]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/xive.c
qom: Drop parameter @errp of object_property_add() & friends
[mirror_qemu.git] / hw / intc / xive.c
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2018, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
24
25 /*
26 * XIVE Thread Interrupt Management context
27 */
28
29 /*
30 * Convert a priority number to an Interrupt Pending Buffer (IPB)
31 * register, which indicates a pending interrupt at the priority
32 * corresponding to the bit number
33 */
34 static uint8_t priority_to_ipb(uint8_t priority)
35 {
36 return priority > XIVE_PRIORITY_MAX ?
37 0 : 1 << (XIVE_PRIORITY_MAX - priority);
38 }
39
40 /*
41 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
42 * Interrupt Priority Register (PIPR), which contains the priority of
43 * the most favored pending notification.
44 */
45 static uint8_t ipb_to_pipr(uint8_t ibp)
46 {
47 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
48 }
49
50 static uint8_t exception_mask(uint8_t ring)
51 {
52 switch (ring) {
53 case TM_QW1_OS:
54 return TM_QW1_NSR_EO;
55 case TM_QW3_HV_PHYS:
56 return TM_QW3_NSR_HE;
57 default:
58 g_assert_not_reached();
59 }
60 }
61
62 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
63 {
64 switch (ring) {
65 case TM_QW0_USER:
66 return 0; /* Not supported */
67 case TM_QW1_OS:
68 return tctx->os_output;
69 case TM_QW2_HV_POOL:
70 case TM_QW3_HV_PHYS:
71 return tctx->hv_output;
72 default:
73 return 0;
74 }
75 }
76
77 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
78 {
79 uint8_t *regs = &tctx->regs[ring];
80 uint8_t nsr = regs[TM_NSR];
81 uint8_t mask = exception_mask(ring);
82
83 qemu_irq_lower(xive_tctx_output(tctx, ring));
84
85 if (regs[TM_NSR] & mask) {
86 uint8_t cppr = regs[TM_PIPR];
87
88 regs[TM_CPPR] = cppr;
89
90 /* Reset the pending buffer bit */
91 regs[TM_IPB] &= ~priority_to_ipb(cppr);
92 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
93
94 /* Drop Exception bit */
95 regs[TM_NSR] &= ~mask;
96 }
97
98 return (nsr << 8) | regs[TM_CPPR];
99 }
100
101 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
102 {
103 uint8_t *regs = &tctx->regs[ring];
104
105 if (regs[TM_PIPR] < regs[TM_CPPR]) {
106 switch (ring) {
107 case TM_QW1_OS:
108 regs[TM_NSR] |= TM_QW1_NSR_EO;
109 break;
110 case TM_QW3_HV_PHYS:
111 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
112 break;
113 default:
114 g_assert_not_reached();
115 }
116 qemu_irq_raise(xive_tctx_output(tctx, ring));
117 }
118 }
119
120 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
121 {
122 if (cppr > XIVE_PRIORITY_MAX) {
123 cppr = 0xff;
124 }
125
126 tctx->regs[ring + TM_CPPR] = cppr;
127
128 /* CPPR has changed, check if we need to raise a pending exception */
129 xive_tctx_notify(tctx, ring);
130 }
131
132 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
133 {
134 uint8_t *regs = &tctx->regs[ring];
135
136 regs[TM_IPB] |= ipb;
137 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
138 xive_tctx_notify(tctx, ring);
139 }
140
141 static inline uint32_t xive_tctx_word2(uint8_t *ring)
142 {
143 return *((uint32_t *) &ring[TM_WORD2]);
144 }
145
146 /*
147 * XIVE Thread Interrupt Management Area (TIMA)
148 */
149
150 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
151 hwaddr offset, uint64_t value, unsigned size)
152 {
153 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
154 }
155
156 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
157 hwaddr offset, unsigned size)
158 {
159 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
160 }
161
162 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
163 hwaddr offset, unsigned size)
164 {
165 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
166 uint32_t qw2w2;
167
168 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
169 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
170 return qw2w2;
171 }
172
173 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
174 uint64_t value, unsigned size)
175 {
176 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
177 }
178
179 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
180 hwaddr offset, unsigned size)
181 {
182 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
183 }
184
185 /*
186 * Define an access map for each page of the TIMA that we will use in
187 * the memory region ops to filter values when doing loads and stores
188 * of raw registers values
189 *
190 * Registers accessibility bits :
191 *
192 * 0x0 - no access
193 * 0x1 - write only
194 * 0x2 - read only
195 * 0x3 - read/write
196 */
197
198 static const uint8_t xive_tm_hw_view[] = {
199 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
200 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
201 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
202 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
203 };
204
205 static const uint8_t xive_tm_hv_view[] = {
206 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
207 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
208 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
209 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
210 };
211
212 static const uint8_t xive_tm_os_view[] = {
213 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
214 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
215 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
216 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
217 };
218
219 static const uint8_t xive_tm_user_view[] = {
220 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
221 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
222 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
223 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
224 };
225
226 /*
227 * Overall TIMA access map for the thread interrupt management context
228 * registers
229 */
230 static const uint8_t *xive_tm_views[] = {
231 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
232 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
233 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
234 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
235 };
236
237 /*
238 * Computes a register access mask for a given offset in the TIMA
239 */
240 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
241 {
242 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
243 uint8_t reg_offset = offset & 0x3F;
244 uint8_t reg_mask = write ? 0x1 : 0x2;
245 uint64_t mask = 0x0;
246 int i;
247
248 for (i = 0; i < size; i++) {
249 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
250 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
251 }
252 }
253
254 return mask;
255 }
256
257 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
258 unsigned size)
259 {
260 uint8_t ring_offset = offset & 0x30;
261 uint8_t reg_offset = offset & 0x3F;
262 uint64_t mask = xive_tm_mask(offset, size, true);
263 int i;
264
265 /*
266 * Only 4 or 8 bytes stores are allowed and the User ring is
267 * excluded
268 */
269 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
270 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
271 HWADDR_PRIx"\n", offset);
272 return;
273 }
274
275 /*
276 * Use the register offset for the raw values and filter out
277 * reserved values
278 */
279 for (i = 0; i < size; i++) {
280 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
281 if (byte_mask) {
282 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
283 byte_mask;
284 }
285 }
286 }
287
288 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
289 {
290 uint8_t ring_offset = offset & 0x30;
291 uint8_t reg_offset = offset & 0x3F;
292 uint64_t mask = xive_tm_mask(offset, size, false);
293 uint64_t ret;
294 int i;
295
296 /*
297 * Only 4 or 8 bytes loads are allowed and the User ring is
298 * excluded
299 */
300 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
301 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
302 HWADDR_PRIx"\n", offset);
303 return -1;
304 }
305
306 /* Use the register offset for the raw values */
307 ret = 0;
308 for (i = 0; i < size; i++) {
309 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
310 }
311
312 /* filter out reserved values */
313 return ret & mask;
314 }
315
316 /*
317 * The TM context is mapped twice within each page. Stores and loads
318 * to the first mapping below 2K write and read the specified values
319 * without modification. The second mapping above 2K performs specific
320 * state changes (side effects) in addition to setting/returning the
321 * interrupt management area context of the processor thread.
