]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mips/boston.c
mips: malta/boston: replace cpu_model with cpu_type
[mirror_qemu.git] / hw / mips / boston.c
1 /*
2 * MIPS Boston development board emulation.
3 *
4 * Copyright (c) 2016 Imagination Technologies
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22
23 #include "exec/address-spaces.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/hw.h"
27 #include "hw/ide/pci.h"
28 #include "hw/ide/ahci.h"
29 #include "hw/loader.h"
30 #include "hw/loader-fit.h"
31 #include "hw/mips/cps.h"
32 #include "hw/mips/cpudevs.h"
33 #include "hw/pci-host/xilinx-pcie.h"
34 #include "qapi/error.h"
35 #include "qemu/cutils.h"
36 #include "qemu/error-report.h"
37 #include "qemu/log.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/qtest.h"
42
43 #include <libfdt.h>
44
45 #define TYPE_MIPS_BOSTON "mips-boston"
46 #define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON)
47
48 typedef struct {
49 SysBusDevice parent_obj;
50
51 MachineState *mach;
52 MIPSCPSState *cps;
53 SerialState *uart;
54
55 CharBackend lcd_display;
56 char lcd_content[8];
57 bool lcd_inited;
58
59 hwaddr kernel_entry;
60 hwaddr fdt_base;
61 } BostonState;
62
63 enum boston_plat_reg {
64 PLAT_FPGA_BUILD = 0x00,
65 PLAT_CORE_CL = 0x04,
66 PLAT_WRAPPER_CL = 0x08,
67 PLAT_SYSCLK_STATUS = 0x0c,
68 PLAT_SOFTRST_CTL = 0x10,
69 #define PLAT_SOFTRST_CTL_SYSRESET (1 << 4)
70 PLAT_DDR3_STATUS = 0x14,
71 #define PLAT_DDR3_STATUS_LOCKED (1 << 0)
72 #define PLAT_DDR3_STATUS_CALIBRATED (1 << 2)
73 PLAT_PCIE_STATUS = 0x18,
74 #define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0)
75 #define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8)
76 #define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16)
77 PLAT_FLASH_CTL = 0x1c,
78 PLAT_SPARE0 = 0x20,
79 PLAT_SPARE1 = 0x24,
80 PLAT_SPARE2 = 0x28,
81 PLAT_SPARE3 = 0x2c,
82 PLAT_MMCM_DIV = 0x30,
83 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0
84 #define PLAT_MMCM_DIV_INPUT_SHIFT 8
85 #define PLAT_MMCM_DIV_MUL_SHIFT 16
86 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24
87 PLAT_BUILD_CFG = 0x34,
88 #define PLAT_BUILD_CFG_IOCU_EN (1 << 0)
89 #define PLAT_BUILD_CFG_PCIE0_EN (1 << 1)
90 #define PLAT_BUILD_CFG_PCIE1_EN (1 << 2)
91 #define PLAT_BUILD_CFG_PCIE2_EN (1 << 3)
92 PLAT_DDR_CFG = 0x38,
93 #define PLAT_DDR_CFG_SIZE (0xf << 0)
94 #define PLAT_DDR_CFG_MHZ (0xfff << 4)
95 PLAT_NOC_PCIE0_ADDR = 0x3c,
96 PLAT_NOC_PCIE1_ADDR = 0x40,
97 PLAT_NOC_PCIE2_ADDR = 0x44,
98 PLAT_SYS_CTL = 0x48,
99 };
100
101 static void boston_lcd_event(void *opaque, int event)
102 {
103 BostonState *s = opaque;
104 if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
105 qemu_chr_fe_printf(&s->lcd_display, " ");
106 s->lcd_inited = true;
107 }
108 }
109
110 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
111 unsigned size)
112 {
113 BostonState *s = opaque;
114 uint64_t val = 0;
115
116 switch (size) {
117 case 8:
118 val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
119 val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
120 val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
121 val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
122 /* fall through */
123 case 4:
124 val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
125 val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
