]> git.proxmox.com Git - mirror_qemu.git/blob - hw/net/ne2000.c
a1a1046494cdf90c2d4f39986b5492ed94eeb90b
[mirror_qemu.git] / hw / net / ne2000.c
1 /*
2 * QEMU NE2000 emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "net/eth.h"
27 #include "qemu/module.h"
28 #include "exec/memory.h"
29 #include "hw/irq.h"
30 #include "migration/vmstate.h"
31 #include "ne2000.h"
32 #include "sysemu/sysemu.h"
33 #include "trace.h"
34
35 /* debug NE2000 card */
36 //#define DEBUG_NE2000
37
38 #define MAX_ETH_FRAME_SIZE 1514
39
40 #define E8390_CMD 0x00 /* The command register (for all pages) */
41 /* Page 0 register offsets. */
42 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
43 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
44 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
45 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
46 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
47 #define EN0_TSR 0x04 /* Transmit status reg RD */
48 #define EN0_TPSR 0x04 /* Transmit starting page WR */
49 #define EN0_NCR 0x05 /* Number of collision reg RD */
50 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
51 #define EN0_FIFO 0x06 /* FIFO RD */
52 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
53 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
54 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
55 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
56 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
57 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
58 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
59 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
60 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
61 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
62 #define EN0_RSR 0x0c /* rx status reg RD */
63 #define EN0_RXCR 0x0c /* RX configuration reg WR */
64 #define EN0_TXCR 0x0d /* TX configuration reg WR */
65 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
66 #define EN0_DCFG 0x0e /* Data configuration reg WR */
67 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
68 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
69 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
70
71 #define EN1_PHYS 0x11
72 #define EN1_CURPAG 0x17
73 #define EN1_MULT 0x18
74
75 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
76 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
77
78 #define EN3_CONFIG0 0x33
79 #define EN3_CONFIG1 0x34
80 #define EN3_CONFIG2 0x35
81 #define EN3_CONFIG3 0x36
82
83 /* Register accessed at EN_CMD, the 8390 base addr. */
84 #define E8390_STOP 0x01 /* Stop and reset the chip */
85 #define E8390_START 0x02 /* Start the chip, clear reset */
86 #define E8390_TRANS 0x04 /* Transmit a frame */
87 #define E8390_RREAD 0x08 /* Remote read */
88 #define E8390_RWRITE 0x10 /* Remote write */
89 #define E8390_NODMA 0x20 /* Remote DMA */
90 #define E8390_PAGE0 0x00 /* Select page chip registers */
91 #define E8390_PAGE1 0x40 /* using the two high-order bits */
92 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
93
94 /* Bits in EN0_ISR - Interrupt status register */
95 #define ENISR_RX 0x01 /* Receiver, no error */
96 #define ENISR_TX 0x02 /* Transmitter, no error */
97 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
98 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
99 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
100 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
101 #define ENISR_RDC 0x40 /* remote dma complete */
102 #define ENISR_RESET 0x80 /* Reset completed */
103 #define ENISR_ALL 0x3f /* Interrupts we will enable */
104
105 /* Bits in received packet status byte and EN0_RSR*/
106 #define ENRSR_RXOK 0x01 /* Received a good packet */
