]> git.proxmox.com Git - mirror_qemu.git/blob - hw/nvme/ctrl.c
Merge tag 'pull-trivial-patches' of https://gitlab.com/mjt0k/qemu into staging
[mirror_qemu.git] / hw / nvme / ctrl.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
13 *
14 * https://nvmexpress.org/developers/nvme-specification/
15 *
16 *
17 * Notes on coding style
18 * ---------------------
19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
20 * NVMe subsystem use this format from the NVMe specifications in the comments
21 * (i.e. 'h' suffix instead of '0x' prefix).
22 *
23 * Usage
24 * -----
25 * See docs/system/nvme.rst for extensive documentation.
26 *
27 * Add options:
28 * -drive file=<file>,if=none,id=<drive_id>
29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30 * -device nvme,serial=<serial>,id=<bus_name>, \
31 * cmb_size_mb=<cmb_size_mb[optional]>, \
32 * [pmrdev=<mem_backend_file_id>,] \
33 * max_ioqpairs=<N[optional]>, \
34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35 * mdts=<N[optional]>,vsl=<N[optional]>, \
36 * zoned.zasl=<N[optional]>, \
37 * zoned.auto_transition=<on|off[optional]>, \
38 * sriov_max_vfs=<N[optional]> \
39 * sriov_vq_flexible=<N[optional]> \
40 * sriov_vi_flexible=<N[optional]> \
41 * sriov_max_vi_per_vf=<N[optional]> \
42 * sriov_max_vq_per_vf=<N[optional]> \
43 * subsys=<subsys_id>
44 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45 * zoned=<true|false[optional]>, \
46 * subsys=<subsys_id>,shared=<true|false[optional]>, \
47 * detached=<true|false[optional]>, \
48 * zoned.zone_size=<N[optional]>, \
49 * zoned.zone_capacity=<N[optional]>, \
50 * zoned.descr_ext_size=<N[optional]>, \
51 * zoned.max_active=<N[optional]>, \
52 * zoned.max_open=<N[optional]>, \
53 * zoned.cross_read=<true|false[optional]>
54 *
55 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
56 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
57 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
58 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
59 *
60 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
61 * For example:
62 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
63 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
64 *
65 * The PMR will use BAR 4/5 exclusively.
66 *
67 * To place controller(s) and namespace(s) to a subsystem, then provide
68 * nvme-subsys device as above.
69 *
70 * nvme subsystem device parameters
71 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
72 * - `nqn`
73 * This parameter provides the `<nqn_id>` part of the string
74 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
75 * of subsystem controllers. Note that `<nqn_id>` should be unique per
76 * subsystem, but this is not enforced by QEMU. If not specified, it will
77 * default to the value of the `id` parameter (`<subsys_id>`).
78 *
79 * nvme device parameters
80 * ~~~~~~~~~~~~~~~~~~~~~~
81 * - `subsys`
82 * Specifying this parameter attaches the controller to the subsystem and
83 * the SUBNQN field in the controller will report the NQN of the subsystem
84 * device. This also enables multi controller capability represented in
85 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
86 * Namespace Sharing Capabilities).
87 *
88 * - `aerl`
89 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
90 * of concurrently outstanding Asynchronous Event Request commands support
91 * by the controller. This is a 0's based value.
92 *
93 * - `aer_max_queued`
94 * This is the maximum number of events that the device will enqueue for
95 * completion when there are no outstanding AERs. When the maximum number of
96 * enqueued events are reached, subsequent events will be dropped.
97 *
98 * - `mdts`
99 * Indicates the maximum data transfer size for a command that transfers data
100 * between host-accessible memory and the controller. The value is specified
101 * as a power of two (2^n) and is in units of the minimum memory page size
102 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
103 *
104 * - `vsl`
105 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
106 * this value is specified as a power of two (2^n) and is in units of the
107 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
108 * KiB).
109 *
110 * - `zoned.zasl`
111 * Indicates the maximum data transfer size for the Zone Append command. Like
112 * `mdts`, the value is specified as a power of two (2^n) and is in units of
113 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
114 * defaulting to the value of `mdts`).
115 *
116 * - `zoned.auto_transition`
117 * Indicates if zones in zone state implicitly opened can be automatically
118 * transitioned to zone state closed for resource management purposes.
119 * Defaults to 'on'.
120 *
121 * - `sriov_max_vfs`
122 * Indicates the maximum number of PCIe virtual functions supported
123 * by the controller. The default value is 0. Specifying a non-zero value
124 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
125 * Virtual function controllers will not report SR-IOV capability.
126 *
127 * NOTE: Single Root I/O Virtualization support is experimental.
128 * All the related parameters may be subject to change.
129 *
130 * - `sriov_vq_flexible`
131 * Indicates the total number of flexible queue resources assignable to all
132 * the secondary controllers. Implicitly sets the number of primary
133 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
134 *
135 * - `sriov_vi_flexible`
136 * Indicates the total number of flexible interrupt resources assignable to
137 * all the secondary controllers. Implicitly sets the number of primary
138 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
139 *
140 * - `sriov_max_vi_per_vf`
141 * Indicates the maximum number of virtual interrupt resources assignable
142 * to a secondary controller. The default 0 resolves to
143 * `(sriov_vi_flexible / sriov_max_vfs)`.
144 *
145 * - `sriov_max_vq_per_vf`
146 * Indicates the maximum number of virtual queue resources assignable to
147 * a secondary controller. The default 0 resolves to
148 * `(sriov_vq_flexible / sriov_max_vfs)`.
149 *
150 * nvme namespace device parameters
151 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
152 * - `shared`
153 * When the parent nvme device (as defined explicitly by the 'bus' parameter
154 * or implicitly by the most recently defined NvmeBus) is linked to an
155 * nvme-subsys device, the namespace will be attached to all controllers in
156 * the subsystem. If set to 'off' (the default), the namespace will remain a
157 * private namespace and may only be attached to a single controller at a
158 * time.
159 *
160 * - `detached`
161 * This parameter is only valid together with the `subsys` parameter. If left
162 * at the default value (`false/off`), the namespace will be attached to all
163 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
164 * namespace will be available in the subsystem but not attached to any
165 * controllers.
166 *
167 * Setting `zoned` to true selects Zoned Command Set at the namespace.
168 * In this case, the following namespace properties are available to configure
169 * zoned operation:
170 * zoned.zone_size=<zone size in bytes, default: 128MiB>
171 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
172 *
173 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
174 * The value 0 (default) forces zone capacity to be the same as zone
175 * size. The value of this property may not exceed zone size.
176 *
177 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
178 * This value needs to be specified in 64B units. If it is zero,
179 * namespace(s) will not support zone descriptor extensions.
180 *
181 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
182 * The default value means there is no limit to the number of
183 * concurrently active zones.
184 *
185 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
186 * The default value means there is no limit to the number of
187 * concurrently open zones.
188 *
189 * zoned.cross_read=<enable RAZB, default: false>
190 * Setting this property to true enables Read Across Zone Boundaries.
191 */
192
193 #include "qemu/osdep.h"
194 #include "qemu/cutils.h"
195 #include "qemu/error-report.h"
196 #include "qemu/log.h"
197 #include "qemu/units.h"
198 #include "qemu/range.h"
199 #include "qapi/error.h"
200 #include "qapi/visitor.h"
201 #include "sysemu/sysemu.h"
202 #include "sysemu/block-backend.h"
203 #include "sysemu/hostmem.h"
204 #include "hw/pci/msix.h"
205 #include "hw/pci/pcie_sriov.h"
206 #include "migration/vmstate.h"
207
208 #include "nvme.h"
209 #include "dif.h"
210 #include "trace.h"
211
212 #define NVME_MAX_IOQPAIRS 0xffff
213 #define NVME_DB_SIZE 4
214 #define NVME_SPEC_VER 0x00010400
215 #define NVME_CMB_BIR 2
216 #define NVME_PMR_BIR 4
217 #define NVME_TEMPERATURE 0x143
218 #define NVME_TEMPERATURE_WARNING 0x157
219 #define NVME_TEMPERATURE_CRITICAL 0x175
220 #define NVME_NUM_FW_SLOTS 1
221 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
222 #define NVME_MAX_VFS 127
223 #define NVME_VF_RES_GRANULARITY 1
224 #define NVME_VF_OFFSET 0x1
225 #define NVME_VF_STRIDE 1
226
227 #define NVME_GUEST_ERR(trace, fmt, ...) \
228 do { \
229 (trace_##trace)(__VA_ARGS__); \
230 qemu_log_mask(LOG_GUEST_ERROR, #trace \
231 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
232 } while (0)
233
234 static const bool nvme_feature_support[NVME_FID_MAX] = {
235 [NVME_ARBITRATION] = true,
236 [NVME_POWER_MANAGEMENT] = true,
237 [NVME_TEMPERATURE_THRESHOLD] = true,
238 [NVME_ERROR_RECOVERY] = true,
239 [NVME_VOLATILE_WRITE_CACHE] = true,
240 [NVME_NUMBER_OF_QUEUES] = true,
241 [NVME_INTERRUPT_COALESCING] = true,
242 [NVME_INTERRUPT_VECTOR_CONF] = true,
243 [NVME_WRITE_ATOMICITY] = true,
244 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
245 [NVME_TIMESTAMP] = true,
246 [NVME_HOST_BEHAVIOR_SUPPORT] = true,
247 [NVME_COMMAND_SET_PROFILE] = true,
248 [NVME_FDP_MODE] = true,
249 [NVME_FDP_EVENTS] = true,
250 };
251
252 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
253 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
254 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
255 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
256 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
257 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
258 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
259 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE,
260 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
261 [NVME_FDP_MODE] = NVME_FEAT_CAP_CHANGE,
262 [NVME_FDP_EVENTS] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
263 };
264
265 static const uint32_t nvme_cse_acs[256] = {
266 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
267 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
268 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
269 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
270 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
271 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
272 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
273 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
274 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
275 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
276 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
277 [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP,
278 [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP,
279 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
280 [NVME_ADM_CMD_DIRECTIVE_RECV] = NVME_CMD_EFF_CSUPP,
281 [NVME_ADM_CMD_DIRECTIVE_SEND] = NVME_CMD_EFF_CSUPP,
282 };
283
284 static const uint32_t nvme_cse_iocs_none[256];
285
286 static const uint32_t nvme_cse_iocs_nvm[256] = {
287 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
288 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
289 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
290 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
291 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
292 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
293 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
295 [NVME_CMD_IO_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
296 [NVME_CMD_IO_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
297 };
298
299 static const uint32_t nvme_cse_iocs_zoned[256] = {
300 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
301 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
302 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
303 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
304 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
305 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
306 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
307 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
308 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
309 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
310 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
311 };
312
313 static void nvme_process_sq(void *opaque);
314 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
315 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n);
316
317 static uint16_t nvme_sqid(NvmeRequest *req)
318 {
319 return le16_to_cpu(req->sq->sqid);
320 }
321
322 static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg,
323 uint16_t ph)
324 {
325 uint16_t rgif = ns->endgrp->fdp.rgif;
326
327 if (!rgif) {
328 return ph;
329 }
330
331 return (rg << (16 - rgif)) | ph;
332 }
333
334 static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph)
335 {
336 return ph < ns->fdp.nphs;
337 }
338
339 static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg)
340 {
341 return rg < endgrp->fdp.nrg;
342 }
343
344 static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid)
345 {
346 uint16_t rgif = ns->endgrp->fdp.rgif;
347
348 if (!rgif) {
349 return pid;
350 }
351
352 return pid & ((1 << (15 - rgif)) - 1);
353 }
354
355 static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid)
356 {
357 uint16_t rgif = ns->endgrp->fdp.rgif;
358
359 if (!rgif) {
360 return 0;
361 }
362
363 return pid >> (16 - rgif);
364 }
365
366 static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid,
367 uint16_t *ph, uint16_t *rg)
368 {
369 *rg = nvme_pid2rg(ns, pid);
370 *ph = nvme_pid2ph(ns, pid);
371
372 return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg);
373 }
374
375 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
376 NvmeZoneState state)
377 {
378 if (QTAILQ_IN_USE(zone, entry)) {
379 switch (nvme_get_zone_state(zone)) {
380 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
381 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
382 break;
383 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
384 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
385 break;
386 case NVME_ZONE_STATE_CLOSED:
387 QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
388 break;
389 case NVME_ZONE_STATE_FULL:
390 QTAILQ_REMOVE(&ns->full_zones, zone, entry);
391 default:
392 ;
393 }
394 }
395
396 nvme_set_zone_state(zone, state);
397
398 switch (state) {
399 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
400 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
401 break;
402 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
403 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
404 break;
405 case NVME_ZONE_STATE_CLOSED:
406 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
407 break;
408 case NVME_ZONE_STATE_FULL:
409 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
410 case NVME_ZONE_STATE_READ_ONLY:
411 break;
412 default:
413 zone->d.za = 0;
414 }
415 }
416
417 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
418 uint32_t opn, uint32_t zrwa)
419 {
420 if (ns->params.max_active_zones != 0 &&
421 ns->nr_active_zones + act > ns->params.max_active_zones) {
422 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
423 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
424 }
425
426 if (ns->params.max_open_zones != 0 &&
427 ns->nr_open_zones + opn > ns->params.max_open_zones) {
428 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
429 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
430 }
431
432 if (zrwa > ns->zns.numzrwa) {
433 return NVME_NOZRWA | NVME_DNR;
434 }
435
436 return NVME_SUCCESS;
437 }
438
439 /*
440 * Check if we can open a zone without exceeding open/active limits.
