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
394 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
395 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
396 topo_ids.smt_id);
397 return;
398 }
399 cpu->thread_id = topo_ids.smt_id;
400
401 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
402 !kvm_hv_vpindex_settable()) {
403 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
404 return;
405 }
406
407 cs = CPU(cpu);
408 cs->cpu_index = idx;
409
410 numa_cpu_pre_plug(cpu_slot, dev, errp);
411 }
412
413 CpuInstanceProperties
414 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
415 {
416 MachineClass *mc = MACHINE_GET_CLASS(ms);
417 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
418
419 assert(cpu_index < possible_cpus->len);
420 return possible_cpus->cpus[cpu_index].props;
421 }
422
423 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
424 {
425 X86CPUTopoIDs topo_ids;
426 X86MachineState *x86ms = X86_MACHINE(ms);
427 X86CPUTopoInfo topo_info;
428
429 init_topo_info(&topo_info, x86ms);
430
431 assert(idx < ms->possible_cpus->len);
432 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
433 &topo_info, &topo_ids);
434 return topo_ids.pkg_id % ms->numa_state->num_nodes;
435 }
436
437 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
438 {
439 X86MachineState *x86ms = X86_MACHINE(ms);
440 unsigned int max_cpus = ms->smp.max_cpus;
441 X86CPUTopoInfo topo_info;
442 int i;
443
444 if (ms->possible_cpus) {
445 /*
446 * make sure that max_cpus hasn't changed since the first use, i.e.
447 * -smp hasn't been parsed after it
448 */
449 assert(ms->possible_cpus->len == max_cpus);
450 return ms->possible_cpus;
451 }
452
453 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
454 sizeof(CPUArchId) * max_cpus);
455 ms->possible_cpus->len = max_cpus;
456
457 init_topo_info(&topo_info, x86ms);
458
459 for (i = 0; i < ms->possible_cpus->len; i++) {
460 X86CPUTopoIDs topo_ids;
461
462 ms->possible_cpus->cpus[i].type = ms->cpu_type;
463 ms->possible_cpus->cpus[i].vcpus_count = 1;
464 ms->possible_cpus->cpus[i].arch_id =
465 x86_cpu_apic_id_from_index(x86ms, i);
466 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
467 &topo_info, &topo_ids);
468 ms->possible_cpus->cpus[i].props.has_socket_id = true;
469 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
470 if (ms->smp.dies > 1) {
471 ms->possible_cpus->cpus[i].props.has_die_id = true;
472 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
473 }
474 ms->possible_cpus->cpus[i].props.has_core_id = true;
475 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
476 ms->possible_cpus->cpus[i].props.has_thread_id = true;
477 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
478 }
479 return ms->possible_cpus;
480 }
481
482 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
483 {
484 /* cpu index isn't used */
485 CPUState *cs;
486
487 CPU_FOREACH(cs) {
488 X86CPU *cpu = X86_CPU(cs);
489
490 if (!cpu->apic_state) {
491 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
492 } else {
493 apic_deliver_nmi(cpu->apic_state);
494 }
495 }
496 }
497
498 static long get_file_size(FILE *f)
499 {
500 long where, size;
501
502 /* XXX: on Unix systems, using fstat() probably makes more sense */
503
504 where = ftell(f);
505 fseek(f, 0, SEEK_END);
506 size = ftell(f);
507 fseek(f, where, SEEK_SET);
508
509 return size;
510 }
511
512 /* TSC handling */
513 uint64_t cpu_get_tsc(CPUX86State *env)
514 {
515 return cpus_get_elapsed_ticks();
516 }
517
518 /* IRQ handling */
519 static void pic_irq_request(void *opaque, int irq, int level)
520 {
521 CPUState *cs = first_cpu;
522 X86CPU *cpu = X86_CPU(cs);
523
524 trace_x86_pic_interrupt(irq, level);
525 if (cpu->apic_state && !kvm_irqchip_in_kernel() &&
526 !whpx_apic_in_platform()) {
