]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/armv7m_nvic.c
03b6b8c986ef318ced960fc92dc56b9468f5031f
[mirror_qemu.git] / hw / intc / armv7m_nvic.c
1 /*
2 * ARM Nested Vectored Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 *
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
11 */
12
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "hw/sysbus.h"
16 #include "migration/vmstate.h"
17 #include "qemu/timer.h"
18 #include "hw/intc/armv7m_nvic.h"
19 #include "hw/irq.h"
20 #include "hw/qdev-properties.h"
21 #include "sysemu/tcg.h"
22 #include "sysemu/runstate.h"
23 #include "target/arm/cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/memop.h"
26 #include "qemu/log.h"
27 #include "qemu/module.h"
28 #include "trace.h"
29
30 /* IRQ number counting:
31 *
32 * the num-irq property counts the number of external IRQ lines
33 *
34 * NVICState::num_irq counts the total number of exceptions
35 * (external IRQs, the 15 internal exceptions including reset,
36 * and one for the unused exception number 0).
37 *
38 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
39 *
40 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
41 *
42 * Iterating through all exceptions should typically be done with
43 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
44 *
45 * The external qemu_irq lines are the NVIC's external IRQ lines,
46 * so line 0 is exception 16.
47 *
48 * In the terminology of the architecture manual, "interrupts" are
49 * a subcategory of exception referring to the external interrupts
50 * (which are exception numbers NVIC_FIRST_IRQ and upward).
51 * For historical reasons QEMU tends to use "interrupt" and
52 * "exception" more or less interchangeably.
53 */
54 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
55 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
56
57 /* Effective running priority of the CPU when no exception is active
58 * (higher than the highest possible priority value)
59 */
60 #define NVIC_NOEXC_PRIO 0x100
61 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
62 #define NVIC_NS_PRIO_LIMIT 0x80
63
64 static const uint8_t nvic_id[] = {
65 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
66 };
67
68 static void signal_sysresetreq(NVICState *s)
69 {
70 if (qemu_irq_is_connected(s->sysresetreq)) {
71 qemu_irq_pulse(s->sysresetreq);
72 } else {
73 /*
74 * Default behaviour if the SoC doesn't need to wire up
75 * SYSRESETREQ (eg to a system reset controller of some kind):
76 * perform a system reset via the usual QEMU API.
77 */
78 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
79 }
80 }
81
82 static int nvic_pending_prio(NVICState *s)
83 {
84 /* return the group priority of the current pending interrupt,
85 * or NVIC_NOEXC_PRIO if no interrupt is pending
86 */
87 return s->vectpending_prio;
88 }
89
90 /* Return the value of the ISCR RETTOBASE bit:
91 * 1 if there is exactly one active exception
92 * 0 if there is more than one active exception
93 * UNKNOWN if there are no active exceptions (we choose 1,
94 * which matches the choice Cortex-M3 is documented as making).
95 *
96 * NB: some versions of the documentation talk about this
97 * counting "active exceptions other than the one shown by IPSR";
98 * this is only different in the obscure corner case where guest
99 * code has manually deactivated an exception and is about
100 * to fail an exception-return integrity check. The definition
101 * above is the one from the v8M ARM ARM and is also in line
102 * with the behaviour documented for the Cortex-M3.
103 */
104 static bool nvic_rettobase(NVICState *s)
105 {
106 int irq, nhand = 0;
107 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
108
109 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
110 if (s->vectors[irq].active ||
111 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
112 s->sec_vectors[irq].active)) {
113 nhand++;
114 if (nhand == 2) {
115 return 0;
116 }
117 }
118 }
119
120 return 1;
121 }
122
123 /* Return the value of the ISCR ISRPENDING bit:
124 * 1 if an external interrupt is pending
125 * 0 if no external interrupt is pending
126 */
127 static bool nvic_isrpending(NVICState *s)
128 {
129 int irq;
130
131 /*
132 * We can shortcut if the highest priority pending interrupt
133 * happens to be external; if not we need to check the whole
134 * vectors[] array.
135 */
136 if (s->vectpending > NVIC_FIRST_IRQ) {
137 return true;
138 }
139
140 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
141 if (s->vectors[irq].pending) {
142 return true;
143 }
144 }
145 return false;
146 }
147
148 static bool exc_is_banked(int exc)
149 {
150 /* Return true if this is one of the limited set of exceptions which
151 * are banked (and thus have state in sec_vectors[])
152 */
153 return exc == ARMV7M_EXCP_HARD ||
154 exc == ARMV7M_EXCP_MEM ||
155 exc == ARMV7M_EXCP_USAGE ||
156 exc == ARMV7M_EXCP_SVC ||
157 exc == ARMV7M_EXCP_PENDSV ||
158 exc == ARMV7M_EXCP_SYSTICK;
159 }
160
161 /* Return a mask word which clears the subpriority bits from
162 * a priority value for an M-profile exception, leaving only
163 * the group priority.
164 */
165 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
166 {
167 return ~0U << (s->prigroup[secure] + 1);
168 }
169
170 static bool exc_targets_secure(NVICState *s, int exc)
171 {
172 /* Return true if this non-banked exception targets Secure state. */
173 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
174 return false;
175 }
176
177 if (exc >= NVIC_FIRST_IRQ) {
178 return !s->itns[exc];
179 }
180
181 /* Function shouldn't be called for banked exceptions. */
182 assert(!exc_is_banked(exc));
183
184 switch (exc) {
185 case ARMV7M_EXCP_NMI:
186 case ARMV7M_EXCP_BUS:
187 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
188 case ARMV7M_EXCP_SECURE:
189 return true;
190 case ARMV7M_EXCP_DEBUG:
191 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
192 return false;
193 default:
194 /* reset, and reserved (unused) low exception numbers.
195 * We'll get called by code that loops through all the exception
196 * numbers, but it doesn't matter what we return here as these
197 * non-existent exceptions will never be pended or active.
198 */
199 return true;
200 }
201 }
202
203 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
204 {
205 /* Return the group priority for this exception, given its raw
206 * (group-and-subgroup) priority value and whether it is targeting
207 * secure state or not.
208 */
209 if (rawprio < 0) {
210 return rawprio;
211 }
212 rawprio &= nvic_gprio_mask(s, targets_secure);
213 /* AIRCR.PRIS causes us to squash all NS priorities into the
214 * lower half of the total range
215 */
216 if (!targets_secure &&
217 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
218 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
219 }
220 return rawprio;
221 }
222
223 /* Recompute vectpending and exception_prio for a CPU which implements
224 * the Security extension
225 */
226 static void nvic_recompute_state_secure(NVICState *s)
227 {
228 int i, bank;
229 int pend_prio = NVIC_NOEXC_PRIO;
230 int active_prio = NVIC_NOEXC_PRIO;
231 int pend_irq = 0;
232 bool pending_is_s_banked = false;
233 int pend_subprio = 0;
234
235 /* R_CQRV: precedence is by:
236 * - lowest group priority; if both the same then
237 * - lowest subpriority; if both the same then
238 * - lowest exception number; if both the same (ie banked) then
239 * - secure exception takes precedence
240 * Compare pseudocode RawExecutionPriority.
241 * Annoyingly, now we have two prigroup values (for S and NS)
242 * we can't do the loop comparison on raw priority values.
243 */
244 for (i = 1; i < s->num_irq; i++) {
245 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
246 VecInfo *vec;
247 int prio, subprio;
248 bool targets_secure;
249
250 if (bank == M_REG_S) {
251 if (!exc_is_banked(i)) {
252 continue;
253 }
254 vec = &s->sec_vectors[i];
255 targets_secure = true;
256 } else {
257 vec = &s->vectors[i];
258 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
259 }
260
261 prio = exc_group_prio(s, vec->prio, targets_secure);
262 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
263 if (vec->enabled && vec->pending &&
264 ((prio < pend_prio) ||
265 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
266 pend_prio = prio;
267 pend_subprio = subprio;
268 pend_irq = i;
269 pending_is_s_banked = (bank == M_REG_S);
270 }
271 if (vec->active && prio < active_prio) {
272 active_prio = prio;
273 }
274 }
275 }
276
277 s->vectpending_is_s_banked = pending_is_s_banked;
278 s->vectpending = pend_irq;
279 s->vectpending_prio = pend_prio;
280 s->exception_prio = active_prio;
281
282 trace_nvic_recompute_state_secure(s->vectpending,
283 s->vectpending_is_s_banked,
284 s->vectpending_prio,
285 s->exception_prio);
286 }
287
288 /* Recompute vectpending and exception_prio */
289 static void nvic_recompute_state(NVICState *s)
290 {
291 int i;
292 int pend_prio = NVIC_NOEXC_PRIO;
293 int active_prio = NVIC_NOEXC_PRIO;
294 int pend_irq = 0;
295
296 /* In theory we could write one function that handled both
297 * the "security extension present" and "not present"; however
298 * the security related changes significantly complicate the
299 * recomputation just by themselves and mixing both cases together
300 * would be even worse, so we retain a separate non-secure-only
301 * version for CPUs which don't implement the security extension.
302 */
303 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
304 nvic_recompute_state_secure(s);
305 return;
306 }
307
308 for (i = 1; i < s->num_irq; i++) {
309 VecInfo *vec = &s->vectors[i];
310
311 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
312 pend_prio = vec->prio;
313 pend_irq = i;
314 }
315 if (vec->active && vec->prio < active_prio) {
316 active_prio = vec->prio;
317 }
318 }
319
320 if (active_prio > 0) {
321 active_prio &= nvic_gprio_mask(s, false);
322 }
323
324 if (pend_prio > 0) {
325 pend_prio &= nvic_gprio_mask(s, false);
326 }
327
328 s->vectpending = pend_irq;
329 s->vectpending_prio = pend_prio;
330 s->exception_prio = active_prio;
331
332 trace_nvic_recompute_state(s->vectpending,
333 s->vectpending_prio,
334 s->exception_prio);
335 }
336
337 /* Return the current execution priority of the CPU
338 * (equivalent to the pseudocode ExecutionPriority function).
