]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mips/mips_malta.c
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-3.0-20180703' into staging
[mirror_qemu.git] / hw / mips / mips_malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/hw.h"
30 #include "hw/i386/pc.h"
31 #include "hw/isa/superio.h"
32 #include "hw/dma/i8257.h"
33 #include "hw/char/serial.h"
34 #include "net/net.h"
35 #include "hw/boards.h"
36 #include "hw/i2c/smbus.h"
37 #include "hw/block/flash.h"
38 #include "hw/mips/mips.h"
39 #include "hw/mips/cpudevs.h"
40 #include "hw/pci/pci.h"
41 #include "sysemu/sysemu.h"
42 #include "sysemu/arch_init.h"
43 #include "qemu/log.h"
44 #include "hw/mips/bios.h"
45 #include "hw/ide.h"
46 #include "hw/loader.h"
47 #include "elf.h"
48 #include "hw/timer/mc146818rtc.h"
49 #include "hw/timer/i8254.h"
50 #include "exec/address-spaces.h"
51 #include "hw/sysbus.h" /* SysBusDevice */
52 #include "qemu/host-utils.h"
53 #include "sysemu/qtest.h"
54 #include "qapi/error.h"
55 #include "qemu/error-report.h"
56 #include "hw/empty_slot.h"
57 #include "sysemu/kvm.h"
58 #include "exec/semihost.h"
59 #include "hw/mips/cps.h"
60
61 //#define DEBUG_BOARD_INIT
62
63 #define ENVP_ADDR 0x80002000l
64 #define ENVP_NB_ENTRIES 16
65 #define ENVP_ENTRY_SIZE 256
66
67 /* Hardware addresses */
68 #define FLASH_ADDRESS 0x1e000000ULL
69 #define FPGA_ADDRESS 0x1f000000ULL
70 #define RESET_ADDRESS 0x1fc00000ULL
71
72 #define FLASH_SIZE 0x400000
73
74 #define MAX_IDE_BUS 2
75
76 typedef struct {
77 MemoryRegion iomem;
78 MemoryRegion iomem_lo; /* 0 - 0x900 */
79 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
80 uint32_t leds;
81 uint32_t brk;
82 uint32_t gpout;
83 uint32_t i2cin;
84 uint32_t i2coe;
85 uint32_t i2cout;
86 uint32_t i2csel;
87 CharBackend display;
88 char display_text[9];
89 SerialState *uart;
90 bool display_inited;
91 } MaltaFPGAState;
92
93 #define TYPE_MIPS_MALTA "mips-malta"
94 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
95
96 typedef struct {
97 SysBusDevice parent_obj;
98
99 MIPSCPSState *cps;
100 qemu_irq *i8259;
101 } MaltaState;
102
103 static ISADevice *pit;
104
105 static struct _loaderparams {
106 int ram_size, ram_low_size;
107 const char *kernel_filename;
108 const char *kernel_cmdline;
109 const char *initrd_filename;
110 } loaderparams;
111
112 /* Malta FPGA */
113 static void malta_fpga_update_display(void *opaque)
114 {
115 char leds_text[9];
116 int i;
117 MaltaFPGAState *s = opaque;
118
119 for (i = 7 ; i >= 0 ; i--) {
120 if (s->leds & (1 << i))
121 leds_text[i] = '#';
122 else
123 leds_text[i] = ' ';
124 }
125 leds_text[8] = '\0';
126
127 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
128 leds_text);
129 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
130 s->display_text);
131 }
132
133 /*
134 * EEPROM 24C01 / 24C02 emulation.