527 CPU_FOREACH(cs) {
528 cpu = X86_CPU(cs);
529 if (apic_accept_pic_intr(cpu->apic_state)) {
530 apic_deliver_pic_intr(cpu->apic_state, level);
531 }
532 }
533 } else {
534 if (level) {
535 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
536 } else {
537 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
538 }
539 }
540 }
541
542 qemu_irq x86_allocate_cpu_irq(void)
543 {
544 return qemu_allocate_irq(pic_irq_request, NULL, 0);
545 }
546
547 int cpu_get_pic_interrupt(CPUX86State *env)
548 {
549 X86CPU *cpu = env_archcpu(env);
550 int intno;
551
552 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
553 intno = apic_get_interrupt(cpu->apic_state);
554 if (intno >= 0) {
555 return intno;
556 }
557 /* read the irq from the PIC */
558 if (!apic_accept_pic_intr(cpu->apic_state)) {
559 return -1;
560 }
561 }
562
563 intno = pic_read_irq(isa_pic);
564 return intno;
565 }
566
567 DeviceState *cpu_get_current_apic(void)
568 {
569 if (current_cpu) {
570 X86CPU *cpu = X86_CPU(current_cpu);
571 return cpu->apic_state;
572 } else {
573 return NULL;
574 }
575 }
576
577 void gsi_handler(void *opaque, int n, int level)
578 {
579 GSIState *s = opaque;
580
581 trace_x86_gsi_interrupt(n, level);
582 switch (n) {
583 case 0 ... ISA_NUM_IRQS - 1:
584 if (s->i8259_irq[n]) {
585 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
586 qemu_set_irq(s->i8259_irq[n], level);
587 }
588 /* fall through */
589 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
590 qemu_set_irq(s->ioapic_irq[n], level);
591 break;
592 case IO_APIC_SECONDARY_IRQBASE
593 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
594 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
595 break;
596 }
597 }
598
599 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
600 {
601 DeviceState *dev;
602 SysBusDevice *d;
603 unsigned int i;
604
605 assert(parent_name);
606 if (kvm_ioapic_in_kernel()) {
607 dev = qdev_new(TYPE_KVM_IOAPIC);
608 } else {
609 dev = qdev_new(TYPE_IOAPIC);
610 }
611 object_property_add_child(object_resolve_path(parent_name, NULL),
612 "ioapic", OBJECT(dev));
613 d = SYS_BUS_DEVICE(dev);
614 sysbus_realize_and_unref(d, &error_fatal);
615 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
616
617 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
618 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
619 }
620 }
621
622 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
623 {
624 DeviceState *dev;
625 SysBusDevice *d;
626 unsigned int i;
627
628 dev = qdev_new(TYPE_IOAPIC);
629 d = SYS_BUS_DEVICE(dev);
630 sysbus_realize_and_unref(d, &error_fatal);
631 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
632
633 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
634 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
635 }
636 return dev;
637 }
638
639 struct setup_data {
640 uint64_t next;
641 uint32_t type;
642 uint32_t len;
643 uint8_t data[];
644 } __attribute__((packed));
645
646
647 /*
648 * The entry point into the kernel for PVH boot is different from
649 * the native entry point. The PVH entry is defined by the x86/HVM
650 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
651 *
652 * This function is passed to load_elf() when it is called from
653 * load_elfboot() which then additionally checks for an ELF Note of
654 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
655 * parse the PVH entry address from the ELF Note.
656 *
657 * Due to trickery in elf_opts.h, load_elf() is actually available as
658 * load_elf32() or load_elf64() and this routine needs to be able
659 * to deal with being called as 32 or 64 bit.
660 *
661 * The address of the PVH entry point is saved to the 'pvh_start_addr'
662 * global variable. (although the entry point is 32-bit, the kernel
663 * binary can be either 32-bit or 64-bit).
