]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/pnv_xive.c
docs/devel/testing: Fix typo in dockerfile path
[mirror_qemu.git] / hw / intc / pnv_xive.c
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2019, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "monitor/monitor.h"
18 #include "hw/ppc/fdt.h"
19 #include "hw/ppc/pnv.h"
20 #include "hw/ppc/pnv_core.h"
21 #include "hw/ppc/pnv_xscom.h"
22 #include "hw/ppc/pnv_xive.h"
23 #include "hw/ppc/xive_regs.h"
24 #include "hw/ppc/ppc.h"
25
26 #include <libfdt.h>
27
28 #include "pnv_xive_regs.h"
29
30 #define XIVE_DEBUG
31
32 /*
33 * Virtual structures table (VST)
34 */
35 #define SBE_PER_BYTE 4
36
37 typedef struct XiveVstInfo {
38 const char *name;
39 uint32_t size;
40 uint32_t max_blocks;
41 } XiveVstInfo;
42
43 static const XiveVstInfo vst_infos[] = {
44 [VST_TSEL_IVT] = { "EAT", sizeof(XiveEAS), 16 },
45 [VST_TSEL_SBE] = { "SBE", 1, 16 },
46 [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
47 [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
48
49 /*
50 * Interrupt fifo backing store table (not modeled) :
51 *
52 * 0 - IPI,
53 * 1 - HWD,
54 * 2 - First escalate,
55 * 3 - Second escalate,
56 * 4 - Redistribution,
57 * 5 - IPI cascaded queue ?
58 */
59 [VST_TSEL_IRQ] = { "IRQ", 1, 6 },
60 };
61
62 #define xive_error(xive, fmt, ...) \
63 qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \
64 (xive)->chip->chip_id, ## __VA_ARGS__);
65
66 /*
67 * QEMU version of the GETFIELD/SETFIELD macros
68 *
69 * TODO: It might be better to use the existing extract64() and
70 * deposit64() but this means that all the register definitions will
71 * change and become incompatible with the ones found in skiboot.
72 *
73 * Keep it as it is for now until we find a common ground.
74 */
75 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
76 {
77 return (word & mask) >> ctz64(mask);
78 }
79
80 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
81 uint64_t value)
82 {
83 return (word & ~mask) | ((value << ctz64(mask)) & mask);
84 }
85
86 /*
87 * Remote access to controllers. HW uses MMIOs. For now, a simple scan
88 * of the chips is good enough.
89 *
90 * TODO: Block scope support
91 */
92 static PnvXive *pnv_xive_get_ic(uint8_t blk)
93 {
94 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
95 int i;
96
97 for (i = 0; i < pnv->num_chips; i++) {
98 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
99 PnvXive *xive = &chip9->xive;
100
101 if (xive->chip->chip_id == blk) {
102 return xive;
103 }
104 }
105 return NULL;
106 }
107
108 /*
109 * VST accessors for SBE, EAT, ENDT, NVT
110 *
111 * Indirect VST tables are arrays of VSDs pointing to a page (of same
112 * size). Each page is a direct VST table.
113 */
114
115 #define XIVE_VSD_SIZE 8
116
117 /* Indirect page size can be 4K, 64K, 2M, 16M. */
118 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
119 {
120 return page_shift == 12 || page_shift == 16 ||
121 page_shift == 21 || page_shift == 24;
122 }
123
124 static uint64_t pnv_xive_vst_size(uint64_t vsd)
125 {
126 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
127
128 /*
129 * Read the first descriptor to get the page size of the indirect
130 * table.
131 */
132 if (VSD_INDIRECT & vsd) {
133 uint32_t nr_pages = vst_tsize / XIVE_VSD_SIZE;
134 uint32_t page_shift;
135
136 vsd = ldq_be_dma(&address_space_memory, vsd & VSD_ADDRESS_MASK);
137 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
138
139 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
140 return 0;
141 }
142
143 return nr_pages * (1ull << page_shift);
144 }
145
146 return vst_tsize;
147 }
148
149 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
150 uint64_t vsd, uint32_t idx)
151 {
152 const XiveVstInfo *info = &vst_infos[type];
153 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
154
155 return vst_addr + idx * info->size;
156 }
157
158 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
159 uint64_t vsd, uint32_t idx)
160 {
161 const XiveVstInfo *info = &vst_infos[type];
162 uint64_t vsd_addr;
163 uint32_t vsd_idx;
164 uint32_t page_shift;
165 uint32_t vst_per_page;
166
167 /* Get the page size of the indirect table. */
168 vsd_addr = vsd & VSD_ADDRESS_MASK;
169 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
170
171 if (!(vsd & VSD_ADDRESS_MASK)) {
172 xive_error(xive, "VST: invalid %s entry %x !?", info->name, 0);
173 return 0;
174 }
175
176 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
177
178 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
179 xive_error(xive, "VST: invalid %s page shift %d", info->name,
180 page_shift);
181 return 0;
182 }
183
184 vst_per_page = (1ull << page_shift) / info->size;
185 vsd_idx = idx / vst_per_page;
186
187 /* Load the VSD we are looking for, if not already done */
188 if (vsd_idx) {
189 vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
190 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
191
192 if (!(vsd & VSD_ADDRESS_MASK)) {
193 xive_error(xive, "VST: invalid %s entry %x !?", info->name, 0);
194 return 0;
195 }
196
197 /*
198 * Check that the pages have a consistent size across the
199 * indirect table
200 */
201 if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
202 xive_error(xive, "VST: %s entry %x indirect page size differ !?",
203 info->name, idx);
204 return 0;
205 }
206 }
207
208 return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
209 }
210
211 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
212 uint32_t idx)
213 {
214 const XiveVstInfo *info = &vst_infos[type];
215 uint64_t vsd;
216 uint32_t idx_max;
217
218 if (blk >= info->max_blocks) {
219 xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
220 blk, info->name, idx);
221 return 0;
222 }
223
224 vsd = xive->vsds[type][blk];
225
226 /* Remote VST access */
227 if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
228 xive = pnv_xive_get_ic(blk);
229
230 return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
231 }
232
233 idx_max = pnv_xive_vst_size(vsd) / info->size - 1;
234 if (idx > idx_max) {
235 #ifdef XIVE_DEBUG
236 xive_error(xive, "VST: %s entry %x/%x out of range [ 0 .. %x ] !?",
237 info->name, blk, idx, idx_max);
238 #endif
239 return 0;
240 }
241
242 if (VSD_INDIRECT & vsd) {
243 return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
244 }
245
246 return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
247 }
248
249 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
250 uint32_t idx, void *data)
251 {
252 const XiveVstInfo *info = &vst_infos[type];
253 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
254
255 if (!addr) {
256 return -1;
257 }
258
259 cpu_physical_memory_read(addr, data, info->size);
260 return 0;
261 }
262
263 #define XIVE_VST_WORD_ALL -1
264
265 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
266 uint32_t idx, void *data, uint32_t word_number)
267 {
268 const XiveVstInfo *info = &vst_infos[type];
269 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
270
271 if (!addr) {
272 return -1;
273 }
274
275 if (word_number == XIVE_VST_WORD_ALL) {
276 cpu_physical_memory_write(addr, data, info->size);
277 } else {
278 cpu_physical_memory_write(addr + word_number * 4,