322 */
323 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
324 hwaddr offset, unsigned size)
325 {
326 return xive_tctx_accept(tctx, TM_QW1_OS);
327 }
328
329 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
330 hwaddr offset, uint64_t value, unsigned size)
331 {
332 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
333 }
334
335 /*
336 * Adjust the IPB to allow a CPU to process event queues of other
337 * priorities during one physical interrupt cycle.
338 */
339 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
340 hwaddr offset, uint64_t value, unsigned size)
341 {
342 xive_tctx_ipb_update(tctx, TM_QW1_OS, priority_to_ipb(value & 0xff));
343 }
344
345 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
346 uint32_t *nvt_idx, bool *vo)
347 {
348 if (nvt_blk) {
349 *nvt_blk = xive_nvt_blk(cam);
350 }
351 if (nvt_idx) {
352 *nvt_idx = xive_nvt_idx(cam);
353 }
354 if (vo) {
355 *vo = !!(cam & TM_QW1W2_VO);
356 }
357 }
358
359 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
360 uint32_t *nvt_idx, bool *vo)
361 {
362 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
363 uint32_t cam = be32_to_cpu(qw1w2);
364
365 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
366 return qw1w2;
367 }
368
369 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
370 {
371 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
372 }
373
374 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
375 hwaddr offset, unsigned size)
376 {
377 uint32_t qw1w2;
378 uint32_t qw1w2_new;
379 uint8_t nvt_blk;
380 uint32_t nvt_idx;
381 bool vo;
382
383 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
384
385 if (!vo) {
386 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
387 nvt_blk, nvt_idx);
388 }
389
390 /* Invalidate CAM line */
391 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
392 xive_tctx_set_os_cam(tctx, qw1w2_new);
393 return qw1w2;
394 }
395
396 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
397 uint8_t nvt_blk, uint32_t nvt_idx)
398 {
399 XiveNVT nvt;
400 uint8_t ipb;
401
402 /*
403 * Grab the associated NVT to pull the pending bits, and merge
404 * them with the IPB of the thread interrupt context registers
405 */
406 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
407 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
408 nvt_blk, nvt_idx);
409 return;
410 }
411
412 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
413
414 if (ipb) {
415 /* Reset the NVT value */
416 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
417 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
418
419 /* Merge in current context */
420 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
421 }
422 }
423
424 /*
425 * Updating the OS CAM line can trigger a resend of interrupt
426 */
427 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
428 hwaddr offset, uint64_t value, unsigned size)
429 {
430 uint32_t cam = value;
431 uint32_t qw1w2 = cpu_to_be32(cam);
432 uint8_t nvt_blk;
433 uint32_t nvt_idx;
434 bool vo;
435
436 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
437
438 /* First update the registers */
439 xive_tctx_set_os_cam(tctx, qw1w2);
440
441 /* Check the interrupt pending bits */
442 if (vo) {
443 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
444 }
445 }
446
447 /*
448 * Define a mapping of "special" operations depending on the TIMA page
449 * offset and the size of the operation.
450 */
451 typedef struct XiveTmOp {
452 uint8_t page_offset;
453 uint32_t op_offset;
454 unsigned size;
455 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
456 hwaddr offset,
457 uint64_t value, unsigned size);
458 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
459 unsigned size);
460 } XiveTmOp;
461
462 static const XiveTmOp xive_tm_operations[] = {
463 /*
464 * MMIOs below 2K : raw values and special operations without side
465 * effects
466 */
467 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
468 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL },
469 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
470 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
471 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
472
473 /* MMIOs above 2K : special operations with side effects */
474 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
475 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
476 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx },
477 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx },
478 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
479 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
480 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
481 };
482
483 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
484 {
485 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
486 uint32_t op_offset = offset & 0xFFF;
487 int i;
488
489 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
490 const XiveTmOp *xto = &xive_tm_operations[i];
491
492 /* Accesses done from a more privileged TIMA page is allowed */
493 if (xto->page_offset >= page_offset &&
494 xto->op_offset == op_offset &&
495 xto->size == size &&
496 ((write && xto->write_handler) || (!write && xto->read_handler))) {
497 return xto;
498 }
499 }
500 return NULL;
501 }
502
503 /*
504 * TIMA MMIO handlers
505 */
506 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
507 uint64_t value, unsigned size)
508 {
509 const XiveTmOp *xto;
510
511 /*
512 * TODO: check V bit in Q[0-3]W2
513 */
514
515 /*
516 * First, check for special operations in the 2K region
517 */
518 if (offset & 0x800) {
519 xto = xive_tm_find_op(offset, size, true);
520 if (!xto) {
521 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
522 "@%"HWADDR_PRIx"\n", offset);
523 } else {
524 xto->write_handler(xptr, tctx, offset, value, size);
525 }
526 return;
527 }
528
529 /*
530 * Then, for special operations in the region below 2K.
531 */
532 xto = xive_tm_find_op(offset, size, true);
533 if (xto) {
534 xto->write_handler(xptr, tctx, offset, value, size);
535 return;
536 }
537
538 /*
539 * Finish with raw access to the register values
540 */
541 xive_tm_raw_write(tctx, offset, value, size);
542 }
543
544 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
545 unsigned size)
546 {
547 const XiveTmOp *xto;
548
549 /*
550 * TODO: check V bit in Q[0-3]W2
551 */
552
553 /*
554 * First, check for special operations in the 2K region
555 */
556 if (offset & 0x800) {
557 xto = xive_tm_find_op(offset, size, false);
558 if (!xto) {
559 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
560 "@%"HWADDR_PRIx"\n", offset);
561 return -1;
562 }
563 return xto->read_handler(xptr, tctx, offset, size);
564 }
565
566 /*
567 * Then, for special operations in the region below 2K.
