]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mips/mips_malta.c
Change references to serial_hds[] to serial_hd()
[mirror_qemu.git] / hw / mips / mips_malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "cpu.h"
28 #include "hw/hw.h"
29 #include "hw/i386/pc.h"
30 #include "hw/isa/superio.h"
31 #include "hw/dma/i8257.h"
32 #include "hw/char/serial.h"
33 #include "net/net.h"
34 #include "hw/boards.h"
35 #include "hw/i2c/smbus.h"
36 #include "hw/block/flash.h"
37 #include "hw/mips/mips.h"
38 #include "hw/mips/cpudevs.h"
39 #include "hw/pci/pci.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/arch_init.h"
42 #include "qemu/log.h"
43 #include "hw/mips/bios.h"
44 #include "hw/ide.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "hw/timer/mc146818rtc.h"
48 #include "hw/timer/i8254.h"
49 #include "sysemu/blockdev.h"
50 #include "exec/address-spaces.h"
51 #include "hw/sysbus.h" /* SysBusDevice */
52 #include "qemu/host-utils.h"
53 #include "sysemu/qtest.h"
54 #include "qapi/error.h"
55 #include "qemu/error-report.h"
56 #include "hw/empty_slot.h"
57 #include "sysemu/kvm.h"
58 #include "exec/semihost.h"
59 #include "hw/mips/cps.h"
60
61 //#define DEBUG_BOARD_INIT
62
63 #define ENVP_ADDR 0x80002000l
64 #define ENVP_NB_ENTRIES 16
65 #define ENVP_ENTRY_SIZE 256
66
67 /* Hardware addresses */
68 #define FLASH_ADDRESS 0x1e000000ULL
69 #define FPGA_ADDRESS 0x1f000000ULL
70 #define RESET_ADDRESS 0x1fc00000ULL
71
72 #define FLASH_SIZE 0x400000
73
74 #define MAX_IDE_BUS 2
75
76 typedef struct {
77 MemoryRegion iomem;
78 MemoryRegion iomem_lo; /* 0 - 0x900 */
79 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
80 uint32_t leds;
81 uint32_t brk;
82 uint32_t gpout;
83 uint32_t i2cin;
84 uint32_t i2coe;
85 uint32_t i2cout;
86 uint32_t i2csel;
87 CharBackend display;
88 char display_text[9];
89 SerialState *uart;
90 bool display_inited;
91 } MaltaFPGAState;
92
93 #define TYPE_MIPS_MALTA "mips-malta"
94 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
95
96 typedef struct {
97 SysBusDevice parent_obj;
98
99 MIPSCPSState *cps;
100 qemu_irq *i8259;
101 } MaltaState;
102
103 static ISADevice *pit;
104
105 static struct _loaderparams {
106 int ram_size, ram_low_size;
107 const char *kernel_filename;
108 const char *kernel_cmdline;
109 const char *initrd_filename;
110 } loaderparams;
111
112 /* Malta FPGA */
113 static void malta_fpga_update_display(void *opaque)
114 {
115 char leds_text[9];
116 int i;
117 MaltaFPGAState *s = opaque;
118
119 for (i = 7 ; i >= 0 ; i--) {
120 if (s->leds & (1 << i))
121 leds_text[i] = '#';
122 else
123 leds_text[i] = ' ';
124 }
125 leds_text[8] = '\0';
126
127 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
128 leds_text);
129 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
130 s->display_text);
131 }
132
133 /*
134 * EEPROM 24C01 / 24C02 emulation.