664 */
665 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
666 {
667 size_t *elf_note_data_addr;
668
669 /* Check if ELF Note header passed in is valid */
670 if (arg1 == NULL) {
671 return 0;
672 }
673
674 if (is64) {
675 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
676 uint64_t nhdr_size64 = sizeof(struct elf64_note);
677 uint64_t phdr_align = *(uint64_t *)arg2;
678 uint64_t nhdr_namesz = nhdr64->n_namesz;
679
680 elf_note_data_addr =
681 ((void *)nhdr64) + nhdr_size64 +
682 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
683
684 pvh_start_addr = *elf_note_data_addr;
685 } else {
686 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
687 uint32_t nhdr_size32 = sizeof(struct elf32_note);
688 uint32_t phdr_align = *(uint32_t *)arg2;
689 uint32_t nhdr_namesz = nhdr32->n_namesz;
690
691 elf_note_data_addr =
692 ((void *)nhdr32) + nhdr_size32 +
693 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
694
695 pvh_start_addr = *(uint32_t *)elf_note_data_addr;
696 }
697
698 return pvh_start_addr;
699 }
700
701 static bool load_elfboot(const char *kernel_filename,
702 int kernel_file_size,
703 uint8_t *header,
704 size_t pvh_xen_start_addr,
705 FWCfgState *fw_cfg)
706 {
707 uint32_t flags = 0;
708 uint32_t mh_load_addr = 0;
709 uint32_t elf_kernel_size = 0;
710 uint64_t elf_entry;
711 uint64_t elf_low, elf_high;
712 int kernel_size;
713
714 if (ldl_p(header) != 0x464c457f) {
715 return false; /* no elfboot */
716 }
717
718 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
719 flags = elf_is64 ?
720 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
721
722 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
723 error_report("elfboot unsupported flags = %x", flags);
724 exit(1);
725 }
726
727 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
728 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
729 NULL, &elf_note_type, &elf_entry,
730 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
731 0, 0);
732
733 if (kernel_size < 0) {
734 error_report("Error while loading elf kernel");
735 exit(1);
736 }
737 mh_load_addr = elf_low;
738 elf_kernel_size = elf_high - elf_low;
739
740 if (pvh_start_addr == 0) {
741 error_report("Error loading uncompressed kernel without PVH ELF Note");
742 exit(1);
743 }
744 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
745 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
746 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
747
748 return true;
749 }
750
751 void x86_load_linux(X86MachineState *x86ms,
752 FWCfgState *fw_cfg,
753 int acpi_data_size,
754 bool pvh_enabled)
755 {
756 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
757 uint16_t protocol;
758 int setup_size, kernel_size, cmdline_size;
759 int dtb_size, setup_data_offset;
760 uint32_t initrd_max;
761 uint8_t header[8192], *setup, *kernel;
762 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
763 FILE *f;
764 char *vmode;
765 MachineState *machine = MACHINE(x86ms);
766 struct setup_data *setup_data;
767 const char *kernel_filename = machine->kernel_filename;
768 const char *initrd_filename = machine->initrd_filename;
769 const char *dtb_filename = machine->dtb;
770 const char *kernel_cmdline = machine->kernel_cmdline;
771 SevKernelLoaderContext sev_load_ctx = {};
772
773 /* Align to 16 bytes as a paranoia measure */
774 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
775
776 /* load the kernel header */
777 f = fopen(kernel_filename, "rb");
778 if (!f) {
779 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
780 kernel_filename, strerror(errno));
781 exit(1);
782 }
783
784 kernel_size = get_file_size(f);
785 if (!kernel_size ||
786 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
787 MIN(ARRAY_SIZE(header), kernel_size)) {
788 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
789 kernel_filename, strerror(errno));
790 exit(1);
791 }
792
793 /* kernel protocol version */
794 if (ldl_p(header + 0x202) == 0x53726448) {
795 protocol = lduw_p(header + 0x206);
796 } else {
797 /*
798 * This could be a multiboot kernel. If it is, let's stop treating it
799 * like a Linux kernel.
800 * Note: some multiboot images could be in the ELF format (the same of
801 * PVH), so we try multiboot first since we check the multiboot magic
802 * header before to load it.
803 */
804 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
805 kernel_cmdline, kernel_size, header)) {
806 return;
807 }
808 /*
809 * Check if the file is an uncompressed kernel file (ELF) and load it,
810 * saving the PVH entry point used by the x86/HVM direct boot ABI.
811 * If load_elfboot() is successful, populate the fw_cfg info.
