]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mips/boston.c
hw: Replace global smp variables with MachineState for all remaining archs
[mirror_qemu.git] / hw / mips / boston.c
1 /*
2 * MIPS Boston development board emulation.
3 *
4 * Copyright (c) 2016 Imagination Technologies
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22
23 #include "exec/address-spaces.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/hw.h"
27 #include "hw/ide/pci.h"
28 #include "hw/ide/ahci.h"
29 #include "hw/loader.h"
30 #include "hw/loader-fit.h"
31 #include "hw/mips/cps.h"
32 #include "hw/mips/cpudevs.h"
33 #include "hw/pci-host/xilinx-pcie.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/log.h"
37 #include "chardev/char.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/qtest.h"
41
42 #include <libfdt.h>
43
44 #define TYPE_MIPS_BOSTON "mips-boston"
45 #define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON)
46
47 typedef struct {
48 SysBusDevice parent_obj;
49
50 MachineState *mach;
51 MIPSCPSState cps;
52 SerialState *uart;
53
54 CharBackend lcd_display;
55 char lcd_content[8];
56 bool lcd_inited;
57
58 hwaddr kernel_entry;
59 hwaddr fdt_base;
60 } BostonState;
61
62 enum boston_plat_reg {
63 PLAT_FPGA_BUILD = 0x00,
64 PLAT_CORE_CL = 0x04,
65 PLAT_WRAPPER_CL = 0x08,
66 PLAT_SYSCLK_STATUS = 0x0c,
67 PLAT_SOFTRST_CTL = 0x10,
68 #define PLAT_SOFTRST_CTL_SYSRESET (1 << 4)
69 PLAT_DDR3_STATUS = 0x14,
70 #define PLAT_DDR3_STATUS_LOCKED (1 << 0)
71 #define PLAT_DDR3_STATUS_CALIBRATED (1 << 2)
72 PLAT_PCIE_STATUS = 0x18,
73 #define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0)
74 #define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8)
75 #define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16)
76 PLAT_FLASH_CTL = 0x1c,
77 PLAT_SPARE0 = 0x20,
78 PLAT_SPARE1 = 0x24,
79 PLAT_SPARE2 = 0x28,
80 PLAT_SPARE3 = 0x2c,
81 PLAT_MMCM_DIV = 0x30,
82 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0
83 #define PLAT_MMCM_DIV_INPUT_SHIFT 8
84 #define PLAT_MMCM_DIV_MUL_SHIFT 16
85 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24
86 PLAT_BUILD_CFG = 0x34,
87 #define PLAT_BUILD_CFG_IOCU_EN (1 << 0)
88 #define PLAT_BUILD_CFG_PCIE0_EN (1 << 1)
89 #define PLAT_BUILD_CFG_PCIE1_EN (1 << 2)
90 #define PLAT_BUILD_CFG_PCIE2_EN (1 << 3)
91 PLAT_DDR_CFG = 0x38,
92 #define PLAT_DDR_CFG_SIZE (0xf << 0)
93 #define PLAT_DDR_CFG_MHZ (0xfff << 4)
94 PLAT_NOC_PCIE0_ADDR = 0x3c,
95 PLAT_NOC_PCIE1_ADDR = 0x40,
96 PLAT_NOC_PCIE2_ADDR = 0x44,
97 PLAT_SYS_CTL = 0x48,
98 };
99
100 static void boston_lcd_event(void *opaque, int event)
101 {
102 BostonState *s = opaque;
103 if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
104 qemu_chr_fe_printf(&s->lcd_display, " ");
105 s->lcd_inited = true;
106 }
107 }
108
109 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
110 unsigned size)
111 {
112 BostonState *s = opaque;
113 uint64_t val = 0;
114
115 switch (size) {
116 case 8:
117 val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
118 val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
119 val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
120 val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
121 /* fall through */
122 case 4:
123 val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
124 val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
125 /* fall through */
126 case 2:
127 val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
128 /* fall through */
129 case 1:
130 val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
131 break;
132 }
133
134 return val;
135 }
136
137 static void boston_lcd_write(void *opaque, hwaddr addr,
138 uint64_t val, unsigned size)
139 {
140 BostonState *s = opaque;
141
142 switch (size) {
143 case 8:
144 s->lcd_content[(addr + 7) & 0x7] = val >> 56;
145 s->lcd_content[(addr + 6) & 0x7] = val >> 48;
146 s->lcd_content[(addr + 5) & 0x7] = val >> 40;
147 s->lcd_content[(addr + 4) & 0x7] = val >> 32;
148 /* fall through */
149 case 4:
150 s->lcd_content[(addr + 3) & 0x7] = val >> 24;
151 s->lcd_content[(addr + 2) & 0x7] = val >> 16;