568 */
569 xto = xive_tm_find_op(offset, size, false);
570 if (xto) {
571 return xto->read_handler(xptr, tctx, offset, size);
572 }
573
574 /*
575 * Finish with raw access to the register values
576 */
577 return xive_tm_raw_read(tctx, offset, size);
578 }
579
580 static char *xive_tctx_ring_print(uint8_t *ring)
581 {
582 uint32_t w2 = xive_tctx_word2(ring);
583
584 return g_strdup_printf("%02x %02x %02x %02x %02x "
585 "%02x %02x %02x %08x",
586 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
587 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
588 be32_to_cpu(w2));
589 }
590
591 static const char * const xive_tctx_ring_names[] = {
592 "USER", "OS", "POOL", "PHYS",
593 };
594
595 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
596 {
597 int cpu_index;
598 int i;
599
600 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
601 * are hot plugged or unplugged.
602 */
603 if (!tctx) {
604 return;
605 }
606
607 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
608
609 if (kvm_irqchip_in_kernel()) {
610 Error *local_err = NULL;
611
612 kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
613 if (local_err) {
614 error_report_err(local_err);
615 return;
616 }
617 }
618
619 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
620 " W2\n", cpu_index);
621
622 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
623 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
624 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
625 xive_tctx_ring_names[i], s);
626 g_free(s);
627 }
628 }
629
630 void xive_tctx_reset(XiveTCTX *tctx)
631 {
632 memset(tctx->regs, 0, sizeof(tctx->regs));
633
634 /* Set some defaults */
635 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
636 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
637 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
638
639 /*
640 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
641 * CPPR is first set.
642 */
643 tctx->regs[TM_QW1_OS + TM_PIPR] =
644 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
645 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
646 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
647 }
648
649 static void xive_tctx_realize(DeviceState *dev, Error **errp)
650 {
651 XiveTCTX *tctx = XIVE_TCTX(dev);
652 PowerPCCPU *cpu;
653 CPUPPCState *env;
654 Error *local_err = NULL;
655
656 assert(tctx->cs);
657 assert(tctx->xptr);
658
659 cpu = POWERPC_CPU(tctx->cs);
660 env = &cpu->env;
661 switch (PPC_INPUT(env)) {
662 case PPC_FLAGS_INPUT_POWER9:
663 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
664 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
665 break;
666
667 default:
668 error_setg(errp, "XIVE interrupt controller does not support "
669 "this CPU bus model");
670 return;
671 }
672
673 /* Connect the presenter to the VCPU (required for CPU hotplug) */
674 if (kvm_irqchip_in_kernel()) {
675 kvmppc_xive_cpu_connect(tctx, &local_err);
676 if (local_err) {
677 error_propagate(errp, local_err);
678 return;
679 }
680 }
681 }
682
683 static int vmstate_xive_tctx_pre_save(void *opaque)
684 {
685 Error *local_err = NULL;
686
687 if (kvm_irqchip_in_kernel()) {
688 kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
689 if (local_err) {
690 error_report_err(local_err);
691 return -1;
692 }
693 }
694
695 return 0;
696 }
697
698 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
699 {
700 Error *local_err = NULL;
701
702 if (kvm_irqchip_in_kernel()) {
703 /*
704 * Required for hotplugged CPU, for which the state comes
705 * after all states of the machine.
706 */
707 kvmppc_xive_cpu_set_state(XIVE_TCTX(opaque), &local_err);
708 if (local_err) {
709 error_report_err(local_err);
710 return -1;
711 }
712 }
713
714 return 0;
715 }
716
717 static const VMStateDescription vmstate_xive_tctx = {
718 .name = TYPE_XIVE_TCTX,
719 .version_id = 1,
720 .minimum_version_id = 1,
721 .pre_save = vmstate_xive_tctx_pre_save,
722 .post_load = vmstate_xive_tctx_post_load,
723 .fields = (VMStateField[]) {
724 VMSTATE_BUFFER(regs, XiveTCTX),
725 VMSTATE_END_OF_LIST()
726 },
727 };
728
729 static Property xive_tctx_properties[] = {
730 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
731 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
732 XivePresenter *),
733 DEFINE_PROP_END_OF_LIST(),
734 };
735
736 static void xive_tctx_class_init(ObjectClass *klass, void *data)
737 {
738 DeviceClass *dc = DEVICE_CLASS(klass);
739
740 dc->desc = "XIVE Interrupt Thread Context";
741 dc->realize = xive_tctx_realize;
742 dc->vmsd = &vmstate_xive_tctx;
743 device_class_set_props(dc, xive_tctx_properties);
744 /*
745 * Reason: part of XIVE interrupt controller, needs to be wired up
746 * by xive_tctx_create().