812 */
813 if (pvh_enabled &&
814 load_elfboot(kernel_filename, kernel_size,
815 header, pvh_start_addr, fw_cfg)) {
816 fclose(f);
817
818 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
819 strlen(kernel_cmdline) + 1);
820 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
821
822 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
823 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
824 header, sizeof(header));
825
826 /* load initrd */
827 if (initrd_filename) {
828 GMappedFile *mapped_file;
829 gsize initrd_size;
830 gchar *initrd_data;
831 GError *gerr = NULL;
832
833 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
834 if (!mapped_file) {
835 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
836 initrd_filename, gerr->message);
837 exit(1);
838 }
839 x86ms->initrd_mapped_file = mapped_file;
840
841 initrd_data = g_mapped_file_get_contents(mapped_file);
842 initrd_size = g_mapped_file_get_length(mapped_file);
843 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
844 if (initrd_size >= initrd_max) {
845 fprintf(stderr, "qemu: initrd is too large, cannot support."
846 "(max: %"PRIu32", need %"PRId64")\n",
847 initrd_max, (uint64_t)initrd_size);
848 exit(1);
849 }
850
851 initrd_addr = (initrd_max - initrd_size) & ~4095;
852
853 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
854 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
855 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
856 initrd_size);
857 }
858
859 option_rom[nb_option_roms].bootindex = 0;
860 option_rom[nb_option_roms].name = "pvh.bin";
861 nb_option_roms++;
862
863 return;
864 }
865 protocol = 0;
866 }
867
868 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
869 /* Low kernel */
870 real_addr = 0x90000;
871 cmdline_addr = 0x9a000 - cmdline_size;
872 prot_addr = 0x10000;
873 } else if (protocol < 0x202) {
874 /* High but ancient kernel */
875 real_addr = 0x90000;
876 cmdline_addr = 0x9a000 - cmdline_size;
877 prot_addr = 0x100000;
878 } else {
879 /* High and recent kernel */
880 real_addr = 0x10000;
881 cmdline_addr = 0x20000;
882 prot_addr = 0x100000;
883 }
884
885 /* highest address for loading the initrd */
886 if (protocol >= 0x20c &&
887 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
888 /*
889 * Linux has supported initrd up to 4 GB for a very long time (2007,
890 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
891 * though it only sets initrd_max to 2 GB to "work around bootloader
892 * bugs". Luckily, QEMU firmware(which does something like bootloader)
893 * has supported this.
894 *
895 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
896 * be loaded into any address.
897 *
898 * In addition, initrd_max is uint32_t simply because QEMU doesn't
899 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
900 * field).
901 *
902 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
903 */
904 initrd_max = UINT32_MAX;
905 } else if (protocol >= 0x203) {
906 initrd_max = ldl_p(header + 0x22c);
907 } else {
908 initrd_max = 0x37ffffff;
909 }
910
911 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
912 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
913 }
914
915 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
916 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
917 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
918 sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
919 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
920
921 if (protocol >= 0x202) {
922 stl_p(header + 0x228, cmdline_addr);
923 } else {
924 stw_p(header + 0x20, 0xA33F);
925 stw_p(header + 0x22, cmdline_addr - real_addr);
926 }
927
928 /* handle vga= parameter */
929 vmode = strstr(kernel_cmdline, "vga=");
930 if (vmode) {
931 unsigned int video_mode;
932 const char *end;
933 int ret;
934 /* skip "vga=" */
935 vmode += 4;
936 if (!strncmp(vmode, "normal", 6)) {
937 video_mode = 0xffff;
938 } else if (!strncmp(vmode, "ext", 3)) {
939 video_mode = 0xfffe;
940 } else if (!strncmp(vmode, "ask", 3)) {
941 video_mode = 0xfffd;
942 } else {
943 ret = qemu_strtoui(vmode, &end, 0, &video_mode);
944 if (ret != 0 || (*end && *end != ' ')) {
945 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
946 exit(1);
947 }
948 }
949 stw_p(header + 0x1fa, video_mode);
950 }
951
952 /* loader type */
953 /*
954 * High nybble = B reserved for QEMU; low nybble is revision number.
955 * If this code is substantially changed, you may want to consider
956 * incrementing the revision.
