]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/spapr_xive.c
docs/devel/testing: Fix typo in dockerfile path
[mirror_qemu.git] / hw / intc / spapr_xive.c
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2018, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "monitor/monitor.h"
18 #include "hw/ppc/fdt.h"
19 #include "hw/ppc/spapr.h"
20 #include "hw/ppc/spapr_cpu_core.h"
21 #include "hw/ppc/spapr_xive.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
24
25 /*
26 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
27 * use for the ESB pages and the TIMA pages
28 */
29 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
30 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
31
32 /*
33 * The allocation of VP blocks is a complex operation in OPAL and the
34 * VP identifiers have a relation with the number of HW chips, the
35 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
36 * controller model does not have the same constraints and can use a
37 * simple mapping scheme of the CPU vcpu_id
38 *
39 * These identifiers are never returned to the OS.
40 */
41
42 #define SPAPR_XIVE_NVT_BASE 0x400
43
44 /*
45 * sPAPR NVT and END indexing helpers
46 */
47 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
48 {
49 return nvt_idx - SPAPR_XIVE_NVT_BASE;
50 }
51
52 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
53 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
54 {
55 assert(cpu);
56
57 if (out_nvt_blk) {
58 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
59 }
60
61 if (out_nvt_blk) {
62 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
63 }
64 }
65
66 static int spapr_xive_target_to_nvt(uint32_t target,
67 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
68 {
69 PowerPCCPU *cpu = spapr_find_cpu(target);
70
71 if (!cpu) {
72 return -1;
73 }
74
75 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
76 return 0;
77 }
78
79 /*
80 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
81 * priorities per CPU
82 */
83 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
84 uint32_t *out_server, uint8_t *out_prio)
85 {
86
87 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
88
89 if (out_server) {
90 *out_server = end_idx >> 3;
91 }
92
93 if (out_prio) {
94 *out_prio = end_idx & 0x7;
95 }
96 return 0;
97 }
98
99 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
100 uint8_t *out_end_blk, uint32_t *out_end_idx)
101 {
102 assert(cpu);
103
104 if (out_end_blk) {
105 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
106 }
107
108 if (out_end_idx) {
109 *out_end_idx = (cpu->vcpu_id << 3) + prio;
110 }
111 }
112
113 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
114 uint8_t *out_end_blk, uint32_t *out_end_idx)
115 {
116 PowerPCCPU *cpu = spapr_find_cpu(target);
117
118 if (!cpu) {
119 return -1;
120 }
121
122 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
123 return 0;
124 }
125
126 /*
127 * On sPAPR machines, use a simplified output for the XIVE END
128 * structure dumping only the information related to the OS EQ.
129 */
130 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
131 Monitor *mon)
132 {
133 uint64_t qaddr_base = xive_end_qaddr(end);
134 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
135 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
136 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
137 uint32_t qentries = 1 << (qsize + 10);
138 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
139 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
140
141 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
142 spapr_xive_nvt_to_target(0, nvt),
143 priority, qindex, qentries, qaddr_base, qgen);
144
145 xive_end_queue_pic_print_info(end, 6, mon);
146 monitor_printf(mon, "]");
147 }
148
149 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
150 {
151 XiveSource *xsrc = &xive->source;
152 int i;
153
154 if (kvm_irqchip_in_kernel()) {
155 Error *local_err = NULL;
156
157 kvmppc_xive_synchronize_state(xive, &local_err);
158 if (local_err) {
159 error_report_err(local_err);
160 return;
161 }
162 }
163
164 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
165
166 for (i = 0; i < xive->nr_irqs; i++) {
167 uint8_t pq = xive_source_esb_get(xsrc, i);
168 XiveEAS *eas = &xive->eat[i];
169
170 if (!xive_eas_is_valid(eas)) {
171 continue;
172 }
173
174 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
175 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
176 pq & XIVE_ESB_VAL_P ? 'P' : '-',
177 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
178 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
179 xive_eas_is_masked(eas) ? "M" : " ",
180 (int) xive_get_field64(EAS_END_DATA, eas->w));
181
182 if (!xive_eas_is_masked(eas)) {
183 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
184 XiveEND *end;
185
186 assert(end_idx < xive->nr_ends);
187 end = &xive->endt[end_idx];
188
189 if (xive_end_is_valid(end)) {
190 spapr_xive_end_pic_print_info(xive, end, mon);
191 }
192 }
193 monitor_printf(mon, "\n");
194 }
195 }
196
197 void spapr_xive_map_mmio(SpaprXive *xive)
198 {
199 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
200 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
201 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
202 }
203
204 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
205 {
206 memory_region_set_enabled(&xive->source.esb_mmio, enable);
207 memory_region_set_enabled(&xive->tm_mmio, enable);
208
209 /* Disable the END ESBs until a guest OS makes use of them */
210 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
211 }
212
213 /*
214 * When a Virtual Processor is scheduled to run on a HW thread, the
215 * hypervisor pushes its identifier in the OS CAM line. Emulate the
216 * same behavior under QEMU.