135 *
136 * Emulation for serial EEPROMs:
137 * 24C01 - 1024 bit (128 x 8)
138 * 24C02 - 2048 bit (256 x 8)
139 *
140 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
141 */
142
143 //~ #define DEBUG
144
145 #if defined(DEBUG)
146 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
147 #else
148 # define logout(fmt, ...) ((void)0)
149 #endif
150
151 struct _eeprom24c0x_t {
152 uint8_t tick;
153 uint8_t address;
154 uint8_t command;
155 uint8_t ack;
156 uint8_t scl;
157 uint8_t sda;
158 uint8_t data;
159 //~ uint16_t size;
160 uint8_t contents[256];
161 };
162
163 typedef struct _eeprom24c0x_t eeprom24c0x_t;
164
165 static eeprom24c0x_t spd_eeprom = {
166 .contents = {
167 /* 00000000: */ 0x80,0x08,0xFF,0x0D,0x0A,0xFF,0x40,0x00,
168 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
169 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x00,0x00,
170 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0xFF,
171 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
172 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
173 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
174 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
175 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
176 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
177 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
178 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
179 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
180 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
181 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
182 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
183 },
184 };
185
186 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
187 {
188 enum { SDR = 0x4, DDR2 = 0x8 } type;
189 uint8_t *spd = spd_eeprom.contents;
190 uint8_t nbanks = 0;
191 uint16_t density = 0;
192 int i;
193
194 /* work in terms of MB */
195 ram_size >>= 20;
196
197 while ((ram_size >= 4) && (nbanks <= 2)) {
198 int sz_log2 = MIN(31 - clz32(ram_size), 14);
199 nbanks++;
200 density |= 1 << (sz_log2 - 2);
201 ram_size -= 1 << sz_log2;
202 }
203
204 /* split to 2 banks if possible */
205 if ((nbanks == 1) && (density > 1)) {
206 nbanks++;
207 density >>= 1;
208 }
209
210 if (density & 0xff00) {
211 density = (density & 0xe0) | ((density >> 8) & 0x1f);
212 type = DDR2;
213 } else if (!(density & 0x1f)) {
214 type = DDR2;
215 } else {
216 type = SDR;
217 }
218
219 if (ram_size) {
220 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
221 " of SDRAM", ram_size);
222 }
223
224 /* fill in SPD memory information */
225 spd[2] = type;
226 spd[5] = nbanks;
227 spd[31] = density;
228
229 /* checksum */
230 spd[63] = 0;
231 for (i = 0; i < 63; i++) {
232 spd[63] += spd[i];
233 }
234
235 /* copy for SMBUS */
236 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
237 }
238
239 static void generate_eeprom_serial(uint8_t *eeprom)
240 {
241 int i, pos = 0;
242 uint8_t mac[6] = { 0x00 };
243 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
244
245 /* version */
246 eeprom[pos++] = 0x01;
247
248 /* count */
249 eeprom[pos++] = 0x02;
250
251 /* MAC address */
252 eeprom[pos++] = 0x01; /* MAC */
253 eeprom[pos++] = 0x06; /* length */
254 memcpy(&eeprom[pos], mac, sizeof(mac));
255 pos += sizeof(mac);
256
257 /* serial number */
258 eeprom[pos++] = 0x02; /* serial */
259 eeprom[pos++] = 0x05; /* length */
260 memcpy(&eeprom[pos], sn, sizeof(sn));
261 pos += sizeof(sn);
262
263 /* checksum */
264 eeprom[pos] = 0;
265 for (i = 0; i < pos; i++) {
266 eeprom[pos] += eeprom[i];
267 }
268 }
269
270 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
271 {
272 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
273 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
274 return eeprom->sda;
275 }
276
277 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
278 {
279 if (eeprom->scl && scl && (eeprom->sda != sda)) {
280 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
281 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
282 sda ? "stop" : "start");
283 if (!sda) {
284 eeprom->tick = 1;
285 eeprom->command = 0;
286 }
287 } else if (eeprom->tick == 0 && !eeprom->ack) {
288 /* Waiting for start. */
289 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
290 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
291 } else if (!eeprom->scl && scl) {
292 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
293 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
294 if (eeprom->ack) {
295 logout("\ti2c ack bit = 0\n");
296 sda = 0;
297 eeprom->ack = 0;
298 } else if (eeprom->sda == sda) {
299 uint8_t bit = (sda != 0);
300 logout("\ti2c bit = %d\n", bit);
301 if (eeprom->tick < 9) {
302 eeprom->command <<= 1;
303 eeprom->command += bit;
304 eeprom->tick++;
305 if (eeprom->tick == 9) {
306 logout("\tcommand 0x%04x, %s\n", eeprom->command,
307 bit ? "read" : "write");
308 eeprom->ack = 1;
309 }
310 } else if (eeprom->tick < 17) {
311 if (eeprom->command & 1) {
312 sda = ((eeprom->data & 0x80) != 0);
313 }
314 eeprom->address <<= 1;