747 */
748 dc->user_creatable = false;
749 }
750
751 static const TypeInfo xive_tctx_info = {
752 .name = TYPE_XIVE_TCTX,
753 .parent = TYPE_DEVICE,
754 .instance_size = sizeof(XiveTCTX),
755 .class_init = xive_tctx_class_init,
756 };
757
758 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
759 {
760 Error *local_err = NULL;
761 Object *obj;
762
763 obj = object_new(TYPE_XIVE_TCTX);
764 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
765 object_unref(obj);
766 object_property_set_link(obj, cpu, "cpu", &error_abort);
767 object_property_set_link(obj, OBJECT(xptr), "presenter", &error_abort);
768 object_property_set_bool(obj, true, "realized", &local_err);
769 if (local_err) {
770 goto error;
771 }
772
773 return obj;
774
775 error:
776 object_unparent(obj);
777 error_propagate(errp, local_err);
778 return NULL;
779 }
780
781 void xive_tctx_destroy(XiveTCTX *tctx)
782 {
783 Object *obj = OBJECT(tctx);
784
785 object_unparent(obj);
786 }
787
788 /*
789 * XIVE ESB helpers
790 */
791
792 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
793 {
794 uint8_t old_pq = *pq & 0x3;
795
796 *pq &= ~0x3;
797 *pq |= value & 0x3;
798
799 return old_pq;
800 }
801
802 static bool xive_esb_trigger(uint8_t *pq)
803 {
804 uint8_t old_pq = *pq & 0x3;
805
806 switch (old_pq) {
807 case XIVE_ESB_RESET:
808 xive_esb_set(pq, XIVE_ESB_PENDING);
809 return true;
810 case XIVE_ESB_PENDING:
811 case XIVE_ESB_QUEUED:
812 xive_esb_set(pq, XIVE_ESB_QUEUED);
813 return false;
814 case XIVE_ESB_OFF:
815 xive_esb_set(pq, XIVE_ESB_OFF);
816 return false;
817 default:
818 g_assert_not_reached();
819 }
820 }
821
822 static bool xive_esb_eoi(uint8_t *pq)
823 {
824 uint8_t old_pq = *pq & 0x3;
825
826 switch (old_pq) {
827 case XIVE_ESB_RESET:
828 case XIVE_ESB_PENDING:
829 xive_esb_set(pq, XIVE_ESB_RESET);
830 return false;
831 case XIVE_ESB_QUEUED:
832 xive_esb_set(pq, XIVE_ESB_PENDING);
833 return true;
834 case XIVE_ESB_OFF:
835 xive_esb_set(pq, XIVE_ESB_OFF);
836 return false;
837 default:
838 g_assert_not_reached();
839 }
840 }
841
842 /*
843 * XIVE Interrupt Source (or IVSE)
844 */
845
846 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
847 {
848 assert(srcno < xsrc->nr_irqs);
849
850 return xsrc->status[srcno] & 0x3;
851 }
852
853 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
854 {
855 assert(srcno < xsrc->nr_irqs);
856
857 return xive_esb_set(&xsrc->status[srcno], pq);
858 }
859
860 /*
861 * Returns whether the event notification should be forwarded.
862 */
863 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
864 {
865 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
866
867 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
868
869 switch (old_pq) {
870 case XIVE_ESB_RESET:
871 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
872 return true;
873 default:
874 return false;
875 }
876 }
877
878 /*
879 * Returns whether the event notification should be forwarded.
880 */
881 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
882 {
883 bool ret;
884
885 assert(srcno < xsrc->nr_irqs);
886
887 ret = xive_esb_trigger(&xsrc->status[srcno]);
888
889 if (xive_source_irq_is_lsi(xsrc, srcno) &&
890 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
891 qemu_log_mask(LOG_GUEST_ERROR,
892 "XIVE: queued an event on LSI IRQ %d\n", srcno);
893 }
894
895 return ret;
896 }
897
898 /*
899 * Returns whether the event notification should be forwarded.
900 */
901 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
902 {
903 bool ret;
904
905 assert(srcno < xsrc->nr_irqs);
906
907 ret = xive_esb_eoi(&xsrc->status[srcno]);
908
909 /*
910 * LSI sources do not set the Q bit but they can still be
911 * asserted, in which case we should forward a new event
912 * notification
913 */
914 if (xive_source_irq_is_lsi(xsrc, srcno) &&
915 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
916 ret = xive_source_lsi_trigger(xsrc, srcno);
917 }
918
919 return ret;
920 }
921
922 /*
923 * Forward the source event notification to the Router
924 */
925 static void xive_source_notify(XiveSource *xsrc, int srcno)
926 {
927 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
928
929 if (xnc->notify) {
930 xnc->notify(xsrc->xive, srcno);
931 }
932 }
933
934 /*
935 * In a two pages ESB MMIO setting, even page is the trigger page, odd
936 * page is for management
937 */
938 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
939 {
940 return !((addr >> shift) & 1);
941 }
942
943 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
944 {
945 return xive_source_esb_has_2page(xsrc) &&
946 addr_is_even(addr, xsrc->esb_shift - 1);
947 }
948
949 /*
950 * ESB MMIO loads
951 * Trigger page Management/EOI page
952 *
953 * ESB MMIO setting 2 pages 1 or 2 pages
954 *
955 * 0x000 .. 0x3FF -1 EOI and return 0|1
956 * 0x400 .. 0x7FF -1 EOI and return 0|1
957 * 0x800 .. 0xBFF -1 return PQ
958 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
959 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
960 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
961 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
962 */
963 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
964 {
965 XiveSource *xsrc = XIVE_SOURCE(opaque);
966 uint32_t offset = addr & 0xFFF;
967 uint32_t srcno = addr >> xsrc->esb_shift;
968 uint64_t ret = -1;
969
970 /* In a two pages ESB MMIO setting, trigger page should not be read */
971 if (xive_source_is_trigger_page(xsrc, addr)) {
972 qemu_log_mask(LOG_GUEST_ERROR,
973 "XIVE: invalid load on IRQ %d trigger page at "
974 "0x%"HWADDR_PRIx"\n", srcno, addr);
975 return -1;
976 }
977
978 switch (offset) {
979 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
980 ret = xive_source_esb_eoi(xsrc, srcno);
981
982 /* Forward the source event notification for routing */
983 if (ret) {
984 xive_source_notify(xsrc, srcno);
985 }
986 break;
987
988 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
989 ret = xive_source_esb_get(xsrc, srcno);
990 break;
991
992 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
993 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
