]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mips/mips_malta.c
Merge remote-tracking branch 'remotes/xtensa/tags/20190228-xtensa' into staging
[mirror_qemu.git] / hw / mips / mips_malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/hw.h"
30 #include "hw/i386/pc.h"
31 #include "hw/isa/superio.h"
32 #include "hw/dma/i8257.h"
33 #include "hw/char/serial.h"
34 #include "net/net.h"
35 #include "hw/boards.h"
36 #include "hw/i2c/smbus.h"
37 #include "hw/block/flash.h"
38 #include "hw/mips/mips.h"
39 #include "hw/mips/cpudevs.h"
40 #include "hw/pci/pci.h"
41 #include "sysemu/sysemu.h"
42 #include "sysemu/arch_init.h"
43 #include "qemu/log.h"
44 #include "hw/mips/bios.h"
45 #include "hw/ide.h"
46 #include "hw/loader.h"
47 #include "elf.h"
48 #include "hw/timer/mc146818rtc.h"
49 #include "hw/timer/i8254.h"
50 #include "exec/address-spaces.h"
51 #include "hw/sysbus.h" /* SysBusDevice */
52 #include "qemu/host-utils.h"
53 #include "sysemu/qtest.h"
54 #include "qapi/error.h"
55 #include "qemu/error-report.h"
56 #include "hw/empty_slot.h"
57 #include "sysemu/kvm.h"
58 #include "exec/semihost.h"
59 #include "hw/mips/cps.h"
60
61 //#define DEBUG_BOARD_INIT
62
63 #define ENVP_ADDR 0x80002000l
64 #define ENVP_NB_ENTRIES 16
65 #define ENVP_ENTRY_SIZE 256
66
67 /* Hardware addresses */
68 #define FLASH_ADDRESS 0x1e000000ULL
69 #define FPGA_ADDRESS 0x1f000000ULL
70 #define RESET_ADDRESS 0x1fc00000ULL
71
72 #define FLASH_SIZE 0x400000
73
74 #define MAX_IDE_BUS 2
75
76 typedef struct {
77 MemoryRegion iomem;
78 MemoryRegion iomem_lo; /* 0 - 0x900 */
79 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
80 uint32_t leds;
81 uint32_t brk;
82 uint32_t gpout;
83 uint32_t i2cin;
84 uint32_t i2coe;
85 uint32_t i2cout;
86 uint32_t i2csel;
87 CharBackend display;
88 char display_text[9];
89 SerialState *uart;
90 bool display_inited;
91 } MaltaFPGAState;
92
93 #define TYPE_MIPS_MALTA "mips-malta"
94 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
95
96 typedef struct {
97 SysBusDevice parent_obj;
98
99 MIPSCPSState *cps;
100 qemu_irq *i8259;
101 } MaltaState;
102
103 static ISADevice *pit;
104
105 static struct _loaderparams {
106 int ram_size, ram_low_size;
107 const char *kernel_filename;
108 const char *kernel_cmdline;
109 const char *initrd_filename;
110 } loaderparams;
111
112 /* Malta FPGA */
113 static void malta_fpga_update_display(void *opaque)
114 {
115 char leds_text[9];
116 int i;
117 MaltaFPGAState *s = opaque;
118
119 for (i = 7 ; i >= 0 ; i--) {
120 if (s->leds & (1 << i))
121 leds_text[i] = '#';
122 else
123 leds_text[i] = ' ';
124 }
125 leds_text[8] = '\0';
126
127 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
128 leds_text);
129 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
130 s->display_text);
131 }
132
133 /*
134 * EEPROM 24C01 / 24C02 emulation.
135 *
136 * Emulation for serial EEPROMs:
137 * 24C01 - 1024 bit (128 x 8)
138 * 24C02 - 2048 bit (256 x 8)
139 *
140 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
141 */
142
143 //~ #define DEBUG
144
145 #if defined(DEBUG)
146 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
147 #else
148 # define logout(fmt, ...) ((void)0)
149 #endif
150
151 struct _eeprom24c0x_t {
152 uint8_t tick;
153 uint8_t address;
154 uint8_t command;
155 uint8_t ack;
156 uint8_t scl;
157 uint8_t sda;
158 uint8_t data;
159 //~ uint16_t size;
160 uint8_t contents[256];
161 };
162
163 typedef struct _eeprom24c0x_t eeprom24c0x_t;
164
165 static eeprom24c0x_t spd_eeprom = {
166 .contents = {
167 /* 00000000: */ 0x80,0x08,0xFF,0x0D,0x0A,0xFF,0x40,0x00,
168 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
169 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x00,0x00,
170 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0xFF,
171 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
172 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
173 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
174 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
175 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
176 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
177 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
178 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
179 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
180 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
181 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
182 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
183 },
184 };
185
186 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
187 {
188 enum { SDR = 0x4, DDR2 = 0x8 } type;
189 uint8_t *spd = spd_eeprom.contents;
190 uint8_t nbanks = 0;
191 uint16_t density = 0;
192 int i;
193
194 /* work in terms of MB */
195 ram_size /= MiB;
196
197 while ((ram_size >= 4) && (nbanks <= 2)) {
198 int sz_log2 = MIN(31 - clz32(ram_size), 14);
199 nbanks++;
200 density |= 1 << (sz_log2 - 2);
201 ram_size -= 1 << sz_log2;
202 }
203
204 /* split to 2 banks if possible */
205 if ((nbanks == 1) && (density > 1)) {
206 nbanks++;
207 density >>= 1;
208 }
209
210 if (density & 0xff00) {
211 density = (density & 0xe0) | ((density >> 8) & 0x1f);
212 type = DDR2;
213 } else if (!(density & 0x1f)) {