315 eeprom->address += bit;
316 eeprom->tick++;
317 eeprom->data <<= 1;
318 if (eeprom->tick == 17) {
319 eeprom->data = eeprom->contents[eeprom->address];
320 logout("\taddress 0x%04x, data 0x%02x\n",
321 eeprom->address, eeprom->data);
322 eeprom->ack = 1;
323 eeprom->tick = 0;
324 }
325 } else if (eeprom->tick >= 17) {
326 sda = 0;
327 }
328 } else {
329 logout("\tsda changed with raising scl\n");
330 }
331 } else {
332 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
333 scl, eeprom->sda, sda);
334 }
335 eeprom->scl = scl;
336 eeprom->sda = sda;
337 }
338
339 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
340 unsigned size)
341 {
342 MaltaFPGAState *s = opaque;
343 uint32_t val = 0;
344 uint32_t saddr;
345
346 saddr = (addr & 0xfffff);
347
348 switch (saddr) {
349
350 /* SWITCH Register */
351 case 0x00200:
352 val = 0x00000000; /* All switches closed */
353 break;
354
355 /* STATUS Register */
356 case 0x00208:
357 #ifdef TARGET_WORDS_BIGENDIAN
358 val = 0x00000012;
359 #else
360 val = 0x00000010;
361 #endif
362 break;
363
364 /* JMPRS Register */
365 case 0x00210:
366 val = 0x00;
367 break;
368
369 /* LEDBAR Register */
370 case 0x00408:
371 val = s->leds;
372 break;
373
374 /* BRKRES Register */
375 case 0x00508:
376 val = s->brk;
377 break;
378
379 /* UART Registers are handled directly by the serial device */
380
381 /* GPOUT Register */
382 case 0x00a00:
383 val = s->gpout;
384 break;
385
386 /* XXX: implement a real I2C controller */
387
388 /* GPINP Register */
389 case 0x00a08:
390 /* IN = OUT until a real I2C control is implemented */
391 if (s->i2csel)
392 val = s->i2cout;
393 else
394 val = 0x00;
395 break;
396
397 /* I2CINP Register */
398 case 0x00b00:
399 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
400 break;
401
402 /* I2COE Register */
403 case 0x00b08:
404 val = s->i2coe;
405 break;
406
407 /* I2COUT Register */
408 case 0x00b10:
409 val = s->i2cout;
410 break;
411
412 /* I2CSEL Register */
413 case 0x00b18:
414 val = s->i2csel;
415 break;
416
417 default:
418 #if 0
419 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
420 addr);
421 #endif
422 break;
423 }
424 return val;
425 }
426
427 static void malta_fpga_write(void *opaque, hwaddr addr,
428 uint64_t val, unsigned size)
429 {
430 MaltaFPGAState *s = opaque;
431 uint32_t saddr;
432
433 saddr = (addr & 0xfffff);
434
435 switch (saddr) {
436
437 /* SWITCH Register */
438 case 0x00200:
439 break;
440
441 /* JMPRS Register */
442 case 0x00210:
443 break;
444
445 /* LEDBAR Register */
446 case 0x00408:
447 s->leds = val & 0xff;
448 malta_fpga_update_display(s);
449 break;
450
451 /* ASCIIWORD Register */
452 case 0x00410:
453 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
454 malta_fpga_update_display(s);
455 break;
456
457 /* ASCIIPOS0 to ASCIIPOS7 Registers */
458 case 0x00418:
459 case 0x00420:
460 case 0x00428:
461 case 0x00430:
462 case 0x00438:
463 case 0x00440:
464 case 0x00448:
465 case 0x00450:
466 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
467 malta_fpga_update_display(s);
468 break;
469
470 /* SOFTRES Register */
471 case 0x00500:
472 if (val == 0x42)
473 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
474 break;
475
476 /* BRKRES Register */
477 case 0x00508:
478 s->brk = val & 0xff;
479 break;
480
481 /* UART Registers are handled directly by the serial device */
482
483 /* GPOUT Register */
484 case 0x00a00:
485 s->gpout = val & 0xff;
486 break;
487
488 /* I2COE Register */
489 case 0x00b08:
490 s->i2coe = val & 0x03;
491 break;
492
493 /* I2COUT Register */
494 case 0x00b10:
495 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
496 s->i2cout = val;
497 break;
498
499 /* I2CSEL Register */
500 case 0x00b18:
501 s->i2csel = val & 0x01;
502 break;
503
504 default:
505 #if 0
506 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
507 addr);
508 #endif
509 break;
510 }
511 }
512
513 static const MemoryRegionOps malta_fpga_ops = {
514 .read = malta_fpga_read,
515 .write = malta_fpga_write,
516 .endianness = DEVICE_NATIVE_ENDIAN,
517 };
518
519 static void malta_fpga_reset(void *opaque)
520 {
521 MaltaFPGAState *s = opaque;
522
523 s->leds = 0x00;
524 s->brk = 0x0a;
525 s->gpout = 0x00;
526 s->i2cin = 0x3;
527 s->i2coe = 0x0;
528 s->i2cout = 0x3;
529 s->i2csel = 0x1;
530
531 s->display_text[8] = '\0';
532 snprintf(s->display_text, 9, " ");
533 }
534
535 static void malta_fgpa_display_event(void *opaque, int event)
536 {
537 MaltaFPGAState *s = opaque;
538
539 if (event == CHR_EVENT_OPENED && !s->display_inited) {
540 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
541 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
542 qemu_chr_fe_printf(&s->display, "+ +\r\n");
543 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
544 qemu_chr_fe_printf(&s->display, "\n");
545 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
546 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
547 qemu_chr_fe_printf(&s->display, "+ +\r\n");
548 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
549 s->display_inited = true;
550 }