279 data + word_number * 4, 4);
280 }
281 return 0;
282 }
283
284 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
285 XiveEND *end)
286 {
287 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
288 }
289
290 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
291 XiveEND *end, uint8_t word_number)
292 {
293 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
294 word_number);
295 }
296
297 static int pnv_xive_end_update(PnvXive *xive, uint8_t blk, uint32_t idx)
298 {
299 int i;
300 uint64_t eqc_watch[4];
301
302 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
303 eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
304 }
305
306 return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
307 XIVE_VST_WORD_ALL);
308 }
309
310 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
311 XiveNVT *nvt)
312 {
313 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
314 }
315
316 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
317 XiveNVT *nvt, uint8_t word_number)
318 {
319 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
320 word_number);
321 }
322
323 static int pnv_xive_nvt_update(PnvXive *xive, uint8_t blk, uint32_t idx)
324 {
325 int i;
326 uint64_t vpc_watch[8];
327
328 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
329 vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
330 }
331
332 return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
333 XIVE_VST_WORD_ALL);
334 }
335
336 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
337 XiveEAS *eas)
338 {
339 PnvXive *xive = PNV_XIVE(xrtr);
340
341 if (pnv_xive_get_ic(blk) != xive) {
342 xive_error(xive, "VST: EAS %x is remote !?", XIVE_SRCNO(blk, idx));
343 return -1;
344 }
345
346 return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
347 }
348
349 static int pnv_xive_eas_update(PnvXive *xive, uint8_t blk, uint32_t idx)
350 {
351 /* All done. */
352 return 0;
353 }
354
355 static XiveTCTX *pnv_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
356 {
357 PowerPCCPU *cpu = POWERPC_CPU(cs);
358 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
359 PnvXive *xive = NULL;
360 CPUPPCState *env = &cpu->env;
361 int pir = env->spr_cb[SPR_PIR].default_value;
362
363 /*
364 * Perform an extra check on the HW thread enablement.
365 *
366 * The TIMA is shared among the chips and to identify the chip
367 * from which the access is being done, we extract the chip id
368 * from the PIR.
369 */
370 xive = pnv_xive_get_ic((pir >> 8) & 0xf);
371 if (!xive) {
372 return NULL;
373 }
374
375 if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) {
376 xive_error(PNV_XIVE(xrtr), "IC: CPU %x is not enabled", pir);
377 }
378
379 return tctx;
380 }
381
382 /*
383 * The internal sources (IPIs) of the interrupt controller have no
384 * knowledge of the XIVE chip on which they reside. Encode the block
385 * id in the source interrupt number before forwarding the source
386 * event notification to the Router. This is required on a multichip
387 * system.
388 */
389 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
390 {
391 PnvXive *xive = PNV_XIVE(xn);
392 uint8_t blk = xive->chip->chip_id;
393
394 xive_router_notify(xn, XIVE_SRCNO(blk, srcno));
395 }
396
397 /*
398 * XIVE helpers
399 */
400
401 static uint64_t pnv_xive_vc_size(PnvXive *xive)
402 {
403 return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
404 }
405
406 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
407 {
408 return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
409 }
410
411 static uint64_t pnv_xive_pc_size(PnvXive *xive)
412 {
413 return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
414 }
415
416 static uint32_t pnv_xive_nr_ipis(PnvXive *xive)
417 {
418 uint8_t blk = xive->chip->chip_id;
419
420 return pnv_xive_vst_size(xive->vsds[VST_TSEL_SBE][blk]) * SBE_PER_BYTE;
421 }
422
423 static uint32_t pnv_xive_nr_ends(PnvXive *xive)
424 {
425 uint8_t blk = xive->chip->chip_id;
426
427 return pnv_xive_vst_size(xive->vsds[VST_TSEL_EQDT][blk])
428 / vst_infos[VST_TSEL_EQDT].size;
429 }
430
431 /*
432 * EDT Table
433 *
434 * The Virtualization Controller MMIO region containing the IPI ESB
435 * pages and END ESB pages is sub-divided into "sets" which map
436 * portions of the VC region to the different ESB pages. It is
437 * configured at runtime through the EDT "Domain Table" to let the
438 * firmware decide how to split the VC address space between IPI ESB
439 * pages and END ESB pages.
440 */
441
442 /*
443 * Computes the overall size of the IPI or the END ESB pages
444 */
445 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
446 {
447 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
448 uint64_t size = 0;
449 int i;
450
451 for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
452 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
453
454 if (edt_type == type) {
455 size += edt_size;
456 }
457 }
458
459 return size;
460 }
461
462 /*
463 * Maps an offset of the VC region in the IPI or END region using the
464 * layout defined by the EDT "Domaine Table"
465 */
466 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
467 uint64_t type)
468 {
469 int i;
470 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
471 uint64_t edt_offset = vc_offset;
472
473 for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
474 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
475
476 if (edt_type != type) {
477 edt_offset -= edt_size;
478 }
479 }
480
481 return edt_offset;
482 }
483
484 static void pnv_xive_edt_resize(PnvXive *xive)
485 {
486 uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
487 uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
488
489 memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
490 memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
491
492 memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
493 memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
494 }
495
496 /*
497 * XIVE Table configuration. Only EDT is supported.
498 */
499 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
500 {
501 uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
502 uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
503 uint64_t *xive_table;
504 uint8_t max_index;
505
506 switch (tsel) {
507 case CQ_TAR_TSEL_BLK:
508 max_index = ARRAY_SIZE(xive->blk);
509 xive_table = xive->blk;
510 break;
511 case CQ_TAR_TSEL_MIG:
512 max_index = ARRAY_SIZE(xive->mig);
513 xive_table = xive->mig;
514 break;
515 case CQ_TAR_TSEL_EDT:
516 max_index = ARRAY_SIZE(xive->edt);
517 xive_table = xive->edt;
518 break;
519 case CQ_TAR_TSEL_VDT:
520 max_index = ARRAY_SIZE(xive->vdt);
521 xive_table = xive->vdt;
522 break;
523 default:
524 xive_error(xive, "IC: invalid table %d", (int) tsel);
525 return -1;
526 }
527
528 if (tsel_index >= max_index) {
529 xive_error(xive, "IC: invalid index %d", (int) tsel_index);
530 return -1;
531 }
532
533 xive_table[tsel_index] = val;
534
535 if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
536 xive->regs[CQ_TAR >> 3] =
537 SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
538 }
539
540 /*
541 * EDT configuration is complete. Resize the MMIO windows exposing
542 * the IPI and the END ESBs in the VC region.