135 *
136 * Emulation for serial EEPROMs:
137 * 24C01 - 1024 bit (128 x 8)
138 * 24C02 - 2048 bit (256 x 8)
139 *
140 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
141 */
142
143 //~ #define DEBUG
144
145 #if defined(DEBUG)
146 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
147 #else
148 # define logout(fmt, ...) ((void)0)
149 #endif
150
151 struct _eeprom24c0x_t {
152 uint8_t tick;
153 uint8_t address;
154 uint8_t command;
155 uint8_t ack;
156 uint8_t scl;
157 uint8_t sda;
158 uint8_t data;
159 //~ uint16_t size;
160 uint8_t contents[256];
161 };
162
163 typedef struct _eeprom24c0x_t eeprom24c0x_t;
164
165 static eeprom24c0x_t spd_eeprom = {
166 .contents = {
167 /* 00000000: */ 0x80,0x08,0xFF,0x0D,0x0A,0xFF,0x40,0x00,
168 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
169 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x00,0x00,
170 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0xFF,
171 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
172 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
173 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
174 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
175 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
176 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
177 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
178 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
179 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
180 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
181 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
182 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
183 },
184 };
185
186 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
187 {
188 enum { SDR = 0x4, DDR2 = 0x8 } type;
189 uint8_t *spd = spd_eeprom.contents;
190 uint8_t nbanks = 0;
191 uint16_t density = 0;
192 int i;
193
194 /* work in terms of MB */
195 ram_size /= MiB;
196
197 while ((ram_size >= 4) && (nbanks <= 2)) {
198 int sz_log2 = MIN(31 - clz32(ram_size), 14);
199 nbanks++;
200 density |= 1 << (sz_log2 - 2);
201 ram_size -= 1 << sz_log2;
202 }
203
204 /* split to 2 banks if possible */
205 if ((nbanks == 1) && (density > 1)) {
206 nbanks++;
207 density >>= 1;
208 }
209
210 if (density & 0xff00) {
211 density = (density & 0xe0) | ((density >> 8) & 0x1f);
212 type = DDR2;
213 } else if (!(density & 0x1f)) {
214 type = DDR2;
215 } else {
216 type = SDR;
217 }
218
219 if (ram_size) {
220 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
221 " of SDRAM", ram_size);
222 }
223
224 /* fill in SPD memory information */
225 spd[2] = type;
226 spd[5] = nbanks;
227 spd[31] = density;
228
229 /* checksum */
230 spd[63] = 0;
231 for (i = 0; i < 63; i++) {
232 spd[63] += spd[i];
233 }
234
235 /* copy for SMBUS */
236 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
237 }
238
239 static void generate_eeprom_serial(uint8_t *eeprom)
240 {
241 int i, pos = 0;
242 uint8_t mac[6] = { 0x00 };
243 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
244
245 /* version */
246 eeprom[pos++] = 0x01;
247
248 /* count */
249 eeprom[pos++] = 0x02;
250
251 /* MAC address */
252 eeprom[pos++] = 0x01; /* MAC */
253 eeprom[pos++] = 0x06; /* length */
254 memcpy(&eeprom[pos], mac, sizeof(mac));
255 pos += sizeof(mac);
256
257 /* serial number */
258 eeprom[pos++] = 0x02; /* serial */
259 eeprom[pos++] = 0x05; /* length */
260 memcpy(&eeprom[pos], sn, sizeof(sn));
261 pos += sizeof(sn);
262
263 /* checksum */
264 eeprom[pos] = 0;
265 for (i = 0; i < pos; i++) {
266 eeprom[pos] += eeprom[i];
267 }
268 }
269
270 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
271 {
272 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
273 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
274 return eeprom->sda;
275 }
276
277 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
278 {
279 if (eeprom->scl && scl && (eeprom->sda != sda)) {
280 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
281 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
282 sda ? "stop" : "start");
283 if (!sda) {
284 eeprom->tick = 1;
285 eeprom->command = 0;
286 }
287 } else if (eeprom->tick == 0 && !eeprom->ack) {
288 /* Waiting for start. */
289 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
290 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
291 } else if (!eeprom->scl && scl) {
292 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
293 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
294 if (eeprom->ack) {
295 logout("\ti2c ack bit = 0\n");
296 sda = 0;
297 eeprom->ack = 0;
298 } else if (eeprom->sda == sda) {
299 uint8_t bit = (sda != 0);
300 logout("\ti2c bit = %d\n", bit);
301 if (eeprom->tick < 9) {
302 eeprom->command <<= 1;
303 eeprom->command += bit;
304 eeprom->tick++;
305 if (eeprom->tick == 9) {
306 logout("\tcommand 0x%04x, %s\n", eeprom->command,