339 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
340 */
341 static inline int nvic_exec_prio(NVICState *s)
342 {
343 CPUARMState *env = &s->cpu->env;
344 int running = NVIC_NOEXC_PRIO;
345
346 if (env->v7m.basepri[M_REG_NS] > 0) {
347 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
348 }
349
350 if (env->v7m.basepri[M_REG_S] > 0) {
351 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
352 if (running > basepri) {
353 running = basepri;
354 }
355 }
356
357 if (env->v7m.primask[M_REG_NS]) {
358 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
359 if (running > NVIC_NS_PRIO_LIMIT) {
360 running = NVIC_NS_PRIO_LIMIT;
361 }
362 } else {
363 running = 0;
364 }
365 }
366
367 if (env->v7m.primask[M_REG_S]) {
368 running = 0;
369 }
370
371 if (env->v7m.faultmask[M_REG_NS]) {
372 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
373 running = -1;
374 } else {
375 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
376 if (running > NVIC_NS_PRIO_LIMIT) {
377 running = NVIC_NS_PRIO_LIMIT;
378 }
379 } else {
380 running = 0;
381 }
382 }
383 }
384
385 if (env->v7m.faultmask[M_REG_S]) {
386 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
387 }
388
389 /* consider priority of active handler */
390 return MIN(running, s->exception_prio);
391 }
392
393 bool armv7m_nvic_neg_prio_requested(NVICState *s, bool secure)
394 {
395 /* Return true if the requested execution priority is negative
396 * for the specified security state, ie that security state
397 * has an active NMI or HardFault or has set its FAULTMASK.
398 * Note that this is not the same as whether the execution
399 * priority is actually negative (for instance AIRCR.PRIS may
400 * mean we don't allow FAULTMASK_NS to actually make the execution
401 * priority negative). Compare pseudocode IsReqExcPriNeg().
402 */
403 if (s->cpu->env.v7m.faultmask[secure]) {
404 return true;
405 }
406
407 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
408 s->vectors[ARMV7M_EXCP_HARD].active) {
409 return true;
410 }
411
412 if (s->vectors[ARMV7M_EXCP_NMI].active &&
413 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
414 return true;
415 }
416
417 return false;
418 }
419
420 bool armv7m_nvic_can_take_pending_exception(NVICState *s)
421 {
422 return nvic_exec_prio(s) > nvic_pending_prio(s);
423 }
424
425 int armv7m_nvic_raw_execution_priority(NVICState *s)
426 {
427 return s->exception_prio;
428 }
429
430 /* caller must call nvic_irq_update() after this.
431 * secure indicates the bank to use for banked exceptions (we assert if
432 * we are passed secure=true for a non-banked exception).
433 */
434 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
435 {
436 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
437 assert(irq < s->num_irq);
438
439 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
440
441 if (secure) {
442 assert(exc_is_banked(irq));
443 s->sec_vectors[irq].prio = prio;
444 } else {
445 s->vectors[irq].prio = prio;
446 }
447
448 trace_nvic_set_prio(irq, secure, prio);
449 }
450
451 /* Return the current raw priority register value.
452 * secure indicates the bank to use for banked exceptions (we assert if
453 * we are passed secure=true for a non-banked exception).
454 */
455 static int get_prio(NVICState *s, unsigned irq, bool secure)
456 {
457 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
458 assert(irq < s->num_irq);
459
460 if (secure) {
461 assert(exc_is_banked(irq));
462 return s->sec_vectors[irq].prio;
463 } else {
464 return s->vectors[irq].prio;
465 }
466 }
467
468 /* Recompute state and assert irq line accordingly.
469 * Must be called after changes to:
470 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
471 * prigroup
472 */
473 static void nvic_irq_update(NVICState *s)
474 {
475 int lvl;
476 int pend_prio;
477
478 nvic_recompute_state(s);
479 pend_prio = nvic_pending_prio(s);
480
481 /* Raise NVIC output if this IRQ would be taken, except that we
482 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
483 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
484 * to those CPU registers don't cause us to recalculate the NVIC
485 * pending info.
486 */
487 lvl = (pend_prio < s->exception_prio);
488 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
489 qemu_set_irq(s->excpout, lvl);
490 }
491
492 /**
493 * armv7m_nvic_clear_pending: mark the specified exception as not pending
494 * @opaque: the NVIC
495 * @irq: the exception number to mark as not pending
496 * @secure: false for non-banked exceptions or for the nonsecure
497 * version of a banked exception, true for the secure version of a banked
498 * exception.
499 *
500 * Marks the specified exception as not pending. Note that we will assert()
501 * if @secure is true and @irq does not specify one of the fixed set
502 * of architecturally banked exceptions.
503 */
504 static void armv7m_nvic_clear_pending(NVICState *s, int irq, bool secure)
505 {
506 VecInfo *vec;
507
508 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
509
510 if (secure) {
511 assert(exc_is_banked(irq));
512 vec = &s->sec_vectors[irq];
513 } else {
514 vec = &s->vectors[irq];
515 }
516 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
517 if (vec->pending) {
518 vec->pending = 0;
519 nvic_irq_update(s);
520 }
521 }
522
523 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
524 bool derived)
525 {
526 /* Pend an exception, including possibly escalating it to HardFault.
527 *
528 * This function handles both "normal" pending of interrupts and
529 * exceptions, and also derived exceptions (ones which occur as
530 * a result of trying to take some other exception).
531 *
532 * If derived == true, the caller guarantees that we are part way through
533 * trying to take an exception (but have not yet called
534 * armv7m_nvic_acknowledge_irq() to make it active), and so:
535 * - s->vectpending is the "original exception" we were trying to take
536 * - irq is the "derived exception"
537 * - nvic_exec_prio(s) gives the priority before exception entry
538 * Here we handle the prioritization logic which the pseudocode puts
539 * in the DerivedLateArrival() function.
540 */
541
542 NVICState *s = (NVICState *)opaque;
543 bool banked = exc_is_banked(irq);
544 VecInfo *vec;
545 bool targets_secure;
546
547 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
548 assert(!secure || banked);
549
550 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
551
552 targets_secure = banked ? secure : exc_targets_secure(s, irq);
553
554 trace_nvic_set_pending(irq, secure, targets_secure,
555 derived, vec->enabled, vec->prio);
556
557 if (derived) {
558 /* Derived exceptions are always synchronous. */
559 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
560
561 if (irq == ARMV7M_EXCP_DEBUG &&
562 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
563 /* DebugMonitorFault, but its priority is lower than the
564 * preempted exception priority: just ignore it.
565 */
566 return;
567 }
568
569 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
570 /* If this is a terminal exception (one which means we cannot
571 * take the original exception, like a failure to read its
572 * vector table entry), then we must take the derived exception.
573 * If the derived exception can't take priority over the
574 * original exception, then we go into Lockup.
575 *
576 * For QEMU, we rely on the fact that a derived exception is
577 * terminal if and only if it's reported to us as HardFault,
578 * which saves having to have an extra argument is_terminal
579 * that we'd only use in one place.
580 */
581 cpu_abort(CPU(s->cpu),
582 "Lockup: can't take terminal derived exception "
583 "(original exception priority %d)\n",
584 s->vectpending_prio);
585 }
586 /* We now continue with the same code as for a normal pending
587 * exception, which will cause us to pend the derived exception.
588 * We'll then take either the original or the derived exception
589 * based on which is higher priority by the usual mechanism
590 * for selecting the highest priority pending interrupt.
591 */
592 }
593
594 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
595 /* If a synchronous exception is pending then it may be
596 * escalated to HardFault if:
597 * * it is equal or lower priority to current execution
598 * * it is disabled
599 * (ie we need to take it immediately but we can't do so).
600 * Asynchronous exceptions (and interrupts) simply remain pending.
601 *
602 * For QEMU, we don't have any imprecise (asynchronous) faults,
603 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
604 * synchronous.
605 * Debug exceptions are awkward because only Debug exceptions
606 * resulting from the BKPT instruction should be escalated,
607 * but we don't currently implement any Debug exceptions other
608 * than those that result from BKPT, so we treat all debug exceptions
609 * as needing escalation.
610 *
611 * This all means we can identify whether to escalate based only on
612 * the exception number and don't (yet) need the caller to explicitly
613 * tell us whether this exception is synchronous or not.
614 */
615 int running = nvic_exec_prio(s);
616 bool escalate = false;
617
618 if (exc_group_prio(s, vec->prio, secure) >= running) {
619 trace_nvic_escalate_prio(irq, vec->prio, running);
620 escalate = true;
621 } else if (!vec->enabled) {
622 trace_nvic_escalate_disabled(irq);
623 escalate = true;
624 }
625
626 if (escalate) {
627
628 /* We need to escalate this exception to a synchronous HardFault.
629 * If BFHFNMINS is set then we escalate to the banked HF for
630 * the target security state of the original exception; otherwise
631 * we take a Secure HardFault.
632 */
633 irq = ARMV7M_EXCP_HARD;
634 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
635 (targets_secure ||
636 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
637 vec = &s->sec_vectors[irq];
638 } else {
639 vec = &s->vectors[irq];
640 }
641 if (running <= vec->prio) {
642 /* We want to escalate to HardFault but we can't take the
643 * synchronous HardFault at this point either. This is a
644 * Lockup condition due to a guest bug. We don't model
645 * Lockup, so report via cpu_abort() instead.