957 */
958 if (protocol >= 0x200) {
959 header[0x210] = 0xB0;
960 }
961 /* heap */
962 if (protocol >= 0x201) {
963 header[0x211] |= 0x80; /* CAN_USE_HEAP */
964 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
965 }
966
967 /* load initrd */
968 if (initrd_filename) {
969 GMappedFile *mapped_file;
970 gsize initrd_size;
971 gchar *initrd_data;
972 GError *gerr = NULL;
973
974 if (protocol < 0x200) {
975 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
976 exit(1);
977 }
978
979 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
980 if (!mapped_file) {
981 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
982 initrd_filename, gerr->message);
983 exit(1);
984 }
985 x86ms->initrd_mapped_file = mapped_file;
986
987 initrd_data = g_mapped_file_get_contents(mapped_file);
988 initrd_size = g_mapped_file_get_length(mapped_file);
989 if (initrd_size >= initrd_max) {
990 fprintf(stderr, "qemu: initrd is too large, cannot support."
991 "(max: %"PRIu32", need %"PRId64")\n",
992 initrd_max, (uint64_t)initrd_size);
993 exit(1);
994 }
995
996 initrd_addr = (initrd_max - initrd_size) & ~4095;
997
998 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
999 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1000 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1001 sev_load_ctx.initrd_data = initrd_data;
1002 sev_load_ctx.initrd_size = initrd_size;
1003
1004 stl_p(header + 0x218, initrd_addr);
1005 stl_p(header + 0x21c, initrd_size);
1006 }
1007
1008 /* load kernel and setup */
1009 setup_size = header[0x1f1];
1010 if (setup_size == 0) {
1011 setup_size = 4;
1012 }
1013 setup_size = (setup_size + 1) * 512;
1014 if (setup_size > kernel_size) {
1015 fprintf(stderr, "qemu: invalid kernel header\n");
1016 exit(1);
1017 }
1018 kernel_size -= setup_size;
1019
1020 setup = g_malloc(setup_size);
1021 kernel = g_malloc(kernel_size);
1022 fseek(f, 0, SEEK_SET);
1023 if (fread(setup, 1, setup_size, f) != setup_size) {
1024 fprintf(stderr, "fread() failed\n");
1025 exit(1);
1026 }
1027 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1028 fprintf(stderr, "fread() failed\n");
1029 exit(1);
1030 }
1031 fclose(f);
1032
1033 /* append dtb to kernel */
1034 if (dtb_filename) {
1035 if (protocol < 0x209) {
1036 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1037 exit(1);
1038 }
1039
1040 dtb_size = get_image_size(dtb_filename);
1041 if (dtb_size <= 0) {
1042 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1043 dtb_filename, strerror(errno));
1044 exit(1);
1045 }
1046
1047 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1048 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1049 kernel = g_realloc(kernel, kernel_size);
1050
1051 stq_p(header + 0x250, prot_addr + setup_data_offset);
1052
1053 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1054 setup_data->next = 0;
1055 setup_data->type = cpu_to_le32(SETUP_DTB);
1056 setup_data->len = cpu_to_le32(dtb_size);
1057
1058 load_image_size(dtb_filename, setup_data->data, dtb_size);
1059 }
1060
1061 /*
1062 * If we're starting an encrypted VM, it will be OVMF based, which uses the
1063 * efi stub for booting and doesn't require any values to be placed in the
1064 * kernel header. We therefore don't update the header so the hash of the
1065 * kernel on the other side of the fw_cfg interface matches the hash of the
1066 * file the user passed in.