543 */
544 if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
545 pnv_xive_edt_resize(xive);
546 }
547
548 return 0;
549 }
550
551 /*
552 * Virtual Structure Tables (VST) configuration
553 */
554 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
555 uint8_t blk, uint64_t vsd)
556 {
557 XiveENDSource *end_xsrc = &xive->end_source;
558 XiveSource *xsrc = &xive->ipi_source;
559 const XiveVstInfo *info = &vst_infos[type];
560 uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
561 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
562
563 /* Basic checks */
564
565 if (VSD_INDIRECT & vsd) {
566 if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
567 xive_error(xive, "VST: %s indirect tables are not enabled",
568 info->name);
569 return;
570 }
571
572 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
573 xive_error(xive, "VST: invalid %s page shift %d", info->name,
574 page_shift);
575 return;
576 }
577 }
578
579 if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
580 xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
581 " page shift %d", info->name, vst_addr, page_shift);
582 return;
583 }
584
585 /* Record the table configuration (in SRAM on HW) */
586 xive->vsds[type][blk] = vsd;
587
588 /* Now tune the models with the configuration provided by the FW */
589
590 switch (type) {
591 case VST_TSEL_IVT: /* Nothing to be done */
592 break;
593
594 case VST_TSEL_EQDT:
595 /*
596 * Backing store pages for the END. Compute the number of ENDs
597 * provisioned by FW and resize the END ESB window accordingly.
598 */
599 memory_region_set_size(&end_xsrc->esb_mmio, pnv_xive_nr_ends(xive) *
600 (1ull << (end_xsrc->esb_shift + 1)));
601 memory_region_add_subregion(&xive->end_edt_mmio, 0,
602 &end_xsrc->esb_mmio);
603 break;
604
605 case VST_TSEL_SBE:
606 /*
607 * Backing store pages for the source PQ bits. The model does
608 * not use these PQ bits backed in RAM because the XiveSource
609 * model has its own. Compute the number of IRQs provisioned
610 * by FW and resize the IPI ESB window accordingly.
611 */
612 memory_region_set_size(&xsrc->esb_mmio, pnv_xive_nr_ipis(xive) *
613 (1ull << xsrc->esb_shift));
614 memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
615 break;
616
617 case VST_TSEL_VPDT: /* Not modeled */
618 case VST_TSEL_IRQ: /* Not modeled */
619 /*
620 * These tables contains the backing store pages for the
621 * interrupt fifos of the VC sub-engine in case of overflow.
622 */
623 break;
624
625 default:
626 g_assert_not_reached();
627 }
628 }
629
630 /*
631 * Both PC and VC sub-engines are configured as each use the Virtual
632 * Structure Tables : SBE, EAS, END and NVT.
633 */
634 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
635 {
636 uint8_t mode = GETFIELD(VSD_MODE, vsd);
637 uint8_t type = GETFIELD(VST_TABLE_SELECT,
638 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
639 uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
640 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
641 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
642
643 if (type > VST_TSEL_IRQ) {
644 xive_error(xive, "VST: invalid table type %d", type);
645 return;
646 }
647
648 if (blk >= vst_infos[type].max_blocks) {
649 xive_error(xive, "VST: invalid block id %d for"
650 " %s table", blk, vst_infos[type].name);
651 return;
652 }
653
654 /*
655 * Only take the VC sub-engine configuration into account because
656 * the XiveRouter model combines both VC and PC sub-engines
657 */
658 if (pc_engine) {
659 return;
660 }
661
662 if (!vst_addr) {
663 xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
664 return;
665 }
666
667 switch (mode) {
668 case VSD_MODE_FORWARD:
669 xive->vsds[type][blk] = vsd;
670 break;
671
672 case VSD_MODE_EXCLUSIVE:
673 pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
674 break;
675
676 default:
677 xive_error(xive, "VST: unsupported table mode %d", mode);
678 return;
679 }
680 }
681
682 /*
683 * Interrupt controller MMIO region. The layout is compatible between
684 * 4K and 64K pages :
685 *
686 * Page 0 sub-engine BARs
687 * 0x000 - 0x3FF IC registers
688 * 0x400 - 0x7FF PC registers
689 * 0x800 - 0xFFF VC registers
690 *
691 * Page 1 Notify page (writes only)
692 * 0x000 - 0x7FF HW interrupt triggers (PSI, PHB)
693 * 0x800 - 0xFFF forwards and syncs
694 *
695 * Page 2 LSI Trigger page (writes only) (not modeled)
696 * Page 3 LSI SB EOI page (reads only) (not modeled)
697 *
698 * Page 4-7 indirect TIMA
699 */
700
701 /*
702 * IC - registers MMIO
703 */
704 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
705 uint64_t val, unsigned size)
706 {
707 PnvXive *xive = PNV_XIVE(opaque);
708 MemoryRegion *sysmem = get_system_memory();
709 uint32_t reg = offset >> 3;
710 bool is_chip0 = xive->chip->chip_id == 0;
711
712 switch (offset) {
713
714 /*
715 * XIVE CQ (PowerBus bridge) settings
716 */
717 case CQ_MSGSND: /* msgsnd for doorbells */
718 case CQ_FIRMASK_OR: /* FIR error reporting */
719 break;
720 case CQ_PBI_CTL:
721 if (val & CQ_PBI_PC_64K) {
722 xive->pc_shift = 16;
723 }
724 if (val & CQ_PBI_VC_64K) {
725 xive->vc_shift = 16;
726 }
727 break;
728 case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
729 /*
730 * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
731 */
732 break;
733
734 /*
735 * XIVE Virtualization Controller settings
736 */
737 case VC_GLOBAL_CONFIG:
738 break;
739
740 /*
741 * XIVE Presenter Controller settings
742 */
743 case PC_GLOBAL_CONFIG:
744 /*
745 * PC_GCONF_CHIPID_OVR
746 * Overrides Int command Chip ID with the Chip ID field (DEBUG)
747 */
748 break;
749 case PC_TCTXT_CFG:
750 /*
751 * TODO: block group support
752 *
753 * PC_TCTXT_CFG_BLKGRP_EN
754 * PC_TCTXT_CFG_HARD_CHIPID_BLK :
755 * Moves the chipid into block field for hardwired CAM compares.