646 */
647 cpu_abort(CPU(s->cpu),
648 "Lockup: can't escalate %d to HardFault "
649 "(current priority %d)\n", irq, running);
650 }
651
652 /* HF may be banked but there is only one shared HFSR */
653 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
654 }
655 }
656
657 if (!vec->pending) {
658 vec->pending = 1;
659 nvic_irq_update(s);
660 }
661 }
662
663 void armv7m_nvic_set_pending(NVICState *s, int irq, bool secure)
664 {
665 do_armv7m_nvic_set_pending(s, irq, secure, false);
666 }
667
668 void armv7m_nvic_set_pending_derived(NVICState *s, int irq, bool secure)
669 {
670 do_armv7m_nvic_set_pending(s, irq, secure, true);
671 }
672
673 void armv7m_nvic_set_pending_lazyfp(NVICState *s, int irq, bool secure)
674 {
675 /*
676 * Pend an exception during lazy FP stacking. This differs
677 * from the usual exception pending because the logic for
678 * whether we should escalate depends on the saved context
679 * in the FPCCR register, not on the current state of the CPU/NVIC.
680 */
681 bool banked = exc_is_banked(irq);
682 VecInfo *vec;
683 bool targets_secure;
684 bool escalate = false;
685 /*
686 * We will only look at bits in fpccr if this is a banked exception
687 * (in which case 'secure' tells us whether it is the S or NS version).
688 * All the bits for the non-banked exceptions are in fpccr_s.
689 */
690 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
691 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
692
693 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
694 assert(!secure || banked);
695
696 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
697
698 targets_secure = banked ? secure : exc_targets_secure(s, irq);
699
700 switch (irq) {
701 case ARMV7M_EXCP_DEBUG:
702 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
703 /* Ignore DebugMonitor exception */
704 return;
705 }
706 break;
707 case ARMV7M_EXCP_MEM:
708 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
709 break;
710 case ARMV7M_EXCP_USAGE:
711 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
712 break;
713 case ARMV7M_EXCP_BUS:
714 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
715 break;
716 case ARMV7M_EXCP_SECURE:
717 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
718 break;
719 default:
720 g_assert_not_reached();
721 }
722
723 if (escalate) {
724 /*
725 * Escalate to HardFault: faults that initially targeted Secure
726 * continue to do so, even if HF normally targets NonSecure.
727 */
728 irq = ARMV7M_EXCP_HARD;
729 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
730 (targets_secure ||
731 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
732 vec = &s->sec_vectors[irq];
733 } else {
734 vec = &s->vectors[irq];
735 }
736 }
737
738 if (!vec->enabled ||
739 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
740 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
741 /*
742 * We want to escalate to HardFault but the context the
743 * FP state belongs to prevents the exception pre-empting.
744 */
745 cpu_abort(CPU(s->cpu),
746 "Lockup: can't escalate to HardFault during "
747 "lazy FP register stacking\n");
748 }
749 }
750
751 if (escalate) {
752 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
753 }
754 if (!vec->pending) {
755 vec->pending = 1;
756 /*
757 * We do not call nvic_irq_update(), because we know our caller
758 * is going to handle causing us to take the exception by
759 * raising EXCP_LAZYFP, so raising the IRQ line would be
760 * pointless extra work. We just need to recompute the
761 * priorities so that armv7m_nvic_can_take_pending_exception()
762 * returns the right answer.
763 */
764 nvic_recompute_state(s);
765 }
766 }
767
768 /* Make pending IRQ active. */
769 void armv7m_nvic_acknowledge_irq(NVICState *s)
770 {
771 CPUARMState *env = &s->cpu->env;
772 const int pending = s->vectpending;
773 const int running = nvic_exec_prio(s);
774 VecInfo *vec;
775
776 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
777
778 if (s->vectpending_is_s_banked) {
779 vec = &s->sec_vectors[pending];
780 } else {
781 vec = &s->vectors[pending];
782 }
783
784 assert(vec->enabled);
785 assert(vec->pending);
786
787 assert(s->vectpending_prio < running);
788
789 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
790
791 vec->active = 1;
792 vec->pending = 0;
793
794 write_v7m_exception(env, s->vectpending);
795
796 nvic_irq_update(s);
797 }
798
799 static bool vectpending_targets_secure(NVICState *s)
800 {
801 /* Return true if s->vectpending targets Secure state */
802 if (s->vectpending_is_s_banked) {
803 return true;
804 }
805 return !exc_is_banked(s->vectpending) &&
806 exc_targets_secure(s, s->vectpending);
807 }
808
809 void armv7m_nvic_get_pending_irq_info(NVICState *s,
810 int *pirq, bool *ptargets_secure)
811 {
812 const int pending = s->vectpending;
813 bool targets_secure;
814
815 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
816
817 targets_secure = vectpending_targets_secure(s);
818
819 trace_nvic_get_pending_irq_info(pending, targets_secure);
820
821 *ptargets_secure = targets_secure;
822 *pirq = pending;
823 }
824
825 int armv7m_nvic_complete_irq(NVICState *s, int irq, bool secure)
826 {
827 VecInfo *vec = NULL;
828 int ret = 0;
829
830 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
831
832 trace_nvic_complete_irq(irq, secure);
833
834 if (secure && exc_is_banked(irq)) {
835 vec = &s->sec_vectors[irq];
836 } else {
837 vec = &s->vectors[irq];
838 }
839
840 /*
841 * Identify illegal exception return cases. We can't immediately
842 * return at this point because we still need to deactivate
843 * (either this exception or NMI/HardFault) first.
844 */
845 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
846 /*
847 * Return from a configurable exception targeting the opposite
848 * security state from the one we're trying to complete it for.
849 * Clear vec because it's not really the VecInfo for this
850 * (irq, secstate) so we mustn't deactivate it.
851 */
852 ret = -1;
853 vec = NULL;
854 } else if (!vec->active) {
855 /* Return from an inactive interrupt */
856 ret = -1;
857 } else {
858 /* Legal return, we will return the RETTOBASE bit value to the caller */
859 ret = nvic_rettobase(s);
860 }
861
862 /*
863 * For negative priorities, v8M will forcibly deactivate the appropriate
864 * NMI or HardFault regardless of what interrupt we're being asked to
865 * deactivate (compare the DeActivate() pseudocode). This is a guard
866 * against software returning from NMI or HardFault with a corrupted
867 * IPSR and leaving the CPU in a negative-priority state.
868 * v7M does not do this, but simply deactivates the requested interrupt.
869 */
870 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
871 switch (armv7m_nvic_raw_execution_priority(s)) {
872 case -1:
873 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
874 vec = &s->vectors[ARMV7M_EXCP_HARD];
875 } else {
876 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
877 }
878 break;
879 case -2:
880 vec = &s->vectors[ARMV7M_EXCP_NMI];
881 break;
882 case -3:
883 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
884 break;
885 default:
886 break;
887 }
888 }
889
890 if (!vec) {
891 return ret;
892 }
893
894 vec->active = 0;
895 if (vec->level) {
896 /* Re-pend the exception if it's still held high; only
897 * happens for external IRQs
898 */
899 assert(irq >= NVIC_FIRST_IRQ);
900 vec->pending = 1;
901 }
902
903 nvic_irq_update(s);
904
905 return ret;
906 }
907
908 bool armv7m_nvic_get_ready_status(NVICState *s, int irq, bool secure)
909 {
910 /*
911 * Return whether an exception is "ready", i.e. it is enabled and is
912 * configured at a priority which would allow it to interrupt the
913 * current execution priority.
914 *
915 * irq and secure have the same semantics as for armv7m_nvic_set_pending():
916 * for non-banked exceptions secure is always false; for banked exceptions
917 * it indicates which of the exceptions is required.
918 */
919 bool banked = exc_is_banked(irq);
920 VecInfo *vec;
921 int running = nvic_exec_prio(s);
922
923 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
924 assert(!secure || banked);
925
926 /*
927 * HardFault is an odd special case: we always check against -1,
928 * even if we're secure and HardFault has priority -3; we never
929 * need to check for enabled state.
930 */
931 if (irq == ARMV7M_EXCP_HARD) {
932 return running > -1;
933 }
934
935 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
936
937 return vec->enabled &&
938 exc_group_prio(s, vec->prio, secure) < running;
939 }
940
941 /* callback when external interrupt line is changed */
942 static void set_irq_level(void *opaque, int n, int level)
943 {
944 NVICState *s = opaque;
945 VecInfo *vec;
946
947 n += NVIC_FIRST_IRQ;
948
949 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
950
951 trace_nvic_set_irq_level(n, level);
952
953 /* The pending status of an external interrupt is
954 * latched on rising edge and exception handler return.
955 *
956 * Pulsing the IRQ will always run the handler
957 * once, and the handler will re-run until the
958 * level is low when the handler completes.
959 */
960 vec = &s->vectors[n];
961 if (level != vec->level) {
962 vec->level = level;
963 if (level) {
964 armv7m_nvic_set_pending(s, n, false);
965 }
966 }
967 }
968
969 /* callback when external NMI line is changed */
970 static void nvic_nmi_trigger(void *opaque, int n, int level)
971 {
972 NVICState *s = opaque;
973
974 trace_nvic_set_nmi_level(level);
975
976 /*
977 * The architecture doesn't specify whether NMI should share
978 * the normal-interrupt behaviour of being resampled on
979 * exception handler return. We choose not to, so just
980 * set NMI pending here and don't track the current level.
981 */
982 if (level) {
983 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
984 }
985 }
986
987 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
988 {
989 ARMCPU *cpu = s->cpu;
990 uint32_t val;
991
992 switch (offset) {
993 case 4: /* Interrupt Control Type. */
994 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
995 goto bad_offset;
996 }
997 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
998 case 0xc: /* CPPWR */
999 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1000 goto bad_offset;
1001 }
1002 /* We make the IMPDEF choice that nothing can ever go into a
1003 * non-retentive power state, which allows us to RAZ/WI this.
1004 */
1005 return 0;
1006 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1007 {
1008 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1009 int i;
1010
1011 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1012 goto bad_offset;
1013 }
1014 if (!attrs.secure) {
1015 return 0;
1016 }
1017 val = 0;
1018 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1019 if (s->itns[startvec + i]) {
1020 val |= (1 << i);
1021 }
1022 }
1023 return val;
1024 }
1025 case 0xcfc:
1026 if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) {
1027 goto bad_offset;
1028 }
1029 return cpu->revidr;
1030 case 0xd00: /* CPUID Base. */
1031 return cpu->midr;
1032 case 0xd04: /* Interrupt Control State (ICSR) */
1033 /* VECTACTIVE */
1034 val = cpu->env.v7m.exception;
1035 /* VECTPENDING */
1036 if (s->vectpending) {
1037 /*
1038 * From v8.1M VECTPENDING must read as 1 if accessed as
1039 * NonSecure and the highest priority pending and enabled
1040 * exception targets Secure.
