]> git.proxmox.com Git - mirror_qemu.git/blob - hw/misc/macio/cuda.c
Replaced get_tick_per_sec() by NANOSECONDS_PER_SECOND
[mirror_qemu.git] / hw / misc / macio / cuda.c
1 /*
2 * QEMU PowerMac CUDA device support
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/ppc/mac.h"
28 #include "hw/input/adb.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31
32 /* XXX: implement all timer modes */
33
34 /* debug CUDA */
35 //#define DEBUG_CUDA
36
37 /* debug CUDA packets */
38 //#define DEBUG_CUDA_PACKET
39
40 #ifdef DEBUG_CUDA
41 #define CUDA_DPRINTF(fmt, ...) \
42 do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
43 #else
44 #define CUDA_DPRINTF(fmt, ...)
45 #endif
46
47 /* Bits in B data register: all active low */
48 #define TREQ 0x08 /* Transfer request (input) */
49 #define TACK 0x10 /* Transfer acknowledge (output) */
50 #define TIP 0x20 /* Transfer in progress (output) */
51
52 /* Bits in ACR */
53 #define SR_CTRL 0x1c /* Shift register control bits */
54 #define SR_EXT 0x0c /* Shift on external clock */
55 #define SR_OUT 0x10 /* Shift out if 1 */
56
57 /* Bits in IFR and IER */
58 #define IER_SET 0x80 /* set bits in IER */
59 #define IER_CLR 0 /* clear bits in IER */
60 #define SR_INT 0x04 /* Shift register full/empty */
61 #define SR_DATA_INT 0x08
62 #define SR_CLOCK_INT 0x10
63 #define T1_INT 0x40 /* Timer 1 interrupt */
64 #define T2_INT 0x20 /* Timer 2 interrupt */
65
66 /* Bits in ACR */
67 #define T1MODE 0xc0 /* Timer 1 mode */
68 #define T1MODE_CONT 0x40 /* continuous interrupts */
69
70 /* commands (1st byte) */
71 #define ADB_PACKET 0
72 #define CUDA_PACKET 1
73 #define ERROR_PACKET 2
74 #define TIMER_PACKET 3
75 #define POWER_PACKET 4
76 #define MACIIC_PACKET 5
77 #define PMU_PACKET 6
78
79
80 /* CUDA commands (2nd byte) */
81 #define CUDA_WARM_START 0x0
82 #define CUDA_AUTOPOLL 0x1
83 #define CUDA_GET_6805_ADDR 0x2
84 #define CUDA_GET_TIME 0x3
85 #define CUDA_GET_PRAM 0x7
86 #define CUDA_SET_6805_ADDR 0x8
87 #define CUDA_SET_TIME 0x9
88 #define CUDA_POWERDOWN 0xa
89 #define CUDA_POWERUP_TIME 0xb
90 #define CUDA_SET_PRAM 0xc
91 #define CUDA_MS_RESET 0xd
92 #define CUDA_SEND_DFAC 0xe
93 #define CUDA_BATTERY_SWAP_SENSE 0x10
94 #define CUDA_RESET_SYSTEM 0x11
95 #define CUDA_SET_IPL 0x12
96 #define CUDA_FILE_SERVER_FLAG 0x13
97 #define CUDA_SET_AUTO_RATE 0x14
98 #define CUDA_GET_AUTO_RATE 0x16
99 #define CUDA_SET_DEVICE_LIST 0x19
100 #define CUDA_GET_DEVICE_LIST 0x1a
101 #define CUDA_SET_ONE_SECOND_MODE 0x1b
102 #define CUDA_SET_POWER_MESSAGES 0x21
103 #define CUDA_GET_SET_IIC 0x22
104 #define CUDA_WAKEUP 0x23
105 #define CUDA_TIMER_TICKLE 0x24
106 #define CUDA_COMBINED_FORMAT_IIC 0x25
107
108 #define CUDA_TIMER_FREQ (4700000 / 6)
109
110 /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
111 #define RTC_OFFSET 2082844800
112
113 /* CUDA registers */
114 #define CUDA_REG_B 0x00
115 #define CUDA_REG_A 0x01
116 #define CUDA_REG_DIRB 0x02
117 #define CUDA_REG_DIRA 0x03
118 #define CUDA_REG_T1CL 0x04
119 #define CUDA_REG_T1CH 0x05
120 #define CUDA_REG_T1LL 0x06
121 #define CUDA_REG_T1LH 0x07
122 #define CUDA_REG_T2CL 0x08
123 #define CUDA_REG_T2CH 0x09