214 type = DDR2;
215 } else {
216 type = SDR;
217 }
218
219 if (ram_size) {
220 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
221 " of SDRAM", ram_size);
222 }
223
224 /* fill in SPD memory information */
225 spd[2] = type;
226 spd[5] = nbanks;
227 spd[31] = density;
228
229 /* checksum */
230 spd[63] = 0;
231 for (i = 0; i < 63; i++) {
232 spd[63] += spd[i];
233 }
234
235 /* copy for SMBUS */
236 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
237 }
238
239 static void generate_eeprom_serial(uint8_t *eeprom)
240 {
241 int i, pos = 0;
242 uint8_t mac[6] = { 0x00 };
243 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
244
245 /* version */
246 eeprom[pos++] = 0x01;
247
248 /* count */
249 eeprom[pos++] = 0x02;
250
251 /* MAC address */
252 eeprom[pos++] = 0x01; /* MAC */
253 eeprom[pos++] = 0x06; /* length */
254 memcpy(&eeprom[pos], mac, sizeof(mac));
255 pos += sizeof(mac);
256
257 /* serial number */
258 eeprom[pos++] = 0x02; /* serial */
259 eeprom[pos++] = 0x05; /* length */
260 memcpy(&eeprom[pos], sn, sizeof(sn));
261 pos += sizeof(sn);
262
263 /* checksum */
264 eeprom[pos] = 0;
265 for (i = 0; i < pos; i++) {
266 eeprom[pos] += eeprom[i];
267 }
268 }
269
270 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
271 {
272 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
273 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
274 return eeprom->sda;
275 }
276
277 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
278 {
279 if (eeprom->scl && scl && (eeprom->sda != sda)) {
280 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
281 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
282 sda ? "stop" : "start");
283 if (!sda) {
284 eeprom->tick = 1;
285 eeprom->command = 0;
286 }
287 } else if (eeprom->tick == 0 && !eeprom->ack) {
288 /* Waiting for start. */
289 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
290 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
291 } else if (!eeprom->scl && scl) {
292 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
293 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
294 if (eeprom->ack) {
295 logout("\ti2c ack bit = 0\n");
296 sda = 0;
297 eeprom->ack = 0;
298 } else if (eeprom->sda == sda) {
299 uint8_t bit = (sda != 0);
300 logout("\ti2c bit = %d\n", bit);
301 if (eeprom->tick < 9) {
302 eeprom->command <<= 1;
303 eeprom->command += bit;
304 eeprom->tick++;
305 if (eeprom->tick == 9) {
306 logout("\tcommand 0x%04x, %s\n", eeprom->command,
307 bit ? "read" : "write");
308 eeprom->ack = 1;
309 }
310 } else if (eeprom->tick < 17) {
311 if (eeprom->command & 1) {
312 sda = ((eeprom->data & 0x80) != 0);
313 }
314 eeprom->address <<= 1;
315 eeprom->address += bit;
316 eeprom->tick++;
317 eeprom->data <<= 1;
318 if (eeprom->tick == 17) {
319 eeprom->data = eeprom->contents[eeprom->address];
320 logout("\taddress 0x%04x, data 0x%02x\n",
321 eeprom->address, eeprom->data);
322 eeprom->ack = 1;
323 eeprom->tick = 0;
324 }
325 } else if (eeprom->tick >= 17) {
326 sda = 0;
327 }
328 } else {
329 logout("\tsda changed with raising scl\n");
330 }
331 } else {
332 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
333 scl, eeprom->sda, sda);
334 }
335 eeprom->scl = scl;
336 eeprom->sda = sda;
337 }
338
339 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
340 unsigned size)
341 {
342 MaltaFPGAState *s = opaque;
343 uint32_t val = 0;
344 uint32_t saddr;
345
346 saddr = (addr & 0xfffff);
347
348 switch (saddr) {
349
350 /* SWITCH Register */
351 case 0x00200:
352 val = 0x00000000; /* All switches closed */
353 break;
354
355 /* STATUS Register */
356 case 0x00208:
357 #ifdef TARGET_WORDS_BIGENDIAN
358 val = 0x00000012;
359 #else
360 val = 0x00000010;
361 #endif
362 break;
363
364 /* JMPRS Register */
365 case 0x00210:
366 val = 0x00;
367 break;
368
369 /* LEDBAR Register */
370 case 0x00408:
371 val = s->leds;
372 break;
373
374 /* BRKRES Register */
375 case 0x00508:
376 val = s->brk;
377 break;
378
379 /* UART Registers are handled directly by the serial device */
380
381 /* GPOUT Register */
382 case 0x00a00:
383 val = s->gpout;
384 break;
385
386 /* XXX: implement a real I2C controller */
387
388 /* GPINP Register */
389 case 0x00a08:
390 /* IN = OUT until a real I2C control is implemented */
391 if (s->i2csel)
392 val = s->i2cout;
393 else
394 val = 0x00;
395 break;
396
397 /* I2CINP Register */
398 case 0x00b00:
399 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
400 break;
401
402 /* I2COE Register */
403 case 0x00b08:
404 val = s->i2coe;
405 break;
406
407 /* I2COUT Register */
408 case 0x00b10:
409 val = s->i2cout;
410 break;
411
412 /* I2CSEL Register */
413 case 0x00b18:
414 val = s->i2csel;
415 break;
416
417 default:
418 #if 0
419 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
420 addr);
421 #endif
422 break;
423 }
424 return val;
425 }
426
427 static void malta_fpga_write(void *opaque, hwaddr addr,
428 uint64_t val, unsigned size)
429 {
430 MaltaFPGAState *s = opaque;
431 uint32_t saddr;
432
433 saddr = (addr & 0xfffff);
434
435 switch (saddr) {
436
437 /* SWITCH Register */
438 case 0x00200:
439 break;
440
441 /* JMPRS Register */
442 case 0x00210:
443 break;
444