107 #define ENRSR_CRC 0x02 /* CRC error */
108 #define ENRSR_FAE 0x04 /* frame alignment error */
109 #define ENRSR_FO 0x08 /* FIFO overrun */
110 #define ENRSR_MPA 0x10 /* missed pkt */
111 #define ENRSR_PHY 0x20 /* physical/multicast address */
112 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
113 #define ENRSR_DEF 0x80 /* deferring */
114
115 /* Transmitted packet status, EN0_TSR. */
116 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
117 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
118 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
119 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
120 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
121 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
122 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
123 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
124
125 void ne2000_reset(NE2000State *s)
126 {
127 int i;
128
129 s->isr = ENISR_RESET;
130 memcpy(s->mem, &s->c.macaddr, 6);
131 s->mem[14] = 0x57;
132 s->mem[15] = 0x57;
133
134 /* duplicate prom data */
135 for(i = 15;i >= 0; i--) {
136 s->mem[2 * i] = s->mem[i];
137 s->mem[2 * i + 1] = s->mem[i];
138 }
139 }
140
141 static void ne2000_update_irq(NE2000State *s)
142 {
143 int isr;
144 isr = (s->isr & s->imr) & 0x7f;
145 #if defined(DEBUG_NE2000)
146 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
147 isr ? 1 : 0, s->isr, s->imr);
148 #endif
149 qemu_set_irq(s->irq, (isr != 0));
150 }
151
152 static int ne2000_buffer_full(NE2000State *s)
153 {
154 int avail, index, boundary;
155
156 if (s->stop <= s->start) {
157 return 1;
158 }
159
160 index = s->curpag << 8;
161 boundary = s->boundary << 8;
162 if (index < boundary)
163 avail = boundary - index;
164 else
165 avail = (s->stop - s->start) - (index - boundary);
166 if (avail < (MAX_ETH_FRAME_SIZE + 4))
167 return 1;
168 return 0;
169 }
170
171 #define MIN_BUF_SIZE 60
172
173 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
174 {
175 NE2000State *s = qemu_get_nic_opaque(nc);
176 size_t size = size_;
177 uint8_t *p;
178 unsigned int total_len, next, avail, len, index, mcast_idx;
179 uint8_t buf1[60];
180 static const uint8_t broadcast_macaddr[6] =
181 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
182
183 #if defined(DEBUG_NE2000)
184 printf("NE2000: received len=%zu\n", size);
185 #endif
186
187 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
188 return -1;
189
190 /* XXX: check this */
191 if (s->rxcr & 0x10) {
192 /* promiscuous: receive all */
193 } else {
194 if (!memcmp(buf, broadcast_macaddr, 6)) {
195 /* broadcast address */
196 if (!(s->rxcr & 0x04))
197 return size;
198 } else if (buf[0] & 0x01) {
199 /* multicast */
200 if (!(s->rxcr & 0x08))
201 return size;
202 mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
203 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
204 return size;
205 } else if (s->mem[0] == buf[0] &&
206 s->mem[2] == buf[1] &&
207 s->mem[4] == buf[2] &&
208 s->mem[6] == buf[3] &&
209 s->mem[8] == buf[4] &&
210 s->mem[10] == buf[5]) {
211 /* match */
212 } else {
213 return size;
214 }
215 }
216
217
218 /* if too small buffer, then expand it */
219 if (size < MIN_BUF_SIZE) {
220 memcpy(buf1, buf, size);
221 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
222 buf = buf1;
223 size = MIN_BUF_SIZE;
224 }
225
226 index = s->curpag << 8;
227 if (index >= NE2000_PMEM_END) {
228 index = s->start;
229 }
230 /* 4 bytes for header */
231 total_len = size + 4;
232 /* address for next packet (4 bytes for CRC) */
233 next = index + ((total_len + 4 + 255) & ~0xff);
234 if (next >= s->stop)
235 next -= (s->stop - s->start);
236 /* prepare packet header */