551 }
552
553 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
554 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
555 {
556 MaltaFPGAState *s;
557 Chardev *chr;
558
559 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
560
561 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
562 "malta-fpga", 0x100000);
563 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
564 &s->iomem, 0, 0x900);
565 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
566 &s->iomem, 0xa00, 0x10000-0xa00);
567
568 memory_region_add_subregion(address_space, base, &s->iomem_lo);
569 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
570
571 chr = qemu_chr_new("fpga", "vc:320x200");
572 qemu_chr_fe_init(&s->display, chr, NULL);
573 qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
574 malta_fgpa_display_event, NULL, s, NULL, true);
575
576 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
577 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
578
579 malta_fpga_reset(s);
580 qemu_register_reset(malta_fpga_reset, s);
581
582 return s;
583 }
584
585 /* Network support */
586 static void network_init(PCIBus *pci_bus)
587 {
588 int i;
589
590 for(i = 0; i < nb_nics; i++) {
591 NICInfo *nd = &nd_table[i];
592 const char *default_devaddr = NULL;
593
594 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
595 /* The malta board has a PCNet card using PCI SLOT 11 */
596 default_devaddr = "0b";
597
598 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
599 }
600 }
601
602 /* ROM and pseudo bootloader
603
604 The following code implements a very very simple bootloader. It first
605 loads the registers a0 to a3 to the values expected by the OS, and
606 then jump at the kernel address.
607
608 The bootloader should pass the locations of the kernel arguments and
609 environment variables tables. Those tables contain the 32-bit address
610 of NULL terminated strings. The environment variables table should be
611 terminated by a NULL address.
612
613 For a simpler implementation, the number of kernel arguments is fixed
614 to two (the name of the kernel and the command line), and the two
615 tables are actually the same one.
616
617 The registers a0 to a3 should contain the following values:
618 a0 - number of kernel arguments
619 a1 - 32-bit address of the kernel arguments table
620 a2 - 32-bit address of the environment variables table
621 a3 - RAM size in bytes
622 */
623
624 static void write_bootloader(uint8_t *base, int64_t run_addr,
625 int64_t kernel_entry)
626 {
627 uint32_t *p;
628
629 /* Small bootloader */
630 p = (uint32_t *)base;
631
632 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
633 ((run_addr + 0x580) & 0x0fffffff) >> 2);
634 stl_p(p++, 0x00000000); /* nop */
635
636 /* YAMON service vector */
637 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
638 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
639 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
640 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
641 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
642 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
643 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
644 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
645 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
646 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
647 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
648 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
649 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
650
651
652 /* Second part of the bootloader */
653 p = (uint32_t *) (base + 0x580);
654
655 if (semihosting_get_argc()) {
656 /* Preserve a0 content as arguments have been passed */
657 stl_p(p++, 0x00000000); /* nop */
658 } else {
659 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
660 }
661 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
662 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
663 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
664 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
665 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
666 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
667 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16)); /* lui a3, high(ram_low_size) */
668 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff)); /* ori a3, a3, low(ram_low_size) */
669
670 /* Load BAR registers as done by YAMON */
671 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
672
673 #ifdef TARGET_WORDS_BIGENDIAN
674 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
675 #else
676 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
677 #endif
678 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
679
680 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
681
682 #ifdef TARGET_WORDS_BIGENDIAN
683 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
684 #else
685 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
686 #endif
687 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
688 #ifdef TARGET_WORDS_BIGENDIAN