445 /* LEDBAR Register */
446 case 0x00408:
447 s->leds = val & 0xff;
448 malta_fpga_update_display(s);
449 break;
450
451 /* ASCIIWORD Register */
452 case 0x00410:
453 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
454 malta_fpga_update_display(s);
455 break;
456
457 /* ASCIIPOS0 to ASCIIPOS7 Registers */
458 case 0x00418:
459 case 0x00420:
460 case 0x00428:
461 case 0x00430:
462 case 0x00438:
463 case 0x00440:
464 case 0x00448:
465 case 0x00450:
466 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
467 malta_fpga_update_display(s);
468 break;
469
470 /* SOFTRES Register */
471 case 0x00500:
472 if (val == 0x42)
473 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
474 break;
475
476 /* BRKRES Register */
477 case 0x00508:
478 s->brk = val & 0xff;
479 break;
480
481 /* UART Registers are handled directly by the serial device */
482
483 /* GPOUT Register */
484 case 0x00a00:
485 s->gpout = val & 0xff;
486 break;
487
488 /* I2COE Register */
489 case 0x00b08:
490 s->i2coe = val & 0x03;
491 break;
492
493 /* I2COUT Register */
494 case 0x00b10:
495 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
496 s->i2cout = val;
497 break;
498
499 /* I2CSEL Register */
500 case 0x00b18:
501 s->i2csel = val & 0x01;
502 break;
503
504 default:
505 #if 0
506 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
507 addr);
508 #endif
509 break;
510 }
511 }
512
513 static const MemoryRegionOps malta_fpga_ops = {
514 .read = malta_fpga_read,
515 .write = malta_fpga_write,
516 .endianness = DEVICE_NATIVE_ENDIAN,
517 };
518
519 static void malta_fpga_reset(void *opaque)
520 {
521 MaltaFPGAState *s = opaque;
522
523 s->leds = 0x00;
524 s->brk = 0x0a;
525 s->gpout = 0x00;
526 s->i2cin = 0x3;
527 s->i2coe = 0x0;
528 s->i2cout = 0x3;
529 s->i2csel = 0x1;
530
531 s->display_text[8] = '\0';
532 snprintf(s->display_text, 9, " ");
533 }
534
535 static void malta_fgpa_display_event(void *opaque, int event)
536 {
537 MaltaFPGAState *s = opaque;
538
539 if (event == CHR_EVENT_OPENED && !s->display_inited) {
540 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
541 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
542 qemu_chr_fe_printf(&s->display, "+ +\r\n");
543 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
544 qemu_chr_fe_printf(&s->display, "\n");
545 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
546 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
547 qemu_chr_fe_printf(&s->display, "+ +\r\n");
548 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
549 s->display_inited = true;
550 }
551 }
552
553 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
554 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
555 {
556 MaltaFPGAState *s;
557 Chardev *chr;
558
559 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
560
561 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
562 "malta-fpga", 0x100000);
563 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
564 &s->iomem, 0, 0x900);
565 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
566 &s->iomem, 0xa00, 0x10000-0xa00);
567
568 memory_region_add_subregion(address_space, base, &s->iomem_lo);
569 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
570
571 chr = qemu_chr_new("fpga", "vc:320x200", NULL);
572 qemu_chr_fe_init(&s->display, chr, NULL);
573 qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
574 malta_fgpa_display_event, NULL, s, NULL, true);
575
576 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
577 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
578
579 malta_fpga_reset(s);
580 qemu_register_reset(malta_fpga_reset, s);
581
582 return s;
583 }
584
585 /* Network support */
586 static void network_init(PCIBus *pci_bus)
587 {
588 int i;
589
590 for(i = 0; i < nb_nics; i++) {
591 NICInfo *nd = &nd_table[i];
592 const char *default_devaddr = NULL;
593
594 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
595 /* The malta board has a PCNet card using PCI SLOT 11 */
596 default_devaddr = "0b";
597
598 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
599 }
600 }
601
602 static void write_bootloader_nanomips(uint8_t *base, int64_t run_addr,
603 int64_t kernel_entry)
604 {
605 uint16_t *p;
606
607 /* Small bootloader */
608 p = (uint16_t *)base;
609
610 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
611 #define NM_HI2(VAL) \
612 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
613 #define NM_LO(VAL) ((VAL) & 0xfff)
614
615 stw_p(p++, 0x2800); stw_p(p++, 0x001c);
616 /* bc to_here */
617 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
618 /* nop */
619 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
620 /* nop */
621 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
622 /* nop */
623 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
624 /* nop */
625 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
626 /* nop */
627 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
628 /* nop */
629 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
630 /* nop */
631
632 /* to_here: */
633 if (semihosting_get_argc()) {
634 /* Preserve a0 content as arguments have been passed */
635 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
636 /* nop */
637 } else {