1041 */
1042 int vp = s->vectpending;
1043 if (!attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_V8_1M) &&
1044 vectpending_targets_secure(s)) {
1045 vp = 1;
1046 }
1047 val |= (vp & 0x1ff) << 12;
1048 }
1049 /* ISRPENDING - set if any external IRQ is pending */
1050 if (nvic_isrpending(s)) {
1051 val |= (1 << 22);
1052 }
1053 /* RETTOBASE - set if only one handler is active */
1054 if (nvic_rettobase(s)) {
1055 val |= (1 << 11);
1056 }
1057 if (attrs.secure) {
1058 /* PENDSTSET */
1059 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1060 val |= (1 << 26);
1061 }
1062 /* PENDSVSET */
1063 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1064 val |= (1 << 28);
1065 }
1066 } else {
1067 /* PENDSTSET */
1068 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1069 val |= (1 << 26);
1070 }
1071 /* PENDSVSET */
1072 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1073 val |= (1 << 28);
1074 }
1075 }
1076 /* NMIPENDSET */
1077 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1078 && s->vectors[ARMV7M_EXCP_NMI].pending) {
1079 val |= (1 << 31);
1080 }
1081 /* ISRPREEMPT: RES0 when halting debug not implemented */
1082 /* STTNS: RES0 for the Main Extension */
1083 return val;
1084 case 0xd08: /* Vector Table Offset. */
1085 return cpu->env.v7m.vecbase[attrs.secure];
1086 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1087 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1088 if (attrs.secure) {
1089 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1090 val |= cpu->env.v7m.aircr;
1091 } else {
1092 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1093 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1094 * security isn't supported then BFHFNMINS is RAO (and
1095 * the bit in env.v7m.aircr is always set).
1096 */
1097 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1098 }
1099 }
1100 return val;
1101 case 0xd10: /* System Control. */
1102 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1103 goto bad_offset;
1104 }
1105 return cpu->env.v7m.scr[attrs.secure];
1106 case 0xd14: /* Configuration Control. */
1107 /*
1108 * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register)
1109 * and TRD (stored in the S copy of the register)
1110 */
1111 val = cpu->env.v7m.ccr[attrs.secure];
1112 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1113 /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */
1114 if (!attrs.secure) {
1115 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1116 val &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1117 }
1118 }
1119 return val;
1120 case 0xd24: /* System Handler Control and State (SHCSR) */
1121 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1122 goto bad_offset;
1123 }
1124 val = 0;
1125 if (attrs.secure) {
1126 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1127 val |= (1 << 0);
1128 }
1129 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1130 val |= (1 << 2);
1131 }
1132 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1133 val |= (1 << 3);
1134 }
1135 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1136 val |= (1 << 7);
1137 }
1138 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1139 val |= (1 << 10);
1140 }
1141 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1142 val |= (1 << 11);
1143 }
1144 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1145 val |= (1 << 12);
1146 }
1147 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1148 val |= (1 << 13);
1149 }
1150 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1151 val |= (1 << 15);
1152 }
1153 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1154 val |= (1 << 16);
1155 }
1156 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1157 val |= (1 << 18);
1158 }
1159 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1160 val |= (1 << 21);
1161 }
1162 /* SecureFault is not banked but is always RAZ/WI to NS */
1163 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1164 val |= (1 << 4);
1165 }
1166 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1167 val |= (1 << 19);
1168 }
1169 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1170 val |= (1 << 20);
1171 }
1172 } else {
1173 if (s->vectors[ARMV7M_EXCP_MEM].active) {
1174 val |= (1 << 0);
1175 }
1176 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1177 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1178 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1179 val |= (1 << 2);
1180 }
1181 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1182 val |= (1 << 21);
1183 }
1184 }
1185 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1186 val |= (1 << 3);
1187 }
1188 if (s->vectors[ARMV7M_EXCP_SVC].active) {
1189 val |= (1 << 7);
1190 }
1191 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1192 val |= (1 << 10);
1193 }
1194 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1195 val |= (1 << 11);
1196 }
1197 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1198 val |= (1 << 12);
1199 }
1200 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1201 val |= (1 << 13);
1202 }
1203 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1204 val |= (1 << 15);
1205 }
1206 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1207 val |= (1 << 16);
1208 }
1209 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1210 val |= (1 << 18);
1211 }
1212 }
1213 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1214 if (s->vectors[ARMV7M_EXCP_BUS].active) {
1215 val |= (1 << 1);
1216 }
1217 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1218 val |= (1 << 14);
1219 }
1220 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1221 val |= (1 << 17);
1222 }
1223 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1224 s->vectors[ARMV7M_EXCP_NMI].active) {
1225 /* NMIACT is not present in v7M */
1226 val |= (1 << 5);
1227 }
1228 }
1229
1230 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1231 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1232 val |= (1 << 8);
1233 }
1234 return val;
1235 case 0xd2c: /* Hard Fault Status. */
1236 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1237 goto bad_offset;
1238 }
1239 return cpu->env.v7m.hfsr;
1240 case 0xd30: /* Debug Fault Status. */
1241 return cpu->env.v7m.dfsr;
1242 case 0xd34: /* MMFAR MemManage Fault Address */
1243 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1244 goto bad_offset;
1245 }
1246 return cpu->env.v7m.mmfar[attrs.secure];
1247 case 0xd38: /* Bus Fault Address. */
1248 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1249 goto bad_offset;
1250 }
1251 if (!attrs.secure &&
1252 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1253 return 0;
1254 }
1255 return cpu->env.v7m.bfar;
1256 case 0xd3c: /* Aux Fault Status. */
1257 /* TODO: Implement fault status registers. */
1258 qemu_log_mask(LOG_UNIMP,
1259 "Aux Fault status registers unimplemented\n");
1260 return 0;
1261 case 0xd40: /* PFR0. */
1262 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1263 goto bad_offset;
1264 }
1265 return cpu->isar.id_pfr0;
1266 case 0xd44: /* PFR1. */
1267 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1268 goto bad_offset;
1269 }
1270 return cpu->isar.id_pfr1;
1271 case 0xd48: /* DFR0. */
1272 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1273 goto bad_offset;
1274 }
1275 return cpu->isar.id_dfr0;
1276 case 0xd4c: /* AFR0. */
1277 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1278 goto bad_offset;
1279 }
1280 return cpu->id_afr0;
1281 case 0xd50: /* MMFR0. */
1282 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1283 goto bad_offset;
1284 }
1285 return cpu->isar.id_mmfr0;
1286 case 0xd54: /* MMFR1. */
1287 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1288 goto bad_offset;
1289 }
1290 return cpu->isar.id_mmfr1;
1291 case 0xd58: /* MMFR2. */
1292 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1293 goto bad_offset;
1294 }
1295 return cpu->isar.id_mmfr2;
1296 case 0xd5c: /* MMFR3. */
1297 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1298 goto bad_offset;
1299 }
1300 return cpu->isar.id_mmfr3;
1301 case 0xd60: /* ISAR0. */
1302 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1303 goto bad_offset;
1304 }
1305 return cpu->isar.id_isar0;
1306 case 0xd64: /* ISAR1. */
1307 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1308 goto bad_offset;
1309 }
1310 return cpu->isar.id_isar1;
1311 case 0xd68: /* ISAR2. */
1312 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1313 goto bad_offset;
1314 }
1315 return cpu->isar.id_isar2;
1316 case 0xd6c: /* ISAR3. */
1317 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1318 goto bad_offset;
1319 }
1320 return cpu->isar.id_isar3;
1321 case 0xd70: /* ISAR4. */
1322 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1323 goto bad_offset;
1324 }
1325 return cpu->isar.id_isar4;
1326 case 0xd74: /* ISAR5. */
1327 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1328 goto bad_offset;
1329 }
1330 return cpu->isar.id_isar5;
1331 case 0xd78: /* CLIDR */
1332 return cpu->clidr;
1333 case 0xd7c: /* CTR */
1334 return cpu->ctr;
1335 case 0xd80: /* CSSIDR */
1336 {
1337 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1338 return cpu->ccsidr[idx];
1339 }
1340 case 0xd84: /* CSSELR */
1341 return cpu->env.v7m.csselr[attrs.secure];
1342 case 0xd88: /* CPACR */
1343 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1344 return 0;
1345 }
1346 return cpu->env.v7m.cpacr[attrs.secure];
1347 case 0xd8c: /* NSACR */
1348 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1349 return 0;
1350 }
1351 return cpu->env.v7m.nsacr;
1352 /* TODO: Implement debug registers. */
1353 case 0xd90: /* MPU_TYPE */
1354 /* Unified MPU; if the MPU is not present this value is zero */
1355 return cpu->pmsav7_dregion << 8;
1356 case 0xd94: /* MPU_CTRL */
1357 return cpu->env.v7m.mpu_ctrl[attrs.secure];
1358 case 0xd98: /* MPU_RNR */
1359 return cpu->env.pmsav7.rnr[attrs.secure];
1360 case 0xd9c: /* MPU_RBAR */
1361 case 0xda4: /* MPU_RBAR_A1 */
1362 case 0xdac: /* MPU_RBAR_A2 */
1363 case 0xdb4: /* MPU_RBAR_A3 */
1364 {
1365 int region = cpu->env.pmsav7.rnr[attrs.secure];
1366
1367 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1368 /* PMSAv8M handling of the aliases is different from v7M:
1369 * aliases A1, A2, A3 override the low two bits of the region
1370 * number in MPU_RNR, and there is no 'region' field in the
1371 * RBAR register.