689 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
690 #else
691 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
692 #endif
693 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
694
695 #ifdef TARGET_WORDS_BIGENDIAN
696 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
697 #else
698 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
699 #endif
700 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
701 #ifdef TARGET_WORDS_BIGENDIAN
702 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
703 #else
704 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
705 #endif
706 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
707
708 #ifdef TARGET_WORDS_BIGENDIAN
709 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
710 #else
711 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
712 #endif
713 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
714 #ifdef TARGET_WORDS_BIGENDIAN
715 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
716 #else
717 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
718 #endif
719 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
720
721 /* Jump to kernel code */
722 stl_p(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
723 stl_p(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
724 stl_p(p++, 0x03e00009); /* jalr ra */
725 stl_p(p++, 0x00000000); /* nop */
726
727 /* YAMON subroutines */
728 p = (uint32_t *) (base + 0x800);
729 stl_p(p++, 0x03e00009); /* jalr ra */
730 stl_p(p++, 0x24020000); /* li v0,0 */
731 /* 808 YAMON print */
732 stl_p(p++, 0x03e06821); /* move t5,ra */
733 stl_p(p++, 0x00805821); /* move t3,a0 */
734 stl_p(p++, 0x00a05021); /* move t2,a1 */
735 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
736 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
737 stl_p(p++, 0x10800005); /* beqz a0,834 */
738 stl_p(p++, 0x00000000); /* nop */
739 stl_p(p++, 0x0ff0021c); /* jal 870 */
740 stl_p(p++, 0x00000000); /* nop */
741 stl_p(p++, 0x1000fff9); /* b 814 */
742 stl_p(p++, 0x00000000); /* nop */
743 stl_p(p++, 0x01a00009); /* jalr t5 */
744 stl_p(p++, 0x01602021); /* move a0,t3 */
745 /* 0x83c YAMON print_count */
746 stl_p(p++, 0x03e06821); /* move t5,ra */
747 stl_p(p++, 0x00805821); /* move t3,a0 */
748 stl_p(p++, 0x00a05021); /* move t2,a1 */
749 stl_p(p++, 0x00c06021); /* move t4,a2 */
750 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
751 stl_p(p++, 0x0ff0021c); /* jal 870 */
752 stl_p(p++, 0x00000000); /* nop */
753 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
754 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
755 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
756 stl_p(p++, 0x00000000); /* nop */
757 stl_p(p++, 0x01a00009); /* jalr t5 */
758 stl_p(p++, 0x01602021); /* move a0,t3 */
759 /* 0x870 */
760 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
761 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
762 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
763 stl_p(p++, 0x00000000); /* nop */
764 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
765 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
766 stl_p(p++, 0x00000000); /* nop */
767 stl_p(p++, 0x03e00009); /* jalr ra */
768 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
769
770 }
771
772 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
773 const char *string, ...)
774 {
775 va_list ap;
776 int32_t table_addr;
777
778 if (index >= ENVP_NB_ENTRIES)
779 return;
780
781 if (string == NULL) {
782 prom_buf[index] = 0;
783 return;
784 }
785
786 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
787 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
788
789 va_start(ap, string);
790 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
791 va_end(ap);
792 }
793
794 /* Kernel */
795 static int64_t load_kernel (void)
796 {
797 int64_t kernel_entry, kernel_high;
798 long kernel_size, initrd_size;
799 ram_addr_t initrd_offset;
800 int big_endian;
801 uint32_t *prom_buf;
802 long prom_size;
803 int prom_index = 0;
804 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
805
806 #ifdef TARGET_WORDS_BIGENDIAN
807 big_endian = 1;
808 #else
809 big_endian = 0;
810 #endif
811
812 kernel_size = load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys,
813 NULL, (uint64_t *)&kernel_entry, NULL,
814 (uint64_t *)&kernel_high, big_endian, EM_MIPS, 1, 0);
815 if (kernel_size < 0) {
816 error_report("could not load kernel '%s': %s",
817 loaderparams.kernel_filename,
818 load_elf_strerror(kernel_size));
819 exit(1);
820 }
821
822 /* Check where the kernel has been linked */
823 if (kernel_entry & 0x80000000ll) {
824 if (kvm_enabled()) {
825 error_report("KVM guest kernels must be linked in useg. "
826 "Did you forget to enable CONFIG_KVM_GUEST?");
827 exit(1);
828 }
829
830 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
831 } else {
832 /* if kernel entry is in useg it is probably a KVM T&E kernel */
833 mips_um_ksegs_enable();
834
835 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
836 }
837
838 /* load initrd */
839 initrd_size = 0;