152 /* fall through */
153 case 2:
154 s->lcd_content[(addr + 1) & 0x7] = val >> 8;
155 /* fall through */
156 case 1:
157 s->lcd_content[(addr + 0) & 0x7] = val;
158 break;
159 }
160
161 qemu_chr_fe_printf(&s->lcd_display,
162 "\r%-8.8s", s->lcd_content);
163 }
164
165 static const MemoryRegionOps boston_lcd_ops = {
166 .read = boston_lcd_read,
167 .write = boston_lcd_write,
168 .endianness = DEVICE_NATIVE_ENDIAN,
169 };
170
171 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
172 unsigned size)
173 {
174 BostonState *s = opaque;
175 uint32_t gic_freq, val;
176
177 if (size != 4) {
178 qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
179 return 0;
180 }
181
182 switch (addr & 0xffff) {
183 case PLAT_FPGA_BUILD:
184 case PLAT_CORE_CL:
185 case PLAT_WRAPPER_CL:
186 return 0;
187 case PLAT_DDR3_STATUS:
188 return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
189 case PLAT_MMCM_DIV:
190 gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
191 val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
192 val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
193 val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
194 val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
195 return val;
196 case PLAT_BUILD_CFG:
197 val = PLAT_BUILD_CFG_PCIE0_EN;
198 val |= PLAT_BUILD_CFG_PCIE1_EN;
199 val |= PLAT_BUILD_CFG_PCIE2_EN;
200 return val;
201 case PLAT_DDR_CFG:
202 val = s->mach->ram_size / GiB;
203 assert(!(val & ~PLAT_DDR_CFG_SIZE));
204 val |= PLAT_DDR_CFG_MHZ;
205 return val;
206 default:
207 qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
208 addr & 0xffff);
209 return 0;
210 }
211 }
212
213 static void boston_platreg_write(void *opaque, hwaddr addr,
214 uint64_t val, unsigned size)
215 {
216 if (size != 4) {
217 qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
218 return;
219 }
220
221 switch (addr & 0xffff) {
222 case PLAT_FPGA_BUILD:
223 case PLAT_CORE_CL:
224 case PLAT_WRAPPER_CL:
225 case PLAT_DDR3_STATUS:
226 case PLAT_PCIE_STATUS:
227 case PLAT_MMCM_DIV:
228 case PLAT_BUILD_CFG:
229 case PLAT_DDR_CFG:
230 /* read only */
231 break;
232 case PLAT_SOFTRST_CTL:
233 if (val & PLAT_SOFTRST_CTL_SYSRESET) {
234 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
235 }
236 break;
237 default:
238 qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
239 " = 0x%" PRIx64 "\n", addr & 0xffff, val);
240 break;
241 }
242 }
243
244 static const MemoryRegionOps boston_platreg_ops = {
245 .read = boston_platreg_read,
246 .write = boston_platreg_write,
247 .endianness = DEVICE_NATIVE_ENDIAN,
248 };
249
250 static const TypeInfo boston_device = {
251 .name = TYPE_MIPS_BOSTON,
252 .parent = TYPE_SYS_BUS_DEVICE,
253 .instance_size = sizeof(BostonState),
254 };
255
256 static void boston_register_types(void)
257 {
258 type_register_static(&boston_device);
259 }
260 type_init(boston_register_types)
261
262 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
263 bool is_64b)
264 {
265 const uint32_t cm_base = 0x16100000;
266 const uint32_t gic_base = 0x16120000;
267 const uint32_t cpc_base = 0x16200000;
268
269 /* Move CM GCRs */
270 if (is_64b) {
271 stl_p(p++, 0x40287803); /* dmfc0 $8, CMGCRBase */
272 stl_p(p++, 0x00084138); /* dsll $8, $8, 4 */
273 } else {
274 stl_p(p++, 0x40087803); /* mfc0 $8, CMGCRBase */
275 stl_p(p++, 0x00084100); /* sll $8, $8, 4 */
276 }
277 stl_p(p++, 0x3c09a000); /* lui $9, 0xa000 */
278 stl_p(p++, 0x01094025); /* or $8, $9 */
279 stl_p(p++, 0x3c0a0000 | (cm_base >> 16)); /* lui $10, cm_base >> 16 */
280 if (is_64b) {
281 stl_p(p++, 0xfd0a0008); /* sd $10, 0x8($8) */
282 } else {
283 stl_p(p++, 0xad0a0008); /* sw $10, 0x8($8) */
284 }
285 stl_p(p++, 0x012a4025); /* or $8, $10 */
286
287 /* Move & enable GIC GCRs */
288 stl_p(p++, 0x3c090000 | (gic_base >> 16)); /* lui $9, gic_base >> 16 */
289 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
290 if (is_64b) {
291 stl_p(p++, 0xfd090080); /* sd $9, 0x80($8) */
292 } else {
293 stl_p(p++, 0xad090080); /* sw $9, 0x80($8) */
294 }
295
296 /* Move & enable CPC GCRs */