1372 */
1373 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1374 if (aliasno) {
1375 region = deposit32(region, 0, 2, aliasno);
1376 }
1377 if (region >= cpu->pmsav7_dregion) {
1378 return 0;
1379 }
1380 return cpu->env.pmsav8.rbar[attrs.secure][region];
1381 }
1382
1383 if (region >= cpu->pmsav7_dregion) {
1384 return 0;
1385 }
1386 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1387 }
1388 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1389 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1390 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1391 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1392 {
1393 int region = cpu->env.pmsav7.rnr[attrs.secure];
1394
1395 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1396 /* PMSAv8M handling of the aliases is different from v7M:
1397 * aliases A1, A2, A3 override the low two bits of the region
1398 * number in MPU_RNR.
1399 */
1400 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1401 if (aliasno) {
1402 region = deposit32(region, 0, 2, aliasno);
1403 }
1404 if (region >= cpu->pmsav7_dregion) {
1405 return 0;
1406 }
1407 return cpu->env.pmsav8.rlar[attrs.secure][region];
1408 }
1409
1410 if (region >= cpu->pmsav7_dregion) {
1411 return 0;
1412 }
1413 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1414 (cpu->env.pmsav7.drsr[region] & 0xffff);
1415 }
1416 case 0xdc0: /* MPU_MAIR0 */
1417 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1418 goto bad_offset;
1419 }
1420 return cpu->env.pmsav8.mair0[attrs.secure];
1421 case 0xdc4: /* MPU_MAIR1 */
1422 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1423 goto bad_offset;
1424 }
1425 return cpu->env.pmsav8.mair1[attrs.secure];
1426 case 0xdd0: /* SAU_CTRL */
1427 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1428 goto bad_offset;
1429 }
1430 if (!attrs.secure) {
1431 return 0;
1432 }
1433 return cpu->env.sau.ctrl;
1434 case 0xdd4: /* SAU_TYPE */
1435 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1436 goto bad_offset;
1437 }
1438 if (!attrs.secure) {
1439 return 0;
1440 }
1441 return cpu->sau_sregion;
1442 case 0xdd8: /* SAU_RNR */
1443 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1444 goto bad_offset;
1445 }
1446 if (!attrs.secure) {
1447 return 0;
1448 }
1449 return cpu->env.sau.rnr;
1450 case 0xddc: /* SAU_RBAR */
1451 {
1452 int region = cpu->env.sau.rnr;
1453
1454 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1455 goto bad_offset;
1456 }
1457 if (!attrs.secure) {
1458 return 0;
1459 }
1460 if (region >= cpu->sau_sregion) {
1461 return 0;
1462 }
1463 return cpu->env.sau.rbar[region];
1464 }
1465 case 0xde0: /* SAU_RLAR */
1466 {
1467 int region = cpu->env.sau.rnr;
1468
1469 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1470 goto bad_offset;
1471 }
1472 if (!attrs.secure) {
1473 return 0;
1474 }
1475 if (region >= cpu->sau_sregion) {
1476 return 0;
1477 }
1478 return cpu->env.sau.rlar[region];
1479 }
1480 case 0xde4: /* SFSR */
1481 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1482 goto bad_offset;
1483 }
1484 if (!attrs.secure) {
1485 return 0;
1486 }
1487 return cpu->env.v7m.sfsr;
1488 case 0xde8: /* SFAR */
1489 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1490 goto bad_offset;
1491 }
1492 if (!attrs.secure) {
1493 return 0;
1494 }
1495 return cpu->env.v7m.sfar;
1496 case 0xf04: /* RFSR */
1497 if (!cpu_isar_feature(aa32_ras, cpu)) {
1498 goto bad_offset;
1499 }
1500 /* We provide minimal-RAS only: RFSR is RAZ/WI */
1501 return 0;
1502 case 0xf34: /* FPCCR */
1503 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1504 return 0;
1505 }
1506 if (attrs.secure) {
1507 return cpu->env.v7m.fpccr[M_REG_S];
1508 } else {
1509 /*
1510 * NS can read LSPEN, CLRONRET and MONRDY. It can read
1511 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1512 * other non-banked bits RAZ.
1513 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1514 */
1515 uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1516 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1517 R_V7M_FPCCR_CLRONRET_MASK |
1518 R_V7M_FPCCR_MONRDY_MASK;
1519
1520 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1521 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1522 }
1523
1524 value &= mask;
1525
1526 value |= cpu->env.v7m.fpccr[M_REG_NS];
1527 return value;
1528 }
1529 case 0xf38: /* FPCAR */
1530 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1531 return 0;
1532 }
1533 return cpu->env.v7m.fpcar[attrs.secure];
1534 case 0xf3c: /* FPDSCR */
1535 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1536 return 0;
1537 }
1538 return cpu->env.v7m.fpdscr[attrs.secure];
1539 case 0xf40: /* MVFR0 */
1540 return cpu->isar.mvfr0;
1541 case 0xf44: /* MVFR1 */
1542 return cpu->isar.mvfr1;
1543 case 0xf48: /* MVFR2 */
1544 return cpu->isar.mvfr2;
1545 default:
1546 bad_offset:
1547 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1548 return 0;
1549 }
1550 }
1551
1552 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1553 MemTxAttrs attrs)
1554 {
1555 ARMCPU *cpu = s->cpu;
1556
1557 switch (offset) {
1558 case 0xc: /* CPPWR */
1559 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1560 goto bad_offset;
1561 }
1562 /* Make the IMPDEF choice to RAZ/WI this. */
1563 break;
1564 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1565 {
1566 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1567 int i;
1568
1569 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1570 goto bad_offset;
1571 }
1572 if (!attrs.secure) {
1573 break;
1574 }
1575 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1576 s->itns[startvec + i] = (value >> i) & 1;
1577 }
1578 nvic_irq_update(s);
1579 break;
1580 }
1581 case 0xd04: /* Interrupt Control State (ICSR) */
1582 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1583 if (value & (1 << 31)) {
1584 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1585 } else if (value & (1 << 30) &&
1586 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1587 /* PENDNMICLR didn't exist in v7M */
1588 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1589 }
1590 }
1591 if (value & (1 << 28)) {
1592 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1593 } else if (value & (1 << 27)) {
1594 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1595 }
1596 if (value & (1 << 26)) {
1597 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1598 } else if (value & (1 << 25)) {
1599 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1600 }
1601 break;
1602 case 0xd08: /* Vector Table Offset. */
1603 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1604 break;
1605 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1606 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1607 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1608 if (attrs.secure ||
1609 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1610 signal_sysresetreq(s);
1611 }
1612 }
1613 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1614 qemu_log_mask(LOG_GUEST_ERROR,
1615 "Setting VECTCLRACTIVE when not in DEBUG mode "
1616 "is UNPREDICTABLE\n");
1617 }
1618 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1619 /* NB: this bit is RES0 in v8M */
1620 qemu_log_mask(LOG_GUEST_ERROR,
1621 "Setting VECTRESET when not in DEBUG mode "
1622 "is UNPREDICTABLE\n");
1623 }
1624 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1625 s->prigroup[attrs.secure] =
1626 extract32(value,
1627 R_V7M_AIRCR_PRIGROUP_SHIFT,
1628 R_V7M_AIRCR_PRIGROUP_LENGTH);
1629 }
1630 /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */
1631 if (attrs.secure) {
1632 /* These bits are only writable by secure */
1633 cpu->env.v7m.aircr = value &
1634 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1635 R_V7M_AIRCR_BFHFNMINS_MASK |
1636 R_V7M_AIRCR_PRIS_MASK);
1637 /* BFHFNMINS changes the priority of Secure HardFault, and
1638 * allows a pending Non-secure HardFault to preempt (which
1639 * we implement by marking it enabled).
1640 */
1641 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1642 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1643 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1644 } else {
1645 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1646 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1647 }
1648 }
1649 nvic_irq_update(s);
1650 }
1651 break;
1652 case 0xd10: /* System Control. */
1653 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1654 goto bad_offset;
1655 }
1656 /* We don't implement deep-sleep so these bits are RAZ/WI.
1657 * The other bits in the register are banked.
1658 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1659 * is architecturally permitted.
1660 */
1661 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1662 cpu->env.v7m.scr[attrs.secure] = value;
1663 break;
1664 case 0xd14: /* Configuration Control. */
1665 {
1666 uint32_t mask;
1667
1668 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1669 goto bad_offset;
1670 }
1671
1672 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1673 mask = R_V7M_CCR_STKALIGN_MASK |
1674 R_V7M_CCR_BFHFNMIGN_MASK |
1675 R_V7M_CCR_DIV_0_TRP_MASK |
1676 R_V7M_CCR_UNALIGN_TRP_MASK |
1677 R_V7M_CCR_USERSETMPEND_MASK |
1678 R_V7M_CCR_NONBASETHRDENA_MASK;
1679 if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) {
1680 /* TRD is always RAZ/WI from NS */
1681 mask |= R_V7M_CCR_TRD_MASK;
1682 }
1683 value &= mask;
1684
1685 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1686 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1687 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1688 | R_V7M_CCR_STKALIGN_MASK;
1689 }
1690 if (attrs.secure) {
1691 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1692 cpu->env.v7m.ccr[M_REG_NS] =
1693 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1694 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1695 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1696 } else {
1697 /*
1698 * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so
1699 * preserve the state currently in the NS element of the array
1700 */
1701 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1702 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1703 value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1704 }
1705 }
1706
1707 cpu->env.v7m.ccr[attrs.secure] = value;
1708 break;
1709 }
1710 case 0xd24: /* System Handler Control and State (SHCSR) */
1711 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1712 goto bad_offset;
1713 }
1714 if (attrs.secure) {
1715 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1716 /* Secure HardFault active bit cannot be written */
1717 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1718 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1719 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1720 (value & (1 << 10)) != 0;
1721 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1722 (value & (1 << 11)) != 0;
1723 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1724 (value & (1 << 12)) != 0;
1725 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1726 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1727 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1728 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1729 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1730 (value & (1 << 18)) != 0;
1731 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1732 /* SecureFault not banked, but RAZ/WI to NS */
1733 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1734 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1735 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1736 } else {
1737 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1738 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1739 /* HARDFAULTPENDED is not present in v7M */
1740 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1741 }
1742 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1743 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1744 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1745 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1746 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1747 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1748 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1749 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1750 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1751 }
1752 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1753 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1754 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1755 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1756 }
1757 /* NMIACT can only be written if the write is of a zero, with
1758 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1759 */
1760 if (!attrs.secure && cpu->env.v7m.secure &&
1761 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1762 (value & (1 << 5)) == 0) {
1763 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1764 }
1765 /* HARDFAULTACT can only be written if the write is of a zero
1766 * to the non-secure HardFault state by the CPU in secure state.