124 #define CUDA_REG_SR 0x0a
125 #define CUDA_REG_ACR 0x0b
126 #define CUDA_REG_PCR 0x0c
127 #define CUDA_REG_IFR 0x0d
128 #define CUDA_REG_IER 0x0e
129 #define CUDA_REG_ANH 0x0f
130
131 static void cuda_update(CUDAState *s);
132 static void cuda_receive_packet_from_host(CUDAState *s,
133 const uint8_t *data, int len);
134 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
135 int64_t current_time);
136
137 static void cuda_update_irq(CUDAState *s)
138 {
139 if (s->ifr & s->ier & (SR_INT | T1_INT | T2_INT)) {
140 qemu_irq_raise(s->irq);
141 } else {
142 qemu_irq_lower(s->irq);
143 }
144 }
145
146 static uint64_t get_tb(uint64_t time, uint64_t freq)
147 {
148 return muldiv64(time, freq, NANOSECONDS_PER_SECOND);
149 }
150
151 static unsigned int get_counter(CUDATimer *ti)
152 {
153 int64_t d;
154 unsigned int counter;
155 uint64_t tb_diff;
156 uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
157
158 /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */
159 tb_diff = get_tb(current_time, ti->frequency) - ti->load_time;
160 d = (tb_diff * 0xBF401675E5DULL) / (ti->frequency << 24);
161
162 if (ti->index == 0) {
163 /* the timer goes down from latch to -1 (period of latch + 2) */
164 if (d <= (ti->counter_value + 1)) {
165 counter = (ti->counter_value - d) & 0xffff;
166 } else {
167 counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
168 counter = (ti->latch - counter) & 0xffff;
169 }
170 } else {
171 counter = (ti->counter_value - d) & 0xffff;
172 }
173 return counter;
174 }
175
176 static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
177 {
178 CUDA_DPRINTF("T%d.counter=%d\n", 1 + ti->index, val);
179 ti->load_time = get_tb(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
180 s->frequency);
181 ti->counter_value = val;
182 cuda_timer_update(s, ti, ti->load_time);
183 }
184
185 static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
186 {
187 int64_t d, next_time;
188 unsigned int counter;
189
190 /* current counter value */
191 d = muldiv64(current_time - s->load_time,
192 CUDA_TIMER_FREQ, NANOSECONDS_PER_SECOND);
193 /* the timer goes down from latch to -1 (period of latch + 2) */
194 if (d <= (s->counter_value + 1)) {
195 counter = (s->counter_value - d) & 0xffff;
196 } else {
197 counter = (d - (s->counter_value + 1)) % (s->latch + 2);
198 counter = (s->latch - counter) & 0xffff;
199 }
200
201 /* Note: we consider the irq is raised on 0 */
202 if (counter == 0xffff) {
203 next_time = d + s->latch + 1;
204 } else if (counter == 0) {
205 next_time = d + s->latch + 2;
206 } else {
207 next_time = d + counter;
208 }
209 CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
210 s->latch, d, next_time - d);
211 next_time = muldiv64(next_time, NANOSECONDS_PER_SECOND, CUDA_TIMER_FREQ) +
212 s->load_time;
213 if (next_time <= current_time)
214 next_time = current_time + 1;
215 return next_time;
216 }
217
218 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
219 int64_t current_time)
220 {
221 if (!ti->timer)
222 return;
223 if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) {
224 timer_del(ti->timer);
225 } else {