297 stl_p(p++, 0x3c090000 | (cpc_base >> 16)); /* lui $9, cpc_base >> 16 */
298 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
299 if (is_64b) {
300 stl_p(p++, 0xfd090088); /* sd $9, 0x88($8) */
301 } else {
302 stl_p(p++, 0xad090088); /* sw $9, 0x88($8) */
303 }
304
305 /*
306 * Setup argument registers to follow the UHI boot protocol:
307 *
308 * a0/$4 = -2
309 * a1/$5 = virtual address of FDT
310 * a2/$6 = 0
311 * a3/$7 = 0
312 */
313 stl_p(p++, 0x2404fffe); /* li $4, -2 */
314 /* lui $5, hi(fdt_addr) */
315 stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
316 if (fdt_addr & 0xffff) { /* ori $5, lo(fdt_addr) */
317 stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
318 }
319 stl_p(p++, 0x34060000); /* li $6, 0 */
320 stl_p(p++, 0x34070000); /* li $7, 0 */
321
322 /* Load kernel entry address & jump to it */
323 /* lui $25, hi(kernel_entry) */
324 stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
325 /* ori $25, lo(kernel_entry) */
326 stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
327 stl_p(p++, 0x03200009); /* jr $25 */
328 }
329
330 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
331 const void *match_data, hwaddr *load_addr)
332 {
333 BostonState *s = BOSTON(opaque);
334 MachineState *machine = s->mach;
335 const char *cmdline;
336 int err;
337 void *fdt;
338 size_t fdt_sz, ram_low_sz, ram_high_sz;
339
340 fdt_sz = fdt_totalsize(fdt_orig) * 2;
341 fdt = g_malloc0(fdt_sz);
342
343 err = fdt_open_into(fdt_orig, fdt, fdt_sz);
344 if (err) {
345 fprintf(stderr, "unable to open FDT\n");
346 return NULL;
347 }
348
349 cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
350 ? machine->kernel_cmdline : " ";
351 err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
352 if (err < 0) {
353 fprintf(stderr, "couldn't set /chosen/bootargs\n");
354 return NULL;
355 }
356
357 ram_low_sz = MIN(256 * MiB, machine->ram_size);
358 ram_high_sz = machine->ram_size - ram_low_sz;
359 qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
360 1, 0x00000000, 1, ram_low_sz,
361 1, 0x90000000, 1, ram_high_sz);
362
363 fdt = g_realloc(fdt, fdt_totalsize(fdt));
364 qemu_fdt_dumpdtb(fdt, fdt_sz);
365
366 s->fdt_base = *load_addr;
367
368 return fdt;
369 }
370
371 static const void *boston_kernel_filter(void *opaque, const void *kernel,
372 hwaddr *load_addr, hwaddr *entry_addr)
373 {
374 BostonState *s = BOSTON(opaque);
375
376 s->kernel_entry = *entry_addr;
377
378 return kernel;
379 }
380
381 static const struct fit_loader_match boston_matches[] = {
382 { "img,boston" },
383 { NULL },
384 };
385
386 static const struct fit_loader boston_fit_loader = {
387 .matches = boston_matches,
388 .addr_to_phys = cpu_mips_kseg0_to_phys,
389 .fdt_filter = boston_fdt_filter,
390 .kernel_filter = boston_kernel_filter,
391 };
392
393 static inline XilinxPCIEHost *
394 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
395 hwaddr cfg_base, uint64_t cfg_size,
396 hwaddr mmio_base, uint64_t mmio_size,
397 qemu_irq irq, bool link_up)
398 {
399 DeviceState *dev;
400 MemoryRegion *cfg, *mmio;
401
402 dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST);
403
404 qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
405 qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
406 qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
407 qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
408 qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
409 qdev_prop_set_bit(dev, "link_up", link_up);
410
411 qdev_init_nofail(dev);
412
413 cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
414 memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
415
416 mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
417 memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
418
419 qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
420
421 return XILINX_PCIE_HOST(dev);
422 }
423
424 static void boston_mach_init(MachineState *machine)
425 {
426 DeviceState *dev;
427 BostonState *s;
428 Error *err = NULL;
429 MemoryRegion *flash, *ddr, *ddr_low_alias, *lcd, *platreg;
430 MemoryRegion *sys_mem = get_system_memory();