1067 */
1068 if (!sev_enabled()) {
1069 memcpy(setup, header, MIN(sizeof(header), setup_size));
1070 }
1071
1072 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1073 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1074 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1075 sev_load_ctx.kernel_data = (char *)kernel;
1076 sev_load_ctx.kernel_size = kernel_size;
1077
1078 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1079 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1080 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1081 sev_load_ctx.setup_data = (char *)setup;
1082 sev_load_ctx.setup_size = setup_size;
1083
1084 if (sev_enabled()) {
1085 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
1086 }
1087
1088 option_rom[nb_option_roms].bootindex = 0;
1089 option_rom[nb_option_roms].name = "linuxboot.bin";
1090 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1091 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1092 }
1093 nb_option_roms++;
1094 }
1095
1096 void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1097 MemoryRegion *rom_memory, bool isapc_ram_fw)
1098 {
1099 const char *bios_name;
1100 char *filename;
1101 MemoryRegion *bios, *isa_bios;
1102 int bios_size, isa_bios_size;
1103 int ret;
1104
1105 /* BIOS load */
1106 bios_name = ms->firmware ?: default_firmware;
1107 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1108 if (filename) {
1109 bios_size = get_image_size(filename);
1110 } else {
1111 bios_size = -1;
1112 }
1113 if (bios_size <= 0 ||
1114 (bios_size % 65536) != 0) {
1115 goto bios_error;
1116 }
1117 bios = g_malloc(sizeof(*bios));
1118 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1119 if (!isapc_ram_fw) {
1120 memory_region_set_readonly(bios, true);
1121 }
1122 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1123 if (ret != 0) {
1124 bios_error:
1125 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1126 exit(1);
1127 }
1128 g_free(filename);
1129
1130 /* map the last 128KB of the BIOS in ISA space */
1131 isa_bios_size = MIN(bios_size, 128 * KiB);
1132 isa_bios = g_malloc(sizeof(*isa_bios));
1133 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1134 bios_size - isa_bios_size, isa_bios_size);
1135 memory_region_add_subregion_overlap(rom_memory,
1136 0x100000 - isa_bios_size,
1137 isa_bios,
1138 1);
1139 if (!isapc_ram_fw) {
1140 memory_region_set_readonly(isa_bios, true);
1141 }
1142
1143 /* map all the bios at the top of memory */
1144 memory_region_add_subregion(rom_memory,
1145 (uint32_t)(-bios_size),
1146 bios);
1147 }
1148
1149 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1150 {
1151 bool smm_available = false;
1152
1153 if (x86ms->smm == ON_OFF_AUTO_OFF) {
1154 return false;
1155 }
1156
1157 if (tcg_enabled() || qtest_enabled()) {
1158 smm_available = true;
1159 } else if (kvm_enabled()) {
1160 smm_available = kvm_has_smm();
1161 }
1162
1163 if (smm_available) {
1164 return true;
1165 }
1166
1167 if (x86ms->smm == ON_OFF_AUTO_ON) {
1168 error_report("System Management Mode not supported by this hypervisor.");
1169 exit(1);
1170 }
1171 return false;
1172 }
1173
1174 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1175 void *opaque, Error **errp)
1176 {
1177 X86MachineState *x86ms = X86_MACHINE(obj);
1178 OnOffAuto smm = x86ms->smm;
1179
1180 visit_type_OnOffAuto(v, name, &smm, errp);
1181 }
1182
1183 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1184 void *opaque, Error **errp)
1185 {
1186 X86MachineState *x86ms = X86_MACHINE(obj);
1187
1188 visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1189 }
1190
1191 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1192 {
1193 if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1194 return false;
1195 }
1196 return true;
1197 }
1198
1199 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1200 void *opaque, Error **errp)
1201 {
1202 X86MachineState *x86ms = X86_MACHINE(obj);
1203 OnOffAuto acpi = x86ms->acpi;
1204
1205 visit_type_OnOffAuto(v, name, &acpi, errp);
1206 }
1207
1208 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1209 void *opaque, Error **errp)
1210 {
1211 X86MachineState *x86ms = X86_MACHINE(obj);
1212
1213 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1214 }
1215
1216 static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1217 {
1218 X86MachineState *x86ms = X86_MACHINE(obj);
1219
1220 return g_strdup(x86ms->oem_id);
1221 }
1222
1223 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1224 {
1225 X86MachineState *x86ms = X86_MACHINE(obj);
1226 size_t len = strlen(value);
1227
1228 if (len > 6) {
1229 error_setg(errp,
1230 "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1231 "6 bytes in size");
1232 return;
1233 }
1234
1235 strncpy(x86ms->oem_id, value, 6);
1236 }
1237