756 * Block offset value is adjusted to 0b0..01 & ThrdId
757 *
758 * Will require changes in xive_presenter_tctx_match(). I am
759 * not sure how to handle that yet.
760 */
761
762 /* Overrides hardwired chip ID with the chip ID field */
763 if (val & PC_TCTXT_CHIPID_OVERRIDE) {
764 xive->tctx_chipid = GETFIELD(PC_TCTXT_CHIPID, val);
765 }
766 break;
767 case PC_TCTXT_TRACK:
768 /*
769 * PC_TCTXT_TRACK_EN:
770 * enable block tracking and exchange of block ownership
771 * information between Interrupt controllers
772 */
773 break;
774
775 /*
776 * Misc settings
777 */
778 case VC_SBC_CONFIG: /* Store EOI configuration */
779 /*
780 * Configure store EOI if required by firwmare (skiboot has removed
781 * support recently though)
782 */
783 if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
784 object_property_set_int(OBJECT(&xive->ipi_source),
785 XIVE_SRC_STORE_EOI, "flags", &error_fatal);
786 }
787 break;
788
789 case VC_EQC_CONFIG: /* TODO: silent escalation */
790 case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
791 break;
792
793 /*
794 * XIVE BAR settings (XSCOM only)
795 */
796 case CQ_RST_CTL:
797 /* bit4: resets all BAR registers */
798 break;
799
800 case CQ_IC_BAR: /* IC BAR. 8 pages */
801 xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
802 if (!(val & CQ_IC_BAR_VALID)) {
803 xive->ic_base = 0;
804 if (xive->regs[reg] & CQ_IC_BAR_VALID) {
805 memory_region_del_subregion(&xive->ic_mmio,
806 &xive->ic_reg_mmio);
807 memory_region_del_subregion(&xive->ic_mmio,
808 &xive->ic_notify_mmio);
809 memory_region_del_subregion(&xive->ic_mmio,
810 &xive->ic_lsi_mmio);
811 memory_region_del_subregion(&xive->ic_mmio,
812 &xive->tm_indirect_mmio);
813
814 memory_region_del_subregion(sysmem, &xive->ic_mmio);
815 }
816 } else {
817 xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
818 if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
819 memory_region_add_subregion(sysmem, xive->ic_base,
820 &xive->ic_mmio);
821
822 memory_region_add_subregion(&xive->ic_mmio, 0,
823 &xive->ic_reg_mmio);
824 memory_region_add_subregion(&xive->ic_mmio,
825 1ul << xive->ic_shift,
826 &xive->ic_notify_mmio);
827 memory_region_add_subregion(&xive->ic_mmio,
828 2ul << xive->ic_shift,
829 &xive->ic_lsi_mmio);
830 memory_region_add_subregion(&xive->ic_mmio,
831 4ull << xive->ic_shift,
832 &xive->tm_indirect_mmio);
833 }
834 }
835 break;
836
837 case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
838 case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
839 xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
840 if (!(val & CQ_TM_BAR_VALID)) {
841 xive->tm_base = 0;
842 if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
843 memory_region_del_subregion(sysmem, &xive->tm_mmio);
844 }
845 } else {
846 xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
847 if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
848 memory_region_add_subregion(sysmem, xive->tm_base,
849 &xive->tm_mmio);
850 }
851 }
852 break;
853
854 case CQ_PC_BARM:
855 xive->regs[reg] = val;
856 memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
857 break;
858 case CQ_PC_BAR: /* From 32M to 512G */
859 if (!(val & CQ_PC_BAR_VALID)) {
860 xive->pc_base = 0;
861 if (xive->regs[reg] & CQ_PC_BAR_VALID) {
862 memory_region_del_subregion(sysmem, &xive->pc_mmio);
863 }
864 } else {
865 xive->pc_base = val & ~(CQ_PC_BAR_VALID);
866 if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
867 memory_region_add_subregion(sysmem, xive->pc_base,
868 &xive->pc_mmio);
869 }
870 }
871 break;
872
873 case CQ_VC_BARM:
874 xive->regs[reg] = val;
875 memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
876 break;
877 case CQ_VC_BAR: /* From 64M to 4TB */
878 if (!(val & CQ_VC_BAR_VALID)) {
879 xive->vc_base = 0;
880 if (xive->regs[reg] & CQ_VC_BAR_VALID) {
881 memory_region_del_subregion(sysmem, &xive->vc_mmio);
882 }
883 } else {
884 xive->vc_base = val & ~(CQ_VC_BAR_VALID);
885 if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
886 memory_region_add_subregion(sysmem, xive->vc_base,
887 &xive->vc_mmio);
888 }
889 }
890 break;
891
892 /*
893 * XIVE Table settings.
894 */
895 case CQ_TAR: /* Table Address */
896 break;
897 case CQ_TDR: /* Table Data */
898 pnv_xive_table_set_data(xive, val);
899 break;
900
901 /*
902 * XIVE VC & PC Virtual Structure Table settings
903 */
904 case VC_VSD_TABLE_ADDR:
905 case PC_VSD_TABLE_ADDR: /* Virtual table selector */
906 break;
907 case VC_VSD_TABLE_DATA: /* Virtual table setting */
908 case PC_VSD_TABLE_DATA:
909 pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
910 break;
911
912 /*
913 * Interrupt fifo overflow in memory backing store (Not modeled)
914 */
915 case VC_IRQ_CONFIG_IPI:
916 case VC_IRQ_CONFIG_HW:
917 case VC_IRQ_CONFIG_CASCADE1:
918 case VC_IRQ_CONFIG_CASCADE2:
919 case VC_IRQ_CONFIG_REDIST:
920 case VC_IRQ_CONFIG_IPI_CASC:
921 break;
922
923 /*
924 * XIVE hardware thread enablement
925 */
926 case PC_THREAD_EN_REG0: /* Physical Thread Enable */
927 case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
928 break;
929
930 case PC_THREAD_EN_REG0_SET:
931 xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
932 break;
933 case PC_THREAD_EN_REG1_SET:
934 xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
935 break;
936 case PC_THREAD_EN_REG0_CLR:
937 xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
938 break;
939 case PC_THREAD_EN_REG1_CLR:
940 xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
941 break;
942
943 /*
944 * Indirect TIMA access set up. Defines the PIR of the HW thread
945 * to use.