441 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
442 */
443 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
444 {
445 return nvme_zns_check_resources(ns, act, opn, 0);
446 }
447
448 static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf)
449 {
450 NvmeFdpEvent *ret = NULL;
451 bool is_full = ebuf->next == ebuf->start && ebuf->nelems;
452
453 ret = &ebuf->events[ebuf->next++];
454 if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) {
455 ebuf->next = 0;
456 }
457 if (is_full) {
458 ebuf->start = ebuf->next;
459 } else {
460 ebuf->nelems++;
461 }
462
463 memset(ret, 0, sizeof(NvmeFdpEvent));
464 ret->timestamp = nvme_get_timestamp(n);
465
466 return ret;
467 }
468
469 static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type)
470 {
471 return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1;
472 }
473
474 static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid)
475 {
476 NvmeEnduranceGroup *endgrp = ns->endgrp;
477 NvmeRuHandle *ruh;
478 NvmeReclaimUnit *ru;
479 NvmeFdpEvent *e = NULL;
480 uint16_t ph, rg, ruhid;
481
482 if (!nvme_parse_pid(ns, pid, &ph, &rg)) {
483 return false;
484 }
485
486 ruhid = ns->fdp.phs[ph];
487
488 ruh = &endgrp->fdp.ruhs[ruhid];
489 ru = &ruh->rus[rg];
490
491 if (ru->ruamw) {
492 if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) {
493 e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events);
494 e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN;
495 e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV;
496 e->pid = cpu_to_le16(pid);
497 e->nsid = cpu_to_le32(ns->params.nsid);
498 e->rgid = cpu_to_le16(rg);
499 e->ruhid = cpu_to_le16(ruhid);
500 }
501
502 /* log (eventual) GC overhead of prematurely swapping the RU */
503 nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw));
504 }
505
506 ru->ruamw = ruh->ruamw;
507
508 return true;
509 }
510
511 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
512 {
513 hwaddr hi, lo;
514
515 if (!n->cmb.cmse) {
516 return false;
517 }
518
519 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
520 hi = lo + int128_get64(n->cmb.mem.size);
521
522 return addr >= lo && addr < hi;
523 }
524
525 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
526 {
527 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
528 return &n->cmb.buf[addr - base];
529 }
530
531 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
532 {
533 hwaddr hi;
534
535 if (!n->pmr.cmse) {
536 return false;
537 }
538
539 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
540
541 return addr >= n->pmr.cba && addr < hi;
542 }
543
544 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
545 {
546 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
547 }
548
549 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
550 {
551 hwaddr hi, lo;
552
553 /*
554 * The purpose of this check is to guard against invalid "local" access to
555 * the iomem (i.e. controller registers). Thus, we check against the range
556 * covered by the 'bar0' MemoryRegion since that is currently composed of
557 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
558 * that if the device model is ever changed to allow the CMB to be located
559 * in BAR0 as well, then this must be changed.
560 */
561 lo = n->bar0.addr;
562 hi = lo + int128_get64(n->bar0.size);
563
564 return addr >= lo && addr < hi;
565 }
566
567 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
568 {
569 hwaddr hi = addr + size - 1;
570 if (hi < addr) {
571 return 1;
572 }
573
574 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
575 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
576 return 0;
577 }
578
579 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
580 memcpy(buf, nvme_addr_to_pmr(n, addr), size);
581 return 0;
582 }
583
584 return pci_dma_read(PCI_DEVICE(n), addr, buf, size);
585 }
586
587 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
588 {
589 hwaddr hi = addr + size - 1;
590 if (hi < addr) {
591 return 1;
592 }
593
594 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
595 memcpy(nvme_addr_to_cmb(n, addr), buf, size);
596 return 0;
597 }
598
599 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
600 memcpy(nvme_addr_to_pmr(n, addr), buf, size);
601 return 0;
602 }
603
604 return pci_dma_write(PCI_DEVICE(n), addr, buf, size);
605 }
606
607 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
608 {
609 return nsid &&
610 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
611 }
612
613 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
614 {
615 return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
616 }
617
618 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
619 {
620 return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
621 }
622
623 static void nvme_inc_cq_tail(NvmeCQueue *cq)
624 {
625 cq->tail++;
626 if (cq->tail >= cq->size) {
627 cq->tail = 0;
628 cq->phase = !cq->phase;
629 }
630 }
631
632 static void nvme_inc_sq_head(NvmeSQueue *sq)
633 {
634 sq->head = (sq->head + 1) % sq->size;
635 }
636
637 static uint8_t nvme_cq_full(NvmeCQueue *cq)
638 {
639 return (cq->tail + 1) % cq->size == cq->head;
640 }
641
642 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
643 {
644 return sq->head == sq->tail;
645 }
646
647 static void nvme_irq_check(NvmeCtrl *n)
648 {
649 PCIDevice *pci = PCI_DEVICE(n);
650 uint32_t intms = ldl_le_p(&n->bar.intms);
651
652 if (msix_enabled(pci)) {
653 return;
654 }
655 if (~intms & n->irq_status) {
656 pci_irq_assert(pci);
657 } else {
658 pci_irq_deassert(pci);
659 }
660 }
661
662 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
663 {
664 PCIDevice *pci = PCI_DEVICE(n);
665
666 if (cq->irq_enabled) {
667 if (msix_enabled(pci)) {
668 trace_pci_nvme_irq_msix(cq->vector);
669 msix_notify(pci, cq->vector);
670 } else {
671 trace_pci_nvme_irq_pin();
672 assert(cq->vector < 32);
673 n->irq_status |= 1 << cq->vector;
674 nvme_irq_check(n);
675 }
676 } else {
677 trace_pci_nvme_irq_masked();
678 }
679 }
680
681 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
682 {
683 if (cq->irq_enabled) {
684 if (msix_enabled(PCI_DEVICE(n))) {
685 return;
686 } else {
687 assert(cq->vector < 32);
688 if (!n->cq_pending) {
689 n->irq_status &= ~(1 << cq->vector);
690 }
691 nvme_irq_check(n);
692 }
693 }
694 }
695
696 static void nvme_req_clear(NvmeRequest *req)
697 {
698 req->ns = NULL;
699 req->opaque = NULL;
700 req->aiocb = NULL;
701 memset(&req->cqe, 0x0, sizeof(req->cqe));
702 req->status = NVME_SUCCESS;
703 }
704
705 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
706 {
707 if (dma) {
708 pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0);
709 sg->flags = NVME_SG_DMA;
710 } else {
711 qemu_iovec_init(&sg->iov, 0);
712 }
713
714 sg->flags |= NVME_SG_ALLOC;
715 }
716
717 static inline void nvme_sg_unmap(NvmeSg *sg)
718 {
719 if (!(sg->flags & NVME_SG_ALLOC)) {
720 return;
721 }
722
723 if (sg->flags & NVME_SG_DMA) {
724 qemu_sglist_destroy(&sg->qsg);
725 } else {
726 qemu_iovec_destroy(&sg->iov);
727 }
728
729 memset(sg, 0x0, sizeof(*sg));
730 }
731
732 /*
733 * When metadata is transferred as extended LBAs, the DPTR mapped into `sg`
734 * holds both data and metadata. This function splits the data and metadata
735 * into two separate QSG/IOVs.
736 */
737 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
738 NvmeSg *mdata)
739 {
740 NvmeSg *dst = data;
741 uint32_t trans_len, count = ns->lbasz;
742 uint64_t offset = 0;
743 bool dma = sg->flags & NVME_SG_DMA;
744 size_t sge_len;
745 size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
746 int sg_idx = 0;
747
748 assert(sg->flags & NVME_SG_ALLOC);
749
750 while (sg_len) {
751 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
752
753 trans_len = MIN(sg_len, count);
754 trans_len = MIN(trans_len, sge_len - offset);
755
756 if (dst) {
757 if (dma) {
758 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
759 trans_len);
760 } else {
761 qemu_iovec_add(&dst->iov,
762 sg->iov.iov[sg_idx].iov_base + offset,
763 trans_len);
764 }
765 }
766
767 sg_len -= trans_len;
768 count -= trans_len;
769 offset += trans_len;
770
771 if (count == 0) {
772 dst = (dst == data) ? mdata : data;
773 count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
774 }
775
776 if (sge_len == offset) {
777 offset = 0;
778 sg_idx++;
779 }
780 }
781 }
782
783 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
784 size_t len)
785 {
786 if (!len) {
787 return NVME_SUCCESS;
788 }
789
790 trace_pci_nvme_map_addr_cmb(addr, len);
791
792 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
793 return NVME_DATA_TRAS_ERROR;
794 }
795
796 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
797
798 return NVME_SUCCESS;
799 }
800
801 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
802 size_t len)
803 {
804 if (!len) {
805 return NVME_SUCCESS;
806 }
807
808 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
809 return NVME_DATA_TRAS_ERROR;
810 }
811
812 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
813
814 return NVME_SUCCESS;
815 }
816
817 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
818 {
819 bool cmb = false, pmr = false;
820
821 if (!len) {
822 return NVME_SUCCESS;
823 }
824
825 trace_pci_nvme_map_addr(addr, len);
826
827 if (nvme_addr_is_iomem(n, addr)) {
828 return NVME_DATA_TRAS_ERROR;
829 }
830
831 if (nvme_addr_is_cmb(n, addr)) {
832 cmb = true;
833 } else if (nvme_addr_is_pmr(n, addr)) {
834 pmr = true;
835 }
836
837 if (cmb || pmr) {
838 if (sg->flags & NVME_SG_DMA) {
839 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
840 }
841
842 if (sg->iov.niov + 1 > IOV_MAX) {
843 goto max_mappings_exceeded;
844 }
845
846 if (cmb) {
847 return nvme_map_addr_cmb(n, &sg->iov, addr, len);
848 } else {
849 return nvme_map_addr_pmr(n, &sg->iov, addr, len);
850 }
851 }
852
853 if (!(sg->flags & NVME_SG_DMA)) {
854 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
855 }
856
857 if (sg->qsg.nsg + 1 > IOV_MAX) {
858 goto max_mappings_exceeded;
859 }
860
861 qemu_sglist_add(&sg->qsg, addr, len);
862
863 return NVME_SUCCESS;
864
865 max_mappings_exceeded:
866 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
867 "number of mappings exceed 1024");
868 return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
869 }
870
871 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
872 {
873 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
874 }
875
876 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
877 uint64_t prp2, uint32_t len)
878 {
879 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
880 trans_len = MIN(len, trans_len);
881 int num_prps = (len >> n->page_bits) + 1;
882 uint16_t status;
883 int ret;
884
885 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
886
887 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
888
889 status = nvme_map_addr(n, sg, prp1, trans_len);
890 if (status) {
891 goto unmap;
892 }
893
894 len -= trans_len;
895 if (len) {
896 if (len > n->page_size) {
897 g_autofree uint64_t *prp_list = g_new(uint64_t, n->max_prp_ents);
898 uint32_t nents, prp_trans;
899 int i = 0;
900
901 /*
902 * The first PRP list entry, pointed to by PRP2 may contain offset.
903 * Hence, we need to calculate the number of entries in based on
904 * that offset.