217 */
218 void spapr_xive_set_tctx_os_cam(XiveTCTX *tctx)
219 {
220 uint8_t nvt_blk;
221 uint32_t nvt_idx;
222 uint32_t nvt_cam;
223
224 spapr_xive_cpu_to_nvt(POWERPC_CPU(tctx->cs), &nvt_blk, &nvt_idx);
225
226 nvt_cam = cpu_to_be32(TM_QW1W2_VO | xive_nvt_cam_line(nvt_blk, nvt_idx));
227 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &nvt_cam, 4);
228 }
229
230 static void spapr_xive_end_reset(XiveEND *end)
231 {
232 memset(end, 0, sizeof(*end));
233
234 /* switch off the escalation and notification ESBs */
235 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
236 }
237
238 static void spapr_xive_reset(void *dev)
239 {
240 SpaprXive *xive = SPAPR_XIVE(dev);
241 int i;
242
243 /*
244 * The XiveSource has its own reset handler, which mask off all
245 * IRQs (!P|Q)
246 */
247
248 /* Mask all valid EASs in the IRQ number space. */
249 for (i = 0; i < xive->nr_irqs; i++) {
250 XiveEAS *eas = &xive->eat[i];
251 if (xive_eas_is_valid(eas)) {
252 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
253 } else {
254 eas->w = 0;
255 }
256 }
257
258 /* Clear all ENDs */
259 for (i = 0; i < xive->nr_ends; i++) {
260 spapr_xive_end_reset(&xive->endt[i]);
261 }
262 }
263
264 static void spapr_xive_instance_init(Object *obj)
265 {
266 SpaprXive *xive = SPAPR_XIVE(obj);
267
268 object_initialize_child(obj, "source", &xive->source, sizeof(xive->source),
269 TYPE_XIVE_SOURCE, &error_abort, NULL);
270
271 object_initialize_child(obj, "end_source", &xive->end_source,
272 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
273 &error_abort, NULL);
274
275 /* Not connected to the KVM XIVE device */
276 xive->fd = -1;
277 }
278
279 static void spapr_xive_realize(DeviceState *dev, Error **errp)
280 {
281 SpaprXive *xive = SPAPR_XIVE(dev);
282 XiveSource *xsrc = &xive->source;
283 XiveENDSource *end_xsrc = &xive->end_source;
284 Error *local_err = NULL;
285
286 if (!xive->nr_irqs) {
287 error_setg(errp, "Number of interrupt needs to be greater 0");
288 return;
289 }
290
291 if (!xive->nr_ends) {
292 error_setg(errp, "Number of interrupt needs to be greater 0");
293 return;
294 }
295
296 /*
297 * Initialize the internal sources, for IPIs and virtual devices.
298 */
299 object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
300 &error_fatal);
301 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
302 &error_fatal);
303 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
304 if (local_err) {
305 error_propagate(errp, local_err);
306 return;
307 }
308
309 /*
310 * Initialize the END ESB source
311 */
312 object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
313 &error_fatal);
314 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
315 &error_fatal);
316 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
317 if (local_err) {
318 error_propagate(errp, local_err);
319 return;
320 }
321
322 /* Set the mapping address of the END ESB pages after the source ESBs */
323 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
324
325 /*
326 * Allocate the routing tables
327 */
328 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
329 xive->endt = g_new0(XiveEND, xive->nr_ends);
330
331 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
332 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
333
334 qemu_register_reset(spapr_xive_reset, dev);
335
336 /* Define all XIVE MMIO regions on SysBus */
337 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
338 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
339 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
340 }
341
342 void spapr_xive_init(SpaprXive *xive, Error **errp)
343 {
344 XiveSource *xsrc = &xive->source;
345
346 /*
347 * The emulated XIVE device can only be initialized once. If the
348 * ESB memory region has been already mapped, it means we have been
349 * through there.
350 */
351 if (memory_region_is_mapped(&xsrc->esb_mmio)) {
352 return;
353 }
354
355 /* TIMA initialization */
356 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
357 "xive.tima", 4ull << TM_SHIFT);
358
359 /* Map all regions */
360 spapr_xive_map_mmio(xive);
361 }
362
363 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
364 uint32_t eas_idx, XiveEAS *eas)
365 {
366 SpaprXive *xive = SPAPR_XIVE(xrtr);
367
368 if (eas_idx >= xive->nr_irqs) {
369 return -1;
370 }
371
372 *eas = xive->eat[eas_idx];
373 return 0;
374 }
375
376 static int spapr_xive_get_end(XiveRouter *xrtr,
377 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
378 {
379 SpaprXive *xive = SPAPR_XIVE(xrtr);
380
381 if (end_idx >= xive->nr_ends) {
382 return -1;
383 }
384
385 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
386 return 0;
387 }
388
389 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
390 uint32_t end_idx, XiveEND *end,
391 uint8_t word_number)
392 {
393 SpaprXive *xive = SPAPR_XIVE(xrtr);
394
395 if (end_idx >= xive->nr_ends) {
396 return -1;
397 }
398
399 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
400 return 0;
401 }
402
403 static int spapr_xive_get_nvt(XiveRouter *xrtr,
404 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
405 {
406 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
407 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
408
409 if (!cpu) {
410 /* TODO: should we assert() if we can find a NVT ? */
411 return -1;
412 }
413
414 /*
415 * sPAPR does not maintain a NVT table. Return that the NVT is
416 * valid if we have found a matching CPU
417 */
418 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
419 return 0;
420 }
421
422 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
423 uint32_t nvt_idx, XiveNVT *nvt,
424 uint8_t word_number)
425 {
426 /*
427 * We don't need to write back to the NVTs because the sPAPR
428 * machine should never hit a non-scheduled NVT. It should never
429 * get called.