126 /* fall through */
127 case 2:
128 val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
129 /* fall through */
130 case 1:
131 val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
132 break;
133 }
134
135 return val;
136 }
137
138 static void boston_lcd_write(void *opaque, hwaddr addr,
139 uint64_t val, unsigned size)
140 {
141 BostonState *s = opaque;
142
143 switch (size) {
144 case 8:
145 s->lcd_content[(addr + 7) & 0x7] = val >> 56;
146 s->lcd_content[(addr + 6) & 0x7] = val >> 48;
147 s->lcd_content[(addr + 5) & 0x7] = val >> 40;
148 s->lcd_content[(addr + 4) & 0x7] = val >> 32;
149 /* fall through */
150 case 4:
151 s->lcd_content[(addr + 3) & 0x7] = val >> 24;
152 s->lcd_content[(addr + 2) & 0x7] = val >> 16;
153 /* fall through */
154 case 2:
155 s->lcd_content[(addr + 1) & 0x7] = val >> 8;
156 /* fall through */
157 case 1:
158 s->lcd_content[(addr + 0) & 0x7] = val;
159 break;
160 }
161
162 qemu_chr_fe_printf(&s->lcd_display,
163 "\r%-8.8s", s->lcd_content);
164 }
165
166 static const MemoryRegionOps boston_lcd_ops = {
167 .read = boston_lcd_read,
168 .write = boston_lcd_write,
169 .endianness = DEVICE_NATIVE_ENDIAN,
170 };
171
172 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
173 unsigned size)
174 {
175 BostonState *s = opaque;
176 uint32_t gic_freq, val;
177
178 if (size != 4) {
179 qemu_log_mask(LOG_UNIMP, "%uB platform register read", size);
180 return 0;
181 }
182
183 switch (addr & 0xffff) {
184 case PLAT_FPGA_BUILD:
185 case PLAT_CORE_CL:
186 case PLAT_WRAPPER_CL:
187 return 0;
188 case PLAT_DDR3_STATUS:
189 return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
190 case PLAT_MMCM_DIV:
191 gic_freq = mips_gictimer_get_freq(s->cps->gic.gic_timer) / 1000000;
192 val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
193 val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
194 val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
195 val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
196 return val;
197 case PLAT_BUILD_CFG:
198 val = PLAT_BUILD_CFG_PCIE0_EN;
199 val |= PLAT_BUILD_CFG_PCIE1_EN;
200 val |= PLAT_BUILD_CFG_PCIE2_EN;
201 return val;
202 case PLAT_DDR_CFG:
203 val = s->mach->ram_size / G_BYTE;
204 assert(!(val & ~PLAT_DDR_CFG_SIZE));
205 val |= PLAT_DDR_CFG_MHZ;
206 return val;
207 default:
208 qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx,
209 addr & 0xffff);
210 return 0;
211 }
212 }
213
214 static void boston_platreg_write(void *opaque, hwaddr addr,
215 uint64_t val, unsigned size)
216 {
217 if (size != 4) {
218 qemu_log_mask(LOG_UNIMP, "%uB platform register write", size);
219 return;
220 }
221
222 switch (addr & 0xffff) {
223 case PLAT_FPGA_BUILD:
224 case PLAT_CORE_CL:
225 case PLAT_WRAPPER_CL:
226 case PLAT_DDR3_STATUS:
227 case PLAT_PCIE_STATUS:
228 case PLAT_MMCM_DIV:
229 case PLAT_BUILD_CFG:
230 case PLAT_DDR_CFG:
231 /* read only */
232 break;
233 case PLAT_SOFTRST_CTL:
234 if (val & PLAT_SOFTRST_CTL_SYSRESET) {
235 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
236 }
237 break;
238 default:
239 qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
240 " = 0x%" PRIx64, addr & 0xffff, val);
241 break;
242 }
243 }
244
245 static const MemoryRegionOps boston_platreg_ops = {
246 .read = boston_platreg_read,
247 .write = boston_platreg_write,
248 .endianness = DEVICE_NATIVE_ENDIAN,
249 };
250