237 p = s->mem + index;
238 s->rsr = ENRSR_RXOK; /* receive status */
239 /* XXX: check this */
240 if (buf[0] & 0x01)
241 s->rsr |= ENRSR_PHY;
242 p[0] = s->rsr;
243 p[1] = next >> 8;
244 p[2] = total_len;
245 p[3] = total_len >> 8;
246 index += 4;
247
248 /* write packet data */
249 while (size > 0) {
250 if (index <= s->stop)
251 avail = s->stop - index;
252 else
253 break;
254 len = size;
255 if (len > avail)
256 len = avail;
257 memcpy(s->mem + index, buf, len);
258 buf += len;
259 index += len;
260 if (index == s->stop)
261 index = s->start;
262 size -= len;
263 }
264 s->curpag = next >> 8;
265
266 /* now we can signal we have received something */
267 s->isr |= ENISR_RX;
268 ne2000_update_irq(s);
269
270 return size_;
271 }
272
273 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
274 {
275 NE2000State *s = opaque;
276 int offset, page, index;
277
278 addr &= 0xf;
279 trace_ne2000_ioport_write(addr, val);
280 if (addr == E8390_CMD) {
281 /* control register */
282 s->cmd = val;
283 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
284 s->isr &= ~ENISR_RESET;
285 /* test specific case: zero length transfer */
286 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
287 s->rcnt == 0) {
288 s->isr |= ENISR_RDC;
289 ne2000_update_irq(s);
290 }
291 if (val & E8390_TRANS) {
292 index = (s->tpsr << 8);
293 /* XXX: next 2 lines are a hack to make netware 3.11 work */
294 if (index >= NE2000_PMEM_END)
295 index -= NE2000_PMEM_SIZE;
296 /* fail safe: check range on the transmitted length */
297 if (index + s->tcnt <= NE2000_PMEM_END) {
298 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
299 s->tcnt);
300 }
301 /* signal end of transfer */
302 s->tsr = ENTSR_PTX;
303 s->isr |= ENISR_TX;
304 s->cmd &= ~E8390_TRANS;
305 ne2000_update_irq(s);
306 }
307 }
308 } else {
309 page = s->cmd >> 6;
310 offset = addr | (page << 4);
311 switch(offset) {
312 case EN0_STARTPG:
313 if (val << 8 <= NE2000_PMEM_END) {
314 s->start = val << 8;
315 }
316 break;
317 case EN0_STOPPG:
318 if (val << 8 <= NE2000_PMEM_END) {
319 s->stop = val << 8;
320 }
321 break;
322 case EN0_BOUNDARY:
323 if (val << 8 < NE2000_PMEM_END) {
324 s->boundary = val;
325 }
326 break;
327 case EN0_IMR:
328 s->imr = val;
329 ne2000_update_irq(s);
330 break;
331 case EN0_TPSR:
332 s->tpsr = val;
333 break;
334 case EN0_TCNTLO:
335 s->tcnt = (s->tcnt & 0xff00) | val;
336 break;
337 case EN0_TCNTHI:
338 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
339 break;
340 case EN0_RSARLO:
341 s->rsar = (s->rsar & 0xff00) | val;
342 break;
343 case EN0_RSARHI:
344 s->rsar = (s->rsar & 0x00ff) | (val << 8);
345 break;
346 case EN0_RCNTLO:
347 s->rcnt = (s->rcnt & 0xff00) | val;
348 break;
349 case EN0_RCNTHI:
350 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
351 break;
352 case EN0_RXCR:
353 s->rxcr = val;
354 break;
355 case EN0_DCFG:
356 s->dcfg = val;
357 break;
358 case EN0_ISR:
359 s->isr &= ~(val & 0x7f);
360 ne2000_update_irq(s);
361 break;
362 case EN1_PHYS ... EN1_PHYS + 5:
363 s->phys[offset - EN1_PHYS] = val;
364 break;
365 case EN1_CURPAG:
366 if (val << 8 < NE2000_PMEM_END) {
367 s->curpag = val;
368 }
369 break;
370 case EN1_MULT ... EN1_MULT + 7:
371 s->mult[offset - EN1_MULT] = val;
372 break;
373 }
374 }
375 }
376
377 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
378 {
379 NE2000State *s = opaque;
380 int offset, page, ret;
381
382 addr &= 0xf;
383 if (addr == E8390_CMD) {
384 ret = s->cmd;
385 } else {
386 page = s->cmd >> 6;
387 offset = addr | (page << 4);
388 switch(offset) {
389 case EN0_TSR:
390 ret = s->tsr;
391 break;
392 case EN0_BOUNDARY:
393 ret = s->boundary;
394 break;
395 case EN0_ISR:
396 ret = s->isr;
397 break;