430 */
431 g_assert_not_reached();
432 }
433
434 static XiveTCTX *spapr_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
435 {
436 PowerPCCPU *cpu = POWERPC_CPU(cs);
437
438 return spapr_cpu_state(cpu)->tctx;
439 }
440
441 static const VMStateDescription vmstate_spapr_xive_end = {
442 .name = TYPE_SPAPR_XIVE "/end",
443 .version_id = 1,
444 .minimum_version_id = 1,
445 .fields = (VMStateField []) {
446 VMSTATE_UINT32(w0, XiveEND),
447 VMSTATE_UINT32(w1, XiveEND),
448 VMSTATE_UINT32(w2, XiveEND),
449 VMSTATE_UINT32(w3, XiveEND),
450 VMSTATE_UINT32(w4, XiveEND),
451 VMSTATE_UINT32(w5, XiveEND),
452 VMSTATE_UINT32(w6, XiveEND),
453 VMSTATE_UINT32(w7, XiveEND),
454 VMSTATE_END_OF_LIST()
455 },
456 };
457
458 static const VMStateDescription vmstate_spapr_xive_eas = {
459 .name = TYPE_SPAPR_XIVE "/eas",
460 .version_id = 1,
461 .minimum_version_id = 1,
462 .fields = (VMStateField []) {
463 VMSTATE_UINT64(w, XiveEAS),
464 VMSTATE_END_OF_LIST()
465 },
466 };
467
468 static int vmstate_spapr_xive_pre_save(void *opaque)
469 {
470 if (kvm_irqchip_in_kernel()) {
471 return kvmppc_xive_pre_save(SPAPR_XIVE(opaque));
472 }
473
474 return 0;
475 }
476
477 /*
478 * Called by the sPAPR IRQ backend 'post_load' method at the machine
479 * level.
480 */
481 int spapr_xive_post_load(SpaprXive *xive, int version_id)
482 {
483 if (kvm_irqchip_in_kernel()) {
484 return kvmppc_xive_post_load(xive, version_id);
485 }
486
487 return 0;
488 }
489
490 static const VMStateDescription vmstate_spapr_xive = {
491 .name = TYPE_SPAPR_XIVE,
492 .version_id = 1,
493 .minimum_version_id = 1,
494 .pre_save = vmstate_spapr_xive_pre_save,
495 .post_load = NULL, /* handled at the machine level */
496 .fields = (VMStateField[]) {
497 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
498 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
499 vmstate_spapr_xive_eas, XiveEAS),
500 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
501 vmstate_spapr_xive_end, XiveEND),
502 VMSTATE_END_OF_LIST()
503 },
504 };
505
506 static Property spapr_xive_properties[] = {
507 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
508 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
509 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
510 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
511 DEFINE_PROP_END_OF_LIST(),
512 };
513
514 static void spapr_xive_class_init(ObjectClass *klass, void *data)
515 {
516 DeviceClass *dc = DEVICE_CLASS(klass);
517 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
518
519 dc->desc = "sPAPR XIVE Interrupt Controller";
520 dc->props = spapr_xive_properties;
521 dc->realize = spapr_xive_realize;
522 dc->vmsd = &vmstate_spapr_xive;
523
524 xrc->get_eas = spapr_xive_get_eas;
525 xrc->get_end = spapr_xive_get_end;
526 xrc->write_end = spapr_xive_write_end;
527 xrc->get_nvt = spapr_xive_get_nvt;
528 xrc->write_nvt = spapr_xive_write_nvt;
529 xrc->get_tctx = spapr_xive_get_tctx;
530 }
531
532 static const TypeInfo spapr_xive_info = {
533 .name = TYPE_SPAPR_XIVE,
534 .parent = TYPE_XIVE_ROUTER,
535 .instance_init = spapr_xive_instance_init,
536 .instance_size = sizeof(SpaprXive),
537 .class_init = spapr_xive_class_init,
538 };
539
540 static void spapr_xive_register_types(void)
541 {
542 type_register_static(&spapr_xive_info);
543 }
544
545 type_init(spapr_xive_register_types)
546
547 bool spapr_xive_irq_claim(SpaprXive *xive, uint32_t lisn, bool lsi)
548 {
549 XiveSource *xsrc = &xive->source;
550
551 if (lisn >= xive->nr_irqs) {
552 return false;
553 }
554
555 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID);
556 if (lsi) {
557 xive_source_irq_set_lsi(xsrc, lisn);
558 }
559
560 if (kvm_irqchip_in_kernel()) {
561 Error *local_err = NULL;
562
563 kvmppc_xive_source_reset_one(xsrc, lisn, &local_err);
564 if (local_err) {
565 error_report_err(local_err);
566 return false;
567 }
568 }
569
570 return true;
571 }
572
573 bool spapr_xive_irq_free(SpaprXive *xive, uint32_t lisn)
574 {
575 if (lisn >= xive->nr_irqs) {
576 return false;
577 }
578
579 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
580 return true;
581 }
582
583 /*
584 * XIVE hcalls
585 *
586 * The terminology used by the XIVE hcalls is the following :
587 *
588 * TARGET vCPU number
589 * EQ Event Queue assigned by OS to receive event data
590 * ESB page for source interrupt management
591 * LISN Logical Interrupt Source Number identifying a source in the
592 * machine
593 * EISN Effective Interrupt Source Number used by guest OS to
594 * identify source in the guest
595 *
596 * The EAS, END, NVT structures are not exposed.
597 */
598
599 /*
600 * Linux hosts under OPAL reserve priority 7 for their own escalation
601 * interrupts (DD2.X POWER9). So we only allow the guest to use
602 * priorities [0..6].