226 ti->next_irq_time = get_next_irq_time(ti, current_time);
227 timer_mod(ti->timer, ti->next_irq_time);
228 }
229 }
230
231 static void cuda_timer1(void *opaque)
232 {
233 CUDAState *s = opaque;
234 CUDATimer *ti = &s->timers[0];
235
236 cuda_timer_update(s, ti, ti->next_irq_time);
237 s->ifr |= T1_INT;
238 cuda_update_irq(s);
239 }
240
241 static void cuda_timer2(void *opaque)
242 {
243 CUDAState *s = opaque;
244 CUDATimer *ti = &s->timers[1];
245
246 cuda_timer_update(s, ti, ti->next_irq_time);
247 s->ifr |= T2_INT;
248 cuda_update_irq(s);
249 }
250
251 static void cuda_set_sr_int(void *opaque)
252 {
253 CUDAState *s = opaque;
254
255 CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
256 s->ifr |= SR_INT;
257 cuda_update_irq(s);
258 }
259
260 static void cuda_delay_set_sr_int(CUDAState *s)
261 {
262 int64_t expire;
263
264 if (s->dirb == 0xff) {
265 /* Not in Mac OS, fire the IRQ directly */
266 cuda_set_sr_int(s);
267 return;
268 }
269
270 CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
271
272 expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 300 * SCALE_US;
273 timer_mod(s->sr_delay_timer, expire);
274 }
275
276 static uint32_t cuda_readb(void *opaque, hwaddr addr)
277 {
278 CUDAState *s = opaque;
279 uint32_t val;
280
281 addr = (addr >> 9) & 0xf;
282 switch(addr) {
283 case CUDA_REG_B:
284 val = s->b;
285 break;
286 case CUDA_REG_A:
287 val = s->a;
288 break;
289 case CUDA_REG_DIRB:
290 val = s->dirb;
291 break;
292 case CUDA_REG_DIRA:
293 val = s->dira;
294 break;
295 case CUDA_REG_T1CL:
296 val = get_counter(&s->timers[0]) & 0xff;
297 s->ifr &= ~T1_INT;
298 cuda_update_irq(s);
299 break;
300 case CUDA_REG_T1CH:
301 val = get_counter(&s->timers[0]) >> 8;
302 cuda_update_irq(s);
303 break;
304 case CUDA_REG_T1LL:
305 val = s->timers[0].latch & 0xff;
306 break;
307 case CUDA_REG_T1LH:
308 /* XXX: check this */
309 val = (s->timers[0].latch >> 8) & 0xff;
310 break;
311 case CUDA_REG_T2CL:
312 val = get_counter(&s->timers[1]) & 0xff;
313 s->ifr &= ~T2_INT;
314 cuda_update_irq(s);
315 break;
316 case CUDA_REG_T2CH:
317 val = get_counter(&s->timers[1]) >> 8;
318 break;
319 case CUDA_REG_SR:
320 val = s->sr;
321 s->ifr &= ~(SR_INT | SR_CLOCK_INT | SR_DATA_INT);
322 cuda_update_irq(s);
323 break;
324 case CUDA_REG_ACR:
325 val = s->acr;
326 break;
327 case CUDA_REG_PCR:
328 val = s->pcr;
329 break;
330 case CUDA_REG_IFR:
331 val = s->ifr;
332 if (s->ifr & s->ier) {
333 val |= 0x80;
334 }
335 break;
336 case CUDA_REG_IER:
337 val = s->ier | 0x80;
338 break;
339 default:
340 case CUDA_REG_ANH:
341 val = s->anh;
342 break;
343 }
344 if (addr != CUDA_REG_IFR || val != 0) {
345 CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
346 }
347
348 return val;
349 }
350
351 static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val)
352 {
353 CUDAState *s = opaque;
354
355 addr = (addr >> 9) & 0xf;
356 CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
357
358 switch(addr) {
359 case CUDA_REG_B:
360 s->b = val;
361 cuda_update(s);
362 break;
363 case CUDA_REG_A:
364 s->a = val;
365 break;
366 case CUDA_REG_DIRB:
367 s->dirb = val;