994 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
995 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
996 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
997 break;
998 default:
999 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
1000 offset);
1001 }
1002
1003 return ret;
1004 }
1005
1006 /*
1007 * ESB MMIO stores
1008 * Trigger page Management/EOI page
1009 *
1010 * ESB MMIO setting 2 pages 1 or 2 pages
1011 *
1012 * 0x000 .. 0x3FF Trigger Trigger
1013 * 0x400 .. 0x7FF Trigger EOI
1014 * 0x800 .. 0xBFF Trigger undefined
1015 * 0xC00 .. 0xCFF Trigger PQ=00
1016 * 0xD00 .. 0xDFF Trigger PQ=01
1017 * 0xE00 .. 0xDFF Trigger PQ=10
1018 * 0xF00 .. 0xDFF Trigger PQ=11
1019 */
1020 static void xive_source_esb_write(void *opaque, hwaddr addr,
1021 uint64_t value, unsigned size)
1022 {
1023 XiveSource *xsrc = XIVE_SOURCE(opaque);
1024 uint32_t offset = addr & 0xFFF;
1025 uint32_t srcno = addr >> xsrc->esb_shift;
1026 bool notify = false;
1027
1028 /* In a two pages ESB MMIO setting, trigger page only triggers */
1029 if (xive_source_is_trigger_page(xsrc, addr)) {
1030 notify = xive_source_esb_trigger(xsrc, srcno);
1031 goto out;
1032 }
1033
1034 switch (offset) {
1035 case 0 ... 0x3FF:
1036 notify = xive_source_esb_trigger(xsrc, srcno);
1037 break;
1038
1039 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1040 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1041 qemu_log_mask(LOG_GUEST_ERROR,
1042 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1043 return;
1044 }
1045
1046 notify = xive_source_esb_eoi(xsrc, srcno);
1047 break;
1048
1049 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1050 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1051 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1052 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1053 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1054 break;
1055
1056 default:
1057 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1058 offset);
1059 return;
1060 }
1061
1062 out:
1063 /* Forward the source event notification for routing */
1064 if (notify) {
1065 xive_source_notify(xsrc, srcno);
1066 }
1067 }
1068
1069 static const MemoryRegionOps xive_source_esb_ops = {
1070 .read = xive_source_esb_read,
1071 .write = xive_source_esb_write,
1072 .endianness = DEVICE_BIG_ENDIAN,
1073 .valid = {
1074 .min_access_size = 8,
1075 .max_access_size = 8,
1076 },
1077 .impl = {
1078 .min_access_size = 8,
1079 .max_access_size = 8,
1080 },
1081 };
1082
1083 void xive_source_set_irq(void *opaque, int srcno, int val)
1084 {
1085 XiveSource *xsrc = XIVE_SOURCE(opaque);
1086 bool notify = false;
1087
1088 if (xive_source_irq_is_lsi(xsrc, srcno)) {
1089 if (val) {
1090 notify = xive_source_lsi_trigger(xsrc, srcno);
1091 } else {
1092 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
1093 }
1094 } else {
1095 if (val) {
1096 notify = xive_source_esb_trigger(xsrc, srcno);
1097 }
1098 }
1099
1100 /* Forward the source event notification for routing */
1101 if (notify) {
1102 xive_source_notify(xsrc, srcno);
1103 }
1104 }
1105
1106 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1107 {
1108 int i;
1109
1110 for (i = 0; i < xsrc->nr_irqs; i++) {
1111 uint8_t pq = xive_source_esb_get(xsrc, i);
1112
1113 if (pq == XIVE_ESB_OFF) {
1114 continue;
1115 }
1116
1117 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
1118 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1119 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1120 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1121 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
1122 }
1123 }
1124
1125 static void xive_source_reset(void *dev)
1126 {
1127 XiveSource *xsrc = XIVE_SOURCE(dev);
1128
1129 /* Do not clear the LSI bitmap */
1130
1131 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1132 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1133 }
1134
1135 static void xive_source_realize(DeviceState *dev, Error **errp)
1136 {
1137 XiveSource *xsrc = XIVE_SOURCE(dev);
1138
1139 assert(xsrc->xive);
1140
1141 if (!xsrc->nr_irqs) {
1142 error_setg(errp, "Number of interrupt needs to be greater than 0");
1143 return;
1144 }
1145
1146 if (xsrc->esb_shift != XIVE_ESB_4K &&
1147 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1148 xsrc->esb_shift != XIVE_ESB_64K &&
1149 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1150 error_setg(errp, "Invalid ESB shift setting");
1151 return;
1152 }
1153
1154 xsrc->status = g_malloc0(xsrc->nr_irqs);
1155 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1156
1157 if (!kvm_irqchip_in_kernel()) {
1158 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1159 &xive_source_esb_ops, xsrc, "xive.esb",
1160 (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
1161 }
1162
1163 qemu_register_reset(xive_source_reset, dev);
1164 }
1165
1166 static const VMStateDescription vmstate_xive_source = {
1167 .name = TYPE_XIVE_SOURCE,
1168 .version_id = 1,
1169 .minimum_version_id = 1,
1170 .fields = (VMStateField[]) {
1171 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1172 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1173 VMSTATE_END_OF_LIST()
1174 },
1175 };
1176
1177 /*
1178 * The default XIVE interrupt source setting for the ESB MMIOs is two
1179 * 64k pages without Store EOI, to be in sync with KVM.
1180 */
1181 static Property xive_source_properties[] = {
1182 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1183 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1184 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1185 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1186 XiveNotifier *),
1187 DEFINE_PROP_END_OF_LIST(),
1188 };
1189
1190 static void xive_source_class_init(ObjectClass *klass, void *data)
1191 {
1192 DeviceClass *dc = DEVICE_CLASS(klass);
1193
1194 dc->desc = "XIVE Interrupt Source";
1195 device_class_set_props(dc, xive_source_properties);
1196 dc->realize = xive_source_realize;
1197 dc->vmsd = &vmstate_xive_source;
1198 /*
1199 * Reason: part of XIVE interrupt controller, needs to be wired up,
1200 * e.g. by spapr_xive_instance_init().