307 bit ? "read" : "write");
308 eeprom->ack = 1;
309 }
310 } else if (eeprom->tick < 17) {
311 if (eeprom->command & 1) {
312 sda = ((eeprom->data & 0x80) != 0);
313 }
314 eeprom->address <<= 1;
315 eeprom->address += bit;
316 eeprom->tick++;
317 eeprom->data <<= 1;
318 if (eeprom->tick == 17) {
319 eeprom->data = eeprom->contents[eeprom->address];
320 logout("\taddress 0x%04x, data 0x%02x\n",
321 eeprom->address, eeprom->data);
322 eeprom->ack = 1;
323 eeprom->tick = 0;
324 }
325 } else if (eeprom->tick >= 17) {
326 sda = 0;
327 }
328 } else {
329 logout("\tsda changed with raising scl\n");
330 }
331 } else {
332 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
333 scl, eeprom->sda, sda);
334 }
335 eeprom->scl = scl;
336 eeprom->sda = sda;
337 }
338
339 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
340 unsigned size)
341 {
342 MaltaFPGAState *s = opaque;
343 uint32_t val = 0;
344 uint32_t saddr;
345
346 saddr = (addr & 0xfffff);
347
348 switch (saddr) {
349
350 /* SWITCH Register */
351 case 0x00200:
352 val = 0x00000000; /* All switches closed */
353 break;
354
355 /* STATUS Register */
356 case 0x00208:
357 #ifdef TARGET_WORDS_BIGENDIAN
358 val = 0x00000012;
359 #else
360 val = 0x00000010;
361 #endif
362 break;
363
364 /* JMPRS Register */
365 case 0x00210:
366 val = 0x00;
367 break;
368
369 /* LEDBAR Register */
370 case 0x00408:
371 val = s->leds;
372 break;
373
374 /* BRKRES Register */
375 case 0x00508:
376 val = s->brk;
377 break;
378
379 /* UART Registers are handled directly by the serial device */
380
381 /* GPOUT Register */
382 case 0x00a00:
383 val = s->gpout;
384 break;
385
386 /* XXX: implement a real I2C controller */
387
388 /* GPINP Register */
389 case 0x00a08:
390 /* IN = OUT until a real I2C control is implemented */
391 if (s->i2csel)
392 val = s->i2cout;
393 else
394 val = 0x00;
395 break;
396
397 /* I2CINP Register */
398 case 0x00b00:
399 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
400 break;
401
402 /* I2COE Register */
403 case 0x00b08:
404 val = s->i2coe;
405 break;
406
407 /* I2COUT Register */
408 case 0x00b10:
409 val = s->i2cout;
410 break;
411
412 /* I2CSEL Register */
413 case 0x00b18:
414 val = s->i2csel;
415 break;
416
417 default:
418 #if 0
419 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
420 addr);
421 #endif
422 break;
423 }
424 return val;
425 }
426
427 static void malta_fpga_write(void *opaque, hwaddr addr,
428 uint64_t val, unsigned size)
429 {
430 MaltaFPGAState *s = opaque;
431 uint32_t saddr;
432
433 saddr = (addr & 0xfffff);
434
435 switch (saddr) {
436
437 /* SWITCH Register */
438 case 0x00200:
439 break;
440
441 /* JMPRS Register */
442 case 0x00210:
443 break;
444
445 /* LEDBAR Register */
446 case 0x00408:
447 s->leds = val & 0xff;
448 malta_fpga_update_display(s);
449 break;
450
451 /* ASCIIWORD Register */
452 case 0x00410:
453 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
454 malta_fpga_update_display(s);
455 break;
456
457 /* ASCIIPOS0 to ASCIIPOS7 Registers */
458 case 0x00418:
459 case 0x00420:
460 case 0x00428:
461 case 0x00430:
462 case 0x00438:
463 case 0x00440:
464 case 0x00448:
465 case 0x00450:
466 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
467 malta_fpga_update_display(s);
468 break;
469
470 /* SOFTRES Register */
471 case 0x00500:
472 if (val == 0x42)
473 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
474 break;
475
476 /* BRKRES Register */
477 case 0x00508:
478 s->brk = val & 0xff;
479 break;
480
481 /* UART Registers are handled directly by the serial device */
482
483 /* GPOUT Register */
484 case 0x00a00:
485 s->gpout = val & 0xff;
486 break;
487
488 /* I2COE Register */
489 case 0x00b08:
490 s->i2coe = val & 0x03;
491 break;
492
493 /* I2COUT Register */
494 case 0x00b10:
495 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
496 s->i2cout = val;
497 break;
498
499 /* I2CSEL Register */
500 case 0x00b18:
501 s->i2csel = val & 0x01;
502 break;
503
504 default:
505 #if 0
506 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
507 addr);
508 #endif
509 break;
510 }
511 }
512
513 static const MemoryRegionOps malta_fpga_ops = {
514 .read = malta_fpga_read,
515 .write = malta_fpga_write,
516 .endianness = DEVICE_NATIVE_ENDIAN,
517 };
518
519 static void malta_fpga_reset(void *opaque)
520 {
521 MaltaFPGAState *s = opaque;
522
523 s->leds = 0x00;
524 s->brk = 0x0a;
525 s->gpout = 0x00;
526 s->i2cin = 0x3;
527 s->i2coe = 0x0;
528 s->i2cout = 0x3;
529 s->i2csel = 0x1;
530
531 s->display_text[8] = '\0';
532 snprintf(s->display_text, 9, " ");
533 }
534
535 static void malta_fgpa_display_event(void *opaque, int event)
536 {
537 MaltaFPGAState *s = opaque;
538
539 if (event == CHR_EVENT_OPENED && !s->display_inited) {
540 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