368 break;
369 case CUDA_REG_DIRA:
370 s->dira = val;
371 break;
372 case CUDA_REG_T1CL:
373 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
374 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
375 break;
376 case CUDA_REG_T1CH:
377 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
378 s->ifr &= ~T1_INT;
379 set_counter(s, &s->timers[0], s->timers[0].latch);
380 break;
381 case CUDA_REG_T1LL:
382 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
383 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
384 break;
385 case CUDA_REG_T1LH:
386 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
387 s->ifr &= ~T1_INT;
388 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
389 break;
390 case CUDA_REG_T2CL:
391 s->timers[1].latch = (s->timers[1].latch & 0xff00) | val;
392 break;
393 case CUDA_REG_T2CH:
394 /* To ensure T2 generates an interrupt on zero crossing with the
395 common timer code, write the value directly from the latch to
396 the counter */
397 s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8);
398 s->ifr &= ~T2_INT;
399 set_counter(s, &s->timers[1], s->timers[1].latch);
400 break;
401 case CUDA_REG_SR:
402 s->sr = val;
403 break;
404 case CUDA_REG_ACR:
405 s->acr = val;
406 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
407 cuda_update(s);
408 break;
409 case CUDA_REG_PCR:
410 s->pcr = val;
411 break;
412 case CUDA_REG_IFR:
413 /* reset bits */
414 s->ifr &= ~val;
415 cuda_update_irq(s);
416 break;
417 case CUDA_REG_IER:
418 if (val & IER_SET) {
419 /* set bits */
420 s->ier |= val & 0x7f;
421 } else {
422 /* reset bits */
423 s->ier &= ~val;
424 }
425 cuda_update_irq(s);
426 break;
427 default:
428 case CUDA_REG_ANH:
429 s->anh = val;
430 break;
431 }
432 }
433
434 /* NOTE: TIP and TREQ are negated */
435 static void cuda_update(CUDAState *s)
436 {
437 int packet_received, len;
438
439 packet_received = 0;
440 if (!(s->b & TIP)) {
441 /* transfer requested from host */
442
443 if (s->acr & SR_OUT) {
444 /* data output */
445 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
446 if (s->data_out_index < sizeof(s->data_out)) {
447 CUDA_DPRINTF("send: %02x\n", s->sr);
448 s->data_out[s->data_out_index++] = s->sr;
449 cuda_delay_set_sr_int(s);
450 }
451 }
452 } else {
453 if (s->data_in_index < s->data_in_size) {
454 /* data input */
455 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
456 s->sr = s->data_in[s->data_in_index++];
457 CUDA_DPRINTF("recv: %02x\n", s->sr);
458 /* indicate end of transfer */
459 if (s->data_in_index >= s->data_in_size) {
460 s->b = (s->b | TREQ);
461 }
462 cuda_delay_set_sr_int(s);
463 }
464 }
465 }
466 } else {
467 /* no transfer requested: handle sync case */
468 if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
469 /* update TREQ state each time TACK change state */
470 if (s->b & TACK)
471 s->b = (s->b | TREQ);
472 else
473 s->b = (s->b & ~TREQ);
474 cuda_delay_set_sr_int(s);
475 } else {
476 if (!(s->last_b & TIP)) {
477 /* handle end of host to cuda transfer */
478 packet_received = (s->data_out_index > 0);
479 /* always an IRQ at the end of transfer */
480 cuda_delay_set_sr_int(s);