603 */
604 static bool spapr_xive_priority_is_reserved(uint8_t priority)
605 {
606 switch (priority) {
607 case 0 ... 6:
608 return false;
609 case 7: /* OPAL escalation queue */
610 default:
611 return true;
612 }
613 }
614
615 /*
616 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
617 * real address of the MMIO page through which the Event State Buffer
618 * entry associated with the value of the "lisn" parameter is managed.
619 *
620 * Parameters:
621 * Input
622 * - R4: "flags"
623 * Bits 0-63 reserved
624 * - R5: "lisn" is per "interrupts", "interrupt-map", or
625 * "ibm,xive-lisn-ranges" properties, or as returned by the
626 * ibm,query-interrupt-source-number RTAS call, or as returned
627 * by the H_ALLOCATE_VAS_WINDOW hcall
628 *
629 * Output
630 * - R4: "flags"
631 * Bits 0-59: Reserved
632 * Bit 60: H_INT_ESB must be used for Event State Buffer
633 * management
634 * Bit 61: 1 == LSI 0 == MSI
635 * Bit 62: the full function page supports trigger
636 * Bit 63: Store EOI Supported
637 * - R5: Logical Real address of full function Event State Buffer
638 * management page, -1 if H_INT_ESB hcall flag is set to 1.
639 * - R6: Logical Real Address of trigger only Event State Buffer
640 * management page or -1.
641 * - R7: Power of 2 page size for the ESB management pages returned in
642 * R5 and R6.
643 */
644
645 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
646 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
647 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
648 on same page */
649 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
650
651 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
652 SpaprMachineState *spapr,
653 target_ulong opcode,
654 target_ulong *args)
655 {
656 SpaprXive *xive = spapr->xive;
657 XiveSource *xsrc = &xive->source;
658 target_ulong flags = args[0];
659 target_ulong lisn = args[1];
660
661 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
662 return H_FUNCTION;
663 }
664
665 if (flags) {
666 return H_PARAMETER;
667 }
668
669 if (lisn >= xive->nr_irqs) {
670 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
671 lisn);
672 return H_P2;
673 }
674
675 if (!xive_eas_is_valid(&xive->eat[lisn])) {
676 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
677 lisn);
678 return H_P2;
679 }
680
681 /*
682 * All sources are emulated under the main XIVE object and share
683 * the same characteristics.
684 */
685 args[0] = 0;
686 if (!xive_source_esb_has_2page(xsrc)) {
687 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
688 }
689 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
690 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
691 }
692
693 /*
694 * Force the use of the H_INT_ESB hcall in case of an LSI
695 * interrupt. This is necessary under KVM to re-trigger the
696 * interrupt if the level is still asserted
697 */
698 if (xive_source_irq_is_lsi(xsrc, lisn)) {
699 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
700 }
701
702 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
703 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
704 } else {
705 args[1] = -1;
706 }
707
708 if (xive_source_esb_has_2page(xsrc) &&
709 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
710 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
711 } else {
712 args[2] = -1;
713 }
714
715 if (xive_source_esb_has_2page(xsrc)) {
716 args[3] = xsrc->esb_shift - 1;
717 } else {
718 args[3] = xsrc->esb_shift;
719 }
720
721 return H_SUCCESS;
722 }
723
724 /*
725 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
726 * Interrupt Source to a target. The Logical Interrupt Source is
727 * designated with the "lisn" parameter and the target is designated
728 * with the "target" and "priority" parameters. Upon return from the
729 * hcall(), no additional interrupts will be directed to the old EQ.
730 *
731 * Parameters:
732 * Input:
733 * - R4: "flags"
734 * Bits 0-61: Reserved
735 * Bit 62: set the "eisn" in the EAS
736 * Bit 63: masks the interrupt source in the hardware interrupt
737 * control structure. An interrupt masked by this mechanism will
738 * be dropped, but it's source state bits will still be
739 * set. There is no race-free way of unmasking and restoring the
740 * source. Thus this should only be used in interrupts that are
741 * also masked at the source, and only in cases where the
742 * interrupt is not meant to be used for a large amount of time
743 * because no valid target exists for it for example
744 * - R5: "lisn" is per "interrupts", "interrupt-map", or
745 * "ibm,xive-lisn-ranges" properties, or as returned by the
746 * ibm,query-interrupt-source-number RTAS call, or as returned by
747 * the H_ALLOCATE_VAS_WINDOW hcall
748 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
749 * "ibm,ppc-interrupt-gserver#s"
750 * - R7: "priority" is a valid priority not in
751 * "ibm,plat-res-int-priorities"
752 * - R8: "eisn" is the guest EISN associated with the "lisn"
753 *
754 * Output:
755 * - None
756 */
757
758 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
759 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
760
761 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
762 SpaprMachineState *spapr,
763 target_ulong opcode,
764 target_ulong *args)
765 {
766 SpaprXive *xive = spapr->xive;
767 XiveEAS eas, new_eas;
768 target_ulong flags = args[0];
769 target_ulong lisn = args[1];
770 target_ulong target = args[2];
771 target_ulong priority = args[3];
772 target_ulong eisn = args[4];
773 uint8_t end_blk;
774 uint32_t end_idx;
775
776 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
777 return H_FUNCTION;
778 }
779
780 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
781 return H_PARAMETER;
782 }
783
784 if (lisn >= xive->nr_irqs) {
785 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
786 lisn);
787 return H_P2;
788 }
789
790 eas = xive->eat[lisn];
791 if (!xive_eas_is_valid(&eas)) {
792 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
793 lisn);
794 return H_P2;
795 }
796
797 /* priority 0xff is used to reset the EAS */
798 if (priority == 0xff) {
799 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
800 goto out;
801 }
802
803 if (flags & SPAPR_XIVE_SRC_MASK) {
804 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
805 } else {
806 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
807 }
808
809 if (spapr_xive_priority_is_reserved(priority)) {
810 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
811 " is reserved\n", priority);
812 return H_P4;
813 }
814
815 /*
816 * Validate that "target" is part of the list of threads allocated
817 * to the partition. For that, find the END corresponding to the
818 * target.