541 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
542 qemu_chr_fe_printf(&s->display, "+ +\r\n");
543 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
544 qemu_chr_fe_printf(&s->display, "\n");
545 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
546 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
547 qemu_chr_fe_printf(&s->display, "+ +\r\n");
548 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
549 s->display_inited = true;
550 }
551 }
552
553 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
554 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
555 {
556 MaltaFPGAState *s;
557 Chardev *chr;
558
559 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
560
561 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
562 "malta-fpga", 0x100000);
563 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
564 &s->iomem, 0, 0x900);
565 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
566 &s->iomem, 0xa00, 0x10000-0xa00);
567
568 memory_region_add_subregion(address_space, base, &s->iomem_lo);
569 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
570
571 chr = qemu_chr_new("fpga", "vc:320x200");
572 qemu_chr_fe_init(&s->display, chr, NULL);
573 qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
574 malta_fgpa_display_event, NULL, s, NULL, true);
575
576 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
577 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
578
579 malta_fpga_reset(s);
580 qemu_register_reset(malta_fpga_reset, s);
581
582 return s;
583 }
584
585 /* Network support */
586 static void network_init(PCIBus *pci_bus)
587 {
588 int i;
589
590 for(i = 0; i < nb_nics; i++) {
591 NICInfo *nd = &nd_table[i];
592 const char *default_devaddr = NULL;
593
594 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
595 /* The malta board has a PCNet card using PCI SLOT 11 */
596 default_devaddr = "0b";
597
598 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
599 }
600 }
601
602 /* ROM and pseudo bootloader
603
604 The following code implements a very very simple bootloader. It first
605 loads the registers a0 to a3 to the values expected by the OS, and
606 then jump at the kernel address.
607
608 The bootloader should pass the locations of the kernel arguments and
609 environment variables tables. Those tables contain the 32-bit address
610 of NULL terminated strings. The environment variables table should be
611 terminated by a NULL address.
612
613 For a simpler implementation, the number of kernel arguments is fixed
614 to two (the name of the kernel and the command line), and the two
615 tables are actually the same one.
616
617 The registers a0 to a3 should contain the following values:
618 a0 - number of kernel arguments
619 a1 - 32-bit address of the kernel arguments table
620 a2 - 32-bit address of the environment variables table
621 a3 - RAM size in bytes
622 */
623
624 static void write_bootloader(uint8_t *base, int64_t run_addr,
625 int64_t kernel_entry)
626 {
627 uint32_t *p;
628
629 /* Small bootloader */
630 p = (uint32_t *)base;
631
632 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
633 ((run_addr + 0x580) & 0x0fffffff) >> 2);
634 stl_p(p++, 0x00000000); /* nop */
635
636 /* YAMON service vector */
637 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
638 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
639 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
640 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
641 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
642 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
643 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
644 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
645 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
646 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
647 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
648 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
649 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
650
651
652 /* Second part of the bootloader */
653 p = (uint32_t *) (base + 0x580);
654
655 if (semihosting_get_argc()) {
656 /* Preserve a0 content as arguments have been passed */
657 stl_p(p++, 0x00000000); /* nop */
658 } else {
659 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
660 }
661 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
662 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
663 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
664 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
665 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
666 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
667 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16)); /* lui a3, high(ram_low_size) */
668 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff)); /* ori a3, a3, low(ram_low_size) */
669