638 stw_p(p++, 0x0080); stw_p(p++, 0x0002);
639 /* li a0,2 */
640 }
641
642 stw_p(p++, 0xe3a0 | NM_HI1(ENVP_ADDR - 64));
643
644 stw_p(p++, NM_HI2(ENVP_ADDR - 64));
645 /* lui sp,%hi(ENVP_ADDR - 64) */
646
647 stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_ADDR - 64));
648 /* ori sp,sp,%lo(ENVP_ADDR - 64) */
649
650 stw_p(p++, 0xe0a0 | NM_HI1(ENVP_ADDR));
651
652 stw_p(p++, NM_HI2(ENVP_ADDR));
653 /* lui a1,%hi(ENVP_ADDR) */
654
655 stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_ADDR));
656 /* ori a1,a1,%lo(ENVP_ADDR) */
657
658 stw_p(p++, 0xe0c0 | NM_HI1(ENVP_ADDR + 8));
659
660 stw_p(p++, NM_HI2(ENVP_ADDR + 8));
661 /* lui a2,%hi(ENVP_ADDR + 8) */
662
663 stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_ADDR + 8));
664 /* ori a2,a2,%lo(ENVP_ADDR + 8) */
665
666 stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
667
668 stw_p(p++, NM_HI2(loaderparams.ram_low_size));
669 /* lui a3,%hi(loaderparams.ram_low_size) */
670
671 stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
672 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
673
674 /*
675 * Load BAR registers as done by YAMON:
676 *
677 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
678 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000
679 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
680 *
681 */
682 stw_p(p++, 0xe040); stw_p(p++, 0x0681);
683 /* lui t1, %hi(0xb4000000) */
684
685 #ifdef TARGET_WORDS_BIGENDIAN
686
687 stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
688 /* lui t0, %hi(0xdf000000) */
689
690 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
691 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
692 /* sw t0, 0x68(t1) */
693
694 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
695 /* lui t1, %hi(0xbbe00000) */
696
697 stw_p(p++, 0xe020); stw_p(p++, 0x0801);
698 /* lui t0, %hi(0xc0000000) */
699
700 /* 0x48 corresponds to GT_PCI0IOLD */
701 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
702 /* sw t0, 0x48(t1) */
703
704 stw_p(p++, 0xe020); stw_p(p++, 0x0800);
705 /* lui t0, %hi(0x40000000) */
706
707 /* 0x50 corresponds to GT_PCI0IOHD */
708 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
709 /* sw t0, 0x50(t1) */
710
711 stw_p(p++, 0xe020); stw_p(p++, 0x0001);
712 /* lui t0, %hi(0x80000000) */
713
714 /* 0x58 corresponds to GT_PCI0M0LD */
715 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
716 /* sw t0, 0x58(t1) */
717
718 stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
719 /* lui t0, %hi(0x3f000000) */
720
721 /* 0x60 corresponds to GT_PCI0M0HD */
722 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
723 /* sw t0, 0x60(t1) */
724
725 stw_p(p++, 0xe020); stw_p(p++, 0x0821);
726 /* lui t0, %hi(0xc1000000) */
727
728 /* 0x80 corresponds to GT_PCI0M1LD */
729 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
730 /* sw t0, 0x80(t1) */
731
732 stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
733 /* lui t0, %hi(0x5e000000) */
734
735 #else
736
737 stw_p(p++, 0x0020); stw_p(p++, 0x00df);
738 /* addiu[32] t0, $0, 0xdf */
739
740 /* 0x68 corresponds to GT_ISD */
741 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
742 /* sw t0, 0x68(t1) */
743
744 /* Use kseg2 remapped address 0x1be00000 */
745 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
746 /* lui t1, %hi(0xbbe00000) */
747
748 stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
749 /* addiu[32] t0, $0, 0xc0 */
750
751 /* 0x48 corresponds to GT_PCI0IOLD */
752 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
753 /* sw t0, 0x48(t1) */
754
755 stw_p(p++, 0x0020); stw_p(p++, 0x0040);
756 /* addiu[32] t0, $0, 0x40 */
757
758 /* 0x50 corresponds to GT_PCI0IOHD */
759 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
760 /* sw t0, 0x50(t1) */
761
762 stw_p(p++, 0x0020); stw_p(p++, 0x0080);
763 /* addiu[32] t0, $0, 0x80 */
764
765 /* 0x58 corresponds to GT_PCI0M0LD */
766 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
767 /* sw t0, 0x58(t1) */
768
769 stw_p(p++, 0x0020); stw_p(p++, 0x003f);
770 /* addiu[32] t0, $0, 0x3f */
771
772 /* 0x60 corresponds to GT_PCI0M0HD */
773 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
774 /* sw t0, 0x60(t1) */
775
776 stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
777 /* addiu[32] t0, $0, 0xc1 */
778
779 /* 0x80 corresponds to GT_PCI0M1LD */
780 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
781 /* sw t0, 0x80(t1) */
782
783 stw_p(p++, 0x0020); stw_p(p++, 0x005e);
784 /* addiu[32] t0, $0, 0x5e */
785
786 #endif
787
788 /* 0x88 corresponds to GT_PCI0M1HD */
789 stw_p(p++, 0x8422); stw_p(p++, 0x9088);
790 /* sw t0, 0x88(t1) */
791
792 stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
793
794 stw_p(p++, NM_HI2(kernel_entry));
795 /* lui t9,%hi(kernel_entry) */
796
797 stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
798 /* ori t9,t9,%lo(kernel_entry) */
799
800 stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
801 /* jalrc t8 */
802 }
803
804 /* ROM and pseudo bootloader
805
806 The following code implements a very very simple bootloader. It first
807 loads the registers a0 to a3 to the values expected by the OS, and
808 then jump at the kernel address.