905 */
906 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
907 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
908 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
909 if (ret) {
910 trace_pci_nvme_err_addr_read(prp2);
911 status = NVME_DATA_TRAS_ERROR;
912 goto unmap;
913 }
914 while (len != 0) {
915 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
916
917 if (i == nents - 1 && len > n->page_size) {
918 if (unlikely(prp_ent & (n->page_size - 1))) {
919 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
920 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
921 goto unmap;
922 }
923
924 i = 0;
925 nents = (len + n->page_size - 1) >> n->page_bits;
926 nents = MIN(nents, n->max_prp_ents);
927 prp_trans = nents * sizeof(uint64_t);
928 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
929 prp_trans);
930 if (ret) {
931 trace_pci_nvme_err_addr_read(prp_ent);
932 status = NVME_DATA_TRAS_ERROR;
933 goto unmap;
934 }
935 prp_ent = le64_to_cpu(prp_list[i]);
936 }
937
938 if (unlikely(prp_ent & (n->page_size - 1))) {
939 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
940 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
941 goto unmap;
942 }
943
944 trans_len = MIN(len, n->page_size);
945 status = nvme_map_addr(n, sg, prp_ent, trans_len);
946 if (status) {
947 goto unmap;
948 }
949
950 len -= trans_len;
951 i++;
952 }
953 } else {
954 if (unlikely(prp2 & (n->page_size - 1))) {
955 trace_pci_nvme_err_invalid_prp2_align(prp2);
956 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
957 goto unmap;
958 }
959 status = nvme_map_addr(n, sg, prp2, len);
960 if (status) {
961 goto unmap;
962 }
963 }
964 }
965
966 return NVME_SUCCESS;
967
968 unmap:
969 nvme_sg_unmap(sg);
970 return status;
971 }
972
973 /*
974 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
975 * number of bytes mapped in len.
976 */
977 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
978 NvmeSglDescriptor *segment, uint64_t nsgld,
979 size_t *len, NvmeCmd *cmd)
980 {
981 dma_addr_t addr, trans_len;
982 uint32_t dlen;
983 uint16_t status;
984
985 for (int i = 0; i < nsgld; i++) {
986 uint8_t type = NVME_SGL_TYPE(segment[i].type);
987
988 switch (type) {
989 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
990 break;
991 case NVME_SGL_DESCR_TYPE_SEGMENT:
992 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
993 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
994 default:
995 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
996 }
997
998 dlen = le32_to_cpu(segment[i].len);
999
1000 if (!dlen) {
1001 continue;
1002 }
1003
1004 if (*len == 0) {
1005 /*
1006 * All data has been mapped, but the SGL contains additional
1007 * segments and/or descriptors. The controller might accept
1008 * ignoring the rest of the SGL.
1009 */
1010 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
1011 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
1012 break;
1013 }
1014
1015 trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
1016 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1017 }
1018
1019 trans_len = MIN(*len, dlen);
1020
1021 addr = le64_to_cpu(segment[i].addr);
1022
1023 if (UINT64_MAX - addr < dlen) {
1024 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1025 }
1026
1027 status = nvme_map_addr(n, sg, addr, trans_len);
1028 if (status) {
1029 return status;
1030 }
1031
1032 *len -= trans_len;
1033 }
1034
1035 return NVME_SUCCESS;
1036 }
1037
1038 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
1039 size_t len, NvmeCmd *cmd)
1040 {
1041 /*
1042 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
1043 * dynamically allocating a potentially huge SGL. The spec allows the SGL
1044 * to be larger (as in number of bytes required to describe the SGL
1045 * descriptors and segment chain) than the command transfer size, so it is
1046 * not bounded by MDTS.
1047 */
1048 #define SEG_CHUNK_SIZE 256
1049
1050 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
1051 uint64_t nsgld;
1052 uint32_t seg_len;
1053 uint16_t status;
1054 hwaddr addr;
1055 int ret;
1056
1057 sgld = &sgl;
1058 addr = le64_to_cpu(sgl.addr);
1059
1060 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
1061
1062 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
1063
1064 /*
1065 * If the entire transfer can be described with a single data block it can
1066 * be mapped directly.
1067 */
1068 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1069 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
1070 if (status) {
1071 goto unmap;
1072 }
1073
1074 goto out;
1075 }
1076
1077 for (;;) {
1078 switch (NVME_SGL_TYPE(sgld->type)) {
1079 case NVME_SGL_DESCR_TYPE_SEGMENT:
1080 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
1081 break;
1082 default:
1083 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1084 }
1085
1086 seg_len = le32_to_cpu(sgld->len);
1087
1088 /* check the length of the (Last) Segment descriptor */
1089 if (!seg_len || seg_len & 0xf) {
1090 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1091 }
1092
1093 if (UINT64_MAX - addr < seg_len) {
1094 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1095 }
1096
1097 nsgld = seg_len / sizeof(NvmeSglDescriptor);
1098
1099 while (nsgld > SEG_CHUNK_SIZE) {
1100 if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
1101 trace_pci_nvme_err_addr_read(addr);
1102 status = NVME_DATA_TRAS_ERROR;
1103 goto unmap;
1104 }
1105
1106 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
1107 &len, cmd);
1108 if (status) {
1109 goto unmap;
1110 }
1111
1112 nsgld -= SEG_CHUNK_SIZE;
1113 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
1114 }
1115
1116 ret = nvme_addr_read(n, addr, segment, nsgld *
1117 sizeof(NvmeSglDescriptor));
1118 if (ret) {
1119 trace_pci_nvme_err_addr_read(addr);
1120 status = NVME_DATA_TRAS_ERROR;
1121 goto unmap;
1122 }
1123
1124 last_sgld = &segment[nsgld - 1];
1125
1126 /*
1127 * If the segment ends with a Data Block, then we are done.
1128 */
1129 if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1130 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
1131 if (status) {
1132 goto unmap;
1133 }
1134
1135 goto out;
1136 }
1137
1138 /*
1139 * If the last descriptor was not a Data Block, then the current
1140 * segment must not be a Last Segment.
1141 */
1142 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1143 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1144 goto unmap;
1145 }
1146
1147 sgld = last_sgld;
1148 addr = le64_to_cpu(sgld->addr);
1149
1150 /*
1151 * Do not map the last descriptor; it will be a Segment or Last Segment
1152 * descriptor and is handled by the next iteration.
1153 */
1154 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1155 if (status) {
1156 goto unmap;
1157 }
1158 }
1159
1160 out:
1161 /* if there is any residual left in len, the SGL was too short */
1162 if (len) {
1163 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1164 goto unmap;
1165 }
1166
1167 return NVME_SUCCESS;
1168
1169 unmap:
1170 nvme_sg_unmap(sg);
1171 return status;
1172 }
1173
1174 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1175 NvmeCmd *cmd)
1176 {
1177 uint64_t prp1, prp2;
1178
1179 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1180 case NVME_PSDT_PRP:
1181 prp1 = le64_to_cpu(cmd->dptr.prp1);
1182 prp2 = le64_to_cpu(cmd->dptr.prp2);
1183
1184 return nvme_map_prp(n, sg, prp1, prp2, len);
1185 case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1186 case NVME_PSDT_SGL_MPTR_SGL:
1187 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1188 default:
1189 return NVME_INVALID_FIELD;
1190 }
1191 }
1192
1193 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1194 NvmeCmd *cmd)
1195 {
1196 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1197 hwaddr mptr = le64_to_cpu(cmd->mptr);
1198 uint16_t status;
1199
1200 if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1201 NvmeSglDescriptor sgl;
1202
1203 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1204 return NVME_DATA_TRAS_ERROR;
1205 }
1206
1207 status = nvme_map_sgl(n, sg, sgl, len, cmd);
1208 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1209 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1210 }
1211
1212 return status;
1213 }
1214
1215 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1216 status = nvme_map_addr(n, sg, mptr, len);
1217 if (status) {
1218 nvme_sg_unmap(sg);
1219 }
1220
1221 return status;
1222 }
1223
1224 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1225 {
1226 NvmeNamespace *ns = req->ns;
1227 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1228 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1229 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1230 size_t len = nvme_l2b(ns, nlb);
1231 uint16_t status;
1232
1233 if (nvme_ns_ext(ns) &&
1234 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1235 NvmeSg sg;
1236
1237 len += nvme_m2b(ns, nlb);
1238
1239 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1240 if (status) {
1241 return status;
1242 }
1243
1244 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1245 nvme_sg_split(&sg, ns, &req->sg, NULL);
1246 nvme_sg_unmap(&sg);
1247
1248 return NVME_SUCCESS;
1249 }
1250
1251 return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1252 }
1253
1254 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1255 {
1256 NvmeNamespace *ns = req->ns;
1257 size_t len = nvme_m2b(ns, nlb);
1258 uint16_t status;
1259
1260 if (nvme_ns_ext(ns)) {
1261 NvmeSg sg;
1262
1263 len += nvme_l2b(ns, nlb);
1264
1265 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1266 if (status) {
1267 return status;
1268 }
1269
1270 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1271 nvme_sg_split(&sg, ns, NULL, &req->sg);
1272 nvme_sg_unmap(&sg);
1273
1274 return NVME_SUCCESS;
1275 }
1276
1277 return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1278 }
1279
1280 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1281 uint32_t len, uint32_t bytes,
1282 int32_t skip_bytes, int64_t offset,
1283 NvmeTxDirection dir)
1284 {
1285 hwaddr addr;
1286 uint32_t trans_len, count = bytes;
1287 bool dma = sg->flags & NVME_SG_DMA;
1288 int64_t sge_len;
1289 int sg_idx = 0;
1290 int ret;
1291
1292 assert(sg->flags & NVME_SG_ALLOC);
1293
1294 while (len) {
1295 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1296
1297 if (sge_len - offset < 0) {
1298 offset -= sge_len;
1299 sg_idx++;
1300 continue;
1301 }
1302
1303 if (sge_len == offset) {
1304 offset = 0;
1305 sg_idx++;
1306 continue;
1307 }
1308
1309 trans_len = MIN(len, count);
1310 trans_len = MIN(trans_len, sge_len - offset);
1311
1312 if (dma) {
1313 addr = sg->qsg.sg[sg_idx].base + offset;
1314 } else {
1315 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1316 }
1317
1318 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1319 ret = nvme_addr_read(n, addr, ptr, trans_len);
1320 } else {
1321 ret = nvme_addr_write(n, addr, ptr, trans_len);
1322 }
1323
1324 if (ret) {
1325 return NVME_DATA_TRAS_ERROR;
1326 }
1327
1328 ptr += trans_len;
1329 len -= trans_len;
1330 count -= trans_len;
1331 offset += trans_len;
1332
1333 if (count == 0) {
1334 count = bytes;
1335 offset += skip_bytes;
1336 }
1337 }
1338
1339 return NVME_SUCCESS;
1340 }
1341
1342 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1343 NvmeTxDirection dir)
1344 {
1345 assert(sg->flags & NVME_SG_ALLOC);
1346
1347 if (sg->flags & NVME_SG_DMA) {
1348 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1349 dma_addr_t residual;
1350
1351 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1352 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1353 } else {
1354 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1355 }
1356
1357 if (unlikely(residual)) {
1358 trace_pci_nvme_err_invalid_dma();
1359 return NVME_INVALID_FIELD | NVME_DNR;
1360 }
1361 } else {
1362 size_t bytes;
1363
1364 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1365 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1366 } else {
1367 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1368 }
1369
1370 if (unlikely(bytes != len)) {
1371 trace_pci_nvme_err_invalid_dma();
1372 return NVME_INVALID_FIELD | NVME_DNR;
1373 }
1374 }
1375
1376 return NVME_SUCCESS;
1377 }
1378
1379 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1380 NvmeRequest *req)
1381 {
1382 uint16_t status;
1383
1384 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1385 if (status) {
1386 return status;
1387 }
1388
1389 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1390 }
1391
1392 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1393 NvmeRequest *req)
1394 {
1395 uint16_t status;
1396
1397 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1398 if (status) {
1399 return status;
1400 }
1401
1402 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1403 }
1404
1405 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1406 NvmeTxDirection dir, NvmeRequest *req)
1407 {
1408 NvmeNamespace *ns = req->ns;
1409 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1410 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1411 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1412