670 /* Load BAR registers as done by YAMON */
671 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
672
673 #ifdef TARGET_WORDS_BIGENDIAN
674 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
675 #else
676 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
677 #endif
678 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
679
680 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
681
682 #ifdef TARGET_WORDS_BIGENDIAN
683 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
684 #else
685 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
686 #endif
687 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
688 #ifdef TARGET_WORDS_BIGENDIAN
689 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
690 #else
691 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
692 #endif
693 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
694
695 #ifdef TARGET_WORDS_BIGENDIAN
696 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
697 #else
698 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
699 #endif
700 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
701 #ifdef TARGET_WORDS_BIGENDIAN
702 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
703 #else
704 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
705 #endif
706 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
707
708 #ifdef TARGET_WORDS_BIGENDIAN
709 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
710 #else
711 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
712 #endif
713 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
714 #ifdef TARGET_WORDS_BIGENDIAN
715 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
716 #else
717 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
718 #endif
719 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
720
721 /* Jump to kernel code */
722 stl_p(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
723 stl_p(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
724 stl_p(p++, 0x03e00009); /* jalr ra */
725 stl_p(p++, 0x00000000); /* nop */
726
727 /* YAMON subroutines */
728 p = (uint32_t *) (base + 0x800);
729 stl_p(p++, 0x03e00009); /* jalr ra */
730 stl_p(p++, 0x24020000); /* li v0,0 */
731 /* 808 YAMON print */
732 stl_p(p++, 0x03e06821); /* move t5,ra */
733 stl_p(p++, 0x00805821); /* move t3,a0 */
734 stl_p(p++, 0x00a05021); /* move t2,a1 */
735 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
736 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
737 stl_p(p++, 0x10800005); /* beqz a0,834 */
738 stl_p(p++, 0x00000000); /* nop */
739 stl_p(p++, 0x0ff0021c); /* jal 870 */
740 stl_p(p++, 0x00000000); /* nop */
741 stl_p(p++, 0x1000fff9); /* b 814 */
742 stl_p(p++, 0x00000000); /* nop */
743 stl_p(p++, 0x01a00009); /* jalr t5 */
744 stl_p(p++, 0x01602021); /* move a0,t3 */
745 /* 0x83c YAMON print_count */
746 stl_p(p++, 0x03e06821); /* move t5,ra */
747 stl_p(p++, 0x00805821); /* move t3,a0 */
748 stl_p(p++, 0x00a05021); /* move t2,a1 */
749 stl_p(p++, 0x00c06021); /* move t4,a2 */
750 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
751 stl_p(p++, 0x0ff0021c); /* jal 870 */
752 stl_p(p++, 0x00000000); /* nop */
753 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
754 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
755 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
756 stl_p(p++, 0x00000000); /* nop */
757 stl_p(p++, 0x01a00009); /* jalr t5 */
758 stl_p(p++, 0x01602021); /* move a0,t3 */
759 /* 0x870 */
760 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
761 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
762 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
763 stl_p(p++, 0x00000000); /* nop */
764 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
765 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
766 stl_p(p++, 0x00000000); /* nop */
767 stl_p(p++, 0x03e00009); /* jalr ra */
768 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
769
770 }
771
772 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
773 const char *string, ...)
774 {
775 va_list ap;
776 int32_t table_addr;
777
778 if (index >= ENVP_NB_ENTRIES)
779 return;
780
781 if (string == NULL) {
782 prom_buf[index] = 0;
783 return;
784 }
785
786 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
787 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
788
789 va_start(ap, string);
790 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
791 va_end(ap);
792 }
793
794 /* Kernel */
795 static int64_t load_kernel (void)
796 {
797 int64_t kernel_entry, kernel_high;
798 long kernel_size, initrd_size;
799 ram_addr_t initrd_offset;
800 int big_endian;
801 uint32_t *prom_buf;
802 long prom_size;
803 int prom_index = 0;
804 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
805
806 #ifdef TARGET_WORDS_BIGENDIAN
807 big_endian = 1;
808 #else
809 big_endian = 0;