431 XilinxPCIEHost *pcie2;
432 PCIDevice *ahci;
433 DriveInfo *hd[6];
434 Chardev *chr;
435 int fw_size, fit_err;
436 bool is_64b;
437
438 if ((machine->ram_size % GiB) ||
439 (machine->ram_size > (2 * GiB))) {
440 error_report("Memory size must be 1GB or 2GB");
441 exit(1);
442 }
443
444 dev = qdev_create(NULL, TYPE_MIPS_BOSTON);
445 qdev_init_nofail(dev);
446
447 s = BOSTON(dev);
448 s->mach = machine;
449
450 if (!cpu_supports_cps_smp(machine->cpu_type)) {
451 error_report("Boston requires CPUs which support CPS");
452 exit(1);
453 }
454
455 is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64);
456
457 sysbus_init_child_obj(OBJECT(machine), "cps", OBJECT(&s->cps),
458 sizeof(s->cps), TYPE_MIPS_CPS);
459 object_property_set_str(OBJECT(&s->cps), machine->cpu_type, "cpu-type",
460 &err);
461 object_property_set_int(OBJECT(&s->cps), machine->smp.cpus, "num-vp", &err);
462 object_property_set_bool(OBJECT(&s->cps), true, "realized", &err);
463
464 if (err != NULL) {
465 error_report("%s", error_get_pretty(err));
466 exit(1);
467 }
468
469 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
470
471 flash = g_new(MemoryRegion, 1);
472 memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB, &err);
473 memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
474
475 ddr = g_new(MemoryRegion, 1);
476 memory_region_allocate_system_memory(ddr, NULL, "boston.ddr",
477 machine->ram_size);
478 memory_region_add_subregion_overlap(sys_mem, 0x80000000, ddr, 0);
479
480 ddr_low_alias = g_new(MemoryRegion, 1);
481 memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
482 ddr, 0, MIN(machine->ram_size, (256 * MiB)));
483 memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
484
485 xilinx_pcie_init(sys_mem, 0,
486 0x10000000, 32 * MiB,
487 0x40000000, 1 * GiB,
488 get_cps_irq(&s->cps, 2), false);
489
490 xilinx_pcie_init(sys_mem, 1,
491 0x12000000, 32 * MiB,
492 0x20000000, 512 * MiB,
493 get_cps_irq(&s->cps, 1), false);
494
495 pcie2 = xilinx_pcie_init(sys_mem, 2,
496 0x14000000, 32 * MiB,
497 0x16000000, 1 * MiB,
498 get_cps_irq(&s->cps, 0), true);
499
500 platreg = g_new(MemoryRegion, 1);
501 memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
502 "boston-platregs", 0x1000);
503 memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
504
505 s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
506 get_cps_irq(&s->cps, 3), 10000000,
507 serial_hd(0), DEVICE_NATIVE_ENDIAN);
508
509 lcd = g_new(MemoryRegion, 1);
510 memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
511 memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
512
513 chr = qemu_chr_new("lcd", "vc:320x240", NULL);
514 qemu_chr_fe_init(&s->lcd_display, chr, NULL);
515 qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
516 boston_lcd_event, NULL, s, NULL, true);
517
518 ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
519 PCI_DEVFN(0, 0),
520 true, TYPE_ICH9_AHCI);
521 g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
522 ide_drive_get(hd, ahci_get_num_ports(ahci));
523 ahci_ide_create_devs(ahci, hd);
524
525 if (machine->firmware) {
526 fw_size = load_image_targphys(machine->firmware,
527 0x1fc00000, 4 * MiB);
528 if (fw_size == -1) {
529 error_report("unable to load firmware image '%s'",
530 machine->firmware);
531 exit(1);
532 }
533 } else if (machine->kernel_filename) {
534 fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
535 if (fit_err) {
536 error_report("unable to load FIT image");
537 exit(1);
538 }
539
540 gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
541 s->kernel_entry, s->fdt_base, is_64b);
542 } else if (!qtest_enabled()) {
543 error_report("Please provide either a -kernel or -bios argument");
544 exit(1);
545 }
546 }
547
548 static void boston_mach_class_init(MachineClass *mc)
549 {
550 mc->desc = "MIPS Boston";
551 mc->init = boston_mach_init;
552 mc->block_default_type = IF_IDE;
553 mc->default_ram_size = 1 * GiB;
554 mc->max_cpus = 16;
555 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
556 }
557
558 DEFINE_MACHINE("boston", boston_mach_class_init)