946 */
947 case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
948 break;
949
950 /*
951 * XIVE PC & VC cache updates for EAS, NVT and END
952 */
953 case VC_IVC_SCRUB_MASK:
954 break;
955 case VC_IVC_SCRUB_TRIG:
956 pnv_xive_eas_update(xive, GETFIELD(PC_SCRUB_BLOCK_ID, val),
957 GETFIELD(VC_SCRUB_OFFSET, val));
958 break;
959
960 case VC_EQC_SCRUB_MASK:
961 case VC_EQC_CWATCH_SPEC:
962 case VC_EQC_CWATCH_DAT0 ... VC_EQC_CWATCH_DAT3:
963 break;
964 case VC_EQC_SCRUB_TRIG:
965 pnv_xive_end_update(xive, GETFIELD(VC_SCRUB_BLOCK_ID, val),
966 GETFIELD(VC_SCRUB_OFFSET, val));
967 break;
968
969 case PC_VPC_SCRUB_MASK:
970 case PC_VPC_CWATCH_SPEC:
971 case PC_VPC_CWATCH_DAT0 ... PC_VPC_CWATCH_DAT7:
972 break;
973 case PC_VPC_SCRUB_TRIG:
974 pnv_xive_nvt_update(xive, GETFIELD(PC_SCRUB_BLOCK_ID, val),
975 GETFIELD(PC_SCRUB_OFFSET, val));
976 break;
977
978
979 /*
980 * XIVE PC & VC cache invalidation
981 */
982 case PC_AT_KILL:
983 break;
984 case VC_AT_MACRO_KILL:
985 break;
986 case PC_AT_KILL_MASK:
987 case VC_AT_MACRO_KILL_MASK:
988 break;
989
990 default:
991 xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
992 return;
993 }
994
995 xive->regs[reg] = val;
996 }
997
998 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
999 {
1000 PnvXive *xive = PNV_XIVE(opaque);
1001 uint64_t val = 0;
1002 uint32_t reg = offset >> 3;
1003
1004 switch (offset) {
1005 case CQ_CFG_PB_GEN:
1006 case CQ_IC_BAR:
1007 case CQ_TM1_BAR:
1008 case CQ_TM2_BAR:
1009 case CQ_PC_BAR:
1010 case CQ_PC_BARM:
1011 case CQ_VC_BAR:
1012 case CQ_VC_BARM:
1013 case CQ_TAR:
1014 case CQ_TDR:
1015 case CQ_PBI_CTL:
1016
1017 case PC_TCTXT_CFG:
1018 case PC_TCTXT_TRACK:
1019 case PC_TCTXT_INDIR0:
1020 case PC_TCTXT_INDIR1:
1021 case PC_TCTXT_INDIR2:
1022 case PC_TCTXT_INDIR3:
1023 case PC_GLOBAL_CONFIG:
1024
1025 case PC_VPC_SCRUB_MASK:
1026 case PC_VPC_CWATCH_SPEC:
1027 case PC_VPC_CWATCH_DAT0:
1028 case PC_VPC_CWATCH_DAT1:
1029 case PC_VPC_CWATCH_DAT2:
1030 case PC_VPC_CWATCH_DAT3:
1031 case PC_VPC_CWATCH_DAT4:
1032 case PC_VPC_CWATCH_DAT5:
1033 case PC_VPC_CWATCH_DAT6:
1034 case PC_VPC_CWATCH_DAT7:
1035
1036 case VC_GLOBAL_CONFIG:
1037 case VC_AIB_TX_ORDER_TAG2:
1038
1039 case VC_IRQ_CONFIG_IPI:
1040 case VC_IRQ_CONFIG_HW:
1041 case VC_IRQ_CONFIG_CASCADE1:
1042 case VC_IRQ_CONFIG_CASCADE2:
1043 case VC_IRQ_CONFIG_REDIST:
1044 case VC_IRQ_CONFIG_IPI_CASC:
1045
1046 case VC_EQC_SCRUB_MASK:
1047 case VC_EQC_CWATCH_DAT0:
1048 case VC_EQC_CWATCH_DAT1:
1049 case VC_EQC_CWATCH_DAT2:
1050 case VC_EQC_CWATCH_DAT3:
1051
1052 case VC_EQC_CWATCH_SPEC:
1053 case VC_IVC_SCRUB_MASK:
1054 case VC_SBC_CONFIG:
1055 case VC_AT_MACRO_KILL_MASK:
1056 case VC_VSD_TABLE_ADDR:
1057 case PC_VSD_TABLE_ADDR:
1058 case VC_VSD_TABLE_DATA:
1059 case PC_VSD_TABLE_DATA:
1060 case PC_THREAD_EN_REG0:
1061 case PC_THREAD_EN_REG1:
1062 val = xive->regs[reg];
1063 break;
1064
1065 /*
1066 * XIVE hardware thread enablement
1067 */
1068 case PC_THREAD_EN_REG0_SET:
1069 case PC_THREAD_EN_REG0_CLR:
1070 val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1071 break;
1072 case PC_THREAD_EN_REG1_SET:
1073 case PC_THREAD_EN_REG1_CLR:
1074 val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1075 break;
1076
1077 case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1078 val = 0xffffff0000000000;
1079 break;
1080
1081 /*
1082 * XIVE PC & VC cache updates for EAS, NVT and END
1083 */
1084 case PC_VPC_SCRUB_TRIG:
1085 case VC_IVC_SCRUB_TRIG:
1086 case VC_EQC_SCRUB_TRIG:
1087 xive->regs[reg] &= ~VC_SCRUB_VALID;
1088 val = xive->regs[reg];
1089 break;
1090
1091 /*
1092 * XIVE PC & VC cache invalidation
1093 */
1094 case PC_AT_KILL:
1095 xive->regs[reg] &= ~PC_AT_KILL_VALID;
1096 val = xive->regs[reg];
1097 break;
1098 case VC_AT_MACRO_KILL:
1099 xive->regs[reg] &= ~VC_KILL_VALID;
1100 val = xive->regs[reg];
1101 break;
1102
1103 /*
1104 * XIVE synchronisation
1105 */
1106 case VC_EQC_CONFIG:
1107 val = VC_EQC_SYNC_MASK;
1108 break;
1109
1110 default:
1111 xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1112 }
1113
1114 return val;
1115 }
1116
1117 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1118 .read = pnv_xive_ic_reg_read,
1119 .write = pnv_xive_ic_reg_write,
1120 .endianness = DEVICE_BIG_ENDIAN,
1121 .valid = {
1122 .min_access_size = 8,
1123 .max_access_size = 8,
1124 },
1125 .impl = {
1126 .min_access_size = 8,
1127 .max_access_size = 8,
1128 },
1129 };
1130
1131 /*
1132 * IC - Notify MMIO port page (write only)
1133 */
1134 #define PNV_XIVE_FORWARD_IPI 0x800 /* Forward IPI */
1135 #define PNV_XIVE_FORWARD_HW 0x880 /* Forward HW */
1136 #define PNV_XIVE_FORWARD_OS_ESC 0x900 /* Forward OS escalation */
1137 #define PNV_XIVE_FORWARD_HW_ESC 0x980 /* Forward Hyp escalation */
1138 #define PNV_XIVE_FORWARD_REDIS 0xa00 /* Forward Redistribution */
1139 #define PNV_XIVE_RESERVED5 0xa80 /* Cache line 5 PowerBUS operation */
1140 #define PNV_XIVE_RESERVED6 0xb00 /* Cache line 6 PowerBUS operation */
1141 #define PNV_XIVE_RESERVED7 0xb80 /* Cache line 7 PowerBUS operation */
1142
1143 /* VC synchronisation */
1144 #define PNV_XIVE_SYNC_IPI 0xc00 /* Sync IPI */