398 case EN0_RSARLO:
399 ret = s->rsar & 0x00ff;
400 break;
401 case EN0_RSARHI:
402 ret = s->rsar >> 8;
403 break;
404 case EN1_PHYS ... EN1_PHYS + 5:
405 ret = s->phys[offset - EN1_PHYS];
406 break;
407 case EN1_CURPAG:
408 ret = s->curpag;
409 break;
410 case EN1_MULT ... EN1_MULT + 7:
411 ret = s->mult[offset - EN1_MULT];
412 break;
413 case EN0_RSR:
414 ret = s->rsr;
415 break;
416 case EN2_STARTPG:
417 ret = s->start >> 8;
418 break;
419 case EN2_STOPPG:
420 ret = s->stop >> 8;
421 break;
422 case EN0_RTL8029ID0:
423 ret = 0x50;
424 break;
425 case EN0_RTL8029ID1:
426 ret = 0x43;
427 break;
428 case EN3_CONFIG0:
429 ret = 0; /* 10baseT media */
430 break;
431 case EN3_CONFIG2:
432 ret = 0x40; /* 10baseT active */
433 break;
434 case EN3_CONFIG3:
435 ret = 0x40; /* Full duplex */
436 break;
437 default:
438 ret = 0x00;
439 break;
440 }
441 }
442 trace_ne2000_ioport_read(addr, ret);
443 return ret;
444 }
445
446 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
447 uint32_t val)
448 {
449 if (addr < 32 ||
450 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
451 s->mem[addr] = val;
452 }
453 }
454
455 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
456 uint32_t val)
457 {
458 addr &= ~1; /* XXX: check exact behaviour if not even */
459 if (addr < 32 ||
460 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
461 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
462 }
463 }
464
465 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
466 uint32_t val)
467 {
468 addr &= ~1; /* XXX: check exact behaviour if not even */
469 if (addr < 32
470 || (addr >= NE2000_PMEM_START
471 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
472 stl_le_p(s->mem + addr, val);
473 }
474 }
475
476 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
477 {
478 if (addr < 32 ||
479 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
480 return s->mem[addr];
481 } else {
482 return 0xff;
483 }
484 }
485
486 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
487 {
488 addr &= ~1; /* XXX: check exact behaviour if not even */
489 if (addr < 32 ||
490 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
491 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
492 } else {
493 return 0xffff;
494 }
495 }
496
497 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
498 {
499 addr &= ~1; /* XXX: check exact behaviour if not even */
500 if (addr < 32
501 || (addr >= NE2000_PMEM_START
502 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
503 return ldl_le_p(s->mem + addr);
504 } else {
505 return 0xffffffff;
506 }
507 }
508
509 static inline void ne2000_dma_update(NE2000State *s, int len)
510 {
511 s->rsar += len;
512 /* wrap */
513 /* XXX: check what to do if rsar > stop */
514 if (s->rsar == s->stop)
515 s->rsar = s->start;
516
517 if (s->rcnt <= len) {
518 s->rcnt = 0;
519 /* signal end of transfer */
520 s->isr |= ENISR_RDC;
521 ne2000_update_irq(s);
522 } else {
523 s->rcnt -= len;
524 }
525 }
526
527 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
528 {
529 NE2000State *s = opaque;
530
531 #ifdef DEBUG_NE2000
532 printf("NE2000: asic write val=0x%04x\n", val);
533 #endif
534 if (s->rcnt == 0)
535 return;
536 if (s->dcfg & 0x01) {
537 /* 16 bit access */
538 ne2000_mem_writew(s, s->rsar, val);
539 ne2000_dma_update(s, 2);
540 } else {
541 /* 8 bit access */
542 ne2000_mem_writeb(s, s->rsar, val);
543 ne2000_dma_update(s, 1);
544 }
545 }
546
547 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
548 {
549 NE2000State *s = opaque;
550 int ret;
551
552 if (s->dcfg & 0x01) {
553 /* 16 bit access */
554 ret = ne2000_mem_readw(s, s->rsar);
555 ne2000_dma_update(s, 2);
556 } else {
557 /* 8 bit access */