1413 if (nvme_ns_ext(ns) &&
1414 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1415 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1416 ns->lbaf.ms, 0, dir);
1417 }
1418
1419 return nvme_tx(n, &req->sg, ptr, len, dir);
1420 }
1421
1422 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1423 NvmeTxDirection dir, NvmeRequest *req)
1424 {
1425 NvmeNamespace *ns = req->ns;
1426 uint16_t status;
1427
1428 if (nvme_ns_ext(ns)) {
1429 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1430 ns->lbasz, ns->lbasz, dir);
1431 }
1432
1433 nvme_sg_unmap(&req->sg);
1434
1435 status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1436 if (status) {
1437 return status;
1438 }
1439
1440 return nvme_tx(n, &req->sg, ptr, len, dir);
1441 }
1442
1443 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1444 uint32_t align, BlockCompletionFunc *cb,
1445 NvmeRequest *req)
1446 {
1447 assert(req->sg.flags & NVME_SG_ALLOC);
1448
1449 if (req->sg.flags & NVME_SG_DMA) {
1450 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req);
1451 } else {
1452 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1453 }
1454 }
1455
1456 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1457 uint32_t align, BlockCompletionFunc *cb,
1458 NvmeRequest *req)
1459 {
1460 assert(req->sg.flags & NVME_SG_ALLOC);
1461
1462 if (req->sg.flags & NVME_SG_DMA) {
1463 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req);
1464 } else {
1465 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1466 }
1467 }
1468
1469 static void nvme_update_cq_eventidx(const NvmeCQueue *cq)
1470 {
1471 trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head);
1472
1473 stl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->ei_addr, cq->head,
1474 MEMTXATTRS_UNSPECIFIED);
1475 }
1476
1477 static void nvme_update_cq_head(NvmeCQueue *cq)
1478 {
1479 ldl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->db_addr, &cq->head,
1480 MEMTXATTRS_UNSPECIFIED);
1481
1482 trace_pci_nvme_update_cq_head(cq->cqid, cq->head);
1483 }
1484
1485 static void nvme_post_cqes(void *opaque)
1486 {
1487 NvmeCQueue *cq = opaque;
1488 NvmeCtrl *n = cq->ctrl;
1489 NvmeRequest *req, *next;
1490 bool pending = cq->head != cq->tail;
1491 int ret;
1492
1493 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1494 NvmeSQueue *sq;
1495 hwaddr addr;
1496
1497 if (n->dbbuf_enabled) {
1498 nvme_update_cq_eventidx(cq);
1499 nvme_update_cq_head(cq);
1500 }
1501
1502 if (nvme_cq_full(cq)) {
1503 break;
1504 }
1505
1506 sq = req->sq;
1507 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1508 req->cqe.sq_id = cpu_to_le16(sq->sqid);
1509 req->cqe.sq_head = cpu_to_le16(sq->head);
1510 addr = cq->dma_addr + (cq->tail << NVME_CQES);
1511 ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe,
1512 sizeof(req->cqe));
1513 if (ret) {
1514 trace_pci_nvme_err_addr_write(addr);
1515 trace_pci_nvme_err_cfs();
1516 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1517 break;
1518 }
1519 QTAILQ_REMOVE(&cq->req_list, req, entry);
1520 nvme_inc_cq_tail(cq);
1521 nvme_sg_unmap(&req->sg);
1522 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1523 }
1524 if (cq->tail != cq->head) {
1525 if (cq->irq_enabled && !pending) {
1526 n->cq_pending++;
1527 }
1528
1529 nvme_irq_assert(n, cq);
1530 }
1531 }
1532
1533 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1534 {
1535 assert(cq->cqid == req->sq->cqid);
1536 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1537 le32_to_cpu(req->cqe.result),
1538 le32_to_cpu(req->cqe.dw1),
1539 req->status);
1540
1541 if (req->status) {
1542 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1543 req->status, req->cmd.opcode);
1544 }
1545
1546 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1547 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1548
1549 qemu_bh_schedule(cq->bh);
1550 }
1551
1552 static void nvme_process_aers(void *opaque)
1553 {
1554 NvmeCtrl *n = opaque;
1555 NvmeAsyncEvent *event, *next;
1556
1557 trace_pci_nvme_process_aers(n->aer_queued);
1558
1559 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1560 NvmeRequest *req;
1561 NvmeAerResult *result;
1562
1563 /* can't post cqe if there is nothing to complete */
1564 if (!n->outstanding_aers) {
1565 trace_pci_nvme_no_outstanding_aers();
1566 break;
1567 }
1568
1569 /* ignore if masked (cqe posted, but event not cleared) */
1570 if (n->aer_mask & (1 << event->result.event_type)) {
1571 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1572 continue;
1573 }
1574
1575 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1576 n->aer_queued--;
1577
1578 n->aer_mask |= 1 << event->result.event_type;
1579 n->outstanding_aers--;
1580
1581 req = n->aer_reqs[n->outstanding_aers];
1582
1583 result = (NvmeAerResult *) &req->cqe.result;
1584 result->event_type = event->result.event_type;
1585 result->event_info = event->result.event_info;
1586 result->log_page = event->result.log_page;
1587 g_free(event);
1588
1589 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1590 result->log_page);
1591
1592 nvme_enqueue_req_completion(&n->admin_cq, req);
1593 }
1594 }
1595
1596 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1597 uint8_t event_info, uint8_t log_page)
1598 {
1599 NvmeAsyncEvent *event;
1600
1601 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1602
1603 if (n->aer_queued == n->params.aer_max_queued) {
1604 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1605 return;
1606 }
1607
1608 event = g_new(NvmeAsyncEvent, 1);
1609 event->result = (NvmeAerResult) {
1610 .event_type = event_type,
1611 .event_info = event_info,
1612 .log_page = log_page,
1613 };
1614
1615 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1616 n->aer_queued++;
1617
1618 nvme_process_aers(n);
1619 }
1620
1621 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1622 {
1623 uint8_t aer_info;
1624
1625 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1626 if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1627 return;
1628 }
1629
1630 switch (event) {
1631 case NVME_SMART_SPARE:
1632 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1633 break;
1634 case NVME_SMART_TEMPERATURE:
1635 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1636 break;
1637 case NVME_SMART_RELIABILITY:
1638 case NVME_SMART_MEDIA_READ_ONLY:
1639 case NVME_SMART_FAILED_VOLATILE_MEDIA:
1640 case NVME_SMART_PMR_UNRELIABLE:
1641 aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1642 break;
1643 default:
1644 return;
1645 }
1646
1647 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1648 }
1649
1650 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1651 {
1652 n->aer_mask &= ~(1 << event_type);
1653 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1654 nvme_process_aers(n);
1655 }
1656 }
1657
1658 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1659 {
1660 uint8_t mdts = n->params.mdts;
1661
1662 if (mdts && len > n->page_size << mdts) {
1663 trace_pci_nvme_err_mdts(len);
1664 return NVME_INVALID_FIELD | NVME_DNR;
1665 }
1666
1667 return NVME_SUCCESS;
1668 }
1669
1670 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1671 uint32_t nlb)
1672 {
1673 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1674
1675 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1676 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1677 return NVME_LBA_RANGE | NVME_DNR;
1678 }
1679
1680 return NVME_SUCCESS;
1681 }
1682
1683 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1684 uint32_t nlb, int flags)
1685 {
1686 BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1687
1688 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1689 int64_t offset = nvme_l2b(ns, slba);
1690 int ret;
1691
1692 /*
1693 * `pnum` holds the number of bytes after offset that shares the same
1694 * allocation status as the byte at offset. If `pnum` is different from
1695 * `bytes`, we should check the allocation status of the next range and
1696 * continue this until all bytes have been checked.
1697 */
1698 do {
1699 bytes -= pnum;
1700
1701 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1702 if (ret < 0) {
1703 return ret;
1704 }
1705
1706
1707 trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1708 !!(ret & BDRV_BLOCK_ZERO));
1709
1710 if (!(ret & flags)) {
1711 return 1;
1712 }
1713
1714 offset += pnum;
1715 } while (pnum != bytes);
1716
1717 return 0;
1718 }
1719
1720 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1721 uint32_t nlb)
1722 {
1723 int ret;
1724 Error *err = NULL;
1725
1726 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1727 if (ret) {
1728 if (ret < 0) {
1729 error_setg_errno(&err, -ret, "unable to get block status");
1730 error_report_err(err);
1731
1732 return NVME_INTERNAL_DEV_ERROR;
1733 }
1734
1735 return NVME_DULB;
1736 }
1737
1738 return NVME_SUCCESS;
1739 }
1740
1741 static void nvme_aio_err(NvmeRequest *req, int ret)
1742 {
1743 uint16_t status = NVME_SUCCESS;
1744 Error *local_err = NULL;
1745
1746 switch (req->cmd.opcode) {
1747 case NVME_CMD_READ:
1748 status = NVME_UNRECOVERED_READ;
1749 break;
1750 case NVME_CMD_FLUSH:
1751 case NVME_CMD_WRITE:
1752 case NVME_CMD_WRITE_ZEROES:
1753 case NVME_CMD_ZONE_APPEND:
1754 case NVME_CMD_COPY:
1755 status = NVME_WRITE_FAULT;
1756 break;
1757 default:
1758 status = NVME_INTERNAL_DEV_ERROR;
1759 break;
1760 }
1761
1762 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1763
1764 error_setg_errno(&local_err, -ret, "aio failed");
1765 error_report_err(local_err);
1766
1767 /*
1768 * Set the command status code to the first encountered error but allow a
1769 * subsequent Internal Device Error to trump it.
1770 */
1771 if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1772 return;
1773 }
1774
1775 req->status = status;
1776 }
1777
1778 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1779 {
1780 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1781 slba / ns->zone_size;
1782 }
1783
1784 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1785 {
1786 uint32_t zone_idx = nvme_zone_idx(ns, slba);
1787
1788 if (zone_idx >= ns->num_zones) {
1789 return NULL;
1790 }
1791
1792 return &ns->zone_array[zone_idx];
1793 }
1794
1795 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1796 {
1797 uint64_t zslba = zone->d.zslba;
1798
1799 switch (nvme_get_zone_state(zone)) {
1800 case NVME_ZONE_STATE_EMPTY:
1801 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1802 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1803 case NVME_ZONE_STATE_CLOSED:
1804 return NVME_SUCCESS;
1805 case NVME_ZONE_STATE_FULL:
1806 trace_pci_nvme_err_zone_is_full(zslba);
1807 return NVME_ZONE_FULL;
1808 case NVME_ZONE_STATE_OFFLINE:
1809 trace_pci_nvme_err_zone_is_offline(zslba);
1810 return NVME_ZONE_OFFLINE;
1811 case NVME_ZONE_STATE_READ_ONLY:
1812 trace_pci_nvme_err_zone_is_read_only(zslba);
1813 return NVME_ZONE_READ_ONLY;
1814 default:
1815 assert(false);
1816 }
1817
1818 return NVME_INTERNAL_DEV_ERROR;
1819 }
1820
1821 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1822 uint64_t slba, uint32_t nlb)
1823 {
1824 uint64_t zcap = nvme_zone_wr_boundary(zone);
1825 uint16_t status;
1826
1827 status = nvme_check_zone_state_for_write(zone);
1828 if (status) {
1829 return status;
1830 }
1831
1832 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1833 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1834
1835 if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1836 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1837 return NVME_ZONE_INVALID_WRITE;
1838 }
1839 } else {
1840 if (unlikely(slba != zone->w_ptr)) {
1841 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1842 zone->w_ptr);
1843 return NVME_ZONE_INVALID_WRITE;
1844 }
1845 }
1846
1847 if (unlikely((slba + nlb) > zcap)) {
1848 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1849 return NVME_ZONE_BOUNDARY_ERROR;
1850 }
1851
1852 return NVME_SUCCESS;
1853 }
1854
1855 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1856 {
1857 switch (nvme_get_zone_state(zone)) {
1858 case NVME_ZONE_STATE_EMPTY:
1859 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1860 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1861 case NVME_ZONE_STATE_FULL:
1862 case NVME_ZONE_STATE_CLOSED:
1863 case NVME_ZONE_STATE_READ_ONLY:
1864 return NVME_SUCCESS;
1865 case NVME_ZONE_STATE_OFFLINE:
1866 trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1867 return NVME_ZONE_OFFLINE;
1868 default:
1869 assert(false);
1870 }
1871
1872 return NVME_INTERNAL_DEV_ERROR;
1873 }
1874
1875 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1876 uint32_t nlb)
1877 {
1878 NvmeZone *zone;
1879 uint64_t bndry, end;
1880 uint16_t status;
1881
1882 zone = nvme_get_zone_by_slba(ns, slba);
1883 assert(zone);
1884
1885 bndry = nvme_zone_rd_boundary(ns, zone);
1886 end = slba + nlb;
1887
1888 status = nvme_check_zone_state_for_read(zone);
1889 if (status) {
1890 ;
1891 } else if (unlikely(end > bndry)) {
1892 if (!ns->params.cross_zone_read) {
1893 status = NVME_ZONE_BOUNDARY_ERROR;
1894 } else {
1895 /*
1896 * Read across zone boundary - check that all subsequent
1897 * zones that are being read have an appropriate state.