840 initrd_offset = 0;
841 if (loaderparams.initrd_filename) {
842 initrd_size = get_image_size (loaderparams.initrd_filename);
843 if (initrd_size > 0) {
844 /* The kernel allocates the bootmap memory in the low memory after
845 the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
846 pages. */
847 initrd_offset = (loaderparams.ram_low_size - initrd_size - 131072
848 - ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
849 if (kernel_high >= initrd_offset) {
850 error_report("memory too small for initial ram disk '%s'",
851 loaderparams.initrd_filename);
852 exit(1);
853 }
854 initrd_size = load_image_targphys(loaderparams.initrd_filename,
855 initrd_offset,
856 ram_size - initrd_offset);
857 }
858 if (initrd_size == (target_ulong) -1) {
859 error_report("could not load initial ram disk '%s'",
860 loaderparams.initrd_filename);
861 exit(1);
862 }
863 }
864
865 /* Setup prom parameters. */
866 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
867 prom_buf = g_malloc(prom_size);
868
869 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
870 if (initrd_size > 0) {
871 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
872 xlate_to_kseg0(NULL, initrd_offset), initrd_size,
873 loaderparams.kernel_cmdline);
874 } else {
875 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
876 }
877
878 prom_set(prom_buf, prom_index++, "memsize");
879 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
880
881 prom_set(prom_buf, prom_index++, "ememsize");
882 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
883
884 prom_set(prom_buf, prom_index++, "modetty0");
885 prom_set(prom_buf, prom_index++, "38400n8r");
886 prom_set(prom_buf, prom_index++, NULL);
887
888 rom_add_blob_fixed("prom", prom_buf, prom_size,
889 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
890
891 g_free(prom_buf);
892 return kernel_entry;
893 }
894
895 static void malta_mips_config(MIPSCPU *cpu)
896 {
897 CPUMIPSState *env = &cpu->env;
898 CPUState *cs = CPU(cpu);
899
900 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
901 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
902 }
903
904 static void main_cpu_reset(void *opaque)
905 {
906 MIPSCPU *cpu = opaque;
907 CPUMIPSState *env = &cpu->env;
908
909 cpu_reset(CPU(cpu));
910
911 /* The bootloader does not need to be rewritten as it is located in a
912 read only location. The kernel location and the arguments table
913 location does not change. */
914 if (loaderparams.kernel_filename) {
915 env->CP0_Status &= ~(1 << CP0St_ERL);
916 }
917
918 malta_mips_config(cpu);
919
920 if (kvm_enabled()) {
921 /* Start running from the bootloader we wrote to end of RAM */
922 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
923 }
924 }
925
926 static void create_cpu_without_cps(const char *cpu_type,
927 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
928 {
929 CPUMIPSState *env;
930 MIPSCPU *cpu;
931 int i;
932
933 for (i = 0; i < smp_cpus; i++) {
934 cpu = MIPS_CPU(cpu_create(cpu_type));
935
936 /* Init internal devices */
937 cpu_mips_irq_init_cpu(cpu);
938 cpu_mips_clock_init(cpu);
939 qemu_register_reset(main_cpu_reset, cpu);
940 }
941
942 cpu = MIPS_CPU(first_cpu);
943 env = &cpu->env;
944 *i8259_irq = env->irq[2];
945 *cbus_irq = env->irq[4];
946 }
947
948 static void create_cps(MaltaState *s, const char *cpu_type,
949 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
950 {
951 Error *err = NULL;
952
953 s->cps = MIPS_CPS(object_new(TYPE_MIPS_CPS));
954 qdev_set_parent_bus(DEVICE(s->cps), sysbus_get_default());
955
956 object_property_set_str(OBJECT(s->cps), cpu_type, "cpu-type", &err);
957 object_property_set_int(OBJECT(s->cps), smp_cpus, "num-vp", &err);
958 object_property_set_bool(OBJECT(s->cps), true, "realized", &err);
959 if (err != NULL) {
960 error_report("%s", error_get_pretty(err));
961 exit(1);
962 }
963
964 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s->cps), 0, 0, 1);
965
966 *i8259_irq = get_cps_irq(s->cps, 3);
967 *cbus_irq = NULL;
968 }
969
970 static void mips_create_cpu(MaltaState *s, const char *cpu_type,
971 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
972 {
973 if ((smp_cpus > 1) && cpu_supports_cps_smp(cpu_type)) {
974 create_cps(s, cpu_type, cbus_irq, i8259_irq);
975 } else {
976 create_cpu_without_cps(cpu_type, cbus_irq, i8259_irq);
977 }
978 }
979
980 static
981 void mips_malta_init(MachineState *machine)
982 {
983 ram_addr_t ram_size = machine->ram_size;
984 ram_addr_t ram_low_size;
985 const char *kernel_filename = machine->kernel_filename;
986 const char *kernel_cmdline = machine->kernel_cmdline;
987 const char *initrd_filename = machine->initrd_filename;
988 char *filename;
989 pflash_t *fl;
990 MemoryRegion *system_memory = get_system_memory();
991 MemoryRegion *ram_high = g_new(MemoryRegion, 1);
992 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
993 MemoryRegion *ram_low_postio;
994 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
995 target_long bios_size = FLASH_SIZE;
996 const size_t smbus_eeprom_size = 8 * 256;