558 ret = ne2000_mem_readb(s, s->rsar);
559 ne2000_dma_update(s, 1);
560 }
561 #ifdef DEBUG_NE2000
562 printf("NE2000: asic read val=0x%04x\n", ret);
563 #endif
564 return ret;
565 }
566
567 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
568 {
569 NE2000State *s = opaque;
570
571 #ifdef DEBUG_NE2000
572 printf("NE2000: asic writel val=0x%04x\n", val);
573 #endif
574 if (s->rcnt == 0)
575 return;
576 /* 32 bit access */
577 ne2000_mem_writel(s, s->rsar, val);
578 ne2000_dma_update(s, 4);
579 }
580
581 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
582 {
583 NE2000State *s = opaque;
584 int ret;
585
586 /* 32 bit access */
587 ret = ne2000_mem_readl(s, s->rsar);
588 ne2000_dma_update(s, 4);
589 #ifdef DEBUG_NE2000
590 printf("NE2000: asic readl val=0x%04x\n", ret);
591 #endif
592 return ret;
593 }
594
595 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
596 {
597 /* nothing to do (end of reset pulse) */
598 }
599
600 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
601 {
602 NE2000State *s = opaque;
603 ne2000_reset(s);
604 return 0;
605 }
606
607 static int ne2000_post_load(void* opaque, int version_id)
608 {
609 NE2000State* s = opaque;
610
611 if (version_id < 2) {
612 s->rxcr = 0x0c;
613 }
614 return 0;
615 }
616
617 const VMStateDescription vmstate_ne2000 = {
618 .name = "ne2000",
619 .version_id = 2,
620 .minimum_version_id = 0,
621 .post_load = ne2000_post_load,
622 .fields = (VMStateField[]) {
623 VMSTATE_UINT8_V(rxcr, NE2000State, 2),
624 VMSTATE_UINT8(cmd, NE2000State),
625 VMSTATE_UINT32(start, NE2000State),
626 VMSTATE_UINT32(stop, NE2000State),
627 VMSTATE_UINT8(boundary, NE2000State),
628 VMSTATE_UINT8(tsr, NE2000State),
629 VMSTATE_UINT8(tpsr, NE2000State),
630 VMSTATE_UINT16(tcnt, NE2000State),
631 VMSTATE_UINT16(rcnt, NE2000State),
632 VMSTATE_UINT32(rsar, NE2000State),
633 VMSTATE_UINT8(rsr, NE2000State),
634 VMSTATE_UINT8(isr, NE2000State),
635 VMSTATE_UINT8(dcfg, NE2000State),
636 VMSTATE_UINT8(imr, NE2000State),
637 VMSTATE_BUFFER(phys, NE2000State),
638 VMSTATE_UINT8(curpag, NE2000State),
639 VMSTATE_BUFFER(mult, NE2000State),
640 VMSTATE_UNUSED(4), /* was irq */
641 VMSTATE_BUFFER(mem, NE2000State),
642 VMSTATE_END_OF_LIST()
643 }
644 };
645
646 static uint64_t ne2000_read(void *opaque, hwaddr addr,
647 unsigned size)
648 {
649 NE2000State *s = opaque;
650 uint64_t val;
651
652 if (addr < 0x10 && size == 1) {
653 val = ne2000_ioport_read(s, addr);
654 } else if (addr == 0x10) {
655 if (size <= 2) {
656 val = ne2000_asic_ioport_read(s, addr);
657 } else {
658 val = ne2000_asic_ioport_readl(s, addr);
659 }
660 } else if (addr == 0x1f && size == 1) {
661 val = ne2000_reset_ioport_read(s, addr);
662 } else {
663 val = ((uint64_t)1 << (size * 8)) - 1;
664 }
665 trace_ne2000_read(addr, val);
666
667 return val;
668 }
669
670 static void ne2000_write(void *opaque, hwaddr addr,
671 uint64_t data, unsigned size)
672 {
673 NE2000State *s = opaque;
674
675 trace_ne2000_write(addr, data);
676 if (addr < 0x10 && size == 1) {
677 ne2000_ioport_write(s, addr, data);
678 } else if (addr == 0x10) {
679 if (size <= 2) {
680 ne2000_asic_ioport_write(s, addr, data);
681 } else {
682 ne2000_asic_ioport_writel(s, addr, data);
683 }
684 } else if (addr == 0x1f && size == 1) {
685 ne2000_reset_ioport_write(s, addr, data);
686 }
687 }
688
689 static const MemoryRegionOps ne2000_ops = {
690 .read = ne2000_read,
691 .write = ne2000_write,
692 .endianness = DEVICE_LITTLE_ENDIAN,
693 };
694
695 /***********************************************************/
696 /* PCI NE2000 definitions */
697
698 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
699 {
700 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
701 }