810 #endif
811
812 kernel_size = load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys,
813 NULL, (uint64_t *)&kernel_entry, NULL,
814 (uint64_t *)&kernel_high, big_endian, EM_MIPS, 1, 0);
815 if (kernel_size < 0) {
816 error_report("could not load kernel '%s': %s",
817 loaderparams.kernel_filename,
818 load_elf_strerror(kernel_size));
819 exit(1);
820 }
821
822 /* Check where the kernel has been linked */
823 if (kernel_entry & 0x80000000ll) {
824 if (kvm_enabled()) {
825 error_report("KVM guest kernels must be linked in useg. "
826 "Did you forget to enable CONFIG_KVM_GUEST?");
827 exit(1);
828 }
829
830 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
831 } else {
832 /* if kernel entry is in useg it is probably a KVM T&E kernel */
833 mips_um_ksegs_enable();
834
835 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
836 }
837
838 /* load initrd */
839 initrd_size = 0;
840 initrd_offset = 0;
841 if (loaderparams.initrd_filename) {
842 initrd_size = get_image_size (loaderparams.initrd_filename);
843 if (initrd_size > 0) {
844 /* The kernel allocates the bootmap memory in the low memory after
845 the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
846 pages. */
847 initrd_offset = (loaderparams.ram_low_size - initrd_size
848 - (128 * KiB)
849 - ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
850 if (kernel_high >= initrd_offset) {
851 error_report("memory too small for initial ram disk '%s'",
852 loaderparams.initrd_filename);
853 exit(1);
854 }
855 initrd_size = load_image_targphys(loaderparams.initrd_filename,
856 initrd_offset,
857 ram_size - initrd_offset);
858 }
859 if (initrd_size == (target_ulong) -1) {
860 error_report("could not load initial ram disk '%s'",
861 loaderparams.initrd_filename);
862 exit(1);
863 }
864 }
865
866 /* Setup prom parameters. */
867 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
868 prom_buf = g_malloc(prom_size);
869
870 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
871 if (initrd_size > 0) {
872 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
873 xlate_to_kseg0(NULL, initrd_offset), initrd_size,
874 loaderparams.kernel_cmdline);
875 } else {
876 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
877 }
878
879 prom_set(prom_buf, prom_index++, "memsize");
880 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
881
882 prom_set(prom_buf, prom_index++, "ememsize");
883 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
884
885 prom_set(prom_buf, prom_index++, "modetty0");
886 prom_set(prom_buf, prom_index++, "38400n8r");
887 prom_set(prom_buf, prom_index++, NULL);
888
889 rom_add_blob_fixed("prom", prom_buf, prom_size,
890 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
891
892 g_free(prom_buf);
893 return kernel_entry;
894 }
895
896 static void malta_mips_config(MIPSCPU *cpu)
897 {
898 CPUMIPSState *env = &cpu->env;
899 CPUState *cs = CPU(cpu);
900
901 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
902 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
903 }
904
905 static void main_cpu_reset(void *opaque)
906 {
907 MIPSCPU *cpu = opaque;
908 CPUMIPSState *env = &cpu->env;
909
910 cpu_reset(CPU(cpu));
911
912 /* The bootloader does not need to be rewritten as it is located in a
913 read only location. The kernel location and the arguments table
914 location does not change. */
915 if (loaderparams.kernel_filename) {
916 env->CP0_Status &= ~(1 << CP0St_ERL);
917 }
918
919 malta_mips_config(cpu);
920
921 if (kvm_enabled()) {
922 /* Start running from the bootloader we wrote to end of RAM */
923 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
924 }
925 }
926
927 static void create_cpu_without_cps(const char *cpu_type,
928 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
929 {
930 CPUMIPSState *env;
931 MIPSCPU *cpu;
932 int i;
933
934 for (i = 0; i < smp_cpus; i++) {
935 cpu = MIPS_CPU(cpu_create(cpu_type));
936
937 /* Init internal devices */
938 cpu_mips_irq_init_cpu(cpu);
939 cpu_mips_clock_init(cpu);
940 qemu_register_reset(main_cpu_reset, cpu);
941 }
942
943 cpu = MIPS_CPU(first_cpu);
944 env = &cpu->env;
945 *i8259_irq = env->irq[2];
946 *cbus_irq = env->irq[4];
947 }
948
949 static void create_cps(MaltaState *s, const char *cpu_type,
950 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
951 {
952 Error *err = NULL;
953
954 s->cps = MIPS_CPS(object_new(TYPE_MIPS_CPS));
955 qdev_set_parent_bus(DEVICE(s->cps), sysbus_get_default());
956
957 object_property_set_str(OBJECT(s->cps), cpu_type, "cpu-type", &err);
958 object_property_set_int(OBJECT(s->cps), smp_cpus, "num-vp", &err);
959 object_property_set_bool(OBJECT(s->cps), true, "realized", &err);
960 if (err != NULL) {
961 error_report("%s", error_get_pretty(err));
962 exit(1);
963 }
964
965 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s->cps), 0, 0, 1);
966