997 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
998 int64_t kernel_entry, bootloader_run_addr;
999 PCIBus *pci_bus;
1000 ISABus *isa_bus;
1001 qemu_irq *isa_irq;
1002 qemu_irq cbus_irq, i8259_irq;
1003 int piix4_devfn;
1004 I2CBus *smbus;
1005 DriveInfo *dinfo;
1006 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
1007 int fl_idx = 0;
1008 int fl_sectors = bios_size >> 16;
1009 int be;
1010
1011 DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
1012 MaltaState *s = MIPS_MALTA(dev);
1013
1014 /* The whole address space decoded by the GT-64120A doesn't generate
1015 exception when accessing invalid memory. Create an empty slot to
1016 emulate this feature. */
1017 empty_slot_init(0, 0x20000000);
1018
1019 qdev_init_nofail(dev);
1020
1021 /* create CPU */
1022 mips_create_cpu(s, machine->cpu_type, &cbus_irq, &i8259_irq);
1023
1024 /* allocate RAM */
1025 if (ram_size > (2048u << 20)) {
1026 error_report("Too much memory for this machine: %dMB, maximum 2048MB",
1027 ((unsigned int)ram_size / (1 << 20)));
1028 exit(1);
1029 }
1030
1031 /* register RAM at high address where it is undisturbed by IO */
1032 memory_region_allocate_system_memory(ram_high, NULL, "mips_malta.ram",
1033 ram_size);
1034 memory_region_add_subregion(system_memory, 0x80000000, ram_high);
1035
1036 /* alias for pre IO hole access */
1037 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1038 ram_high, 0, MIN(ram_size, (256 << 20)));
1039 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1040
1041 /* alias for post IO hole access, if there is enough RAM */
1042 if (ram_size > (512 << 20)) {
1043 ram_low_postio = g_new(MemoryRegion, 1);
1044 memory_region_init_alias(ram_low_postio, NULL,
1045 "mips_malta_low_postio.ram",
1046 ram_high, 512 << 20,
1047 ram_size - (512 << 20));
1048 memory_region_add_subregion(system_memory, 512 << 20, ram_low_postio);
1049 }
1050
1051 #ifdef TARGET_WORDS_BIGENDIAN
1052 be = 1;
1053 #else
1054 be = 0;
1055 #endif
1056
1057 /* FPGA */
1058
1059 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1060 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1061
1062 /* Load firmware in flash / BIOS. */
1063 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1064 #ifdef DEBUG_BOARD_INIT
1065 if (dinfo) {
1066 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
1067 "addr %08llx '%s' %x\n",
1068 fl_idx, bios_size, FLASH_ADDRESS,
1069 blk_name(dinfo->bdrv), fl_sectors);
1070 }
1071 #endif
1072 fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
1073 BIOS_SIZE,
1074 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1075 65536, fl_sectors,
1076 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1077 bios = pflash_cfi01_get_memory(fl);
1078 fl_idx++;
1079 if (kernel_filename) {
1080 ram_low_size = MIN(ram_size, 256 << 20);
1081 /* For KVM we reserve 1MB of RAM for running bootloader */
1082 if (kvm_enabled()) {
1083 ram_low_size -= 0x100000;
1084 bootloader_run_addr = 0x40000000 + ram_low_size;
1085 } else {
1086 bootloader_run_addr = 0xbfc00000;
1087 }
1088
1089 /* Write a small bootloader to the flash location. */
1090 loaderparams.ram_size = ram_size;
1091 loaderparams.ram_low_size = ram_low_size;
1092 loaderparams.kernel_filename = kernel_filename;
1093 loaderparams.kernel_cmdline = kernel_cmdline;
1094 loaderparams.initrd_filename = initrd_filename;
1095 kernel_entry = load_kernel();
1096
1097 write_bootloader(memory_region_get_ram_ptr(bios),
1098 bootloader_run_addr, kernel_entry);
1099 if (kvm_enabled()) {
1100 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1101 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1102 ram_low_size,
1103 bootloader_run_addr, kernel_entry);
1104 }
1105 } else {
1106 /* The flash region isn't executable from a KVM guest */
1107 if (kvm_enabled()) {
1108 error_report("KVM enabled but no -kernel argument was specified. "
1109 "Booting from flash is not supported with KVM.");
1110 exit(1);
1111 }
1112 /* Load firmware from flash. */
1113 if (!dinfo) {
1114 /* Load a BIOS image. */
1115 if (bios_name == NULL) {
1116 bios_name = BIOS_FILENAME;
1117 }
1118 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1119 if (filename) {
1120 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1121 BIOS_SIZE);
1122 g_free(filename);
1123 } else {
1124 bios_size = -1;
1125 }
1126 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1127 !kernel_filename && !qtest_enabled()) {
1128 error_report("Could not load MIPS bios '%s', and no "
1129 "-kernel argument was specified", bios_name);
1130 exit(1);
1131 }
1132 }
1133 /* In little endian mode the 32bit words in the bios are swapped,
1134 a neat trick which allows bi-endian firmware. */
1135 #ifndef TARGET_WORDS_BIGENDIAN
1136 {
1137 uint32_t *end, *addr = rom_ptr(FLASH_ADDRESS);
1138 if (!addr) {
1139 addr = memory_region_get_ram_ptr(bios);
1140 }
1141 end = (void *)addr + MIN(bios_size, 0x3e0000);
1142 while (addr < end) {
1143 bswap32s(addr);
1144 addr++;
1145 }
1146 }
1147 #endif
1148 }
1149
1150 /*
1151 * Map the BIOS at a 2nd physical location, as on the real board.