481 }
482 /* signal if there is data to read */
483 if (s->data_in_index < s->data_in_size) {
484 s->b = (s->b & ~TREQ);
485 }
486 }
487 }
488
489 s->last_acr = s->acr;
490 s->last_b = s->b;
491
492 /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
493 recursively */
494 if (packet_received) {
495 len = s->data_out_index;
496 s->data_out_index = 0;
497 cuda_receive_packet_from_host(s, s->data_out, len);
498 }
499 }
500
501 static void cuda_send_packet_to_host(CUDAState *s,
502 const uint8_t *data, int len)
503 {
504 #ifdef DEBUG_CUDA_PACKET
505 {
506 int i;
507 printf("cuda_send_packet_to_host:\n");
508 for(i = 0; i < len; i++)
509 printf(" %02x", data[i]);
510 printf("\n");
511 }
512 #endif
513 memcpy(s->data_in, data, len);
514 s->data_in_size = len;
515 s->data_in_index = 0;
516 cuda_update(s);
517 cuda_delay_set_sr_int(s);
518 }
519
520 static void cuda_adb_poll(void *opaque)
521 {
522 CUDAState *s = opaque;
523 uint8_t obuf[ADB_MAX_OUT_LEN + 2];
524 int olen;
525
526 olen = adb_poll(&s->adb_bus, obuf + 2, s->adb_poll_mask);
527 if (olen > 0) {
528 obuf[0] = ADB_PACKET;
529 obuf[1] = 0x40; /* polled data */
530 cuda_send_packet_to_host(s, obuf, olen + 2);
531 }
532 timer_mod(s->adb_poll_timer,
533 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
534 (NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
535 }
536
537 /* description of commands */
538 typedef struct CudaCommand {
539 uint8_t command;
540 const char *name;
541 bool (*handler)(CUDAState *s,
542 const uint8_t *in_args, int in_len,
543 uint8_t *out_args, int *out_len);
544 } CudaCommand;
545
546 static bool cuda_cmd_autopoll(CUDAState *s,
547 const uint8_t *in_data, int in_len,
548 uint8_t *out_data, int *out_len)
549 {
550 int autopoll;
551
552 if (in_len != 1) {
553 return false;
554 }
555
556 autopoll = (in_data[0] != 0);
557 if (autopoll != s->autopoll) {
558 s->autopoll = autopoll;
559 if (autopoll) {
560 timer_mod(s->adb_poll_timer,
561 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
562 (NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
563 } else {
564 timer_del(s->adb_poll_timer);
565 }
566 }
567 return true;
568 }
569
570 static bool cuda_cmd_set_autorate(CUDAState *s,
571 const uint8_t *in_data, int in_len,
572 uint8_t *out_data, int *out_len)
573 {
574 if (in_len != 1) {
575 return false;
576 }
577
578 /* we don't want a period of 0 ms */
579 /* FIXME: check what real hardware does */
580 if (in_data[0] == 0) {
581 return false;
582 }
583
584 s->autopoll_rate_ms = in_data[0];
585 if (s->autopoll) {
586 timer_mod(s->adb_poll_timer,
587 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
588 (NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
589 }
590 return true;
591 }
592
593 static bool cuda_cmd_set_device_list(CUDAState *s,
594 const uint8_t *in_data, int in_len,
595 uint8_t *out_data, int *out_len)
596 {
597 if (in_len != 2) {
598 return false;
599 }
600
601 s->adb_poll_mask = (((uint16_t)in_data[0]) << 8) | in_data[1];
602 return true;
603 }
604
605 static bool cuda_cmd_powerdown(CUDAState *s,
606 const uint8_t *in_data, int in_len,