1145 #define PNV_XIVE_SYNC_HW 0xc80 /* Sync HW */
1146 #define PNV_XIVE_SYNC_OS_ESC 0xd00 /* Sync OS escalation */
1147 #define PNV_XIVE_SYNC_HW_ESC 0xd80 /* Sync Hyp escalation */
1148 #define PNV_XIVE_SYNC_REDIS 0xe00 /* Sync Redistribution */
1149
1150 /* PC synchronisation */
1151 #define PNV_XIVE_SYNC_PULL 0xe80 /* Sync pull context */
1152 #define PNV_XIVE_SYNC_PUSH 0xf00 /* Sync push context */
1153 #define PNV_XIVE_SYNC_VPC 0xf80 /* Sync remove VPC store */
1154
1155 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1156 {
1157 /*
1158 * Forward the source event notification directly to the Router.
1159 * The source interrupt number should already be correctly encoded
1160 * with the chip block id by the sending device (PHB, PSI).
1161 */
1162 xive_router_notify(XIVE_NOTIFIER(xive), val);
1163 }
1164
1165 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1166 unsigned size)
1167 {
1168 PnvXive *xive = PNV_XIVE(opaque);
1169
1170 /* VC: HW triggers */
1171 switch (addr) {
1172 case 0x000 ... 0x7FF:
1173 pnv_xive_ic_hw_trigger(opaque, addr, val);
1174 break;
1175
1176 /* VC: Forwarded IRQs */
1177 case PNV_XIVE_FORWARD_IPI:
1178 case PNV_XIVE_FORWARD_HW:
1179 case PNV_XIVE_FORWARD_OS_ESC:
1180 case PNV_XIVE_FORWARD_HW_ESC:
1181 case PNV_XIVE_FORWARD_REDIS:
1182 /* TODO: forwarded IRQs. Should be like HW triggers */
1183 xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1184 addr, val);
1185 break;
1186
1187 /* VC syncs */
1188 case PNV_XIVE_SYNC_IPI:
1189 case PNV_XIVE_SYNC_HW:
1190 case PNV_XIVE_SYNC_OS_ESC:
1191 case PNV_XIVE_SYNC_HW_ESC:
1192 case PNV_XIVE_SYNC_REDIS:
1193 break;
1194
1195 /* PC syncs */
1196 case PNV_XIVE_SYNC_PULL:
1197 case PNV_XIVE_SYNC_PUSH:
1198 case PNV_XIVE_SYNC_VPC:
1199 break;
1200
1201 default:
1202 xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1203 }
1204 }
1205
1206 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1207 unsigned size)
1208 {
1209 PnvXive *xive = PNV_XIVE(opaque);
1210
1211 /* loads are invalid */
1212 xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1213 return -1;
1214 }
1215
1216 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1217 .read = pnv_xive_ic_notify_read,
1218 .write = pnv_xive_ic_notify_write,
1219 .endianness = DEVICE_BIG_ENDIAN,
1220 .valid = {
1221 .min_access_size = 8,
1222 .max_access_size = 8,
1223 },
1224 .impl = {
1225 .min_access_size = 8,
1226 .max_access_size = 8,
1227 },
1228 };
1229
1230 /*
1231 * IC - LSI MMIO handlers (not modeled)
1232 */
1233
1234 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1235 uint64_t val, unsigned size)
1236 {
1237 PnvXive *xive = PNV_XIVE(opaque);
1238
1239 xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1240 }
1241
1242 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1243 {
1244 PnvXive *xive = PNV_XIVE(opaque);
1245
1246 xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1247 return -1;
1248 }
1249
1250 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1251 .read = pnv_xive_ic_lsi_read,
1252 .write = pnv_xive_ic_lsi_write,
1253 .endianness = DEVICE_BIG_ENDIAN,
1254 .valid = {
1255 .min_access_size = 8,
1256 .max_access_size = 8,
1257 },
1258 .impl = {
1259 .min_access_size = 8,
1260 .max_access_size = 8,
1261 },
1262 };
1263
1264 /*
1265 * IC - Indirect TIMA MMIO handlers
1266 */
1267
1268 /*
1269 * When the TIMA is accessed from the indirect page, the thread id
1270 * (PIR) has to be configured in the IC registers before. This is used
1271 * for resets and for debug purpose also.
1272 */
1273 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1274 {
1275 uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1276 PowerPCCPU *cpu = NULL;
1277 int pir;
1278
1279 if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1280 xive_error(xive, "IC: no indirect TIMA access in progress");
1281 return NULL;
1282 }
1283
1284 pir = GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir) & 0xff;
1285 cpu = ppc_get_vcpu_by_pir(pir);
1286 if (!cpu) {
1287 xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1288 return NULL;
1289 }
1290
1291 /* Check that HW thread is XIVE enabled */
1292 if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) {
1293 xive_error(xive, "IC: CPU %x is not enabled", pir);
1294 }
1295
1296 return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1297 }
1298
1299 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1300 uint64_t value, unsigned size)
1301 {
1302 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1303
1304 xive_tctx_tm_write(tctx, offset, value, size);
1305 }
1306
1307 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1308 unsigned size)
1309 {
1310 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1311
1312 return xive_tctx_tm_read(tctx, offset, size);
1313 }
1314
1315 static const MemoryRegionOps xive_tm_indirect_ops = {
1316 .read = xive_tm_indirect_read,
1317 .write = xive_tm_indirect_write,
1318 .endianness = DEVICE_BIG_ENDIAN,
1319 .valid = {
1320 .min_access_size = 1,
1321 .max_access_size = 8,
1322 },
1323 .impl = {
1324 .min_access_size = 1,
1325 .max_access_size = 8,
1326 },
1327 };
1328
1329 /*
1330 * Interrupt controller XSCOM region.