819 */
820 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
821 return H_P3;
822 }
823
824 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
825 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
826
827 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
828 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
829 }
830
831 if (kvm_irqchip_in_kernel()) {
832 Error *local_err = NULL;
833
834 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
835 if (local_err) {
836 error_report_err(local_err);
837 return H_HARDWARE;
838 }
839 }
840
841 out:
842 xive->eat[lisn] = new_eas;
843 return H_SUCCESS;
844 }
845
846 /*
847 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
848 * target/priority pair is assigned to the specified Logical Interrupt
849 * Source.
850 *
851 * Parameters:
852 * Input:
853 * - R4: "flags"
854 * Bits 0-63 Reserved
855 * - R5: "lisn" is per "interrupts", "interrupt-map", or
856 * "ibm,xive-lisn-ranges" properties, or as returned by the
857 * ibm,query-interrupt-source-number RTAS call, or as
858 * returned by the H_ALLOCATE_VAS_WINDOW hcall
859 *
860 * Output:
861 * - R4: Target to which the specified Logical Interrupt Source is
862 * assigned
863 * - R5: Priority to which the specified Logical Interrupt Source is
864 * assigned
865 * - R6: EISN for the specified Logical Interrupt Source (this will be
866 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
867 */
868 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
869 SpaprMachineState *spapr,
870 target_ulong opcode,
871 target_ulong *args)
872 {
873 SpaprXive *xive = spapr->xive;
874 target_ulong flags = args[0];
875 target_ulong lisn = args[1];
876 XiveEAS eas;
877 XiveEND *end;
878 uint8_t nvt_blk;
879 uint32_t end_idx, nvt_idx;
880
881 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
882 return H_FUNCTION;
883 }
884
885 if (flags) {
886 return H_PARAMETER;
887 }
888
889 if (lisn >= xive->nr_irqs) {
890 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
891 lisn);
892 return H_P2;
893 }
894
895 eas = xive->eat[lisn];
896 if (!xive_eas_is_valid(&eas)) {
897 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
898 lisn);
899 return H_P2;
900 }
901
902 /* EAS_END_BLOCK is unused on sPAPR */
903 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
904
905 assert(end_idx < xive->nr_ends);
906 end = &xive->endt[end_idx];
907
908 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
909 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
910 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
911
912 if (xive_eas_is_masked(&eas)) {
913 args[1] = 0xff;
914 } else {
915 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
916 }
917
918 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
919
920 return H_SUCCESS;
921 }
922
923 /*
924 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
925 * address of the notification management page associated with the
926 * specified target and priority.
927 *
928 * Parameters:
929 * Input:
930 * - R4: "flags"
931 * Bits 0-63 Reserved
932 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
933 * "ibm,ppc-interrupt-gserver#s"
934 * - R6: "priority" is a valid priority not in
935 * "ibm,plat-res-int-priorities"
936 *
937 * Output:
938 * - R4: Logical real address of notification page
939 * - R5: Power of 2 page size of the notification page
940 */
941 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
942 SpaprMachineState *spapr,
943 target_ulong opcode,
944 target_ulong *args)
945 {
946 SpaprXive *xive = spapr->xive;
947 XiveENDSource *end_xsrc = &xive->end_source;
948 target_ulong flags = args[0];
949 target_ulong target = args[1];
950 target_ulong priority = args[2];
951 XiveEND *end;
952 uint8_t end_blk;
953 uint32_t end_idx;
954
955 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
956 return H_FUNCTION;
957 }
958
959 if (flags) {
960 return H_PARAMETER;
961 }
962
963 /*
964 * H_STATE should be returned if a H_INT_RESET is in progress.
965 * This is not needed when running the emulation under QEMU
966 */
967
968 if (spapr_xive_priority_is_reserved(priority)) {
969 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
970 " is reserved\n", priority);
971 return H_P3;
972 }
973
974 /*
975 * Validate that "target" is part of the list of threads allocated
976 * to the partition. For that, find the END corresponding to the
977 * target.
978 */
979 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
980 return H_P2;
981 }
982
983 assert(end_idx < xive->nr_ends);
984 end = &xive->endt[end_idx];
985
986 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
987 if (xive_end_is_enqueue(end)) {
988 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
989 } else {
990 args[1] = 0;
991 }
992
993 return H_SUCCESS;
994 }
995
996 /*
997 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
998 * a given "target" and "priority". It is also used to set the
999 * notification config associated with the EQ. An EQ size of 0 is
1000 * used to reset the EQ config for a given target and priority. If
1001 * resetting the EQ config, the END associated with the given "target"
1002 * and "priority" will be changed to disable queueing.
1003 *
1004 * Upon return from the hcall(), no additional interrupts will be
1005 * directed to the old EQ (if one was set). The old EQ (if one was
1006 * set) should be investigated for interrupts that occurred prior to
1007 * or during the hcall().