607 uint8_t *out_data, int *out_len)
608 {
609 if (in_len != 0) {
610 return false;
611 }
612
613 qemu_system_shutdown_request();
614 return true;
615 }
616
617 static bool cuda_cmd_reset_system(CUDAState *s,
618 const uint8_t *in_data, int in_len,
619 uint8_t *out_data, int *out_len)
620 {
621 if (in_len != 0) {
622 return false;
623 }
624
625 qemu_system_reset_request();
626 return true;
627 }
628
629 static bool cuda_cmd_set_file_server_flag(CUDAState *s,
630 const uint8_t *in_data, int in_len,
631 uint8_t *out_data, int *out_len)
632 {
633 if (in_len != 1) {
634 return false;
635 }
636
637 qemu_log_mask(LOG_UNIMP,
638 "CUDA: unimplemented command FILE_SERVER_FLAG %d\n",
639 in_data[0]);
640 return true;
641 }
642
643 static bool cuda_cmd_set_power_message(CUDAState *s,
644 const uint8_t *in_data, int in_len,
645 uint8_t *out_data, int *out_len)
646 {
647 if (in_len != 1) {
648 return false;
649 }
650
651 qemu_log_mask(LOG_UNIMP,
652 "CUDA: unimplemented command SET_POWER_MESSAGE %d\n",
653 in_data[0]);
654 return true;
655 }
656
657 static bool cuda_cmd_get_time(CUDAState *s,
658 const uint8_t *in_data, int in_len,
659 uint8_t *out_data, int *out_len)
660 {
661 uint32_t ti;
662
663 if (in_len != 0) {
664 return false;
665 }
666
667 ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
668 / NANOSECONDS_PER_SECOND);
669 out_data[0] = ti >> 24;
670 out_data[1] = ti >> 16;
671 out_data[2] = ti >> 8;
672 out_data[3] = ti;
673 *out_len = 4;
674 return true;
675 }
676
677 static bool cuda_cmd_set_time(CUDAState *s,
678 const uint8_t *in_data, int in_len,
679 uint8_t *out_data, int *out_len)
680 {
681 uint32_t ti;
682
683 if (in_len != 4) {
684 return false;
685 }
686
687 ti = (((uint32_t)in_data[1]) << 24) + (((uint32_t)in_data[2]) << 16)
688 + (((uint32_t)in_data[3]) << 8) + in_data[4];
689 s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
690 / NANOSECONDS_PER_SECOND);
691 return true;
692 }
693
694 static const CudaCommand handlers[] = {
695 { CUDA_AUTOPOLL, "AUTOPOLL", cuda_cmd_autopoll },
696 { CUDA_SET_AUTO_RATE, "SET_AUTO_RATE", cuda_cmd_set_autorate },
697 { CUDA_SET_DEVICE_LIST, "SET_DEVICE_LIST", cuda_cmd_set_device_list },
698 { CUDA_POWERDOWN, "POWERDOWN", cuda_cmd_powerdown },
699 { CUDA_RESET_SYSTEM, "RESET_SYSTEM", cuda_cmd_reset_system },
700 { CUDA_FILE_SERVER_FLAG, "FILE_SERVER_FLAG",
701 cuda_cmd_set_file_server_flag },
702 { CUDA_SET_POWER_MESSAGES, "SET_POWER_MESSAGES",
703 cuda_cmd_set_power_message },
704 { CUDA_GET_TIME, "GET_TIME", cuda_cmd_get_time },
705 { CUDA_SET_TIME, "SET_TIME", cuda_cmd_set_time },
706 };
707
708 static void cuda_receive_packet(CUDAState *s,
709 const uint8_t *data, int len)
710 {
711 uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] };
712 int i, out_len = 0;
713
714 for (i = 0; i < ARRAY_SIZE(handlers); i++) {
715 const CudaCommand *desc = &handlers[i];
716 if (desc->command == data[0]) {
717 CUDA_DPRINTF("handling command %s\n", desc->name);
718 out_len = 0;
719 if (desc->handler(s, data + 1, len - 1, obuf + 3, &out_len)) {
720 cuda_send_packet_to_host(s, obuf, 3 + out_len);
721 } else {