1238 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1239 {
1240 X86MachineState *x86ms = X86_MACHINE(obj);
1241
1242 return g_strdup(x86ms->oem_table_id);
1243 }
1244
1245 static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1246 Error **errp)
1247 {
1248 X86MachineState *x86ms = X86_MACHINE(obj);
1249 size_t len = strlen(value);
1250
1251 if (len > 8) {
1252 error_setg(errp,
1253 "User specified "X86_MACHINE_OEM_TABLE_ID
1254 " value is bigger than "
1255 "8 bytes in size");
1256 return;
1257 }
1258 strncpy(x86ms->oem_table_id, value, 8);
1259 }
1260
1261 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
1262 const char *name, void *opaque, Error **errp)
1263 {
1264 X86MachineState *x86ms = X86_MACHINE(obj);
1265 uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
1266
1267 visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
1268 }
1269
1270 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
1271 const char *name, void *opaque, Error **errp)
1272 {
1273 X86MachineState *x86ms = X86_MACHINE(obj);
1274
1275 visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
1276 }
1277
1278 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
1279 void *opaque, Error **errp)
1280 {
1281 X86MachineState *x86ms = X86_MACHINE(obj);
1282 SgxEPCList *list = x86ms->sgx_epc_list;
1283
1284 visit_type_SgxEPCList(v, name, &list, errp);
1285 }
1286
1287 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
1288 void *opaque, Error **errp)
1289 {
1290 X86MachineState *x86ms = X86_MACHINE(obj);
1291 SgxEPCList *list;
1292
1293 list = x86ms->sgx_epc_list;
1294 visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
1295
1296 qapi_free_SgxEPCList(list);
1297 }
1298
1299 static void x86_machine_initfn(Object *obj)
1300 {
1301 X86MachineState *x86ms = X86_MACHINE(obj);
1302
1303 x86ms->smm = ON_OFF_AUTO_AUTO;
1304 x86ms->acpi = ON_OFF_AUTO_AUTO;
1305 x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1306 x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1307 x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1308 x86ms->bus_lock_ratelimit = 0;
1309 }
1310
1311 static void x86_machine_class_init(ObjectClass *oc, void *data)
1312 {
1313 MachineClass *mc = MACHINE_CLASS(oc);
1314 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1315 NMIClass *nc = NMI_CLASS(oc);
1316
1317 mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1318 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1319 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1320 x86mc->save_tsc_khz = true;
1321 x86mc->fwcfg_dma_enabled = true;
1322 nc->nmi_monitor_handler = x86_nmi;
1323
1324 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1325 x86_machine_get_smm, x86_machine_set_smm,
1326 NULL, NULL);
1327 object_class_property_set_description(oc, X86_MACHINE_SMM,
1328 "Enable SMM");
1329
1330 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1331 x86_machine_get_acpi, x86_machine_set_acpi,
1332 NULL, NULL);
1333 object_class_property_set_description(oc, X86_MACHINE_ACPI,
1334 "Enable ACPI");
1335
1336 object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1337 x86_machine_get_oem_id,
1338 x86_machine_set_oem_id);
1339 object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1340 "Override the default value of field OEMID "
1341 "in ACPI table header."
1342 "The string may be up to 6 bytes in size");
1343
1344
1345 object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1346 x86_machine_get_oem_table_id,
1347 x86_machine_set_oem_table_id);
1348 object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1349 "Override the default value of field OEM Table ID "
1350 "in ACPI table header."
1351 "The string may be up to 8 bytes in size");
1352
1353 object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
1354 x86_machine_get_bus_lock_ratelimit,
1355 x86_machine_set_bus_lock_ratelimit, NULL, NULL);
1356 object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
1357 "Set the ratelimit for the bus locks acquired in VMs");
1358
1359 object_class_property_add(oc, "sgx-epc", "SgxEPC",
1360 machine_get_sgx_epc, machine_set_sgx_epc,
1361 NULL, NULL);
1362 object_class_property_set_description(oc, "sgx-epc",
1363 "SGX EPC device");
1364 }
1365
1366 static const TypeInfo x86_machine_info = {
1367 .name = TYPE_X86_MACHINE,
1368 .parent = TYPE_MACHINE,
1369 .abstract = true,
1370 .instance_size = sizeof(X86MachineState),
1371 .instance_init = x86_machine_initfn,
1372 .class_size = sizeof(X86MachineClass),
1373 .class_init = x86_machine_class_init,
1374 .interfaces = (InterfaceInfo[]) {
1375 { TYPE_NMI },
1376 { }
1377 },
1378 };
1379
1380 static void x86_machine_register_types(void)
1381 {
1382 type_register_static(&x86_machine_info);
1383 }
1384
1385 type_init(x86_machine_register_types)