251 static void boston_flash_write(void *opaque, hwaddr addr,
252 uint64_t val, unsigned size)
253 {
254 }
255
256 static const MemoryRegionOps boston_flash_ops = {
257 .write = boston_flash_write,
258 .endianness = DEVICE_NATIVE_ENDIAN,
259 };
260
261 static const TypeInfo boston_device = {
262 .name = TYPE_MIPS_BOSTON,
263 .parent = TYPE_SYS_BUS_DEVICE,
264 .instance_size = sizeof(BostonState),
265 };
266
267 static void boston_register_types(void)
268 {
269 type_register_static(&boston_device);
270 }
271 type_init(boston_register_types)
272
273 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
274 bool is_64b)
275 {
276 const uint32_t cm_base = 0x16100000;
277 const uint32_t gic_base = 0x16120000;
278 const uint32_t cpc_base = 0x16200000;
279
280 /* Move CM GCRs */
281 if (is_64b) {
282 stl_p(p++, 0x40287803); /* dmfc0 $8, CMGCRBase */
283 stl_p(p++, 0x00084138); /* dsll $8, $8, 4 */
284 } else {
285 stl_p(p++, 0x40087803); /* mfc0 $8, CMGCRBase */
286 stl_p(p++, 0x00084100); /* sll $8, $8, 4 */
287 }
288 stl_p(p++, 0x3c09a000); /* lui $9, 0xa000 */
289 stl_p(p++, 0x01094025); /* or $8, $9 */
290 stl_p(p++, 0x3c0a0000 | (cm_base >> 16)); /* lui $10, cm_base >> 16 */
291 if (is_64b) {
292 stl_p(p++, 0xfd0a0008); /* sd $10, 0x8($8) */
293 } else {
294 stl_p(p++, 0xad0a0008); /* sw $10, 0x8($8) */
295 }
296 stl_p(p++, 0x012a4025); /* or $8, $10 */
297
298 /* Move & enable GIC GCRs */
299 stl_p(p++, 0x3c090000 | (gic_base >> 16)); /* lui $9, gic_base >> 16 */
300 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
301 if (is_64b) {
302 stl_p(p++, 0xfd090080); /* sd $9, 0x80($8) */
303 } else {
304 stl_p(p++, 0xad090080); /* sw $9, 0x80($8) */
305 }
306
307 /* Move & enable CPC GCRs */
308 stl_p(p++, 0x3c090000 | (cpc_base >> 16)); /* lui $9, cpc_base >> 16 */
309 stl_p(p++, 0x35290001); /* ori $9, 0x1 */
310 if (is_64b) {
311 stl_p(p++, 0xfd090088); /* sd $9, 0x88($8) */
312 } else {
313 stl_p(p++, 0xad090088); /* sw $9, 0x88($8) */
314 }
315
316 /*
317 * Setup argument registers to follow the UHI boot protocol:
318 *
319 * a0/$4 = -2
320 * a1/$5 = virtual address of FDT
321 * a2/$6 = 0
322 * a3/$7 = 0
323 */
324 stl_p(p++, 0x2404fffe); /* li $4, -2 */
325 /* lui $5, hi(fdt_addr) */
326 stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
327 if (fdt_addr & 0xffff) { /* ori $5, lo(fdt_addr) */
328 stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
329 }
330 stl_p(p++, 0x34060000); /* li $6, 0 */
331 stl_p(p++, 0x34070000); /* li $7, 0 */
332
333 /* Load kernel entry address & jump to it */
334 /* lui $25, hi(kernel_entry) */
335 stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
336 /* ori $25, lo(kernel_entry) */
337 stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
338 stl_p(p++, 0x03200009); /* jr $25 */
339 }
340
341 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
342 const void *match_data, hwaddr *load_addr)
343 {
344 BostonState *s = BOSTON(opaque);
345 MachineState *machine = s->mach;
346 const char *cmdline;
347 int err;
348 void *fdt;
349 size_t fdt_sz, ram_low_sz, ram_high_sz;
350
351 fdt_sz = fdt_totalsize(fdt_orig) * 2;
352 fdt = g_malloc0(fdt_sz);
353
354 err = fdt_open_into(fdt_orig, fdt, fdt_sz);
355 if (err) {
356 fprintf(stderr, "unable to open FDT\n");
357 return NULL;
358 }
359
360 cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