1898 */
1899 do {
1900 zone++;
1901 status = nvme_check_zone_state_for_read(zone);
1902 if (status) {
1903 break;
1904 }
1905 } while (end > nvme_zone_rd_boundary(ns, zone));
1906 }
1907 }
1908
1909 return status;
1910 }
1911
1912 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1913 {
1914 switch (nvme_get_zone_state(zone)) {
1915 case NVME_ZONE_STATE_FULL:
1916 return NVME_SUCCESS;
1917
1918 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1919 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1920 nvme_aor_dec_open(ns);
1921 /* fallthrough */
1922 case NVME_ZONE_STATE_CLOSED:
1923 nvme_aor_dec_active(ns);
1924
1925 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1926 zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1927 if (ns->params.numzrwa) {
1928 ns->zns.numzrwa++;
1929 }
1930 }
1931
1932 /* fallthrough */
1933 case NVME_ZONE_STATE_EMPTY:
1934 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1935 return NVME_SUCCESS;
1936
1937 default:
1938 return NVME_ZONE_INVAL_TRANSITION;
1939 }
1940 }
1941
1942 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1943 {
1944 switch (nvme_get_zone_state(zone)) {
1945 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1946 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1947 nvme_aor_dec_open(ns);
1948 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1949 /* fall through */
1950 case NVME_ZONE_STATE_CLOSED:
1951 return NVME_SUCCESS;
1952
1953 default:
1954 return NVME_ZONE_INVAL_TRANSITION;
1955 }
1956 }
1957
1958 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1959 {
1960 switch (nvme_get_zone_state(zone)) {
1961 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1962 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1963 nvme_aor_dec_open(ns);
1964 /* fallthrough */
1965 case NVME_ZONE_STATE_CLOSED:
1966 nvme_aor_dec_active(ns);
1967
1968 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1969 if (ns->params.numzrwa) {
1970 ns->zns.numzrwa++;
1971 }
1972 }
1973
1974 /* fallthrough */
1975 case NVME_ZONE_STATE_FULL:
1976 zone->w_ptr = zone->d.zslba;
1977 zone->d.wp = zone->w_ptr;
1978 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1979 /* fallthrough */
1980 case NVME_ZONE_STATE_EMPTY:
1981 return NVME_SUCCESS;
1982
1983 default:
1984 return NVME_ZONE_INVAL_TRANSITION;
1985 }
1986 }
1987
1988 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1989 {
1990 NvmeZone *zone;
1991
1992 if (ns->params.max_open_zones &&
1993 ns->nr_open_zones == ns->params.max_open_zones) {
1994 zone = QTAILQ_FIRST(&ns->imp_open_zones);
1995 if (zone) {
1996 /*
1997 * Automatically close this implicitly open zone.
1998 */
1999 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
2000 nvme_zrm_close(ns, zone);
2001 }
2002 }
2003 }
2004
2005 enum {
2006 NVME_ZRM_AUTO = 1 << 0,
2007 NVME_ZRM_ZRWA = 1 << 1,
2008 };
2009
2010 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
2011 NvmeZone *zone, int flags)
2012 {
2013 int act = 0;
2014 uint16_t status;
2015
2016 switch (nvme_get_zone_state(zone)) {
2017 case NVME_ZONE_STATE_EMPTY:
2018 act = 1;
2019
2020 /* fallthrough */
2021
2022 case NVME_ZONE_STATE_CLOSED:
2023 if (n->params.auto_transition_zones) {
2024 nvme_zrm_auto_transition_zone(ns);
2025 }
2026 status = nvme_zns_check_resources(ns, act, 1,
2027 (flags & NVME_ZRM_ZRWA) ? 1 : 0);
2028 if (status) {
2029 return status;
2030 }
2031
2032 if (act) {
2033 nvme_aor_inc_active(ns);
2034 }
2035
2036 nvme_aor_inc_open(ns);
2037
2038 if (flags & NVME_ZRM_AUTO) {
2039 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
2040 return NVME_SUCCESS;
2041 }
2042
2043 /* fallthrough */
2044
2045 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
2046 if (flags & NVME_ZRM_AUTO) {
2047 return NVME_SUCCESS;
2048 }
2049
2050 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
2051
2052 /* fallthrough */
2053
2054 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
2055 if (flags & NVME_ZRM_ZRWA) {
2056 ns->zns.numzrwa--;
2057
2058 zone->d.za |= NVME_ZA_ZRWA_VALID;
2059 }
2060
2061 return NVME_SUCCESS;
2062
2063 default:
2064 return NVME_ZONE_INVAL_TRANSITION;
2065 }
2066 }
2067
2068 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
2069 NvmeZone *zone)
2070 {
2071 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
2072 }
2073
2074 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
2075 uint32_t nlb)
2076 {
2077 zone->d.wp += nlb;
2078
2079 if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
2080 nvme_zrm_finish(ns, zone);
2081 }
2082 }
2083
2084 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
2085 uint32_t nlbc)
2086 {
2087 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
2088
2089 nlbc = nzrwafgs * ns->zns.zrwafg;
2090
2091 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
2092
2093 zone->w_ptr += nlbc;
2094
2095 nvme_advance_zone_wp(ns, zone, nlbc);
2096 }
2097
2098 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
2099 {
2100 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2101 NvmeZone *zone;
2102 uint64_t slba;
2103 uint32_t nlb;
2104
2105 slba = le64_to_cpu(rw->slba);
2106 nlb = le16_to_cpu(rw->nlb) + 1;
2107 zone = nvme_get_zone_by_slba(ns, slba);
2108 assert(zone);
2109
2110 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
2111 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
2112 uint64_t elba = slba + nlb - 1;
2113
2114 if (elba > ezrwa) {
2115 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
2116 }
2117
2118 return;
2119 }
2120
2121 nvme_advance_zone_wp(ns, zone, nlb);
2122 }
2123
2124 static inline bool nvme_is_write(NvmeRequest *req)
2125 {
2126 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2127
2128 return rw->opcode == NVME_CMD_WRITE ||
2129 rw->opcode == NVME_CMD_ZONE_APPEND ||
2130 rw->opcode == NVME_CMD_WRITE_ZEROES;
2131 }
2132
2133 static void nvme_misc_cb(void *opaque, int ret)
2134 {
2135 NvmeRequest *req = opaque;
2136
2137 trace_pci_nvme_misc_cb(nvme_cid(req));
2138
2139 if (ret) {
2140 nvme_aio_err(req, ret);
2141 }
2142
2143 nvme_enqueue_req_completion(nvme_cq(req), req);
2144 }
2145
2146 void nvme_rw_complete_cb(void *opaque, int ret)
2147 {
2148 NvmeRequest *req = opaque;
2149 NvmeNamespace *ns = req->ns;
2150 BlockBackend *blk = ns->blkconf.blk;
2151 BlockAcctCookie *acct = &req->acct;
2152 BlockAcctStats *stats = blk_get_stats(blk);
2153
2154 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2155
2156 if (ret) {
2157 block_acct_failed(stats, acct);
2158 nvme_aio_err(req, ret);
2159 } else {
2160 block_acct_done(stats, acct);
2161 }
2162
2163 if (ns->params.zoned && nvme_is_write(req)) {
2164 nvme_finalize_zoned_write(ns, req);
2165 }
2166
2167 nvme_enqueue_req_completion(nvme_cq(req), req);
2168 }
2169
2170 static void nvme_rw_cb(void *opaque, int ret)
2171 {
2172 NvmeRequest *req = opaque;
2173 NvmeNamespace *ns = req->ns;
2174
2175 BlockBackend *blk = ns->blkconf.blk;
2176
2177 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2178
2179 if (ret) {
2180 goto out;
2181 }
2182
2183 if (ns->lbaf.ms) {
2184 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2185 uint64_t slba = le64_to_cpu(rw->slba);
2186 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2187 uint64_t offset = nvme_moff(ns, slba);
2188
2189 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2190 size_t mlen = nvme_m2b(ns, nlb);
2191
2192 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2193 BDRV_REQ_MAY_UNMAP,
2194 nvme_rw_complete_cb, req);
2195 return;
2196 }
2197
2198 if (nvme_ns_ext(ns) || req->cmd.mptr) {
2199 uint16_t status;
2200
2201 nvme_sg_unmap(&req->sg);
2202 status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2203 if (status) {
2204 ret = -EFAULT;
2205 goto out;
2206 }
2207
2208 if (req->cmd.opcode == NVME_CMD_READ) {
2209 return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req);
2210 }
2211
2212 return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req);
2213 }
2214 }
2215
2216 out:
2217 nvme_rw_complete_cb(req, ret);
2218 }
2219
2220 static void nvme_verify_cb(void *opaque, int ret)
2221 {
2222 NvmeBounceContext *ctx = opaque;
2223 NvmeRequest *req = ctx->req;
2224 NvmeNamespace *ns = req->ns;
2225 BlockBackend *blk = ns->blkconf.blk;
2226 BlockAcctCookie *acct = &req->acct;
2227 BlockAcctStats *stats = blk_get_stats(blk);
2228 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2229 uint64_t slba = le64_to_cpu(rw->slba);
2230 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2231 uint16_t apptag = le16_to_cpu(rw->apptag);
2232 uint16_t appmask = le16_to_cpu(rw->appmask);
2233 uint64_t reftag = le32_to_cpu(rw->reftag);
2234 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2235 uint16_t status;
2236
2237 reftag |= cdw3 << 32;
2238
2239 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2240
2241 if (ret) {
2242 block_acct_failed(stats, acct);
2243 nvme_aio_err(req, ret);
2244 goto out;
2245 }
2246
2247 block_acct_done(stats, acct);
2248
2249 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2250 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2251 ctx->mdata.iov.size, slba);
2252 if (status) {
2253 req->status = status;
2254 goto out;
2255 }
2256
2257 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2258 ctx->mdata.bounce, ctx->mdata.iov.size,
2259 prinfo, slba, apptag, appmask, &reftag);
2260 }
2261
2262 out:
2263 qemu_iovec_destroy(&ctx->data.iov);
2264 g_free(ctx->data.bounce);
2265
2266 qemu_iovec_destroy(&ctx->mdata.iov);
2267 g_free(ctx->mdata.bounce);
2268
2269 g_free(ctx);
2270
2271 nvme_enqueue_req_completion(nvme_cq(req), req);
2272 }
2273
2274
2275 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2276 {
2277 NvmeBounceContext *ctx = opaque;
2278 NvmeRequest *req = ctx->req;
2279 NvmeNamespace *ns = req->ns;
2280 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2281 uint64_t slba = le64_to_cpu(rw->slba);
2282 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2283 size_t mlen = nvme_m2b(ns, nlb);
2284 uint64_t offset = nvme_moff(ns, slba);
2285 BlockBackend *blk = ns->blkconf.blk;
2286
2287 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2288
2289 if (ret) {
2290 goto out;
2291 }
2292
2293 ctx->mdata.bounce = g_malloc(mlen);
2294
2295 qemu_iovec_reset(&ctx->mdata.iov);
2296 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2297
2298 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2299 nvme_verify_cb, ctx);
2300 return;
2301
2302 out:
2303 nvme_verify_cb(ctx, ret);
2304 }
2305
2306 struct nvme_compare_ctx {
2307 struct {
2308 QEMUIOVector iov;
2309 uint8_t *bounce;
2310 } data;
2311
2312 struct {
2313 QEMUIOVector iov;
2314 uint8_t *bounce;
2315 } mdata;
2316 };
2317
2318 static void nvme_compare_mdata_cb(void *opaque, int ret)
2319 {
2320 NvmeRequest *req = opaque;
2321 NvmeNamespace *ns = req->ns;
2322 NvmeCtrl *n = nvme_ctrl(req);
2323 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2324 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2325 uint16_t apptag = le16_to_cpu(rw->apptag);
2326 uint16_t appmask = le16_to_cpu(rw->appmask);
2327 uint64_t reftag = le32_to_cpu(rw->reftag);
2328 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2329 struct nvme_compare_ctx *ctx = req->opaque;
2330 g_autofree uint8_t *buf = NULL;
2331 BlockBackend *blk = ns->blkconf.blk;
2332 BlockAcctCookie *acct = &req->acct;
2333 BlockAcctStats *stats = blk_get_stats(blk);
2334 uint16_t status = NVME_SUCCESS;
2335
2336 reftag |= cdw3 << 32;
2337
2338 trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2339
2340 if (ret) {
2341 block_acct_failed(stats, acct);
2342 nvme_aio_err(req, ret);
2343 goto out;
2344 }
2345
2346 buf = g_malloc(ctx->mdata.iov.size);
2347
2348 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2349 NVME_TX_DIRECTION_TO_DEVICE, req);
2350 if (status) {
2351 req->status = status;
2352 goto out;
2353 }
2354
2355 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2356 uint64_t slba = le64_to_cpu(rw->slba);
2357 uint8_t *bufp;
2358 uint8_t *mbufp = ctx->mdata.bounce;
2359 uint8_t *end = mbufp + ctx->mdata.iov.size;
2360 int16_t pil = 0;
2361
2362 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2363 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2364 slba, apptag, appmask, &reftag);
2365 if (status) {
2366 req->status = status;
2367 goto out;
2368 }
2369
2370 /*
2371 * When formatted with protection information, do not compare the DIF
2372 * tuple.