809
810 The bootloader should pass the locations of the kernel arguments and
811 environment variables tables. Those tables contain the 32-bit address
812 of NULL terminated strings. The environment variables table should be
813 terminated by a NULL address.
814
815 For a simpler implementation, the number of kernel arguments is fixed
816 to two (the name of the kernel and the command line), and the two
817 tables are actually the same one.
818
819 The registers a0 to a3 should contain the following values:
820 a0 - number of kernel arguments
821 a1 - 32-bit address of the kernel arguments table
822 a2 - 32-bit address of the environment variables table
823 a3 - RAM size in bytes
824 */
825 static void write_bootloader(uint8_t *base, int64_t run_addr,
826 int64_t kernel_entry)
827 {
828 uint32_t *p;
829
830 /* Small bootloader */
831 p = (uint32_t *)base;
832
833 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
834 ((run_addr + 0x580) & 0x0fffffff) >> 2);
835 stl_p(p++, 0x00000000); /* nop */
836
837 /* YAMON service vector */
838 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
839 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
840 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
841 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
842 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
843 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
844 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
845 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
846 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
847 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
848 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
849 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
850 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
851
852
853 /* Second part of the bootloader */
854 p = (uint32_t *) (base + 0x580);
855
856 if (semihosting_get_argc()) {
857 /* Preserve a0 content as arguments have been passed */
858 stl_p(p++, 0x00000000); /* nop */
859 } else {
860 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
861 }
862 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
863 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
864 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
865 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
866 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
867 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
868 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16)); /* lui a3, high(ram_low_size) */
869 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff)); /* ori a3, a3, low(ram_low_size) */
870
871 /* Load BAR registers as done by YAMON */
872 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
873
874 #ifdef TARGET_WORDS_BIGENDIAN
875 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
876 #else
877 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
878 #endif
879 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
880
881 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
882
883 #ifdef TARGET_WORDS_BIGENDIAN
884 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
885 #else
886 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
887 #endif
888 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
889 #ifdef TARGET_WORDS_BIGENDIAN
890 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
891 #else
892 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
893 #endif
894 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
895
896 #ifdef TARGET_WORDS_BIGENDIAN
897 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
898 #else
899 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
900 #endif
901 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
902 #ifdef TARGET_WORDS_BIGENDIAN
903 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
904 #else
905 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
906 #endif
907 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
908
909 #ifdef TARGET_WORDS_BIGENDIAN
910 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
911 #else
912 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
913 #endif
914 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
915 #ifdef TARGET_WORDS_BIGENDIAN
916 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
917 #else
918 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
919 #endif
920 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
921
922 /* Jump to kernel code */
923 stl_p(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
924 stl_p(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
925 stl_p(p++, 0x03e00009); /* jalr ra */
926 stl_p(p++, 0x00000000); /* nop */
927
928 /* YAMON subroutines */
929 p = (uint32_t *) (base + 0x800);
930 stl_p(p++, 0x03e00009); /* jalr ra */
931 stl_p(p++, 0x24020000); /* li v0,0 */
932 /* 808 YAMON print */
933 stl_p(p++, 0x03e06821); /* move t5,ra */
934 stl_p(p++, 0x00805821); /* move t3,a0 */
935 stl_p(p++, 0x00a05021); /* move t2,a1 */
936 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
937 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
938 stl_p(p++, 0x10800005); /* beqz a0,834 */
939 stl_p(p++, 0x00000000); /* nop */
940 stl_p(p++, 0x0ff0021c); /* jal 870 */
941 stl_p(p++, 0x00000000); /* nop */
942 stl_p(p++, 0x1000fff9); /* b 814 */
943 stl_p(p++, 0x00000000); /* nop */
944 stl_p(p++, 0x01a00009); /* jalr t5 */
945 stl_p(p++, 0x01602021); /* move a0,t3 */
946 /* 0x83c YAMON print_count */
947 stl_p(p++, 0x03e06821); /* move t5,ra */
948 stl_p(p++, 0x00805821); /* move t3,a0 */
949 stl_p(p++, 0x00a05021); /* move t2,a1 */
950 stl_p(p++, 0x00c06021); /* move t4,a2 */
951 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
952 stl_p(p++, 0x0ff0021c); /* jal 870 */
953 stl_p(p++, 0x00000000); /* nop */
954 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
955 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
956 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
957 stl_p(p++, 0x00000000); /* nop */
958 stl_p(p++, 0x01a00009); /* jalr t5 */
959 stl_p(p++, 0x01602021); /* move a0,t3 */
960 /* 0x870 */
961 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
962 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
963 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
964 stl_p(p++, 0x00000000); /* nop */
965 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
966 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
967 stl_p(p++, 0x00000000); /* nop */
968 stl_p(p++, 0x03e00009); /* jalr ra */
969 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
970
971 }
972
973 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
974 const char *string, ...)