1201 */
1202 dc->user_creatable = false;
1203 }
1204
1205 static const TypeInfo xive_source_info = {
1206 .name = TYPE_XIVE_SOURCE,
1207 .parent = TYPE_DEVICE,
1208 .instance_size = sizeof(XiveSource),
1209 .class_init = xive_source_class_init,
1210 };
1211
1212 /*
1213 * XiveEND helpers
1214 */
1215
1216 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1217 {
1218 uint64_t qaddr_base = xive_end_qaddr(end);
1219 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1220 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1221 uint32_t qentries = 1 << (qsize + 10);
1222 int i;
1223
1224 /*
1225 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1226 */
1227 monitor_printf(mon, " [ ");
1228 qindex = (qindex - (width - 1)) & (qentries - 1);
1229 for (i = 0; i < width; i++) {
1230 uint64_t qaddr = qaddr_base + (qindex << 2);
1231 uint32_t qdata = -1;
1232
1233 if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1234 sizeof(qdata))) {
1235 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1236 HWADDR_PRIx "\n", qaddr);
1237 return;
1238 }
1239 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1240 be32_to_cpu(qdata));
1241 qindex = (qindex + 1) & (qentries - 1);
1242 }
1243 monitor_printf(mon, "]");
1244 }
1245
1246 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1247 {
1248 uint64_t qaddr_base = xive_end_qaddr(end);
1249 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1250 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1251 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1252 uint32_t qentries = 1 << (qsize + 10);
1253
1254 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1255 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1256 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1257 uint8_t pq;
1258
1259 if (!xive_end_is_valid(end)) {
1260 return;
1261 }
1262
1263 pq = xive_get_field32(END_W1_ESn, end->w1);
1264
1265 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1266 end_idx,
1267 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1268 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1269 xive_end_is_valid(end) ? 'v' : '-',
1270 xive_end_is_enqueue(end) ? 'q' : '-',
1271 xive_end_is_notify(end) ? 'n' : '-',
1272 xive_end_is_backlog(end) ? 'b' : '-',
1273 xive_end_is_escalate(end) ? 'e' : '-',
1274 xive_end_is_uncond_escalation(end) ? 'u' : '-',
1275 xive_end_is_silent_escalation(end) ? 's' : '-',
1276 priority, nvt_blk, nvt_idx);
1277
1278 if (qaddr_base) {
1279 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1280 qaddr_base, qindex, qentries, qgen);
1281 xive_end_queue_pic_print_info(end, 6, mon);
1282 }
1283 monitor_printf(mon, "\n");
1284 }
1285
1286 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1287 {
1288 uint64_t qaddr_base = xive_end_qaddr(end);
1289 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1290 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1291 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1292
1293 uint64_t qaddr = qaddr_base + (qindex << 2);
1294 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1295 uint32_t qentries = 1 << (qsize + 10);
1296
1297 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1298 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1299 HWADDR_PRIx "\n", qaddr);
1300 return;
1301 }
1302
1303 qindex = (qindex + 1) & (qentries - 1);
1304 if (qindex == 0) {
1305 qgen ^= 1;
1306 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1307 }
1308 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1309 }
1310
1311 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1312 Monitor *mon)
1313 {
1314 XiveEAS *eas = (XiveEAS *) &end->w4;
1315 uint8_t pq;
1316
1317 if (!xive_end_is_escalate(end)) {
1318 return;
1319 }
1320
1321 pq = xive_get_field32(END_W1_ESe, end->w1);
1322
1323 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1324 end_idx,
1325 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1326 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1327 xive_eas_is_valid(eas) ? 'V' : ' ',
1328 xive_eas_is_masked(eas) ? 'M' : ' ',
1329 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1330 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1331 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1332 }
1333
1334 /*
1335 * XIVE Router (aka. Virtualization Controller or IVRE)
1336 */
1337
1338 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1339 XiveEAS *eas)
1340 {
1341 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1342
1343 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1344 }
1345
1346 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1347 XiveEND *end)
1348 {
1349 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1350
1351 return xrc->get_end(xrtr, end_blk, end_idx, end);
1352 }
1353
1354 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1355 XiveEND *end, uint8_t word_number)
1356 {
1357 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1358
1359 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1360 }
1361
1362 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1363 XiveNVT *nvt)
1364 {
1365 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1366
1367 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1368 }
1369
1370 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1371 XiveNVT *nvt, uint8_t word_number)
1372 {
1373 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1374
1375 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1376 }
1377
1378 static int xive_router_get_block_id(XiveRouter *xrtr)
1379 {
1380 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1381
1382 return xrc->get_block_id(xrtr);
1383 }
1384
1385 static void xive_router_realize(DeviceState *dev, Error **errp)
1386 {
1387 XiveRouter *xrtr = XIVE_ROUTER(dev);
1388
1389 assert(xrtr->xfb);
1390 }
1391
1392 /*
1393 * Encode the HW CAM line in the block group mode format :
1394 *
1395 * chip << 19 | 0000000 0 0001 thread (7Bit)
1396 */
1397 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1398 {
1399 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1400 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1401 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1402
1403 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1404 }
1405
1406 /*
1407 * The thread context register words are in big-endian format.
1408 */
1409 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1410 uint8_t format,
1411 uint8_t nvt_blk, uint32_t nvt_idx,
1412 bool cam_ignore, uint32_t logic_serv)
1413 {
1414 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1415 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1416 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1417 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1418 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1419
1420 /*
1421 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1422 * identifier are ignored in the "CAM" match.
1423 */
1424
1425 if (format == 0) {
1426 if (cam_ignore == true) {
1427 /*
1428 * F=0 & i=1: Logical server notification (bits ignored at
1429 * the end of the NVT identifier)
1430 */
1431 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1432 nvt_blk, nvt_idx);
1433 return -1;
1434 }
1435
1436 /* F=0 & i=0: Specific NVT notification */
1437
1438 /* PHYS ring */
1439 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1440 cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1441 return TM_QW3_HV_PHYS;
1442 }
1443
1444 /* HV POOL ring */
1445 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1446 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1447 return TM_QW2_HV_POOL;
1448 }
1449
1450 /* OS ring */
1451 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1452 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1453 return TM_QW1_OS;
1454 }
1455 } else {
1456 /* F=1 : User level Event-Based Branch (EBB) notification */
1457
1458 /* USER ring */
1459 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1460 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1461 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1462 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1463 return TM_QW0_USER;
1464 }
1465 }
1466 return -1;
1467 }
1468
1469 /*
1470 * This is our simple Xive Presenter Engine model. It is merged in the
1471 * Router as it does not require an extra object.
1472 *
1473 * It receives notification requests sent by the IVRE to find one
1474 * matching NVT (or more) dispatched on the processor threads. In case
1475 * of a single NVT notification, the process is abreviated and the
1476 * thread is signaled if a match is found. In case of a logical server
1477 * notification (bits ignored at the end of the NVT identifier), the
1478 * IVPE and IVRE select a winning thread using different filters. This
1479 * involves 2 or 3 exchanges on the PowerBus that the model does not
1480 * support.
1481 *
1482 * The parameters represent what is sent on the PowerBus
1483 */
1484 static bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1485 uint8_t nvt_blk, uint32_t nvt_idx,
1486 bool cam_ignore, uint8_t priority,
1487 uint32_t logic_serv)
1488 {
1489 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1490 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1491 int count;
1492
1493 /*
1494 * Ask the machine to scan the interrupt controllers for a match
1495 */
1496 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1497 priority, logic_serv, &match);
1498 if (count < 0) {
1499 return false;
1500 }
1501
1502 /* handle CPU exception delivery */
1503 if (count) {
1504 xive_tctx_ipb_update(match.tctx, match.ring, priority_to_ipb(priority));
1505 }
1506
1507 return !!count;
1508 }
1509
1510 /*
1511 * Notification using the END ESe/ESn bit (Event State Buffer for
1512 * escalation and notification). Profide futher coalescing in the
1513 * Router.