2373 */
2374 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2375 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2376 }
2377
2378 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2379 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2380 req->status = NVME_CMP_FAILURE | NVME_DNR;
2381 goto out;
2382 }
2383 }
2384
2385 goto out;
2386 }
2387
2388 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2389 req->status = NVME_CMP_FAILURE | NVME_DNR;
2390 goto out;
2391 }
2392
2393 block_acct_done(stats, acct);
2394
2395 out:
2396 qemu_iovec_destroy(&ctx->data.iov);
2397 g_free(ctx->data.bounce);
2398
2399 qemu_iovec_destroy(&ctx->mdata.iov);
2400 g_free(ctx->mdata.bounce);
2401
2402 g_free(ctx);
2403
2404 nvme_enqueue_req_completion(nvme_cq(req), req);
2405 }
2406
2407 static void nvme_compare_data_cb(void *opaque, int ret)
2408 {
2409 NvmeRequest *req = opaque;
2410 NvmeCtrl *n = nvme_ctrl(req);
2411 NvmeNamespace *ns = req->ns;
2412 BlockBackend *blk = ns->blkconf.blk;
2413 BlockAcctCookie *acct = &req->acct;
2414 BlockAcctStats *stats = blk_get_stats(blk);
2415
2416 struct nvme_compare_ctx *ctx = req->opaque;
2417 g_autofree uint8_t *buf = NULL;
2418 uint16_t status;
2419
2420 trace_pci_nvme_compare_data_cb(nvme_cid(req));
2421
2422 if (ret) {
2423 block_acct_failed(stats, acct);
2424 nvme_aio_err(req, ret);
2425 goto out;
2426 }
2427
2428 buf = g_malloc(ctx->data.iov.size);
2429
2430 status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2431 NVME_TX_DIRECTION_TO_DEVICE, req);
2432 if (status) {
2433 req->status = status;
2434 goto out;
2435 }
2436
2437 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2438 req->status = NVME_CMP_FAILURE | NVME_DNR;
2439 goto out;
2440 }
2441
2442 if (ns->lbaf.ms) {
2443 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2444 uint64_t slba = le64_to_cpu(rw->slba);
2445 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2446 size_t mlen = nvme_m2b(ns, nlb);
2447 uint64_t offset = nvme_moff(ns, slba);
2448
2449 ctx->mdata.bounce = g_malloc(mlen);
2450
2451 qemu_iovec_init(&ctx->mdata.iov, 1);
2452 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2453
2454 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2455 nvme_compare_mdata_cb, req);
2456 return;
2457 }
2458
2459 block_acct_done(stats, acct);
2460
2461 out:
2462 qemu_iovec_destroy(&ctx->data.iov);
2463 g_free(ctx->data.bounce);
2464 g_free(ctx);
2465
2466 nvme_enqueue_req_completion(nvme_cq(req), req);
2467 }
2468
2469 typedef struct NvmeDSMAIOCB {
2470 BlockAIOCB common;
2471 BlockAIOCB *aiocb;
2472 NvmeRequest *req;
2473 int ret;
2474
2475 NvmeDsmRange *range;
2476 unsigned int nr;
2477 unsigned int idx;
2478 } NvmeDSMAIOCB;
2479
2480 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2481 {
2482 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2483
2484 /* break nvme_dsm_cb loop */
2485 iocb->idx = iocb->nr;
2486 iocb->ret = -ECANCELED;
2487
2488 if (iocb->aiocb) {
2489 blk_aio_cancel_async(iocb->aiocb);
2490 iocb->aiocb = NULL;
2491 } else {
2492 /*
2493 * We only reach this if nvme_dsm_cancel() has already been called or
2494 * the command ran to completion.
2495 */
2496 assert(iocb->idx == iocb->nr);
2497 }
2498 }
2499
2500 static const AIOCBInfo nvme_dsm_aiocb_info = {
2501 .aiocb_size = sizeof(NvmeDSMAIOCB),
2502 .cancel_async = nvme_dsm_cancel,
2503 };
2504
2505 static void nvme_dsm_cb(void *opaque, int ret);
2506
2507 static void nvme_dsm_md_cb(void *opaque, int ret)
2508 {
2509 NvmeDSMAIOCB *iocb = opaque;
2510 NvmeRequest *req = iocb->req;
2511 NvmeNamespace *ns = req->ns;
2512 NvmeDsmRange *range;
2513 uint64_t slba;
2514 uint32_t nlb;
2515
2516 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2517 goto done;
2518 }
2519
2520 range = &iocb->range[iocb->idx - 1];
2521 slba = le64_to_cpu(range->slba);
2522 nlb = le32_to_cpu(range->nlb);
2523
2524 /*
2525 * Check that all block were discarded (zeroed); otherwise we do not zero
2526 * the metadata.
2527 */
2528
2529 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2530 if (ret) {
2531 if (ret < 0) {
2532 goto done;
2533 }
2534
2535 nvme_dsm_cb(iocb, 0);
2536 return;
2537 }
2538
2539 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2540 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2541 nvme_dsm_cb, iocb);
2542 return;
2543
2544 done:
2545 nvme_dsm_cb(iocb, ret);
2546 }
2547
2548 static void nvme_dsm_cb(void *opaque, int ret)
2549 {
2550 NvmeDSMAIOCB *iocb = opaque;
2551 NvmeRequest *req = iocb->req;
2552 NvmeCtrl *n = nvme_ctrl(req);
2553 NvmeNamespace *ns = req->ns;
2554 NvmeDsmRange *range;
2555 uint64_t slba;
2556 uint32_t nlb;
2557
2558 if (iocb->ret < 0) {
2559 goto done;
2560 } else if (ret < 0) {
2561 iocb->ret = ret;
2562 goto done;
2563 }
2564
2565 next:
2566 if (iocb->idx == iocb->nr) {
2567 goto done;
2568 }
2569
2570 range = &iocb->range[iocb->idx++];
2571 slba = le64_to_cpu(range->slba);
2572 nlb = le32_to_cpu(range->nlb);
2573
2574 trace_pci_nvme_dsm_deallocate(slba, nlb);
2575
2576 if (nlb > n->dmrsl) {
2577 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2578 goto next;
2579 }
2580
2581 if (nvme_check_bounds(ns, slba, nlb)) {
2582 trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2583 ns->id_ns.nsze);
2584 goto next;
2585 }
2586
2587 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2588 nvme_l2b(ns, nlb),
2589 nvme_dsm_md_cb, iocb);
2590 return;
2591
2592 done:
2593 iocb->aiocb = NULL;
2594 iocb->common.cb(iocb->common.opaque, iocb->ret);
2595 qemu_aio_unref(iocb);
2596 }
2597
2598 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2599 {
2600 NvmeNamespace *ns = req->ns;
2601 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2602 uint32_t attr = le32_to_cpu(dsm->attributes);
2603 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2604 uint16_t status = NVME_SUCCESS;
2605
2606 trace_pci_nvme_dsm(nr, attr);
2607
2608 if (attr & NVME_DSMGMT_AD) {
2609 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2610 nvme_misc_cb, req);
2611
2612 iocb->req = req;
2613 iocb->ret = 0;
2614 iocb->range = g_new(NvmeDsmRange, nr);
2615 iocb->nr = nr;
2616 iocb->idx = 0;
2617
2618 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2619 req);
2620 if (status) {
2621 g_free(iocb->range);
2622 qemu_aio_unref(iocb);
2623
2624 return status;
2625 }
2626
2627 req->aiocb = &iocb->common;
2628 nvme_dsm_cb(iocb, 0);
2629
2630 return NVME_NO_COMPLETE;
2631 }
2632
2633 return status;
2634 }
2635
2636 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2637 {
2638 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2639 NvmeNamespace *ns = req->ns;
2640 BlockBackend *blk = ns->blkconf.blk;
2641 uint64_t slba = le64_to_cpu(rw->slba);
2642 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2643 size_t len = nvme_l2b(ns, nlb);
2644 int64_t offset = nvme_l2b(ns, slba);
2645 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2646 uint32_t reftag = le32_to_cpu(rw->reftag);
2647 NvmeBounceContext *ctx = NULL;
2648 uint16_t status;
2649
2650 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2651
2652 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2653 status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2654 if (status) {
2655 return status;
2656 }
2657
2658 if (prinfo & NVME_PRINFO_PRACT) {
2659 return NVME_INVALID_PROT_INFO | NVME_DNR;
2660 }
2661 }
2662
2663 if (len > n->page_size << n->params.vsl) {
2664 return NVME_INVALID_FIELD | NVME_DNR;
2665 }
2666
2667 status = nvme_check_bounds(ns, slba, nlb);
2668 if (status) {
2669 return status;
2670 }
2671
2672 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2673 status = nvme_check_dulbe(ns, slba, nlb);
2674 if (status) {
2675 return status;
2676 }
2677 }
2678
2679 ctx = g_new0(NvmeBounceContext, 1);
2680 ctx->req = req;
2681
2682 ctx->data.bounce = g_malloc(len);
2683
2684 qemu_iovec_init(&ctx->data.iov, 1);
2685 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2686
2687 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2688 BLOCK_ACCT_READ);
2689
2690 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2691 nvme_verify_mdata_in_cb, ctx);
2692 return NVME_NO_COMPLETE;
2693 }
2694
2695 typedef struct NvmeCopyAIOCB {
2696 BlockAIOCB common;
2697 BlockAIOCB *aiocb;
2698 NvmeRequest *req;
2699 int ret;
2700
2701 void *ranges;
2702 unsigned int format;
2703 int nr;
2704 int idx;
2705
2706 uint8_t *bounce;
2707 QEMUIOVector iov;
2708 struct {
2709 BlockAcctCookie read;
2710 BlockAcctCookie write;
2711 } acct;
2712
2713 uint64_t reftag;
2714 uint64_t slba;
2715
2716 NvmeZone *zone;
2717 } NvmeCopyAIOCB;
2718
2719 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2720 {
2721 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2722
2723 iocb->ret = -ECANCELED;
2724
2725 if (iocb->aiocb) {
2726 blk_aio_cancel_async(iocb->aiocb);
2727 iocb->aiocb = NULL;
2728 }
2729 }
2730
2731 static const AIOCBInfo nvme_copy_aiocb_info = {
2732 .aiocb_size = sizeof(NvmeCopyAIOCB),
2733 .cancel_async = nvme_copy_cancel,
2734 };
2735
2736 static void nvme_copy_done(NvmeCopyAIOCB *iocb)
2737 {
2738 NvmeRequest *req = iocb->req;
2739 NvmeNamespace *ns = req->ns;
2740 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2741
2742 if (iocb->idx != iocb->nr) {
2743 req->cqe.result = cpu_to_le32(iocb->idx);
2744 }
2745
2746 qemu_iovec_destroy(&iocb->iov);
2747 g_free(iocb->bounce);
2748
2749 if (iocb->ret < 0) {
2750 block_acct_failed(stats, &iocb->acct.read);
2751 block_acct_failed(stats, &iocb->acct.write);
2752 } else {
2753 block_acct_done(stats, &iocb->acct.read);
2754 block_acct_done(stats, &iocb->acct.write);
2755 }
2756
2757 iocb->common.cb(iocb->common.opaque, iocb->ret);
2758 qemu_aio_unref(iocb);
2759 }
2760
2761 static void nvme_do_copy(NvmeCopyAIOCB *iocb);
2762
2763 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2764 uint64_t *slba, uint32_t *nlb,
2765 uint16_t *apptag,
2766 uint16_t *appmask,
2767 uint64_t *reftag)
2768 {
2769 NvmeCopySourceRangeFormat0 *_ranges = ranges;
2770
2771 if (slba) {
2772 *slba = le64_to_cpu(_ranges[idx].slba);
2773 }
2774
2775 if (nlb) {
2776 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2777 }
2778
2779 if (apptag) {
2780 *apptag = le16_to_cpu(_ranges[idx].apptag);
2781 }
2782
2783 if (appmask) {
2784 *appmask = le16_to_cpu(_ranges[idx].appmask);
2785 }
2786
2787 if (reftag) {
2788 *reftag = le32_to_cpu(_ranges[idx].reftag);
2789 }
2790 }
2791
2792 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2793 uint64_t *slba, uint32_t *nlb,
2794 uint16_t *apptag,
2795 uint16_t *appmask,
2796 uint64_t *reftag)
2797 {
2798 NvmeCopySourceRangeFormat1 *_ranges = ranges;