975 {
976 va_list ap;
977 int32_t table_addr;
978
979 if (index >= ENVP_NB_ENTRIES)
980 return;
981
982 if (string == NULL) {
983 prom_buf[index] = 0;
984 return;
985 }
986
987 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
988 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
989
990 va_start(ap, string);
991 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
992 va_end(ap);
993 }
994
995 /* Kernel */
996 static int64_t load_kernel (void)
997 {
998 int64_t kernel_entry, kernel_high, initrd_size;
999 long kernel_size;
1000 ram_addr_t initrd_offset;
1001 int big_endian;
1002 uint32_t *prom_buf;
1003 long prom_size;
1004 int prom_index = 0;
1005 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1006
1007 #ifdef TARGET_WORDS_BIGENDIAN
1008 big_endian = 1;
1009 #else
1010 big_endian = 0;
1011 #endif
1012
1013 kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1014 cpu_mips_kseg0_to_phys, NULL,
1015 (uint64_t *)&kernel_entry, NULL,
1016 (uint64_t *)&kernel_high, big_endian, EM_MIPS, 1, 0);
1017 if (kernel_size < 0) {
1018 error_report("could not load kernel '%s': %s",
1019 loaderparams.kernel_filename,
1020 load_elf_strerror(kernel_size));
1021 exit(1);
1022 }
1023
1024 /* Check where the kernel has been linked */
1025 if (kernel_entry & 0x80000000ll) {
1026 if (kvm_enabled()) {
1027 error_report("KVM guest kernels must be linked in useg. "
1028 "Did you forget to enable CONFIG_KVM_GUEST?");
1029 exit(1);
1030 }
1031
1032 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1033 } else {
1034 /* if kernel entry is in useg it is probably a KVM T&E kernel */
1035 mips_um_ksegs_enable();
1036
1037 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1038 }
1039
1040 /* load initrd */
1041 initrd_size = 0;
1042 initrd_offset = 0;
1043 if (loaderparams.initrd_filename) {
1044 initrd_size = get_image_size (loaderparams.initrd_filename);
1045 if (initrd_size > 0) {
1046 /* The kernel allocates the bootmap memory in the low memory after
1047 the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
1048 pages. */
1049 initrd_offset = (loaderparams.ram_low_size - initrd_size
1050 - (128 * KiB)
1051 - ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
1052 if (kernel_high >= initrd_offset) {
1053 error_report("memory too small for initial ram disk '%s'",
1054 loaderparams.initrd_filename);
1055 exit(1);
1056 }
1057 initrd_size = load_image_targphys(loaderparams.initrd_filename,
1058 initrd_offset,
1059 ram_size - initrd_offset);
1060 }
1061 if (initrd_size == (target_ulong) -1) {
1062 error_report("could not load initial ram disk '%s'",
1063 loaderparams.initrd_filename);
1064 exit(1);
1065 }
1066 }
1067
1068 /* Setup prom parameters. */
1069 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1070 prom_buf = g_malloc(prom_size);
1071
1072 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1073 if (initrd_size > 0) {
1074 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1075 xlate_to_kseg0(NULL, initrd_offset), initrd_size,
1076 loaderparams.kernel_cmdline);
1077 } else {
1078 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1079 }
1080
1081 prom_set(prom_buf, prom_index++, "memsize");
1082 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1083
1084 prom_set(prom_buf, prom_index++, "ememsize");
1085 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1086
1087 prom_set(prom_buf, prom_index++, "modetty0");
1088 prom_set(prom_buf, prom_index++, "38400n8r");
1089 prom_set(prom_buf, prom_index++, NULL);
1090
1091 rom_add_blob_fixed("prom", prom_buf, prom_size,
1092 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
1093
1094 g_free(prom_buf);
1095 return kernel_entry;
1096 }
1097
1098 static void malta_mips_config(MIPSCPU *cpu)
1099 {
1100 CPUMIPSState *env = &cpu->env;
1101 CPUState *cs = CPU(cpu);
1102
1103 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
1104 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
1105 }
1106
1107 static void main_cpu_reset(void *opaque)
1108 {
1109 MIPSCPU *cpu = opaque;
1110 CPUMIPSState *env = &cpu->env;
1111
1112 cpu_reset(CPU(cpu));
1113
1114 /* The bootloader does not need to be rewritten as it is located in a
1115 read only location. The kernel location and the arguments table
1116 location does not change. */
1117 if (loaderparams.kernel_filename) {
1118 env->CP0_Status &= ~(1 << CP0St_ERL);
1119 }
1120
1121 malta_mips_config(cpu);
1122
1123 if (kvm_enabled()) {
1124 /* Start running from the bootloader we wrote to end of RAM */
1125 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1126 }
1127 }
1128
1129 static void create_cpu_without_cps(const char *cpu_type,
1130 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1131 {
1132 CPUMIPSState *env;
1133 MIPSCPU *cpu;
1134 int i;
1135
1136 for (i = 0; i < smp_cpus; i++) {
1137 cpu = MIPS_CPU(cpu_create(cpu_type));
1138
1139 /* Init internal devices */
1140 cpu_mips_irq_init_cpu(cpu);
1141 cpu_mips_clock_init(cpu);
1142 qemu_register_reset(main_cpu_reset, cpu);
1143 }
1144
1145 cpu = MIPS_CPU(first_cpu);
1146 env = &cpu->env;
1147 *i8259_irq = env->irq[2];
1148 *cbus_irq = env->irq[4];