1514 */
1515 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1516 uint32_t end_idx, XiveEND *end,
1517 uint32_t end_esmask)
1518 {
1519 uint8_t pq = xive_get_field32(end_esmask, end->w1);
1520 bool notify = xive_esb_trigger(&pq);
1521
1522 if (pq != xive_get_field32(end_esmask, end->w1)) {
1523 end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1524 xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1525 }
1526
1527 /* ESe/n[Q]=1 : end of notification */
1528 return notify;
1529 }
1530
1531 /*
1532 * An END trigger can come from an event trigger (IPI or HW) or from
1533 * another chip. We don't model the PowerBus but the END trigger
1534 * message has the same parameters than in the function below.
1535 */
1536 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1537 uint32_t end_idx, uint32_t end_data)
1538 {
1539 XiveEND end;
1540 uint8_t priority;
1541 uint8_t format;
1542 uint8_t nvt_blk;
1543 uint32_t nvt_idx;
1544 XiveNVT nvt;
1545 bool found;
1546
1547 /* END cache lookup */
1548 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1549 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1550 end_idx);
1551 return;
1552 }
1553
1554 if (!xive_end_is_valid(&end)) {
1555 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1556 end_blk, end_idx);
1557 return;
1558 }
1559
1560 if (xive_end_is_enqueue(&end)) {
1561 xive_end_enqueue(&end, end_data);
1562 /* Enqueuing event data modifies the EQ toggle and index */
1563 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1564 }
1565
1566 /*
1567 * When the END is silent, we skip the notification part.
1568 */
1569 if (xive_end_is_silent_escalation(&end)) {
1570 goto do_escalation;
1571 }
1572
1573 /*
1574 * The W7 format depends on the F bit in W6. It defines the type
1575 * of the notification :
1576 *
1577 * F=0 : single or multiple NVT notification
1578 * F=1 : User level Event-Based Branch (EBB) notification, no
1579 * priority
1580 */
1581 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1582 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1583
1584 /* The END is masked */
1585 if (format == 0 && priority == 0xff) {
1586 return;
1587 }
1588
1589 /*
1590 * Check the END ESn (Event State Buffer for notification) for
1591 * even futher coalescing in the Router
1592 */
1593 if (!xive_end_is_notify(&end)) {
1594 /* ESn[Q]=1 : end of notification */
1595 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1596 &end, END_W1_ESn)) {
1597 return;
1598 }
1599 }
1600
1601 /*
1602 * Follows IVPE notification
1603 */
1604 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1605 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1606
1607 /* NVT cache lookup */
1608 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1609 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1610 nvt_blk, nvt_idx);
1611 return;
1612 }
1613
1614 if (!xive_nvt_is_valid(&nvt)) {
1615 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1616 nvt_blk, nvt_idx);
1617 return;
1618 }
1619
1620 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1621 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1622 priority,
1623 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1624
1625 /* TODO: Auto EOI. */
1626
1627 if (found) {
1628 return;
1629 }
1630
1631 /*
1632 * If no matching NVT is dispatched on a HW thread :
1633 * - specific VP: update the NVT structure if backlog is activated
1634 * - logical server : forward request to IVPE (not supported)
1635 */
1636 if (xive_end_is_backlog(&end)) {
1637 uint8_t ipb;
1638
1639 if (format == 1) {
1640 qemu_log_mask(LOG_GUEST_ERROR,
1641 "XIVE: END %x/%x invalid config: F1 & backlog\n",
1642 end_blk, end_idx);
1643 return;
1644 }
1645 /*
1646 * Record the IPB in the associated NVT structure for later
1647 * use. The presenter will resend the interrupt when the vCPU
1648 * is dispatched again on a HW thread.
1649 */
1650 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | priority_to_ipb(priority);
1651 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1652 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1653
1654 /*
1655 * On HW, follows a "Broadcast Backlog" to IVPEs
1656 */
1657 }
1658
1659 do_escalation:
1660 /*
1661 * If activated, escalate notification using the ESe PQ bits and
1662 * the EAS in w4-5
1663 */
1664 if (!xive_end_is_escalate(&end)) {
1665 return;
1666 }
1667
1668 /*
1669 * Check the END ESe (Event State Buffer for escalation) for even
1670 * futher coalescing in the Router
1671 */
1672 if (!xive_end_is_uncond_escalation(&end)) {
1673 /* ESe[Q]=1 : end of notification */
1674 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1675 &end, END_W1_ESe)) {
1676 return;
1677 }
1678 }
1679
1680 /*
1681 * The END trigger becomes an Escalation trigger
1682 */
1683 xive_router_end_notify(xrtr,
1684 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1685 xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1686 xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1687 }
1688
1689 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1690 {
1691 XiveRouter *xrtr = XIVE_ROUTER(xn);
1692 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1693 uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1694 XiveEAS eas;
1695
1696 /* EAS cache lookup */
1697 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1698 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1699 return;
1700 }
1701
1702 /*
1703 * The IVRE checks the State Bit Cache at this point. We skip the
1704 * SBC lookup because the state bits of the sources are modeled
1705 * internally in QEMU.