1331 */
1332 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1333 {
1334 switch (addr >> 3) {
1335 case X_VC_EQC_CONFIG:
1336 /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1337 return VC_EQC_SYNC_MASK;
1338 default:
1339 return pnv_xive_ic_reg_read(opaque, addr, size);
1340 }
1341 }
1342
1343 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1344 uint64_t val, unsigned size)
1345 {
1346 pnv_xive_ic_reg_write(opaque, addr, val, size);
1347 }
1348
1349 static const MemoryRegionOps pnv_xive_xscom_ops = {
1350 .read = pnv_xive_xscom_read,
1351 .write = pnv_xive_xscom_write,
1352 .endianness = DEVICE_BIG_ENDIAN,
1353 .valid = {
1354 .min_access_size = 8,
1355 .max_access_size = 8,
1356 },
1357 .impl = {
1358 .min_access_size = 8,
1359 .max_access_size = 8,
1360 }
1361 };
1362
1363 /*
1364 * Virtualization Controller MMIO region containing the IPI and END ESB pages
1365 */
1366 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1367 unsigned size)
1368 {
1369 PnvXive *xive = PNV_XIVE(opaque);
1370 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1371 uint64_t edt_type = 0;
1372 uint64_t edt_offset;
1373 MemTxResult result;
1374 AddressSpace *edt_as = NULL;
1375 uint64_t ret = -1;
1376
1377 if (edt_index < XIVE_TABLE_EDT_MAX) {
1378 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1379 }
1380
1381 switch (edt_type) {
1382 case CQ_TDR_EDT_IPI:
1383 edt_as = &xive->ipi_as;
1384 break;
1385 case CQ_TDR_EDT_EQ:
1386 edt_as = &xive->end_as;
1387 break;
1388 default:
1389 xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1390 return -1;
1391 }
1392
1393 /* Remap the offset for the targeted address space */
1394 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1395
1396 ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1397 &result);
1398
1399 if (result != MEMTX_OK) {
1400 xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1401 HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1402 offset, edt_offset);
1403 return -1;
1404 }
1405
1406 return ret;
1407 }
1408
1409 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1410 uint64_t val, unsigned size)
1411 {
1412 PnvXive *xive = PNV_XIVE(opaque);
1413 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1414 uint64_t edt_type = 0;
1415 uint64_t edt_offset;
1416 MemTxResult result;
1417 AddressSpace *edt_as = NULL;
1418
1419 if (edt_index < XIVE_TABLE_EDT_MAX) {
1420 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1421 }
1422
1423 switch (edt_type) {
1424 case CQ_TDR_EDT_IPI:
1425 edt_as = &xive->ipi_as;
1426 break;
1427 case CQ_TDR_EDT_EQ:
1428 edt_as = &xive->end_as;
1429 break;
1430 default:
1431 xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1432 offset);
1433 return;
1434 }
1435
1436 /* Remap the offset for the targeted address space */
1437 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1438
1439 address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1440 if (result != MEMTX_OK) {
1441 xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1442 }
1443 }
1444
1445 static const MemoryRegionOps pnv_xive_vc_ops = {
1446 .read = pnv_xive_vc_read,
1447 .write = pnv_xive_vc_write,
1448 .endianness = DEVICE_BIG_ENDIAN,
1449 .valid = {
1450 .min_access_size = 8,
1451 .max_access_size = 8,
1452 },
1453 .impl = {
1454 .min_access_size = 8,
1455 .max_access_size = 8,
1456 },
1457 };
1458
1459 /*
1460 * Presenter Controller MMIO region. The Virtualization Controller
1461 * updates the IPB in the NVT table when required. Not modeled.
1462 */
1463 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1464 unsigned size)
1465 {
1466 PnvXive *xive = PNV_XIVE(opaque);
1467
1468 xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1469 return -1;
1470 }
1471
1472 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1473 uint64_t value, unsigned size)
1474 {
1475 PnvXive *xive = PNV_XIVE(opaque);
1476
1477 xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1478 }
1479
1480 static const MemoryRegionOps pnv_xive_pc_ops = {
1481 .read = pnv_xive_pc_read,
1482 .write = pnv_xive_pc_write,
1483 .endianness = DEVICE_BIG_ENDIAN,
1484 .valid = {
1485 .min_access_size = 8,
1486 .max_access_size = 8,
1487 },
1488 .impl = {
1489 .min_access_size = 8,
1490 .max_access_size = 8,
1491 },
1492 };
1493
1494 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1495 {
1496 XiveRouter *xrtr = XIVE_ROUTER(xive);
1497 uint8_t blk = xive->chip->chip_id;
1498 uint32_t srcno0 = XIVE_SRCNO(blk, 0);
1499 uint32_t nr_ipis = pnv_xive_nr_ipis(xive);
1500 uint32_t nr_ends = pnv_xive_nr_ends(xive);
1501 XiveEAS eas;
1502 XiveEND end;
1503 int i;
1504
1505 monitor_printf(mon, "XIVE[%x] Source %08x .. %08x\n", blk, srcno0,
1506 srcno0 + nr_ipis - 1);
1507 xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1508
1509 monitor_printf(mon, "XIVE[%x] EAT %08x .. %08x\n", blk, srcno0,
1510 srcno0 + nr_ipis - 1);
1511 for (i = 0; i < nr_ipis; i++) {
1512 if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1513 break;
1514 }
1515 if (!xive_eas_is_masked(&eas)) {
1516 xive_eas_pic_print_info(&eas, i, mon);
1517 }
1518 }
1519
1520 monitor_printf(mon, "XIVE[%x] ENDT %08x .. %08x\n", blk, 0, nr_ends - 1);
1521 for (i = 0; i < nr_ends; i++) {
1522 if (xive_router_get_end(xrtr, blk, i, &end)) {
1523 break;
1524 }
1525 xive_end_pic_print_info(&end, i, mon);
1526 }
1527 }
1528
1529 static void pnv_xive_reset(void *dev)
1530 {
1531 PnvXive *xive = PNV_XIVE(dev);
1532 XiveSource *xsrc = &xive->ipi_source;
1533 XiveENDSource *end_xsrc = &xive->end_source;
1534
1535 /*
1536 * Use the PnvChip id to identify the XIVE interrupt controller.
1537 * It can be overriden by configuration at runtime.