1767 * The only case where we can be targeting the non-secure HF state
1768 * when in secure state is if this is a write via the NS alias
1769 * and BFHFNMINS is 1.
1770 */
1771 if (!attrs.secure && cpu->env.v7m.secure &&
1772 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1773 (value & (1 << 2)) == 0) {
1774 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1775 }
1776
1777 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1778 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1779 nvic_irq_update(s);
1780 break;
1781 case 0xd2c: /* Hard Fault Status. */
1782 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1783 goto bad_offset;
1784 }
1785 cpu->env.v7m.hfsr &= ~value; /* W1C */
1786 break;
1787 case 0xd30: /* Debug Fault Status. */
1788 cpu->env.v7m.dfsr &= ~value; /* W1C */
1789 break;
1790 case 0xd34: /* Mem Manage Address. */
1791 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1792 goto bad_offset;
1793 }
1794 cpu->env.v7m.mmfar[attrs.secure] = value;
1795 return;
1796 case 0xd38: /* Bus Fault Address. */
1797 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1798 goto bad_offset;
1799 }
1800 if (!attrs.secure &&
1801 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1802 return;
1803 }
1804 cpu->env.v7m.bfar = value;
1805 return;
1806 case 0xd3c: /* Aux Fault Status. */
1807 qemu_log_mask(LOG_UNIMP,
1808 "NVIC: Aux fault status registers unimplemented\n");
1809 break;
1810 case 0xd84: /* CSSELR */
1811 if (!arm_v7m_csselr_razwi(cpu)) {
1812 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1813 }
1814 break;
1815 case 0xd88: /* CPACR */
1816 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1817 /* We implement only the Floating Point extension's CP10/CP11 */
1818 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1819 }
1820 break;
1821 case 0xd8c: /* NSACR */
1822 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
1823 /* We implement only the Floating Point extension's CP10/CP11 */
1824 cpu->env.v7m.nsacr = value & (3 << 10);
1825 }
1826 break;
1827 case 0xd90: /* MPU_TYPE */
1828 return; /* RO */
1829 case 0xd94: /* MPU_CTRL */
1830 if ((value &
1831 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1832 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1833 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1834 "UNPREDICTABLE\n");
1835 }
1836 cpu->env.v7m.mpu_ctrl[attrs.secure]
1837 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1838 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1839 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1840 tlb_flush(CPU(cpu));
1841 break;
1842 case 0xd98: /* MPU_RNR */
1843 if (value >= cpu->pmsav7_dregion) {
1844 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1845 PRIu32 "/%" PRIu32 "\n",
1846 value, cpu->pmsav7_dregion);
1847 } else {
1848 cpu->env.pmsav7.rnr[attrs.secure] = value;
1849 }
1850 break;
1851 case 0xd9c: /* MPU_RBAR */
1852 case 0xda4: /* MPU_RBAR_A1 */
1853 case 0xdac: /* MPU_RBAR_A2 */
1854 case 0xdb4: /* MPU_RBAR_A3 */
1855 {
1856 int region;
1857
1858 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1859 /* PMSAv8M handling of the aliases is different from v7M:
1860 * aliases A1, A2, A3 override the low two bits of the region
1861 * number in MPU_RNR, and there is no 'region' field in the
1862 * RBAR register.
1863 */
1864 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1865
1866 region = cpu->env.pmsav7.rnr[attrs.secure];
1867 if (aliasno) {
1868 region = deposit32(region, 0, 2, aliasno);
1869 }
1870 if (region >= cpu->pmsav7_dregion) {
1871 return;
1872 }
1873 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1874 tlb_flush(CPU(cpu));
1875 return;
1876 }
1877
1878 if (value & (1 << 4)) {
1879 /* VALID bit means use the region number specified in this
1880 * value and also update MPU_RNR.REGION with that value.
1881 */
1882 region = extract32(value, 0, 4);
1883 if (region >= cpu->pmsav7_dregion) {
1884 qemu_log_mask(LOG_GUEST_ERROR,
1885 "MPU region out of range %u/%" PRIu32 "\n",
1886 region, cpu->pmsav7_dregion);
1887 return;
1888 }
1889 cpu->env.pmsav7.rnr[attrs.secure] = region;
1890 } else {
1891 region = cpu->env.pmsav7.rnr[attrs.secure];
1892 }
1893
1894 if (region >= cpu->pmsav7_dregion) {
1895 return;
1896 }
1897
1898 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1899 tlb_flush(CPU(cpu));
1900 break;
1901 }
1902 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1903 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1904 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1905 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1906 {
1907 int region = cpu->env.pmsav7.rnr[attrs.secure];
1908
1909 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1910 /* PMSAv8M handling of the aliases is different from v7M:
1911 * aliases A1, A2, A3 override the low two bits of the region
1912 * number in MPU_RNR.
1913 */
1914 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1915
1916 region = cpu->env.pmsav7.rnr[attrs.secure];
1917 if (aliasno) {
1918 region = deposit32(region, 0, 2, aliasno);
1919 }
1920 if (region >= cpu->pmsav7_dregion) {
1921 return;
1922 }
1923 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1924 tlb_flush(CPU(cpu));
1925 return;
1926 }
1927
1928 if (region >= cpu->pmsav7_dregion) {
1929 return;
1930 }
1931
1932 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1933 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1934 tlb_flush(CPU(cpu));
1935 break;
1936 }
1937 case 0xdc0: /* MPU_MAIR0 */
1938 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1939 goto bad_offset;
1940 }
1941 if (cpu->pmsav7_dregion) {
1942 /* Register is RES0 if no MPU regions are implemented */
1943 cpu->env.pmsav8.mair0[attrs.secure] = value;
1944 }
1945 /* We don't need to do anything else because memory attributes
1946 * only affect cacheability, and we don't implement caching.
1947 */
1948 break;
1949 case 0xdc4: /* MPU_MAIR1 */
1950 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1951 goto bad_offset;
1952 }
1953 if (cpu->pmsav7_dregion) {
1954 /* Register is RES0 if no MPU regions are implemented */
1955 cpu->env.pmsav8.mair1[attrs.secure] = value;
1956 }
1957 /* We don't need to do anything else because memory attributes
1958 * only affect cacheability, and we don't implement caching.
1959 */
1960 break;
1961 case 0xdd0: /* SAU_CTRL */
1962 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1963 goto bad_offset;
1964 }
1965 if (!attrs.secure) {
1966 return;
1967 }
1968 cpu->env.sau.ctrl = value & 3;
1969 break;
1970 case 0xdd4: /* SAU_TYPE */
1971 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1972 goto bad_offset;
1973 }
1974 break;
1975 case 0xdd8: /* SAU_RNR */
1976 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1977 goto bad_offset;
1978 }
1979 if (!attrs.secure) {
1980 return;
1981 }
1982 if (value >= cpu->sau_sregion) {
1983 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1984 PRIu32 "/%" PRIu32 "\n",
1985 value, cpu->sau_sregion);
1986 } else {
1987 cpu->env.sau.rnr = value;
1988 }
1989 break;
1990 case 0xddc: /* SAU_RBAR */
1991 {
1992 int region = cpu->env.sau.rnr;
1993
1994 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1995 goto bad_offset;
1996 }
1997 if (!attrs.secure) {
1998 return;
1999 }
2000 if (region >= cpu->sau_sregion) {
2001 return;
2002 }
2003 cpu->env.sau.rbar[region] = value & ~0x1f;
2004 tlb_flush(CPU(cpu));
2005 break;
2006 }
2007 case 0xde0: /* SAU_RLAR */
2008 {
2009 int region = cpu->env.sau.rnr;
2010
2011 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2012 goto bad_offset;
2013 }
2014 if (!attrs.secure) {
2015 return;
2016 }
2017 if (region >= cpu->sau_sregion) {
2018 return;
2019 }
2020 cpu->env.sau.rlar[region] = value & ~0x1c;
2021 tlb_flush(CPU(cpu));
2022 break;
2023 }
2024 case 0xde4: /* SFSR */
2025 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2026 goto bad_offset;
2027 }
2028 if (!attrs.secure) {
2029 return;
2030 }
2031 cpu->env.v7m.sfsr &= ~value; /* W1C */
2032 break;
2033 case 0xde8: /* SFAR */
2034 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2035 goto bad_offset;
2036 }
2037 if (!attrs.secure) {
2038 return;
2039 }
2040 cpu->env.v7m.sfsr = value;
2041 break;
2042 case 0xf00: /* Software Triggered Interrupt Register */
2043 {
2044 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
2045
2046 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
2047 goto bad_offset;
2048 }
2049
2050 if (excnum < s->num_irq) {
2051 armv7m_nvic_set_pending(s, excnum, false);
2052 }
2053 break;
2054 }
2055 case 0xf04: /* RFSR */
2056 if (!cpu_isar_feature(aa32_ras, cpu)) {
2057 goto bad_offset;
2058 }
2059 /* We provide minimal-RAS only: RFSR is RAZ/WI */
2060 break;
2061 case 0xf34: /* FPCCR */
2062 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2063 /* Not all bits here are banked. */
2064 uint32_t fpccr_s;
2065
2066 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2067 /* Don't allow setting of bits not present in v7M */
2068 value &= (R_V7M_FPCCR_LSPACT_MASK |
2069 R_V7M_FPCCR_USER_MASK |
2070 R_V7M_FPCCR_THREAD_MASK |
2071 R_V7M_FPCCR_HFRDY_MASK |
2072 R_V7M_FPCCR_MMRDY_MASK |
2073 R_V7M_FPCCR_BFRDY_MASK |
2074 R_V7M_FPCCR_MONRDY_MASK |
2075 R_V7M_FPCCR_LSPEN_MASK |
2076 R_V7M_FPCCR_ASPEN_MASK);
2077 }
2078 value &= ~R_V7M_FPCCR_RES0_MASK;
2079
2080 if (!attrs.secure) {
2081 /* Some non-banked bits are configurably writable by NS */
2082 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
2083 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
2084 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
2085 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
2086 }
2087 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
2088 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
2089 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
2090 }
2091 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2092 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
2093 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
2094 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
2095 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
2096 }
2097 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
2098 {
2099 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
2100 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
2101 }
2102
2103 /*
2104 * All other non-banked bits are RAZ/WI from NS; write
2105 * just the banked bits to fpccr[M_REG_NS].