1152 * Copy it so that we can patch in the MIPS revision, which cannot be
1153 * handled by an overlapping region as the resulting ROM code subpage
1154 * regions are not executable.
1155 */
1156 memory_region_init_ram_nomigrate(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1157 &error_fatal);
1158 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1159 FLASH_ADDRESS, BIOS_SIZE)) {
1160 memcpy(memory_region_get_ram_ptr(bios_copy),
1161 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1162 }
1163 memory_region_set_readonly(bios_copy, true);
1164 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1165
1166 /* Board ID = 0x420 (Malta Board with CoreLV) */
1167 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1168
1169 /*
1170 * We have a circular dependency problem: pci_bus depends on isa_irq,
1171 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
1172 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
1173 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
1174 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
1175 */
1176 isa_irq = qemu_irq_proxy(&s->i8259, 16);
1177
1178 /* Northbridge */
1179 pci_bus = gt64120_register(isa_irq);
1180
1181 /* Southbridge */
1182 ide_drive_get(hd, ARRAY_SIZE(hd));
1183
1184 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
1185
1186 /* Interrupt controller */
1187 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
1188 s->i8259 = i8259_init(isa_bus, i8259_irq);
1189
1190 isa_bus_irqs(isa_bus, s->i8259);
1191 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
1192 pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
1193 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
1194 isa_get_irq(NULL, 9), NULL, 0, NULL);
1195 pit = i8254_pit_init(isa_bus, 0x40, 0, NULL);
1196 i8257_dma_init(isa_bus, 0);
1197 mc146818_rtc_init(isa_bus, 2000, NULL);
1198
1199 /* generate SPD EEPROM data */
1200 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1201 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1202 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1203 g_free(smbus_eeprom_buf);
1204
1205 /* Super I/O: SMS FDC37M817 */
1206 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1207
1208 /* Network card */
1209 network_init(pci_bus);
1210
1211 /* Optional PCI video card */
1212 pci_vga_init(pci_bus);
1213 }
1214
1215 static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
1216 {
1217 return 0;
1218 }
1219
1220 static void mips_malta_class_init(ObjectClass *klass, void *data)
1221 {
1222 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1223
1224 k->init = mips_malta_sysbus_device_init;
1225 }
1226
1227 static const TypeInfo mips_malta_device = {
1228 .name = TYPE_MIPS_MALTA,
1229 .parent = TYPE_SYS_BUS_DEVICE,
1230 .instance_size = sizeof(MaltaState),
1231 .class_init = mips_malta_class_init,
1232 };
1233
1234 static void mips_malta_machine_init(MachineClass *mc)
1235 {
1236 mc->desc = "MIPS Malta Core LV";
1237 mc->init = mips_malta_init;
1238 mc->block_default_type = IF_IDE;
1239 mc->max_cpus = 16;
1240 mc->is_default = 1;
1241 #ifdef TARGET_MIPS64
1242 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1243 #else
1244 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1245 #endif
1246 }
1247
1248 DEFINE_MACHINE("malta", mips_malta_machine_init)
1249
1250 static void mips_malta_register_types(void)
1251 {
1252 type_register_static(&mips_malta_device);
1253 }
1254
1255 type_init(mips_malta_register_types)