1008 *
1009 * Parameters:
1010 * Input:
1011 * - R4: "flags"
1012 * Bits 0-62: Reserved
1013 * Bit 63: Unconditional Notify (n) per the XIVE spec
1014 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1015 * "ibm,ppc-interrupt-gserver#s"
1016 * - R6: "priority" is a valid priority not in
1017 * "ibm,plat-res-int-priorities"
1018 * - R7: "eventQueue": The logical real address of the start of the EQ
1019 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1020 *
1021 * Output:
1022 * - None
1023 */
1024
1025 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1026
1027 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1028 SpaprMachineState *spapr,
1029 target_ulong opcode,
1030 target_ulong *args)
1031 {
1032 SpaprXive *xive = spapr->xive;
1033 target_ulong flags = args[0];
1034 target_ulong target = args[1];
1035 target_ulong priority = args[2];
1036 target_ulong qpage = args[3];
1037 target_ulong qsize = args[4];
1038 XiveEND end;
1039 uint8_t end_blk, nvt_blk;
1040 uint32_t end_idx, nvt_idx;
1041
1042 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1043 return H_FUNCTION;
1044 }
1045
1046 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1047 return H_PARAMETER;
1048 }
1049
1050 /*
1051 * H_STATE should be returned if a H_INT_RESET is in progress.
1052 * This is not needed when running the emulation under QEMU
1053 */
1054
1055 if (spapr_xive_priority_is_reserved(priority)) {
1056 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1057 " is reserved\n", priority);
1058 return H_P3;
1059 }
1060
1061 /*
1062 * Validate that "target" is part of the list of threads allocated
1063 * to the partition. For that, find the END corresponding to the
1064 * target.
1065 */
1066
1067 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1068 return H_P2;
1069 }
1070
1071 assert(end_idx < xive->nr_ends);
1072 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1073
1074 switch (qsize) {
1075 case 12:
1076 case 16:
1077 case 21:
1078 case 24:
1079 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1080 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1081 " is not naturally aligned with %" HWADDR_PRIx "\n",
1082 qpage, (hwaddr)1 << qsize);
1083 return H_P4;
1084 }
1085 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1086 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1087 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1088 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1089 break;
1090 case 0:
1091 /* reset queue and disable queueing */
1092 spapr_xive_end_reset(&end);
1093 goto out;
1094
1095 default:
1096 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1097 qsize);
1098 return H_P5;
1099 }
1100
1101 if (qsize) {
1102 hwaddr plen = 1 << qsize;
1103 void *eq;
1104
1105 /*
1106 * Validate the guest EQ. We should also check that the queue
1107 * has been zeroed by the OS.
1108 */
1109 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1110 MEMTXATTRS_UNSPECIFIED);
1111 if (plen != 1 << qsize) {
1112 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1113 HWADDR_PRIx "\n", qpage);
1114 return H_P4;
1115 }
1116 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1117 }
1118
1119 /* "target" should have been validated above */
1120 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1121 g_assert_not_reached();
1122 }
1123
1124 /*
1125 * Ensure the priority and target are correctly set (they will not
1126 * be right after allocation)
1127 */
1128 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1129 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1130 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1131
1132 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1133 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1134 } else {
1135 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1136 }
1137
1138 /*
1139 * The generation bit for the END starts at 1 and The END page
1140 * offset counter starts at 0.
1141 */
1142 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1143 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1144 end.w0 |= cpu_to_be32(END_W0_VALID);
1145
1146 /*
1147 * TODO: issue syncs required to ensure all in-flight interrupts
1148 * are complete on the old END
1149 */
1150
1151 out:
1152 if (kvm_irqchip_in_kernel()) {
1153 Error *local_err = NULL;
1154
1155 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1156 if (local_err) {
1157 error_report_err(local_err);
1158 return H_HARDWARE;
1159 }
1160 }
1161
1162 /* Update END */
1163 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1164 return H_SUCCESS;
1165 }
1166
1167 /*
1168 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1169 * target and priority.
1170 *
1171 * Parameters:
1172 * Input:
1173 * - R4: "flags"
1174 * Bits 0-62: Reserved
1175 * Bit 63: Debug: Return debug data
1176 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1177 * "ibm,ppc-interrupt-gserver#s"
1178 * - R6: "priority" is a valid priority not in
1179 * "ibm,plat-res-int-priorities"
1180 *
1181 * Output:
1182 * - R4: "flags":
1183 * Bits 0-61: Reserved
1184 * Bit 62: The value of Event Queue Generation Number (g) per
1185 * the XIVE spec if "Debug" = 1
1186 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1187 * - R5: The logical real address of the start of the EQ
1188 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1189 * - R7: The value of Event Queue Offset Counter per XIVE spec
1190 * if "Debug" = 1, else 0
1191 *
1192 */
1193
1194 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1195
1196 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1197 SpaprMachineState *spapr,
1198 target_ulong opcode,
1199 target_ulong *args)
1200 {
1201 SpaprXive *xive = spapr->xive;
1202 target_ulong flags = args[0];
1203 target_ulong target = args[1];
1204 target_ulong priority = args[2];
1205 XiveEND *end;
1206 uint8_t end_blk;
1207 uint32_t end_idx;
1208
1209 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1210 return H_FUNCTION;
1211 }
1212
1213 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1214 return H_PARAMETER;
1215 }
1216
1217 /*
1218 * H_STATE should be returned if a H_INT_RESET is in progress.
1219 * This is not needed when running the emulation under QEMU
1220 */
1221
1222 if (spapr_xive_priority_is_reserved(priority)) {
1223 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1224 " is reserved\n", priority);
1225 return H_P3;
1226 }
1227
1228 /*
1229 * Validate that "target" is part of the list of threads allocated
1230 * to the partition. For that, find the END corresponding to the
1231 * target.