2106 */
2107 value &= R_V7M_FPCCR_BANKED_MASK;
2108 cpu->env.v7m.fpccr[M_REG_NS] = value;
2109 } else {
2110 fpccr_s = value;
2111 }
2112 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2113 }
2114 break;
2115 case 0xf38: /* FPCAR */
2116 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2117 value &= ~7;
2118 cpu->env.v7m.fpcar[attrs.secure] = value;
2119 }
2120 break;
2121 case 0xf3c: /* FPDSCR */
2122 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2123 uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK;
2124 if (cpu_isar_feature(any_fp16, cpu)) {
2125 mask |= FPCR_FZ16;
2126 }
2127 value &= mask;
2128 if (cpu_isar_feature(aa32_lob, cpu)) {
2129 value |= 4 << FPCR_LTPSIZE_SHIFT;
2130 }
2131 cpu->env.v7m.fpdscr[attrs.secure] = value;
2132 }
2133 break;
2134 case 0xf50: /* ICIALLU */
2135 case 0xf58: /* ICIMVAU */
2136 case 0xf5c: /* DCIMVAC */
2137 case 0xf60: /* DCISW */
2138 case 0xf64: /* DCCMVAU */
2139 case 0xf68: /* DCCMVAC */
2140 case 0xf6c: /* DCCSW */
2141 case 0xf70: /* DCCIMVAC */
2142 case 0xf74: /* DCCISW */
2143 case 0xf78: /* BPIALL */
2144 /* Cache and branch predictor maintenance: for QEMU these always NOP */
2145 break;
2146 default:
2147 bad_offset:
2148 qemu_log_mask(LOG_GUEST_ERROR,
2149 "NVIC: Bad write offset 0x%x\n", offset);
2150 }
2151 }
2152
2153 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2154 {
2155 /* Return true if unprivileged access to this register is permitted. */
2156 switch (offset) {
2157 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2158 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2159 * controls access even though the CPU is in Secure state (I_QDKX).
2160 */
2161 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2162 default:
2163 /* All other user accesses cause a BusFault unconditionally */
2164 return false;
2165 }
2166 }
2167
2168 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2169 {
2170 /* Behaviour for the SHPR register field for this exception:
2171 * return M_REG_NS to use the nonsecure vector (including for
2172 * non-banked exceptions), M_REG_S for the secure version of
2173 * a banked exception, and -1 if this field should RAZ/WI.
2174 */
2175 switch (exc) {
2176 case ARMV7M_EXCP_MEM:
2177 case ARMV7M_EXCP_USAGE:
2178 case ARMV7M_EXCP_SVC:
2179 case ARMV7M_EXCP_PENDSV:
2180 case ARMV7M_EXCP_SYSTICK:
2181 /* Banked exceptions */
2182 return attrs.secure;
2183 case ARMV7M_EXCP_BUS:
2184 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2185 if (!attrs.secure &&
2186 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2187 return -1;
2188 }
2189 return M_REG_NS;
2190 case ARMV7M_EXCP_SECURE:
2191 /* Not banked, RAZ/WI from nonsecure */
2192 if (!attrs.secure) {
2193 return -1;
2194 }
2195 return M_REG_NS;
2196 case ARMV7M_EXCP_DEBUG:
2197 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2198 return M_REG_NS;
2199 case 8 ... 10:
2200 case 13:
2201 /* RES0 */
2202 return -1;
2203 default:
2204 /* Not reachable due to decode of SHPR register addresses */
2205 g_assert_not_reached();
2206 }
2207 }
2208
2209 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2210 uint64_t *data, unsigned size,
2211 MemTxAttrs attrs)
2212 {
2213 NVICState *s = (NVICState *)opaque;
2214 uint32_t offset = addr;
2215 unsigned i, startvec, end;
2216 uint32_t val;
2217
2218 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2219 /* Generate BusFault for unprivileged accesses */
2220 return MEMTX_ERROR;
2221 }
2222
2223 switch (offset) {
2224 /* reads of set and clear both return the status */
2225 case 0x100 ... 0x13f: /* NVIC Set enable */
2226 offset += 0x80;
2227 /* fall through */
2228 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2229 val = 0;
2230 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2231
2232 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2233 if (s->vectors[startvec + i].enabled &&
2234 (attrs.secure || s->itns[startvec + i])) {
2235 val |= (1 << i);
2236 }
2237 }
2238 break;
2239 case 0x200 ... 0x23f: /* NVIC Set pend */
2240 offset += 0x80;
2241 /* fall through */
2242 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2243 val = 0;
2244 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2245 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2246 if (s->vectors[startvec + i].pending &&
2247 (attrs.secure || s->itns[startvec + i])) {
2248 val |= (1 << i);
2249 }
2250 }
2251 break;
2252 case 0x300 ... 0x33f: /* NVIC Active */
2253 val = 0;
2254
2255 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2256 break;
2257 }
2258
2259 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2260
2261 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2262 if (s->vectors[startvec + i].active &&
2263 (attrs.secure || s->itns[startvec + i])) {
2264 val |= (1 << i);
2265 }
2266 }
2267 break;
2268 case 0x400 ... 0x5ef: /* NVIC Priority */
2269 val = 0;
2270 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2271
2272 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2273 if (attrs.secure || s->itns[startvec + i]) {
2274 val |= s->vectors[startvec + i].prio << (8 * i);
2275 }
2276 }
2277 break;
2278 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2279 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2280 val = 0;
2281 break;
2282 }
2283 /* fall through */
2284 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2285 val = 0;
2286 for (i = 0; i < size; i++) {
2287 unsigned hdlidx = (offset - 0xd14) + i;
2288 int sbank = shpr_bank(s, hdlidx, attrs);
2289
2290 if (sbank < 0) {
2291 continue;
2292 }
2293 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2294 }
2295 break;
2296 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2297 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2298 val = 0;
2299 break;
2300 };
2301 /*
2302 * The BFSR bits [15:8] are shared between security states
2303 * and we store them in the NS copy. They are RAZ/WI for
2304 * NS code if AIRCR.BFHFNMINS is 0.
2305 */
2306 val = s->cpu->env.v7m.cfsr[attrs.secure];
2307 if (!attrs.secure &&
2308 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2309 val &= ~R_V7M_CFSR_BFSR_MASK;
2310 } else {
2311 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2312 }
2313 val = extract32(val, (offset - 0xd28) * 8, size * 8);
2314 break;
2315 case 0xfe0 ... 0xfff: /* ID. */
2316 if (offset & 3) {
2317 val = 0;
2318 } else {
2319 val = nvic_id[(offset - 0xfe0) >> 2];
2320 }
2321 break;
2322 default:
2323 if (size == 4) {
2324 val = nvic_readl(s, offset, attrs);
2325 } else {
2326 qemu_log_mask(LOG_GUEST_ERROR,
2327 "NVIC: Bad read of size %d at offset 0x%x\n",
2328 size, offset);
2329 val = 0;
2330 }
2331 }
2332
2333 trace_nvic_sysreg_read(addr, val, size);
2334 *data = val;
2335 return MEMTX_OK;
2336 }
2337
2338 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2339 uint64_t value, unsigned size,
2340 MemTxAttrs attrs)
2341 {
2342 NVICState *s = (NVICState *)opaque;
2343 uint32_t offset = addr;
2344 unsigned i, startvec, end;
2345 unsigned setval = 0;
2346
2347 trace_nvic_sysreg_write(addr, value, size);
2348
2349 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2350 /* Generate BusFault for unprivileged accesses */
2351 return MEMTX_ERROR;
2352 }
2353
2354 switch (offset) {
2355 case 0x100 ... 0x13f: /* NVIC Set enable */
2356 offset += 0x80;
2357 setval = 1;
2358 /* fall through */
2359 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2360 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2361
2362 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2363 if (value & (1 << i) &&
2364 (attrs.secure || s->itns[startvec + i])) {
2365 s->vectors[startvec + i].enabled = setval;
2366 }
2367 }
2368 nvic_irq_update(s);
2369 goto exit_ok;
2370 case 0x200 ... 0x23f: /* NVIC Set pend */
2371 /* the special logic in armv7m_nvic_set_pending()
2372 * is not needed since IRQs are never escalated
2373 */
2374 offset += 0x80;
2375 setval = 1;
2376 /* fall through */
2377 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2378 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2379
2380 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2381 /*
2382 * Note that if the input line is still held high and the interrupt
2383 * is not active then rule R_CVJS requires that the Pending state
2384 * remains set; in that case we mustn't let it be cleared.