722 qemu_log_mask(LOG_GUEST_ERROR,
723 "CUDA: %s: wrong parameters %d\n",
724 desc->name, len);
725 obuf[0] = ERROR_PACKET;
726 obuf[1] = 0x5; /* bad parameters */
727 obuf[2] = CUDA_PACKET;
728 obuf[3] = data[0];
729 cuda_send_packet_to_host(s, obuf, 4);
730 }
731 return;
732 }
733 }
734
735 qemu_log_mask(LOG_GUEST_ERROR, "CUDA: unknown command 0x%02x\n", data[0]);
736 obuf[0] = ERROR_PACKET;
737 obuf[1] = 0x2; /* unknown command */
738 obuf[2] = CUDA_PACKET;
739 obuf[3] = data[0];
740 cuda_send_packet_to_host(s, obuf, 4);
741 }
742
743 static void cuda_receive_packet_from_host(CUDAState *s,
744 const uint8_t *data, int len)
745 {
746 #ifdef DEBUG_CUDA_PACKET
747 {
748 int i;
749 printf("cuda_receive_packet_from_host:\n");
750 for(i = 0; i < len; i++)
751 printf(" %02x", data[i]);
752 printf("\n");
753 }
754 #endif
755 switch(data[0]) {
756 case ADB_PACKET:
757 {
758 uint8_t obuf[ADB_MAX_OUT_LEN + 3];
759 int olen;
760 olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
761 if (olen > 0) {
762 obuf[0] = ADB_PACKET;
763 obuf[1] = 0x00;
764 cuda_send_packet_to_host(s, obuf, olen + 2);
765 } else {
766 /* error */
767 obuf[0] = ADB_PACKET;
768 obuf[1] = -olen;
769 obuf[2] = data[1];
770 olen = 0;
771 cuda_send_packet_to_host(s, obuf, olen + 3);
772 }
773 }
774 break;
775 case CUDA_PACKET:
776 cuda_receive_packet(s, data + 1, len - 1);
777 break;
778 }
779 }
780
781 static void cuda_writew (void *opaque, hwaddr addr, uint32_t value)
782 {
783 }
784
785 static void cuda_writel (void *opaque, hwaddr addr, uint32_t value)
786 {
787 }
788
789 static uint32_t cuda_readw (void *opaque, hwaddr addr)
790 {
791 return 0;
792 }
793
794 static uint32_t cuda_readl (void *opaque, hwaddr addr)
795 {
796 return 0;
797 }
798
799 static const MemoryRegionOps cuda_ops = {
800 .old_mmio = {
801 .write = {
802 cuda_writeb,
803 cuda_writew,
804 cuda_writel,
805 },
806 .read = {
807 cuda_readb,
808 cuda_readw,
809 cuda_readl,
810 },
811 },
812 .endianness = DEVICE_NATIVE_ENDIAN,
813 };
814
815 static bool cuda_timer_exist(void *opaque, int version_id)
816 {
817 CUDATimer *s = opaque;
818
819 return s->timer != NULL;
820 }
821
822 static const VMStateDescription vmstate_cuda_timer = {
823 .name = "cuda_timer",
824 .version_id = 0,
825 .minimum_version_id = 0,
826 .fields = (VMStateField[]) {
827 VMSTATE_UINT16(latch, CUDATimer),
828 VMSTATE_UINT16(counter_value, CUDATimer),
829 VMSTATE_INT64(load_time, CUDATimer),
830 VMSTATE_INT64(next_irq_time, CUDATimer),
831 VMSTATE_TIMER_PTR_TEST(timer, CUDATimer, cuda_timer_exist),
832 VMSTATE_END_OF_LIST()
833 }
834 };
835
836 static const VMStateDescription vmstate_cuda = {
837 .name = "cuda",
838 .version_id = 4,
839 .minimum_version_id = 4,
840 .fields = (VMStateField[]) {
841 VMSTATE_UINT8(a, CUDAState),
842 VMSTATE_UINT8(b, CUDAState),
843 VMSTATE_UINT8(last_b, CUDAState),
844 VMSTATE_UINT8(dira, CUDAState),
845 VMSTATE_UINT8(dirb, CUDAState),
846 VMSTATE_UINT8(sr, CUDAState),
847 VMSTATE_UINT8(acr, CUDAState),
848 VMSTATE_UINT8(last_acr, CUDAState),
849 VMSTATE_UINT8(pcr, CUDAState),
850 VMSTATE_UINT8(ifr, CUDAState),
851 VMSTATE_UINT8(ier, CUDAState),