967 *i8259_irq = get_cps_irq(s->cps, 3);
968 *cbus_irq = NULL;
969 }
970
971 static void mips_create_cpu(MaltaState *s, const char *cpu_type,
972 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
973 {
974 if ((smp_cpus > 1) && cpu_supports_cps_smp(cpu_type)) {
975 create_cps(s, cpu_type, cbus_irq, i8259_irq);
976 } else {
977 create_cpu_without_cps(cpu_type, cbus_irq, i8259_irq);
978 }
979 }
980
981 static
982 void mips_malta_init(MachineState *machine)
983 {
984 ram_addr_t ram_size = machine->ram_size;
985 ram_addr_t ram_low_size;
986 const char *kernel_filename = machine->kernel_filename;
987 const char *kernel_cmdline = machine->kernel_cmdline;
988 const char *initrd_filename = machine->initrd_filename;
989 char *filename;
990 pflash_t *fl;
991 MemoryRegion *system_memory = get_system_memory();
992 MemoryRegion *ram_high = g_new(MemoryRegion, 1);
993 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
994 MemoryRegion *ram_low_postio;
995 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
996 target_long bios_size = FLASH_SIZE;
997 const size_t smbus_eeprom_size = 8 * 256;
998 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
999 int64_t kernel_entry, bootloader_run_addr;
1000 PCIBus *pci_bus;
1001 ISABus *isa_bus;
1002 qemu_irq *isa_irq;
1003 qemu_irq cbus_irq, i8259_irq;
1004 int piix4_devfn;
1005 I2CBus *smbus;
1006 DriveInfo *dinfo;
1007 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
1008 int fl_idx = 0;
1009 int fl_sectors = bios_size >> 16;
1010 int be;
1011
1012 DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
1013 MaltaState *s = MIPS_MALTA(dev);
1014
1015 /* The whole address space decoded by the GT-64120A doesn't generate
1016 exception when accessing invalid memory. Create an empty slot to
1017 emulate this feature. */
1018 empty_slot_init(0, 0x20000000);
1019
1020 qdev_init_nofail(dev);
1021
1022 /* create CPU */
1023 mips_create_cpu(s, machine->cpu_type, &cbus_irq, &i8259_irq);
1024
1025 /* allocate RAM */
1026 if (ram_size > 2 * GiB) {
1027 error_report("Too much memory for this machine: %" PRId64 "MB,"
1028 " maximum 2048MB", ram_size / MiB);
1029 exit(1);
1030 }
1031
1032 /* register RAM at high address where it is undisturbed by IO */
1033 memory_region_allocate_system_memory(ram_high, NULL, "mips_malta.ram",
1034 ram_size);
1035 memory_region_add_subregion(system_memory, 0x80000000, ram_high);
1036
1037 /* alias for pre IO hole access */
1038 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1039 ram_high, 0, MIN(ram_size, 256 * MiB));
1040 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1041
1042 /* alias for post IO hole access, if there is enough RAM */
1043 if (ram_size > 512 * MiB) {
1044 ram_low_postio = g_new(MemoryRegion, 1);
1045 memory_region_init_alias(ram_low_postio, NULL,
1046 "mips_malta_low_postio.ram",
1047 ram_high, 512 * MiB,
1048 ram_size - 512 * MiB);
1049 memory_region_add_subregion(system_memory, 512 * MiB,
1050 ram_low_postio);
1051 }
1052
1053 #ifdef TARGET_WORDS_BIGENDIAN
1054 be = 1;
1055 #else
1056 be = 0;
1057 #endif
1058
1059 /* FPGA */
1060
1061 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1062 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1063
1064 /* Load firmware in flash / BIOS. */
1065 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1066 #ifdef DEBUG_BOARD_INIT
1067 if (dinfo) {
1068 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
1069 "addr %08llx '%s' %x\n",
1070 fl_idx, bios_size, FLASH_ADDRESS,
1071 blk_name(dinfo->bdrv), fl_sectors);
1072 }
1073 #endif
1074 fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
1075 BIOS_SIZE,
1076 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1077 65536, fl_sectors,
1078 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1079 bios = pflash_cfi01_get_memory(fl);
1080 fl_idx++;
1081 if (kernel_filename) {
1082 ram_low_size = MIN(ram_size, 256 * MiB);
1083 /* For KVM we reserve 1MB of RAM for running bootloader */
1084 if (kvm_enabled()) {
1085 ram_low_size -= 0x100000;
1086 bootloader_run_addr = 0x40000000 + ram_low_size;
1087 } else {
1088 bootloader_run_addr = 0xbfc00000;
1089 }
1090
1091 /* Write a small bootloader to the flash location. */
1092 loaderparams.ram_size = ram_size;
1093 loaderparams.ram_low_size = ram_low_size;
1094 loaderparams.kernel_filename = kernel_filename;
1095 loaderparams.kernel_cmdline = kernel_cmdline;
1096 loaderparams.initrd_filename = initrd_filename;
1097 kernel_entry = load_kernel();
1098
1099 write_bootloader(memory_region_get_ram_ptr(bios),
1100 bootloader_run_addr, kernel_entry);
1101 if (kvm_enabled()) {
1102 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1103 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1104 ram_low_size,
1105 bootloader_run_addr, kernel_entry);
1106 }
1107 } else {
1108 /* The flash region isn't executable from a KVM guest */