361 ? machine->kernel_cmdline : " ";
362 err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
363 if (err < 0) {
364 fprintf(stderr, "couldn't set /chosen/bootargs\n");
365 return NULL;
366 }
367
368 ram_low_sz = MIN(256 * M_BYTE, machine->ram_size);
369 ram_high_sz = machine->ram_size - ram_low_sz;
370 qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
371 1, 0x00000000, 1, ram_low_sz,
372 1, 0x90000000, 1, ram_high_sz);
373
374 fdt = g_realloc(fdt, fdt_totalsize(fdt));
375 qemu_fdt_dumpdtb(fdt, fdt_sz);
376
377 s->fdt_base = *load_addr;
378
379 return fdt;
380 }
381
382 static const void *boston_kernel_filter(void *opaque, const void *kernel,
383 hwaddr *load_addr, hwaddr *entry_addr)
384 {
385 BostonState *s = BOSTON(opaque);
386
387 s->kernel_entry = *entry_addr;
388
389 return kernel;
390 }
391
392 static const struct fit_loader_match boston_matches[] = {
393 { "img,boston" },
394 { NULL },
395 };
396
397 static const struct fit_loader boston_fit_loader = {
398 .matches = boston_matches,
399 .addr_to_phys = cpu_mips_kseg0_to_phys,
400 .fdt_filter = boston_fdt_filter,
401 .kernel_filter = boston_kernel_filter,
402 };
403
404 static inline XilinxPCIEHost *
405 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
406 hwaddr cfg_base, uint64_t cfg_size,
407 hwaddr mmio_base, uint64_t mmio_size,
408 qemu_irq irq, bool link_up)
409 {
410 DeviceState *dev;
411 MemoryRegion *cfg, *mmio;
412
413 dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST);
414
415 qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
416 qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
417 qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
418 qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
419 qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
420 qdev_prop_set_bit(dev, "link_up", link_up);
421
422 qdev_init_nofail(dev);
423
424 cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
425 memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
426
427 mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
428 memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
429
430 qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
431
432 return XILINX_PCIE_HOST(dev);
433 }
434
435 static void boston_mach_init(MachineState *machine)
436 {
437 DeviceState *dev;
438 BostonState *s;
439 Error *err = NULL;
440 MemoryRegion *flash, *ddr, *ddr_low_alias, *lcd, *platreg;
441 MemoryRegion *sys_mem = get_system_memory();
442 XilinxPCIEHost *pcie2;
443 PCIDevice *ahci;
444 DriveInfo *hd[6];
445 Chardev *chr;
446 int fw_size, fit_err;
447 bool is_64b;
448
449 if ((machine->ram_size % G_BYTE) ||
450 (machine->ram_size > (2 * G_BYTE))) {
451 error_report("Memory size must be 1GB or 2GB");
452 exit(1);
453 }
454
455 dev = qdev_create(NULL, TYPE_MIPS_BOSTON);
456 qdev_init_nofail(dev);
457
458 s = BOSTON(dev);
459 s->mach = machine;
460
461 if (!cpu_supports_cps_smp(machine->cpu_type)) {
462 error_report("Boston requires CPUs which support CPS");
463 exit(1);
464 }
465
466 is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64);
467
468 s->cps = MIPS_CPS(object_new(TYPE_MIPS_CPS));
469 qdev_set_parent_bus(DEVICE(s->cps), sysbus_get_default());
470
471 object_property_set_str(OBJECT(s->cps), machine->cpu_type, "cpu-type",
472 &err);
473 object_property_set_int(OBJECT(s->cps), smp_cpus, "num-vp", &err);