2799
2800 if (slba) {
2801 *slba = le64_to_cpu(_ranges[idx].slba);
2802 }
2803
2804 if (nlb) {
2805 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2806 }
2807
2808 if (apptag) {
2809 *apptag = le16_to_cpu(_ranges[idx].apptag);
2810 }
2811
2812 if (appmask) {
2813 *appmask = le16_to_cpu(_ranges[idx].appmask);
2814 }
2815
2816 if (reftag) {
2817 *reftag = 0;
2818
2819 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2820 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2821 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2822 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2823 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2824 *reftag |= (uint64_t)_ranges[idx].sr[9];
2825 }
2826 }
2827
2828 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2829 uint64_t *slba, uint32_t *nlb,
2830 uint16_t *apptag, uint16_t *appmask,
2831 uint64_t *reftag)
2832 {
2833 switch (format) {
2834 case NVME_COPY_FORMAT_0:
2835 nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2836 appmask, reftag);
2837 break;
2838
2839 case NVME_COPY_FORMAT_1:
2840 nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2841 appmask, reftag);
2842 break;
2843
2844 default:
2845 abort();
2846 }
2847 }
2848
2849 static inline uint16_t nvme_check_copy_mcl(NvmeNamespace *ns,
2850 NvmeCopyAIOCB *iocb, uint16_t nr)
2851 {
2852 uint32_t copy_len = 0;
2853
2854 for (int idx = 0; idx < nr; idx++) {
2855 uint32_t nlb;
2856 nvme_copy_source_range_parse(iocb->ranges, idx, iocb->format, NULL,
2857 &nlb, NULL, NULL, NULL);
2858 copy_len += nlb + 1;
2859 }
2860
2861 if (copy_len > ns->id_ns.mcl) {
2862 return NVME_CMD_SIZE_LIMIT | NVME_DNR;
2863 }
2864
2865 return NVME_SUCCESS;
2866 }
2867
2868 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2869 {
2870 NvmeCopyAIOCB *iocb = opaque;
2871 NvmeRequest *req = iocb->req;
2872 NvmeNamespace *ns = req->ns;
2873 uint32_t nlb;
2874
2875 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2876 &nlb, NULL, NULL, NULL);
2877
2878 if (ret < 0) {
2879 iocb->ret = ret;
2880 goto out;
2881 } else if (iocb->ret < 0) {
2882 goto out;
2883 }
2884
2885 if (ns->params.zoned) {
2886 nvme_advance_zone_wp(ns, iocb->zone, nlb);
2887 }
2888
2889 iocb->idx++;
2890 iocb->slba += nlb;
2891 out:
2892 nvme_do_copy(iocb);
2893 }
2894
2895 static void nvme_copy_out_cb(void *opaque, int ret)
2896 {
2897 NvmeCopyAIOCB *iocb = opaque;
2898 NvmeRequest *req = iocb->req;
2899 NvmeNamespace *ns = req->ns;
2900 uint32_t nlb;
2901 size_t mlen;
2902 uint8_t *mbounce;
2903
2904 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2905 goto out;
2906 }
2907
2908 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2909 &nlb, NULL, NULL, NULL);
2910
2911 mlen = nvme_m2b(ns, nlb);
2912 mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2913
2914 qemu_iovec_reset(&iocb->iov);
2915 qemu_iovec_add(&iocb->iov, mbounce, mlen);
2916
2917 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2918 &iocb->iov, 0, nvme_copy_out_completed_cb,
2919 iocb);
2920
2921 return;
2922
2923 out:
2924 nvme_copy_out_completed_cb(iocb, ret);
2925 }
2926
2927 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2928 {
2929 NvmeCopyAIOCB *iocb = opaque;
2930 NvmeRequest *req = iocb->req;
2931 NvmeNamespace *ns = req->ns;
2932 uint32_t nlb;
2933 uint64_t slba;
2934 uint16_t apptag, appmask;
2935 uint64_t reftag;
2936 size_t len;
2937 uint16_t status;
2938
2939 if (ret < 0) {
2940 iocb->ret = ret;
2941 goto out;
2942 } else if (iocb->ret < 0) {
2943 goto out;
2944 }
2945
2946 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2947 &nlb, &apptag, &appmask, &reftag);
2948 len = nvme_l2b(ns, nlb);
2949
2950 trace_pci_nvme_copy_out(iocb->slba, nlb);
2951
2952 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2953 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2954
2955 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2956 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2957
2958 size_t mlen = nvme_m2b(ns, nlb);
2959 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2960
2961 status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2962 if (status) {
2963 goto invalid;
2964 }
2965 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2966 slba, apptag, appmask, &reftag);
2967 if (status) {
2968 goto invalid;
2969 }
2970
2971 apptag = le16_to_cpu(copy->apptag);
2972 appmask = le16_to_cpu(copy->appmask);
2973
2974 if (prinfow & NVME_PRINFO_PRACT) {
2975 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2976 if (status) {
2977 goto invalid;
2978 }
2979
2980 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2981 apptag, &iocb->reftag);
2982 } else {
2983 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2984 prinfow, iocb->slba, apptag, appmask,
2985 &iocb->reftag);
2986 if (status) {
2987 goto invalid;
2988 }
2989 }
2990 }
2991
2992 status = nvme_check_bounds(ns, iocb->slba, nlb);
2993 if (status) {
2994 goto invalid;
2995 }
2996
2997 if (ns->params.zoned) {
2998 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2999 if (status) {
3000 goto invalid;
3001 }
3002
3003 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
3004 iocb->zone->w_ptr += nlb;
3005 }
3006 }
3007
3008 qemu_iovec_reset(&iocb->iov);
3009 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
3010
3011 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
3012 &iocb->iov, 0, nvme_copy_out_cb, iocb);
3013
3014 return;
3015
3016 invalid:
3017 req->status = status;
3018 iocb->ret = -1;
3019 out:
3020 nvme_do_copy(iocb);
3021 }
3022
3023 static void nvme_copy_in_cb(void *opaque, int ret)
3024 {
3025 NvmeCopyAIOCB *iocb = opaque;
3026 NvmeRequest *req = iocb->req;
3027 NvmeNamespace *ns = req->ns;
3028 uint64_t slba;
3029 uint32_t nlb;
3030
3031 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3032 goto out;
3033 }
3034
3035 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3036 &nlb, NULL, NULL, NULL);
3037
3038 qemu_iovec_reset(&iocb->iov);
3039 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
3040 nvme_m2b(ns, nlb));
3041
3042 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
3043 &iocb->iov, 0, nvme_copy_in_completed_cb,
3044 iocb);
3045 return;
3046
3047 out:
3048 nvme_copy_in_completed_cb(iocb, ret);
3049 }
3050
3051 static void nvme_do_copy(NvmeCopyAIOCB *iocb)
3052 {
3053 NvmeRequest *req = iocb->req;
3054 NvmeNamespace *ns = req->ns;
3055 uint64_t slba;
3056 uint32_t nlb;
3057 size_t len;
3058 uint16_t status;
3059
3060 if (iocb->ret < 0) {
3061 goto done;
3062 }
3063
3064 if (iocb->idx == iocb->nr) {
3065 goto done;
3066 }
3067
3068 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3069 &nlb, NULL, NULL, NULL);
3070 len = nvme_l2b(ns, nlb);
3071
3072 trace_pci_nvme_copy_source_range(slba, nlb);
3073
3074 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
3075 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3076 goto invalid;
3077 }
3078
3079 status = nvme_check_bounds(ns, slba, nlb);
3080 if (status) {
3081 goto invalid;
3082 }
3083
3084 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3085 status = nvme_check_dulbe(ns, slba, nlb);
3086 if (status) {
3087 goto invalid;
3088 }
3089 }
3090
3091 if (ns->params.zoned) {
3092 status = nvme_check_zone_read(ns, slba, nlb);
3093 if (status) {
3094 goto invalid;
3095 }
3096 }
3097
3098 qemu_iovec_reset(&iocb->iov);
3099 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
3100
3101 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
3102 &iocb->iov, 0, nvme_copy_in_cb, iocb);
3103 return;
3104
3105 invalid:
3106 req->status = status;
3107 iocb->ret = -1;
3108 done:
3109 nvme_copy_done(iocb);
3110 }
3111
3112 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
3113 {
3114 NvmeNamespace *ns = req->ns;
3115 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
3116 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
3117 nvme_misc_cb, req);
3118 uint16_t nr = copy->nr + 1;
3119 uint8_t format = copy->control[0] & 0xf;
3120 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
3121 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
3122 size_t len = sizeof(NvmeCopySourceRangeFormat0);
3123
3124 uint16_t status;
3125
3126 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
3127
3128 iocb->ranges = NULL;
3129 iocb->zone = NULL;
3130
3131 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
3132 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
3133 status = NVME_INVALID_FIELD | NVME_DNR;
3134 goto invalid;
3135 }
3136
3137 if (!(n->id_ctrl.ocfs & (1 << format))) {
3138 trace_pci_nvme_err_copy_invalid_format(format);
3139 status = NVME_INVALID_FIELD | NVME_DNR;
3140 goto invalid;
3141 }
3142
3143 if (nr > ns->id_ns.msrc + 1) {
3144 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3145 goto invalid;
3146 }
3147
3148 if ((ns->pif == 0x0 && format != 0x0) ||
3149 (ns->pif != 0x0 && format != 0x1)) {
3150 status = NVME_INVALID_FORMAT | NVME_DNR;
3151 goto invalid;
3152 }
3153
3154 if (ns->pif) {
3155 len = sizeof(NvmeCopySourceRangeFormat1);
3156 }
3157
3158 iocb->format = format;
3159 iocb->ranges = g_malloc_n(nr, len);
3160 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3161 if (status) {
3162 goto invalid;
3163 }
3164
3165 iocb->slba = le64_to_cpu(copy->sdlba);
3166
3167 if (ns->params.zoned) {
3168 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3169 if (!iocb->zone) {
3170 status = NVME_LBA_RANGE | NVME_DNR;
3171 goto invalid;
3172 }
3173
3174 status = nvme_zrm_auto(n, ns, iocb->zone);
3175 if (status) {
3176 goto invalid;
3177 }
3178 }
3179
3180 status = nvme_check_copy_mcl(ns, iocb, nr);
3181 if (status) {
3182 goto invalid;
3183 }
3184
3185 iocb->req = req;
3186 iocb->ret = 0;
3187 iocb->nr = nr;
3188 iocb->idx = 0;
3189 iocb->reftag = le32_to_cpu(copy->reftag);
3190 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3191 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3192 ns->lbasz + ns->lbaf.ms);
3193
3194 qemu_iovec_init(&iocb->iov, 1);
3195
3196 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3197 BLOCK_ACCT_READ);
3198 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3199 BLOCK_ACCT_WRITE);
3200
3201 req->aiocb = &iocb->common;
3202 nvme_do_copy(iocb);
3203
3204 return NVME_NO_COMPLETE;
3205
3206 invalid:
3207 g_free(iocb->ranges);
3208 qemu_aio_unref(iocb);
3209 return status;
3210 }
3211
3212 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3213 {
3214 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3215 NvmeNamespace *ns = req->ns;
3216 BlockBackend *blk = ns->blkconf.blk;
3217 uint64_t slba = le64_to_cpu(rw->slba);