1538 */
1539 xive->tctx_chipid = xive->chip->chip_id;
1540
1541 /* Default page size (Should be changed at runtime to 64k) */
1542 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1543
1544 /* Clear subregions */
1545 if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1546 memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1547 }
1548
1549 if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1550 memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1551 }
1552
1553 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1554 memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1555 }
1556
1557 if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1558 memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1559 }
1560 }
1561
1562 static void pnv_xive_init(Object *obj)
1563 {
1564 PnvXive *xive = PNV_XIVE(obj);
1565
1566 object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1567 sizeof(xive->ipi_source), TYPE_XIVE_SOURCE,
1568 &error_abort, NULL);
1569 object_initialize_child(obj, "end_source", &xive->end_source,
1570 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
1571 &error_abort, NULL);
1572 }
1573
1574 /*
1575 * Maximum number of IRQs and ENDs supported by HW
1576 */
1577 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1578 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1579
1580 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1581 {
1582 PnvXive *xive = PNV_XIVE(dev);
1583 XiveSource *xsrc = &xive->ipi_source;
1584 XiveENDSource *end_xsrc = &xive->end_source;
1585 Error *local_err = NULL;
1586 Object *obj;
1587
1588 obj = object_property_get_link(OBJECT(dev), "chip", &local_err);
1589 if (!obj) {
1590 error_propagate(errp, local_err);
1591 error_prepend(errp, "required link 'chip' not found: ");
1592 return;
1593 }
1594
1595 /* The PnvChip id identifies the XIVE interrupt controller. */
1596 xive->chip = PNV_CHIP(obj);
1597
1598 /*
1599 * The XiveSource and XiveENDSource objects are realized with the
1600 * maximum allowed HW configuration. The ESB MMIO regions will be
1601 * resized dynamically when the controller is configured by the FW
1602 * to limit accesses to resources not provisioned.
1603 */
1604 object_property_set_int(OBJECT(xsrc), PNV_XIVE_NR_IRQS, "nr-irqs",
1605 &error_fatal);
1606 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
1607 &error_fatal);
1608 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
1609 if (local_err) {
1610 error_propagate(errp, local_err);
1611 return;
1612 }
1613
1614 object_property_set_int(OBJECT(end_xsrc), PNV_XIVE_NR_ENDS, "nr-ends",
1615 &error_fatal);
1616 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
1617 &error_fatal);
1618 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
1619 if (local_err) {
1620 error_propagate(errp, local_err);
1621 return;
1622 }
1623
1624 /* Default page size. Generally changed at runtime to 64k */
1625 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1626
1627 /* XSCOM region, used for initial configuration of the BARs */
1628 memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1629 xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1630
1631 /* Interrupt controller MMIO regions */
1632 memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1633 PNV9_XIVE_IC_SIZE);
1634
1635 memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1636 xive, "xive-ic-reg", 1 << xive->ic_shift);
1637 memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1638 &pnv_xive_ic_notify_ops,
1639 xive, "xive-ic-notify", 1 << xive->ic_shift);
1640
1641 /* The Pervasive LSI trigger and EOI pages (not modeled) */
1642 memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1643 xive, "xive-ic-lsi", 2 << xive->ic_shift);
1644
1645 /* Thread Interrupt Management Area (Indirect) */
1646 memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1647 &xive_tm_indirect_ops,
1648 xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1649 /*
1650 * Overall Virtualization Controller MMIO region containing the
1651 * IPI ESB pages and END ESB pages. The layout is defined by the
1652 * EDT "Domain table" and the accesses are dispatched using
1653 * address spaces for each.
1654 */
1655 memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1656 "xive-vc", PNV9_XIVE_VC_SIZE);
1657
1658 memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1659 PNV9_XIVE_VC_SIZE);
1660 address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1661 memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1662 PNV9_XIVE_VC_SIZE);
1663 address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1664
1665 /*
1666 * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1667 * VC region. Their size is configured by the FW in the EDT table.
1668 */
1669 memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1670 memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1671
1672 /* Presenter Controller MMIO region (not modeled) */
1673 memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1674 "xive-pc", PNV9_XIVE_PC_SIZE);
1675
1676 /* Thread Interrupt Management Area (Direct) */
1677 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops,
1678 xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1679
1680 qemu_register_reset(pnv_xive_reset, dev);
1681 }
1682
1683 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1684 int xscom_offset)
1685 {
1686 const char compat[] = "ibm,power9-xive-x";
1687 char *name;
1688 int offset;
1689 uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1690 uint32_t reg[] = {
1691 cpu_to_be32(lpc_pcba),
1692 cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1693 };
1694
1695 name = g_strdup_printf("xive@%x", lpc_pcba);
1696 offset = fdt_add_subnode(fdt, xscom_offset, name);
1697 _FDT(offset);
1698 g_free(name);
1699
1700 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1701 _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1702 sizeof(compat))));
1703 return 0;
1704 }
1705
1706 static Property pnv_xive_properties[] = {
1707 DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1708 DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1709 DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1710 DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1711 DEFINE_PROP_END_OF_LIST(),
1712 };
1713
1714 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1715 {
1716 DeviceClass *dc = DEVICE_CLASS(klass);
1717 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1718 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1719 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1720
1721 xdc->dt_xscom = pnv_xive_dt_xscom;
1722
1723 dc->desc = "PowerNV XIVE Interrupt Controller";
1724 dc->realize = pnv_xive_realize;
1725 dc->props = pnv_xive_properties;
1726
1727 xrc->get_eas = pnv_xive_get_eas;
1728 xrc->get_end = pnv_xive_get_end;
1729 xrc->write_end = pnv_xive_write_end;
1730 xrc->get_nvt = pnv_xive_get_nvt;
1731 xrc->write_nvt = pnv_xive_write_nvt;
1732 xrc->get_tctx = pnv_xive_get_tctx;
1733
1734 xnc->notify = pnv_xive_notify;
1735 };
1736
1737 static const TypeInfo pnv_xive_info = {
1738 .name = TYPE_PNV_XIVE,
1739 .parent = TYPE_XIVE_ROUTER,
1740 .instance_init = pnv_xive_init,
1741 .instance_size = sizeof(PnvXive),
1742 .class_init = pnv_xive_class_init,
1743 .interfaces = (InterfaceInfo[]) {
1744 { TYPE_PNV_XSCOM_INTERFACE },
1745 { }
1746 }
1747 };
1748
1749 static void pnv_xive_register_types(void)
1750 {
1751 type_register_static(&pnv_xive_info);
1752 }
1753
1754 type_init(pnv_xive_register_types)