2385 */
2386 if (value & (1 << i) &&
2387 (attrs.secure || s->itns[startvec + i]) &&
2388 !(setval == 0 && s->vectors[startvec + i].level &&
2389 !s->vectors[startvec + i].active)) {
2390 s->vectors[startvec + i].pending = setval;
2391 }
2392 }
2393 nvic_irq_update(s);
2394 goto exit_ok;
2395 case 0x300 ... 0x33f: /* NVIC Active */
2396 goto exit_ok; /* R/O */
2397 case 0x400 ... 0x5ef: /* NVIC Priority */
2398 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2399
2400 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2401 if (attrs.secure || s->itns[startvec + i]) {
2402 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2403 }
2404 }
2405 nvic_irq_update(s);
2406 goto exit_ok;
2407 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2408 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2409 goto exit_ok;
2410 }
2411 /* fall through */
2412 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2413 for (i = 0; i < size; i++) {
2414 unsigned hdlidx = (offset - 0xd14) + i;
2415 int newprio = extract32(value, i * 8, 8);
2416 int sbank = shpr_bank(s, hdlidx, attrs);
2417
2418 if (sbank < 0) {
2419 continue;
2420 }
2421 set_prio(s, hdlidx, sbank, newprio);
2422 }
2423 nvic_irq_update(s);
2424 goto exit_ok;
2425 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2426 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2427 goto exit_ok;
2428 }
2429 /* All bits are W1C, so construct 32 bit value with 0s in
2430 * the parts not written by the access size
2431 */
2432 value <<= ((offset - 0xd28) * 8);
2433
2434 if (!attrs.secure &&
2435 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2436 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2437 value &= ~R_V7M_CFSR_BFSR_MASK;
2438 }
2439
2440 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2441 if (attrs.secure) {
2442 /* The BFSR bits [15:8] are shared between security states
2443 * and we store them in the NS copy.
2444 */
2445 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2446 }
2447 goto exit_ok;
2448 }
2449 if (size == 4) {
2450 nvic_writel(s, offset, value, attrs);
2451 goto exit_ok;
2452 }
2453 qemu_log_mask(LOG_GUEST_ERROR,
2454 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2455 /* This is UNPREDICTABLE; treat as RAZ/WI */
2456
2457 exit_ok:
2458 if (tcg_enabled()) {
2459 /* Ensure any changes made are reflected in the cached hflags. */
2460 arm_rebuild_hflags(&s->cpu->env);
2461 }
2462 return MEMTX_OK;
2463 }
2464
2465 static const MemoryRegionOps nvic_sysreg_ops = {
2466 .read_with_attrs = nvic_sysreg_read,
2467 .write_with_attrs = nvic_sysreg_write,
2468 .endianness = DEVICE_NATIVE_ENDIAN,
2469 };
2470
2471 static int nvic_post_load(void *opaque, int version_id)
2472 {
2473 NVICState *s = opaque;
2474 unsigned i;
2475 int resetprio;
2476
2477 /* Check for out of range priority settings */
2478 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2479
2480 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2481 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2482 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2483 return 1;
2484 }
2485 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2486 if (s->vectors[i].prio & ~0xff) {
2487 return 1;
2488 }
2489 }
2490
2491 nvic_recompute_state(s);
2492
2493 return 0;
2494 }
2495
2496 static const VMStateDescription vmstate_VecInfo = {
2497 .name = "armv7m_nvic_info",
2498 .version_id = 1,
2499 .minimum_version_id = 1,
2500 .fields = (VMStateField[]) {
2501 VMSTATE_INT16(prio, VecInfo),
2502 VMSTATE_UINT8(enabled, VecInfo),
2503 VMSTATE_UINT8(pending, VecInfo),
2504 VMSTATE_UINT8(active, VecInfo),
2505 VMSTATE_UINT8(level, VecInfo),
2506 VMSTATE_END_OF_LIST()
2507 }
2508 };
2509
2510 static bool nvic_security_needed(void *opaque)
2511 {
2512 NVICState *s = opaque;
2513
2514 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2515 }
2516
2517 static int nvic_security_post_load(void *opaque, int version_id)
2518 {
2519 NVICState *s = opaque;
2520 int i;
2521
2522 /* Check for out of range priority settings */
2523 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2524 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2525 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2526 * if the CPU state has been migrated yet; a mismatch won't
2527 * cause the emulation to blow up, though.
2528 */
2529 return 1;
2530 }
2531 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2532 if (s->sec_vectors[i].prio & ~0xff) {
2533 return 1;
2534 }
2535 }
2536 return 0;
2537 }
2538
2539 static const VMStateDescription vmstate_nvic_security = {
2540 .name = "armv7m_nvic/m-security",
2541 .version_id = 1,
2542 .minimum_version_id = 1,
2543 .needed = nvic_security_needed,
2544 .post_load = &nvic_security_post_load,
2545 .fields = (VMStateField[]) {
2546 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2547 vmstate_VecInfo, VecInfo),
2548 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2549 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2550 VMSTATE_END_OF_LIST()
2551 }
2552 };
2553
2554 static const VMStateDescription vmstate_nvic = {
2555 .name = "armv7m_nvic",
2556 .version_id = 4,
2557 .minimum_version_id = 4,
2558 .post_load = &nvic_post_load,
2559 .fields = (VMStateField[]) {
2560 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2561 vmstate_VecInfo, VecInfo),
2562 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2563 VMSTATE_END_OF_LIST()
2564 },
2565 .subsections = (const VMStateDescription*[]) {
2566 &vmstate_nvic_security,
2567 NULL
2568 }
2569 };
2570
2571 static Property props_nvic[] = {
2572 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2573 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2574 DEFINE_PROP_END_OF_LIST()
2575 };
2576
2577 static void armv7m_nvic_reset(DeviceState *dev)
2578 {
2579 int resetprio;
2580 NVICState *s = NVIC(dev);
2581
2582 memset(s->vectors, 0, sizeof(s->vectors));
2583 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2584 s->prigroup[M_REG_NS] = 0;
2585 s->prigroup[M_REG_S] = 0;
2586
2587 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2588 /* MEM, BUS, and USAGE are enabled through
2589 * the System Handler Control register
2590 */
2591 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2592 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2593 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2594
2595 /* DebugMonitor is enabled via DEMCR.MON_EN */
2596 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2597
2598 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2599 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2600 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2601 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2602
2603 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2604 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2605 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2606 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2607 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2608
2609 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2610 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2611 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2612 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2613 } else {
2614 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2615 }
2616
2617 /* Strictly speaking the reset handler should be enabled.
2618 * However, we don't simulate soft resets through the NVIC,
2619 * and the reset vector should never be pended.
2620 * So we leave it disabled to catch logic errors.
2621 */
2622
2623 s->exception_prio = NVIC_NOEXC_PRIO;
2624 s->vectpending = 0;
2625 s->vectpending_is_s_banked = false;
2626 s->vectpending_prio = NVIC_NOEXC_PRIO;
2627
2628 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2629 memset(s->itns, 0, sizeof(s->itns));
2630 } else {
2631 /* This state is constant and not guest accessible in a non-security
2632 * NVIC; we set the bits to true to avoid having to do a feature
2633 * bit check in the NVIC enable/pend/etc register accessors.
2634 */
2635 int i;
2636
2637 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2638 s->itns[i] = true;
2639 }
2640 }
2641
2642 if (tcg_enabled()) {
2643 /*
2644 * We updated state that affects the CPU's MMUidx and thus its
2645 * hflags; and we can't guarantee that we run before the CPU
2646 * reset function.
2647 */
2648 arm_rebuild_hflags(&s->cpu->env);
2649 }
2650 }
2651
2652 static void nvic_systick_trigger(void *opaque, int n, int level)
2653 {
2654 NVICState *s = opaque;
2655
2656 if (level) {
2657 /* SysTick just asked us to pend its exception.
2658 * (This is different from an external interrupt line's
2659 * behaviour.)
2660 * n == 0 : NonSecure systick
2661 * n == 1 : Secure systick
2662 */
2663 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2664 }
2665 }
2666
2667 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2668 {
2669 NVICState *s = NVIC(dev);
2670
2671 /* The armv7m container object will have set our CPU pointer */
2672 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2673 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2674 return;
2675 }
2676
2677 if (s->num_irq > NVIC_MAX_IRQ) {
2678 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2679 return;
2680 }
2681
2682 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2683
2684 /* include space for internal exception vectors */
2685 s->num_irq += NVIC_FIRST_IRQ;
2686
2687 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2688
2689 /*
2690 * This device provides a single memory region which covers the
2691 * sysreg/NVIC registers from 0xE000E000 .. 0xE000EFFF, with the
2692 * exception of the systick timer registers 0xE000E010 .. 0xE000E0FF.
2693 */
2694 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2695 "nvic_sysregs", 0x1000);
2696 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->sysregmem);
2697 }
2698
2699 static void armv7m_nvic_instance_init(Object *obj)
2700 {
2701 DeviceState *dev = DEVICE(obj);
2702 NVICState *nvic = NVIC(obj);
2703 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2704
2705 sysbus_init_irq(sbd, &nvic->excpout);
2706 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2707 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2708 M_REG_NUM_BANKS);
2709 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2710 }
2711
2712 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2713 {
2714 DeviceClass *dc = DEVICE_CLASS(klass);
2715
2716 dc->vmsd = &vmstate_nvic;
2717 device_class_set_props(dc, props_nvic);
2718 dc->reset = armv7m_nvic_reset;
2719 dc->realize = armv7m_nvic_realize;
2720 }
2721
2722 static const TypeInfo armv7m_nvic_info = {
2723 .name = TYPE_NVIC,
2724 .parent = TYPE_SYS_BUS_DEVICE,
2725 .instance_init = armv7m_nvic_instance_init,
2726 .instance_size = sizeof(NVICState),
2727 .class_init = armv7m_nvic_class_init,
2728 .class_size = sizeof(SysBusDeviceClass),
2729 };
2730
2731 static void armv7m_nvic_register_types(void)
2732 {
2733 type_register_static(&armv7m_nvic_info);
2734 }
2735
2736 type_init(armv7m_nvic_register_types)