1149 }
1150
1151 static void create_cps(MaltaState *s, const char *cpu_type,
1152 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1153 {
1154 Error *err = NULL;
1155
1156 s->cps = MIPS_CPS(object_new(TYPE_MIPS_CPS));
1157 qdev_set_parent_bus(DEVICE(s->cps), sysbus_get_default());
1158
1159 object_property_set_str(OBJECT(s->cps), cpu_type, "cpu-type", &err);
1160 object_property_set_int(OBJECT(s->cps), smp_cpus, "num-vp", &err);
1161 object_property_set_bool(OBJECT(s->cps), true, "realized", &err);
1162 if (err != NULL) {
1163 error_report("%s", error_get_pretty(err));
1164 exit(1);
1165 }
1166
1167 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s->cps), 0, 0, 1);
1168
1169 *i8259_irq = get_cps_irq(s->cps, 3);
1170 *cbus_irq = NULL;
1171 }
1172
1173 static void mips_create_cpu(MaltaState *s, const char *cpu_type,
1174 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1175 {
1176 if ((smp_cpus > 1) && cpu_supports_cps_smp(cpu_type)) {
1177 create_cps(s, cpu_type, cbus_irq, i8259_irq);
1178 } else {
1179 create_cpu_without_cps(cpu_type, cbus_irq, i8259_irq);
1180 }
1181 }
1182
1183 static
1184 void mips_malta_init(MachineState *machine)
1185 {
1186 ram_addr_t ram_size = machine->ram_size;
1187 ram_addr_t ram_low_size;
1188 const char *kernel_filename = machine->kernel_filename;
1189 const char *kernel_cmdline = machine->kernel_cmdline;
1190 const char *initrd_filename = machine->initrd_filename;
1191 char *filename;
1192 pflash_t *fl;
1193 MemoryRegion *system_memory = get_system_memory();
1194 MemoryRegion *ram_high = g_new(MemoryRegion, 1);
1195 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1196 MemoryRegion *ram_low_postio;
1197 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1198 target_long bios_size = FLASH_SIZE;
1199 const size_t smbus_eeprom_size = 8 * 256;
1200 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1201 int64_t kernel_entry, bootloader_run_addr;
1202 PCIBus *pci_bus;
1203 ISABus *isa_bus;
1204 qemu_irq *isa_irq;
1205 qemu_irq cbus_irq, i8259_irq;
1206 int piix4_devfn;
1207 I2CBus *smbus;
1208 DriveInfo *dinfo;
1209 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
1210 int fl_idx = 0;
1211 int fl_sectors = bios_size >> 16;
1212 int be;
1213
1214 DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
1215 MaltaState *s = MIPS_MALTA(dev);
1216
1217 /* The whole address space decoded by the GT-64120A doesn't generate
1218 exception when accessing invalid memory. Create an empty slot to
1219 emulate this feature. */
1220 empty_slot_init(0, 0x20000000);
1221
1222 qdev_init_nofail(dev);
1223
1224 /* create CPU */
1225 mips_create_cpu(s, machine->cpu_type, &cbus_irq, &i8259_irq);
1226
1227 /* allocate RAM */
1228 if (ram_size > 2 * GiB) {
1229 error_report("Too much memory for this machine: %" PRId64 "MB,"
1230 " maximum 2048MB", ram_size / MiB);
1231 exit(1);
1232 }
1233
1234 /* register RAM at high address where it is undisturbed by IO */
1235 memory_region_allocate_system_memory(ram_high, NULL, "mips_malta.ram",
1236 ram_size);
1237 memory_region_add_subregion(system_memory, 0x80000000, ram_high);
1238
1239 /* alias for pre IO hole access */
1240 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1241 ram_high, 0, MIN(ram_size, 256 * MiB));
1242 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1243
1244 /* alias for post IO hole access, if there is enough RAM */
1245 if (ram_size > 512 * MiB) {
1246 ram_low_postio = g_new(MemoryRegion, 1);
1247 memory_region_init_alias(ram_low_postio, NULL,
1248 "mips_malta_low_postio.ram",
1249 ram_high, 512 * MiB,
1250 ram_size - 512 * MiB);
1251 memory_region_add_subregion(system_memory, 512 * MiB,
1252 ram_low_postio);
1253 }
1254
1255 #ifdef TARGET_WORDS_BIGENDIAN
1256 be = 1;
1257 #else
1258 be = 0;
1259 #endif
1260
1261 /* FPGA */
1262
1263 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1264 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1265
1266 /* Load firmware in flash / BIOS. */
1267 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1268 #ifdef DEBUG_BOARD_INIT
1269 if (dinfo) {
1270 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
1271 "addr %08llx '%s' %x\n",
1272 fl_idx, bios_size, FLASH_ADDRESS,
1273 blk_name(dinfo->bdrv), fl_sectors);
1274 }
1275 #endif
1276 fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
1277 BIOS_SIZE,
1278 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1279 65536, fl_sectors,
1280 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1281 bios = pflash_cfi01_get_memory(fl);
1282 fl_idx++;
1283 if (kernel_filename) {
1284 ram_low_size = MIN(ram_size, 256 * MiB);
1285 /* For KVM we reserve 1MB of RAM for running bootloader */
1286 if (kvm_enabled()) {
1287 ram_low_size -= 0x100000;
1288 bootloader_run_addr = 0x40000000 + ram_low_size;
1289 } else {
1290 bootloader_run_addr = 0xbfc00000;
1291 }
1292
1293 /* Write a small bootloader to the flash location. */
1294 loaderparams.ram_size = ram_size;
1295 loaderparams.ram_low_size = ram_low_size;
1296 loaderparams.kernel_filename = kernel_filename;
1297 loaderparams.kernel_cmdline = kernel_cmdline;