1109 if (kvm_enabled()) {
1110 error_report("KVM enabled but no -kernel argument was specified. "
1111 "Booting from flash is not supported with KVM.");
1112 exit(1);
1113 }
1114 /* Load firmware from flash. */
1115 if (!dinfo) {
1116 /* Load a BIOS image. */
1117 if (bios_name == NULL) {
1118 bios_name = BIOS_FILENAME;
1119 }
1120 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1121 if (filename) {
1122 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1123 BIOS_SIZE);
1124 g_free(filename);
1125 } else {
1126 bios_size = -1;
1127 }
1128 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1129 !kernel_filename && !qtest_enabled()) {
1130 error_report("Could not load MIPS bios '%s', and no "
1131 "-kernel argument was specified", bios_name);
1132 exit(1);
1133 }
1134 }
1135 /* In little endian mode the 32bit words in the bios are swapped,
1136 a neat trick which allows bi-endian firmware. */
1137 #ifndef TARGET_WORDS_BIGENDIAN
1138 {
1139 uint32_t *end, *addr;
1140 const size_t swapsize = MIN(bios_size, 0x3e0000);
1141 addr = rom_ptr(FLASH_ADDRESS, swapsize);
1142 if (!addr) {
1143 addr = memory_region_get_ram_ptr(bios);
1144 }
1145 end = (void *)addr + swapsize;
1146 while (addr < end) {
1147 bswap32s(addr);
1148 addr++;
1149 }
1150 }
1151 #endif
1152 }
1153
1154 /*
1155 * Map the BIOS at a 2nd physical location, as on the real board.
1156 * Copy it so that we can patch in the MIPS revision, which cannot be
1157 * handled by an overlapping region as the resulting ROM code subpage
1158 * regions are not executable.
1159 */
1160 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1161 &error_fatal);
1162 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1163 FLASH_ADDRESS, BIOS_SIZE)) {
1164 memcpy(memory_region_get_ram_ptr(bios_copy),
1165 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1166 }
1167 memory_region_set_readonly(bios_copy, true);
1168 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1169
1170 /* Board ID = 0x420 (Malta Board with CoreLV) */
1171 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1172
1173 /*
1174 * We have a circular dependency problem: pci_bus depends on isa_irq,
1175 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
1176 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
1177 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
1178 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
1179 */
1180 isa_irq = qemu_irq_proxy(&s->i8259, 16);
1181
1182 /* Northbridge */
1183 pci_bus = gt64120_register(isa_irq);
1184
1185 /* Southbridge */
1186 ide_drive_get(hd, ARRAY_SIZE(hd));
1187
1188 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
1189
1190 /* Interrupt controller */
1191 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
1192 s->i8259 = i8259_init(isa_bus, i8259_irq);
1193
1194 isa_bus_irqs(isa_bus, s->i8259);
1195 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
1196 pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
1197 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
1198 isa_get_irq(NULL, 9), NULL, 0, NULL);
1199 pit = i8254_pit_init(isa_bus, 0x40, 0, NULL);
1200 i8257_dma_init(isa_bus, 0);
1201 mc146818_rtc_init(isa_bus, 2000, NULL);
1202
1203 /* generate SPD EEPROM data */
1204 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1205 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1206 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1207 g_free(smbus_eeprom_buf);
1208
1209 /* Super I/O: SMS FDC37M817 */
1210 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1211
1212 /* Network card */
1213 network_init(pci_bus);
1214
1215 /* Optional PCI video card */
1216 pci_vga_init(pci_bus);
1217 }
1218
1219 static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
1220 {
1221 return 0;
1222 }
1223
1224 static void mips_malta_class_init(ObjectClass *klass, void *data)
1225 {
1226 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1227
1228 k->init = mips_malta_sysbus_device_init;
1229 }
1230
1231 static const TypeInfo mips_malta_device = {
1232 .name = TYPE_MIPS_MALTA,
1233 .parent = TYPE_SYS_BUS_DEVICE,
1234 .instance_size = sizeof(MaltaState),
1235 .class_init = mips_malta_class_init,
1236 };
1237
1238 static void mips_malta_machine_init(MachineClass *mc)
1239 {
1240 mc->desc = "MIPS Malta Core LV";
1241 mc->init = mips_malta_init;
1242 mc->block_default_type = IF_IDE;
1243 mc->max_cpus = 16;
1244 mc->is_default = 1;
1245 #ifdef TARGET_MIPS64
1246 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1247 #else
1248 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1249 #endif
1250 }
1251
1252 DEFINE_MACHINE("malta", mips_malta_machine_init)
1253
1254 static void mips_malta_register_types(void)
1255 {
1256 type_register_static(&mips_malta_device);
1257 }
1258
1259 type_init(mips_malta_register_types)