1232 */
1233 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1234 return H_P2;
1235 }
1236
1237 assert(end_idx < xive->nr_ends);
1238 end = &xive->endt[end_idx];
1239
1240 args[0] = 0;
1241 if (xive_end_is_notify(end)) {
1242 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1243 }
1244
1245 if (xive_end_is_enqueue(end)) {
1246 args[1] = xive_end_qaddr(end);
1247 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1248 } else {
1249 args[1] = 0;
1250 args[2] = 0;
1251 }
1252
1253 if (kvm_irqchip_in_kernel()) {
1254 Error *local_err = NULL;
1255
1256 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1257 if (local_err) {
1258 error_report_err(local_err);
1259 return H_HARDWARE;
1260 }
1261 }
1262
1263 /* TODO: do we need any locking on the END ? */
1264 if (flags & SPAPR_XIVE_END_DEBUG) {
1265 /* Load the event queue generation number into the return flags */
1266 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1267
1268 /* Load R7 with the event queue offset counter */
1269 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1270 } else {
1271 args[3] = 0;
1272 }
1273
1274 return H_SUCCESS;
1275 }
1276
1277 /*
1278 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1279 * reporting cache line pair for the calling thread. The reporting
1280 * cache lines will contain the OS interrupt context when the OS
1281 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1282 * interrupt. The reporting cache lines can be reset by inputting -1
1283 * in "reportingLine". Issuing the CI store byte without reporting
1284 * cache lines registered will result in the data not being accessible
1285 * to the OS.
1286 *
1287 * Parameters:
1288 * Input:
1289 * - R4: "flags"
1290 * Bits 0-63: Reserved
1291 * - R5: "reportingLine": The logical real address of the reporting cache
1292 * line pair
1293 *
1294 * Output:
1295 * - None
1296 */
1297 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1298 SpaprMachineState *spapr,
1299 target_ulong opcode,
1300 target_ulong *args)
1301 {
1302 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1303 return H_FUNCTION;
1304 }
1305
1306 /*
1307 * H_STATE should be returned if a H_INT_RESET is in progress.
1308 * This is not needed when running the emulation under QEMU
1309 */
1310
1311 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1312 return H_FUNCTION;
1313 }
1314
1315 /*
1316 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1317 * real address of the reporting cache line pair set for the input
1318 * "target". If no reporting cache line pair has been set, -1 is
1319 * returned.
1320 *
1321 * Parameters:
1322 * Input:
1323 * - R4: "flags"
1324 * Bits 0-63: Reserved
1325 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1326 * "ibm,ppc-interrupt-gserver#s"
1327 * - R6: "reportingLine": The logical real address of the reporting
1328 * cache line pair
1329 *
1330 * Output:
1331 * - R4: The logical real address of the reporting line if set, else -1
1332 */
1333 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1334 SpaprMachineState *spapr,
1335 target_ulong opcode,
1336 target_ulong *args)
1337 {
1338 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1339 return H_FUNCTION;
1340 }
1341
1342 /*
1343 * H_STATE should be returned if a H_INT_RESET is in progress.
1344 * This is not needed when running the emulation under QEMU
1345 */
1346
1347 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1348 return H_FUNCTION;
1349 }
1350
1351 /*
1352 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1353 * page for the input "lisn". This hcall is only supported for LISNs
1354 * that have the ESB hcall flag set to 1 when returned from hcall()
1355 * H_INT_GET_SOURCE_INFO.
1356 *
1357 * Parameters:
1358 * Input:
1359 * - R4: "flags"
1360 * Bits 0-62: Reserved
1361 * bit 63: Store: Store=1, store operation, else load operation
1362 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1363 * "ibm,xive-lisn-ranges" properties, or as returned by the
1364 * ibm,query-interrupt-source-number RTAS call, or as
1365 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1366 * - R6: "esbOffset" is the offset into the ESB page for the load or
1367 * store operation
1368 * - R7: "storeData" is the data to write for a store operation
1369 *
1370 * Output:
1371 * - R4: The value of the load if load operation, else -1
1372 */
1373
1374 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1375
1376 static target_ulong h_int_esb(PowerPCCPU *cpu,
1377 SpaprMachineState *spapr,
1378 target_ulong opcode,
1379 target_ulong *args)
1380 {
1381 SpaprXive *xive = spapr->xive;
1382 XiveEAS eas;
1383 target_ulong flags = args[0];
1384 target_ulong lisn = args[1];
1385 target_ulong offset = args[2];
1386 target_ulong data = args[3];
1387 hwaddr mmio_addr;
1388 XiveSource *xsrc = &xive->source;
1389
1390 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1391 return H_FUNCTION;
1392 }
1393
1394 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1395 return H_PARAMETER;
1396 }
1397
1398 if (lisn >= xive->nr_irqs) {
1399 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1400 lisn);
1401 return H_P2;
1402 }
1403
1404 eas = xive->eat[lisn];
1405 if (!xive_eas_is_valid(&eas)) {
1406 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1407 lisn);
1408 return H_P2;
1409 }
1410
1411 if (offset > (1ull << xsrc->esb_shift)) {
1412 return H_P3;
1413 }
1414
1415 if (kvm_irqchip_in_kernel()) {
1416 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1417 flags & SPAPR_XIVE_ESB_STORE);
1418 } else {
1419 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1420
1421 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1422 (flags & SPAPR_XIVE_ESB_STORE))) {
1423 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1424 HWADDR_PRIx "\n", mmio_addr);
1425 return H_HARDWARE;
1426 }
1427 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1428 }
1429 return H_SUCCESS;
1430 }
1431
1432 /*
1433 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1434 * ensure any in flight events for the input lisn are in the event
1435 * queue.