852 VMSTATE_UINT8(anh, CUDAState),
853 VMSTATE_INT32(data_in_size, CUDAState),
854 VMSTATE_INT32(data_in_index, CUDAState),
855 VMSTATE_INT32(data_out_index, CUDAState),
856 VMSTATE_UINT8(autopoll, CUDAState),
857 VMSTATE_UINT8(autopoll_rate_ms, CUDAState),
858 VMSTATE_UINT16(adb_poll_mask, CUDAState),
859 VMSTATE_BUFFER(data_in, CUDAState),
860 VMSTATE_BUFFER(data_out, CUDAState),
861 VMSTATE_UINT32(tick_offset, CUDAState),
862 VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1,
863 vmstate_cuda_timer, CUDATimer),
864 VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState),
865 VMSTATE_TIMER_PTR(sr_delay_timer, CUDAState),
866 VMSTATE_END_OF_LIST()
867 }
868 };
869
870 static void cuda_reset(DeviceState *dev)
871 {
872 CUDAState *s = CUDA(dev);
873
874 s->b = 0;
875 s->a = 0;
876 s->dirb = 0xff;
877 s->dira = 0;
878 s->sr = 0;
879 s->acr = 0;
880 s->pcr = 0;
881 s->ifr = 0;
882 s->ier = 0;
883 // s->ier = T1_INT | SR_INT;
884 s->anh = 0;
885 s->data_in_size = 0;
886 s->data_in_index = 0;
887 s->data_out_index = 0;
888 s->autopoll = 0;
889
890 s->timers[0].latch = 0xffff;
891 set_counter(s, &s->timers[0], 0xffff);
892
893 s->timers[1].latch = 0xffff;
894
895 s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s);
896 }
897
898 static void cuda_realizefn(DeviceState *dev, Error **errp)
899 {
900 CUDAState *s = CUDA(dev);
901 struct tm tm;
902
903 s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s);
904 s->timers[0].frequency = s->frequency;
905 s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer2, s);
906 s->timers[1].frequency = (SCALE_US * 6000) / 4700;
907
908 qemu_get_timedate(&tm, 0);
909 s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
910
911 s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
912 s->autopoll_rate_ms = 20;
913 s->adb_poll_mask = 0xffff;
914 }
915
916 static void cuda_initfn(Object *obj)
917 {
918 SysBusDevice *d = SYS_BUS_DEVICE(obj);
919 CUDAState *s = CUDA(obj);
920 int i;
921
922 memory_region_init_io(&s->mem, obj, &cuda_ops, s, "cuda", 0x2000);
923 sysbus_init_mmio(d, &s->mem);
924 sysbus_init_irq(d, &s->irq);
925
926 for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
927 s->timers[i].index = i;
928 }
929
930 qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
931 DEVICE(obj), "adb.0");
932 }
933
934 static Property cuda_properties[] = {
935 DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0),
936 DEFINE_PROP_END_OF_LIST()
937 };
938
939 static void cuda_class_init(ObjectClass *oc, void *data)
940 {
941 DeviceClass *dc = DEVICE_CLASS(oc);
942
943 dc->realize = cuda_realizefn;
944 dc->reset = cuda_reset;
945 dc->vmsd = &vmstate_cuda;
946 dc->props = cuda_properties;
947 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
948 }
949
950 static const TypeInfo cuda_type_info = {
951 .name = TYPE_CUDA,
952 .parent = TYPE_SYS_BUS_DEVICE,
953 .instance_size = sizeof(CUDAState),
954 .instance_init = cuda_initfn,
955 .class_init = cuda_class_init,
956 };
957
958 static void cuda_register_types(void)
959 {
960 type_register_static(&cuda_type_info);
961 }
962
963 type_init(cuda_register_types)