1706 */
1707
1708 if (!xive_eas_is_valid(&eas)) {
1709 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1710 return;
1711 }
1712
1713 if (xive_eas_is_masked(&eas)) {
1714 /* Notification completed */
1715 return;
1716 }
1717
1718 /*
1719 * The event trigger becomes an END trigger
1720 */
1721 xive_router_end_notify(xrtr,
1722 xive_get_field64(EAS_END_BLOCK, eas.w),
1723 xive_get_field64(EAS_END_INDEX, eas.w),
1724 xive_get_field64(EAS_END_DATA, eas.w));
1725 }
1726
1727 static Property xive_router_properties[] = {
1728 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
1729 TYPE_XIVE_FABRIC, XiveFabric *),
1730 DEFINE_PROP_END_OF_LIST(),
1731 };
1732
1733 static void xive_router_class_init(ObjectClass *klass, void *data)
1734 {
1735 DeviceClass *dc = DEVICE_CLASS(klass);
1736 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1737
1738 dc->desc = "XIVE Router Engine";
1739 device_class_set_props(dc, xive_router_properties);
1740 /* Parent is SysBusDeviceClass. No need to call its realize hook */
1741 dc->realize = xive_router_realize;
1742 xnc->notify = xive_router_notify;
1743 }
1744
1745 static const TypeInfo xive_router_info = {
1746 .name = TYPE_XIVE_ROUTER,
1747 .parent = TYPE_SYS_BUS_DEVICE,
1748 .abstract = true,
1749 .instance_size = sizeof(XiveRouter),
1750 .class_size = sizeof(XiveRouterClass),
1751 .class_init = xive_router_class_init,
1752 .interfaces = (InterfaceInfo[]) {
1753 { TYPE_XIVE_NOTIFIER },
1754 { TYPE_XIVE_PRESENTER },
1755 { }
1756 }
1757 };
1758
1759 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1760 {
1761 if (!xive_eas_is_valid(eas)) {
1762 return;
1763 }
1764
1765 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1766 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1767 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1768 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1769 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1770 }
1771
1772 /*
1773 * END ESB MMIO loads
1774 */
1775 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1776 {
1777 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1778 uint32_t offset = addr & 0xFFF;
1779 uint8_t end_blk;
1780 uint32_t end_idx;
1781 XiveEND end;
1782 uint32_t end_esmask;
1783 uint8_t pq;
1784 uint64_t ret = -1;
1785
1786 /*
1787 * The block id should be deduced from the load address on the END
1788 * ESB MMIO but our model only supports a single block per XIVE chip.
1789 */
1790 end_blk = xive_router_get_block_id(xsrc->xrtr);
1791 end_idx = addr >> (xsrc->esb_shift + 1);
1792
1793 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1794 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1795 end_idx);
1796 return -1;
1797 }
1798
1799 if (!xive_end_is_valid(&end)) {
1800 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1801 end_blk, end_idx);
1802 return -1;
1803 }
1804
1805 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1806 pq = xive_get_field32(end_esmask, end.w1);
1807
1808 switch (offset) {
1809 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1810 ret = xive_esb_eoi(&pq);
1811
1812 /* Forward the source event notification for routing ?? */
1813 break;
1814
1815 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1816 ret = pq;
1817 break;
1818
1819 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1820 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1821 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1822 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1823 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1824 break;
1825 default:
1826 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1827 offset);
1828 return -1;
1829 }
1830
1831 if (pq != xive_get_field32(end_esmask, end.w1)) {
1832 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1833 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1834 }
1835
1836 return ret;
1837 }
1838
1839 /*
1840 * END ESB MMIO stores are invalid
1841 */
1842 static void xive_end_source_write(void *opaque, hwaddr addr,
1843 uint64_t value, unsigned size)
1844 {
1845 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1846 HWADDR_PRIx"\n", addr);
1847 }
1848
1849 static const MemoryRegionOps xive_end_source_ops = {
1850 .read = xive_end_source_read,
1851 .write = xive_end_source_write,
1852 .endianness = DEVICE_BIG_ENDIAN,
1853 .valid = {
1854 .min_access_size = 8,
1855 .max_access_size = 8,
1856 },
1857 .impl = {
1858 .min_access_size = 8,
1859 .max_access_size = 8,
1860 },
1861 };
1862
1863 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1864 {
1865 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1866
1867 assert(xsrc->xrtr);
1868
1869 if (!xsrc->nr_ends) {
1870 error_setg(errp, "Number of interrupt needs to be greater than 0");
1871 return;
1872 }
1873
1874 if (xsrc->esb_shift != XIVE_ESB_4K &&
1875 xsrc->esb_shift != XIVE_ESB_64K) {
1876 error_setg(errp, "Invalid ESB shift setting");
1877 return;
1878 }
1879
1880 /*
1881 * Each END is assigned an even/odd pair of MMIO pages, the even page
1882 * manages the ESn field while the odd page manages the ESe field.
1883 */
1884 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1885 &xive_end_source_ops, xsrc, "xive.end",
1886 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1887 }
1888
1889 static Property xive_end_source_properties[] = {
1890 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1891 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1892 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
1893 XiveRouter *),
1894 DEFINE_PROP_END_OF_LIST(),
1895 };
1896
1897 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1898 {
1899 DeviceClass *dc = DEVICE_CLASS(klass);
1900
1901 dc->desc = "XIVE END Source";
1902 device_class_set_props(dc, xive_end_source_properties);
1903 dc->realize = xive_end_source_realize;
1904 /*
1905 * Reason: part of XIVE interrupt controller, needs to be wired up,
1906 * e.g. by spapr_xive_instance_init().
1907 */
1908 dc->user_creatable = false;
1909 }
1910
1911 static const TypeInfo xive_end_source_info = {
1912 .name = TYPE_XIVE_END_SOURCE,
1913 .parent = TYPE_DEVICE,
1914 .instance_size = sizeof(XiveENDSource),
1915 .class_init = xive_end_source_class_init,
1916 };
1917
1918 /*
1919 * XIVE Notifier
1920 */
1921 static const TypeInfo xive_notifier_info = {
1922 .name = TYPE_XIVE_NOTIFIER,
1923 .parent = TYPE_INTERFACE,
1924 .class_size = sizeof(XiveNotifierClass),
1925 };
1926
1927 /*
1928 * XIVE Presenter
1929 */
1930 static const TypeInfo xive_presenter_info = {
1931 .name = TYPE_XIVE_PRESENTER,
1932 .parent = TYPE_INTERFACE,
1933 .class_size = sizeof(XivePresenterClass),
1934 };
1935
1936 /*
1937 * XIVE Fabric
1938 */
1939 static const TypeInfo xive_fabric_info = {
1940 .name = TYPE_XIVE_FABRIC,
1941 .parent = TYPE_INTERFACE,
1942 .class_size = sizeof(XiveFabricClass),
1943 };
1944
1945 static void xive_register_types(void)
1946 {
1947 type_register_static(&xive_fabric_info);
1948 type_register_static(&xive_source_info);
1949 type_register_static(&xive_notifier_info);
1950 type_register_static(&xive_presenter_info);
1951 type_register_static(&xive_router_info);
1952 type_register_static(&xive_end_source_info);
1953 type_register_static(&xive_tctx_info);
1954 }
1955
1956 type_init(xive_register_types)