1436 *
1437 * Parameters:
1438 * Input:
1439 * - R4: "flags"
1440 * Bits 0-63: Reserved
1441 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1442 * "ibm,xive-lisn-ranges" properties, or as returned by the
1443 * ibm,query-interrupt-source-number RTAS call, or as
1444 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1445 *
1446 * Output:
1447 * - None
1448 */
1449 static target_ulong h_int_sync(PowerPCCPU *cpu,
1450 SpaprMachineState *spapr,
1451 target_ulong opcode,
1452 target_ulong *args)
1453 {
1454 SpaprXive *xive = spapr->xive;
1455 XiveEAS eas;
1456 target_ulong flags = args[0];
1457 target_ulong lisn = args[1];
1458
1459 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1460 return H_FUNCTION;
1461 }
1462
1463 if (flags) {
1464 return H_PARAMETER;
1465 }
1466
1467 if (lisn >= xive->nr_irqs) {
1468 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1469 lisn);
1470 return H_P2;
1471 }
1472
1473 eas = xive->eat[lisn];
1474 if (!xive_eas_is_valid(&eas)) {
1475 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1476 lisn);
1477 return H_P2;
1478 }
1479
1480 /*
1481 * H_STATE should be returned if a H_INT_RESET is in progress.
1482 * This is not needed when running the emulation under QEMU
1483 */
1484
1485 /*
1486 * This is not real hardware. Nothing to be done unless when
1487 * under KVM
1488 */
1489
1490 if (kvm_irqchip_in_kernel()) {
1491 Error *local_err = NULL;
1492
1493 kvmppc_xive_sync_source(xive, lisn, &local_err);
1494 if (local_err) {
1495 error_report_err(local_err);
1496 return H_HARDWARE;
1497 }
1498 }
1499 return H_SUCCESS;
1500 }
1501
1502 /*
1503 * The H_INT_RESET hcall() is used to reset all of the partition's
1504 * interrupt exploitation structures to their initial state. This
1505 * means losing all previously set interrupt state set via
1506 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1507 *
1508 * Parameters:
1509 * Input:
1510 * - R4: "flags"
1511 * Bits 0-63: Reserved
1512 *
1513 * Output:
1514 * - None
1515 */
1516 static target_ulong h_int_reset(PowerPCCPU *cpu,
1517 SpaprMachineState *spapr,
1518 target_ulong opcode,
1519 target_ulong *args)
1520 {
1521 SpaprXive *xive = spapr->xive;
1522 target_ulong flags = args[0];
1523
1524 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1525 return H_FUNCTION;
1526 }
1527
1528 if (flags) {
1529 return H_PARAMETER;
1530 }
1531
1532 device_reset(DEVICE(xive));
1533
1534 if (kvm_irqchip_in_kernel()) {
1535 Error *local_err = NULL;
1536
1537 kvmppc_xive_reset(xive, &local_err);
1538 if (local_err) {
1539 error_report_err(local_err);
1540 return H_HARDWARE;
1541 }
1542 }
1543 return H_SUCCESS;
1544 }
1545
1546 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1547 {
1548 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1549 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1550 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1551 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1552 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1553 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1554 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1555 h_int_set_os_reporting_line);
1556 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1557 h_int_get_os_reporting_line);
1558 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1559 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1560 spapr_register_hypercall(H_INT_RESET, h_int_reset);
1561 }
1562
1563 void spapr_dt_xive(SpaprMachineState *spapr, uint32_t nr_servers, void *fdt,
1564 uint32_t phandle)
1565 {
1566 SpaprXive *xive = spapr->xive;
1567 int node;
1568 uint64_t timas[2 * 2];
1569 /* Interrupt number ranges for the IPIs */
1570 uint32_t lisn_ranges[] = {
1571 cpu_to_be32(0),
1572 cpu_to_be32(nr_servers),
1573 };
1574 /*
1575 * EQ size - the sizes of pages supported by the system 4K, 64K,
1576 * 2M, 16M. We only advertise 64K for the moment.
1577 */
1578 uint32_t eq_sizes[] = {
1579 cpu_to_be32(16), /* 64K */
1580 };
1581 /*
1582 * The following array is in sync with the reserved priorities
1583 * defined by the 'spapr_xive_priority_is_reserved' routine.
1584 */
1585 uint32_t plat_res_int_priorities[] = {
1586 cpu_to_be32(7), /* start */
1587 cpu_to_be32(0xf8), /* count */
1588 };
1589
1590 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
1591 timas[0] = cpu_to_be64(xive->tm_base +
1592 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
1593 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
1594 timas[2] = cpu_to_be64(xive->tm_base +
1595 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
1596 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
1597
1598 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
1599
1600 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
1601 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
1602
1603 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
1604 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
1605 sizeof(eq_sizes)));
1606 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
1607 sizeof(lisn_ranges)));
1608
1609 /* For Linux to link the LSIs to the interrupt controller. */
1610 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
1611 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
1612
1613 /* For SLOF */
1614 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
1615 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
1616
1617 /*
1618 * The "ibm,plat-res-int-priorities" property defines the priority
1619 * ranges reserved by the hypervisor
1620 */
1621 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
1622 plat_res_int_priorities, sizeof(plat_res_int_priorities)));
1623 }