1298 loaderparams.initrd_filename = initrd_filename;
1299 kernel_entry = load_kernel();
1300
1301 if (!cpu_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1302 write_bootloader(memory_region_get_ram_ptr(bios),
1303 bootloader_run_addr, kernel_entry);
1304 } else {
1305 write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1306 bootloader_run_addr, kernel_entry);
1307 }
1308 if (kvm_enabled()) {
1309 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1310 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1311 ram_low_size,
1312 bootloader_run_addr, kernel_entry);
1313 }
1314 } else {
1315 /* The flash region isn't executable from a KVM guest */
1316 if (kvm_enabled()) {
1317 error_report("KVM enabled but no -kernel argument was specified. "
1318 "Booting from flash is not supported with KVM.");
1319 exit(1);
1320 }
1321 /* Load firmware from flash. */
1322 if (!dinfo) {
1323 /* Load a BIOS image. */
1324 if (bios_name == NULL) {
1325 bios_name = BIOS_FILENAME;
1326 }
1327 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1328 if (filename) {
1329 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1330 BIOS_SIZE);
1331 g_free(filename);
1332 } else {
1333 bios_size = -1;
1334 }
1335 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1336 !kernel_filename && !qtest_enabled()) {
1337 error_report("Could not load MIPS bios '%s', and no "
1338 "-kernel argument was specified", bios_name);
1339 exit(1);
1340 }
1341 }
1342 /* In little endian mode the 32bit words in the bios are swapped,
1343 a neat trick which allows bi-endian firmware. */
1344 #ifndef TARGET_WORDS_BIGENDIAN
1345 {
1346 uint32_t *end, *addr;
1347 const size_t swapsize = MIN(bios_size, 0x3e0000);
1348 addr = rom_ptr(FLASH_ADDRESS, swapsize);
1349 if (!addr) {
1350 addr = memory_region_get_ram_ptr(bios);
1351 }
1352 end = (void *)addr + swapsize;
1353 while (addr < end) {
1354 bswap32s(addr);
1355 addr++;
1356 }
1357 }
1358 #endif
1359 }
1360
1361 /*
1362 * Map the BIOS at a 2nd physical location, as on the real board.
1363 * Copy it so that we can patch in the MIPS revision, which cannot be
1364 * handled by an overlapping region as the resulting ROM code subpage
1365 * regions are not executable.
1366 */
1367 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1368 &error_fatal);
1369 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1370 FLASH_ADDRESS, BIOS_SIZE)) {
1371 memcpy(memory_region_get_ram_ptr(bios_copy),
1372 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1373 }
1374 memory_region_set_readonly(bios_copy, true);
1375 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1376
1377 /* Board ID = 0x420 (Malta Board with CoreLV) */
1378 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1379
1380 /*
1381 * We have a circular dependency problem: pci_bus depends on isa_irq,
1382 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
1383 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
1384 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
1385 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
1386 */
1387 isa_irq = qemu_irq_proxy(&s->i8259, 16);
1388
1389 /* Northbridge */
1390 pci_bus = gt64120_register(isa_irq);
1391
1392 /* Southbridge */
1393 ide_drive_get(hd, ARRAY_SIZE(hd));
1394
1395 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
1396
1397 /* Interrupt controller */
1398 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
1399 s->i8259 = i8259_init(isa_bus, i8259_irq);
1400
1401 isa_bus_irqs(isa_bus, s->i8259);
1402 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
1403 pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
1404 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
1405 isa_get_irq(NULL, 9), NULL, 0, NULL);
1406 pit = i8254_pit_init(isa_bus, 0x40, 0, NULL);
1407 i8257_dma_init(isa_bus, 0);
1408 mc146818_rtc_init(isa_bus, 2000, NULL);
1409
1410 /* generate SPD EEPROM data */
1411 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1412 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1413 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1414 g_free(smbus_eeprom_buf);
1415
1416 /* Super I/O: SMS FDC37M817 */
1417 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1418
1419 /* Network card */
1420 network_init(pci_bus);
1421
1422 /* Optional PCI video card */
1423 pci_vga_init(pci_bus);
1424 }
1425
1426 static const TypeInfo mips_malta_device = {
1427 .name = TYPE_MIPS_MALTA,
1428 .parent = TYPE_SYS_BUS_DEVICE,
1429 .instance_size = sizeof(MaltaState),
1430 };
1431
1432 static void mips_malta_machine_init(MachineClass *mc)
1433 {
1434 mc->desc = "MIPS Malta Core LV";
1435 mc->init = mips_malta_init;
1436 mc->block_default_type = IF_IDE;
1437 mc->max_cpus = 16;
1438 mc->is_default = 1;
1439 #ifdef TARGET_MIPS64
1440 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1441 #else
1442 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1443 #endif
1444 }
1445
1446 DEFINE_MACHINE("malta", mips_malta_machine_init)
1447
1448 static void mips_malta_register_types(void)
1449 {
1450 type_register_static(&mips_malta_device);
1451 }
1452
1453 type_init(mips_malta_register_types)