474 object_property_set_bool(OBJECT(s->cps), true, "realized", &err);
475
476 if (err != NULL) {
477 error_report("%s", error_get_pretty(err));
478 exit(1);
479 }
480
481 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s->cps), 0, 0, 1);
482
483 flash = g_new(MemoryRegion, 1);
484 memory_region_init_rom_device_nomigrate(flash, NULL, &boston_flash_ops, s,
485 "boston.flash", 128 * M_BYTE, &err);
486 memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
487
488 ddr = g_new(MemoryRegion, 1);
489 memory_region_allocate_system_memory(ddr, NULL, "boston.ddr",
490 machine->ram_size);
491 memory_region_add_subregion_overlap(sys_mem, 0x80000000, ddr, 0);
492
493 ddr_low_alias = g_new(MemoryRegion, 1);
494 memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
495 ddr, 0, MIN(machine->ram_size, (256 * M_BYTE)));
496 memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
497
498 xilinx_pcie_init(sys_mem, 0,
499 0x10000000, 32 * M_BYTE,
500 0x40000000, 1 * G_BYTE,
501 get_cps_irq(s->cps, 2), false);
502
503 xilinx_pcie_init(sys_mem, 1,
504 0x12000000, 32 * M_BYTE,
505 0x20000000, 512 * M_BYTE,
506 get_cps_irq(s->cps, 1), false);
507
508 pcie2 = xilinx_pcie_init(sys_mem, 2,
509 0x14000000, 32 * M_BYTE,
510 0x16000000, 1 * M_BYTE,
511 get_cps_irq(s->cps, 0), true);
512
513 platreg = g_new(MemoryRegion, 1);
514 memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
515 "boston-platregs", 0x1000);
516 memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
517
518 if (!serial_hds[0]) {
519 serial_hds[0] = qemu_chr_new("serial0", "null");
520 }
521
522 s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
523 get_cps_irq(s->cps, 3), 10000000,
524 serial_hds[0], DEVICE_NATIVE_ENDIAN);
525
526 lcd = g_new(MemoryRegion, 1);
527 memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
528 memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
529
530 chr = qemu_chr_new("lcd", "vc:320x240");
531 qemu_chr_fe_init(&s->lcd_display, chr, NULL);
532 qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
533 boston_lcd_event, NULL, s, NULL, true);
534
535 ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
536 PCI_DEVFN(0, 0),
537 true, TYPE_ICH9_AHCI);
538 g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
539 ide_drive_get(hd, ahci_get_num_ports(ahci));
540 ahci_ide_create_devs(ahci, hd);
541
542 if (machine->firmware) {
543 fw_size = load_image_targphys(machine->firmware,
544 0x1fc00000, 4 * M_BYTE);
545 if (fw_size == -1) {
546 error_printf("unable to load firmware image '%s'\n",
547 machine->firmware);
548 exit(1);
549 }
550 } else if (machine->kernel_filename) {
551 fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
552 if (fit_err) {
553 error_printf("unable to load FIT image\n");
554 exit(1);
555 }
556
557 gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
558 s->kernel_entry, s->fdt_base, is_64b);
559 } else if (!qtest_enabled()) {
560 error_printf("Please provide either a -kernel or -bios argument\n");
561 exit(1);
562 }
563 }
564
565 static void boston_mach_class_init(MachineClass *mc)
566 {
567 mc->desc = "MIPS Boston";
568 mc->init = boston_mach_init;
569 mc->block_default_type = IF_IDE;
570 mc->default_ram_size = 1 * G_BYTE;
571 mc->max_cpus = 16;
572 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
573 }
574
575 DEFINE_MACHINE("boston", boston_mach_class_init)