3218 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3219 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3220 size_t data_len = nvme_l2b(ns, nlb);
3221 size_t len = data_len;
3222 int64_t offset = nvme_l2b(ns, slba);
3223 struct nvme_compare_ctx *ctx = NULL;
3224 uint16_t status;
3225
3226 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3227
3228 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3229 return NVME_INVALID_PROT_INFO | NVME_DNR;
3230 }
3231
3232 if (nvme_ns_ext(ns)) {
3233 len += nvme_m2b(ns, nlb);
3234 }
3235
3236 status = nvme_check_mdts(n, len);
3237 if (status) {
3238 return status;
3239 }
3240
3241 status = nvme_check_bounds(ns, slba, nlb);
3242 if (status) {
3243 return status;
3244 }
3245
3246 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3247 status = nvme_check_dulbe(ns, slba, nlb);
3248 if (status) {
3249 return status;
3250 }
3251 }
3252
3253 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3254 if (status) {
3255 return status;
3256 }
3257
3258 ctx = g_new(struct nvme_compare_ctx, 1);
3259 ctx->data.bounce = g_malloc(data_len);
3260
3261 req->opaque = ctx;
3262
3263 qemu_iovec_init(&ctx->data.iov, 1);
3264 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3265
3266 block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3267 BLOCK_ACCT_READ);
3268 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3269 nvme_compare_data_cb, req);
3270
3271 return NVME_NO_COMPLETE;
3272 }
3273
3274 typedef struct NvmeFlushAIOCB {
3275 BlockAIOCB common;
3276 BlockAIOCB *aiocb;
3277 NvmeRequest *req;
3278 int ret;
3279
3280 NvmeNamespace *ns;
3281 uint32_t nsid;
3282 bool broadcast;
3283 } NvmeFlushAIOCB;
3284
3285 static void nvme_flush_cancel(BlockAIOCB *acb)
3286 {
3287 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3288
3289 iocb->ret = -ECANCELED;
3290
3291 if (iocb->aiocb) {
3292 blk_aio_cancel_async(iocb->aiocb);
3293 iocb->aiocb = NULL;
3294 }
3295 }
3296
3297 static const AIOCBInfo nvme_flush_aiocb_info = {
3298 .aiocb_size = sizeof(NvmeFlushAIOCB),
3299 .cancel_async = nvme_flush_cancel,
3300 };
3301
3302 static void nvme_do_flush(NvmeFlushAIOCB *iocb);
3303
3304 static void nvme_flush_ns_cb(void *opaque, int ret)
3305 {
3306 NvmeFlushAIOCB *iocb = opaque;
3307 NvmeNamespace *ns = iocb->ns;
3308
3309 if (ret < 0) {
3310 iocb->ret = ret;
3311 goto out;
3312 } else if (iocb->ret < 0) {
3313 goto out;
3314 }
3315
3316 if (ns) {
3317 trace_pci_nvme_flush_ns(iocb->nsid);
3318
3319 iocb->ns = NULL;
3320 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3321 return;
3322 }
3323
3324 out:
3325 nvme_do_flush(iocb);
3326 }
3327
3328 static void nvme_do_flush(NvmeFlushAIOCB *iocb)
3329 {
3330 NvmeRequest *req = iocb->req;
3331 NvmeCtrl *n = nvme_ctrl(req);
3332 int i;
3333
3334 if (iocb->ret < 0) {
3335 goto done;
3336 }
3337
3338 if (iocb->broadcast) {
3339 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3340 iocb->ns = nvme_ns(n, i);
3341 if (iocb->ns) {
3342 iocb->nsid = i;
3343 break;
3344 }
3345 }
3346 }
3347
3348 if (!iocb->ns) {
3349 goto done;
3350 }
3351
3352 nvme_flush_ns_cb(iocb, 0);
3353 return;
3354
3355 done:
3356 iocb->common.cb(iocb->common.opaque, iocb->ret);
3357 qemu_aio_unref(iocb);
3358 }
3359
3360 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3361 {
3362 NvmeFlushAIOCB *iocb;
3363 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3364 uint16_t status;
3365
3366 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3367
3368 iocb->req = req;
3369 iocb->ret = 0;
3370 iocb->ns = NULL;
3371 iocb->nsid = 0;
3372 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3373
3374 if (!iocb->broadcast) {
3375 if (!nvme_nsid_valid(n, nsid)) {
3376 status = NVME_INVALID_NSID | NVME_DNR;
3377 goto out;
3378 }
3379
3380 iocb->ns = nvme_ns(n, nsid);
3381 if (!iocb->ns) {
3382 status = NVME_INVALID_FIELD | NVME_DNR;
3383 goto out;
3384 }
3385
3386 iocb->nsid = nsid;
3387 }
3388
3389 req->aiocb = &iocb->common;
3390 nvme_do_flush(iocb);
3391
3392 return NVME_NO_COMPLETE;
3393
3394 out:
3395 qemu_aio_unref(iocb);
3396
3397 return status;
3398 }
3399
3400 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3401 {
3402 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3403 NvmeNamespace *ns = req->ns;
3404 uint64_t slba = le64_to_cpu(rw->slba);
3405 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3406 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3407 uint64_t data_size = nvme_l2b(ns, nlb);
3408 uint64_t mapped_size = data_size;
3409 uint64_t data_offset;
3410 BlockBackend *blk = ns->blkconf.blk;
3411 uint16_t status;
3412
3413 if (nvme_ns_ext(ns)) {
3414 mapped_size += nvme_m2b(ns, nlb);
3415
3416 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3417 bool pract = prinfo & NVME_PRINFO_PRACT;
3418
3419 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3420 mapped_size = data_size;
3421 }
3422 }
3423 }
3424
3425 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3426
3427 status = nvme_check_mdts(n, mapped_size);
3428 if (status) {
3429 goto invalid;
3430 }
3431
3432 status = nvme_check_bounds(ns, slba, nlb);
3433 if (status) {
3434 goto invalid;
3435 }
3436
3437 if (ns->params.zoned) {
3438 status = nvme_check_zone_read(ns, slba, nlb);
3439 if (status) {
3440 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3441 goto invalid;
3442 }
3443 }
3444
3445 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3446 status = nvme_check_dulbe(ns, slba, nlb);
3447 if (status) {
3448 goto invalid;
3449 }
3450 }
3451
3452 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3453 return nvme_dif_rw(n, req);
3454 }
3455
3456 status = nvme_map_data(n, nlb, req);
3457 if (status) {
3458 goto invalid;
3459 }
3460
3461 data_offset = nvme_l2b(ns, slba);
3462
3463 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3464 BLOCK_ACCT_READ);
3465 nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
3466 return NVME_NO_COMPLETE;
3467
3468 invalid:
3469 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3470 return status | NVME_DNR;
3471 }
3472
3473 static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba,
3474 uint32_t nlb)
3475 {
3476 NvmeNamespace *ns = req->ns;
3477 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3478 uint64_t data_size = nvme_l2b(ns, nlb);
3479 uint32_t dw12 = le32_to_cpu(req->cmd.cdw12);
3480 uint8_t dtype = (dw12 >> 20) & 0xf;
3481 uint16_t pid = le16_to_cpu(rw->dspec);
3482 uint16_t ph, rg, ruhid;
3483 NvmeReclaimUnit *ru;
3484
3485 if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT ||
3486 !nvme_parse_pid(ns, pid, &ph, &rg)) {
3487 ph = 0;
3488 rg = 0;
3489 }
3490
3491 ruhid = ns->fdp.phs[ph];
3492 ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg];
3493
3494 nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size);
3495 nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size);
3496
3497 while (nlb) {
3498 if (nlb < ru->ruamw) {
3499 ru->ruamw -= nlb;
3500 break;
3501 }
3502
3503 nlb -= ru->ruamw;
3504 nvme_update_ruh(n, ns, pid);
3505 }
3506 }
3507
3508 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3509 bool wrz)
3510 {
3511 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3512 NvmeNamespace *ns = req->ns;
3513 uint64_t slba = le64_to_cpu(rw->slba);
3514 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3515 uint16_t ctrl = le16_to_cpu(rw->control);
3516 uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3517 uint64_t data_size = nvme_l2b(ns, nlb);
3518 uint64_t mapped_size = data_size;
3519 uint64_t data_offset;
3520 NvmeZone *zone;
3521 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3522 BlockBackend *blk = ns->blkconf.blk;
3523 uint16_t status;
3524
3525 if (nvme_ns_ext(ns)) {
3526 mapped_size += nvme_m2b(ns, nlb);
3527
3528 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3529 bool pract = prinfo & NVME_PRINFO_PRACT;
3530
3531 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3532 mapped_size -= nvme_m2b(ns, nlb);
3533 }
3534 }
3535 }
3536
3537 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3538 nvme_nsid(ns), nlb, mapped_size, slba);
3539
3540 if (!wrz) {
3541 status = nvme_check_mdts(n, mapped_size);
3542 if (status) {
3543 goto invalid;
3544 }
3545 }
3546
3547 status = nvme_check_bounds(ns, slba, nlb);
3548 if (status) {
3549 goto invalid;
3550 }
3551
3552 if (ns->params.zoned) {
3553 zone = nvme_get_zone_by_slba(ns, slba);
3554 assert(zone);
3555
3556 if (append) {
3557 bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3558
3559 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3560 return NVME_INVALID_ZONE_OP | NVME_DNR;
3561 }
3562
3563 if (unlikely(slba != zone->d.zslba)) {
3564 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3565 status = NVME_INVALID_FIELD;
3566 goto invalid;
3567 }
3568
3569 if (n->params.zasl &&
3570 data_size > (uint64_t)n->page_size << n->params.zasl) {
3571 trace_pci_nvme_err_zasl(data_size);
3572 return NVME_INVALID_FIELD | NVME_DNR;
3573 }
3574
3575 slba = zone->w_ptr;
3576 rw->slba = cpu_to_le64(slba);
3577 res->slba = cpu_to_le64(slba);
3578
3579 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3580 case NVME_ID_NS_DPS_TYPE_1:
3581 if (!piremap) {
3582 return NVME_INVALID_PROT_INFO | NVME_DNR;
3583 }
3584
3585 /* fallthrough */
3586
3587 case NVME_ID_NS_DPS_TYPE_2:
3588 if (piremap) {
3589 uint32_t reftag = le32_to_cpu(rw->reftag);
3590 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3591 }
3592
3593 break;
3594
3595 case NVME_ID_NS_DPS_TYPE_3:
3596 if (piremap) {
3597 return NVME_INVALID_PROT_INFO | NVME_DNR;
3598 }
3599
3600 break;
3601 }
3602 }
3603
3604 status = nvme_check_zone_write(ns, zone, slba, nlb);
3605 if (status) {
3606 goto invalid;
3607 }
3608
3609 status = nvme_zrm_auto(n, ns, zone);
3610 if (status) {
3611 goto invalid;
3612 }
3613
3614 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3615 zone->w_ptr += nlb;
3616 }
3617 } else if (ns->endgrp && ns->endgrp->fdp.enabled) {
3618 nvme_do_write_fdp(n, req, slba, nlb);
3619 }
3620
3621 data_offset = nvme_l2b(ns, slba);
3622
3623 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3624 return nvme_dif_rw(n, req);
3625 }
3626
3627 if (!wrz) {
3628 status = nvme_map_data(n, nlb, req);
3629 if (status) {
3630 goto invalid;
3631 }
3632
3633 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3634 BLOCK_ACCT_WRITE);
3635 nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
3636 } else {
3637 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3638 BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3639 req);
3640 }
3641
3642 return NVME_NO_COMPLETE;
3643
3644 invalid:
3645 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3646 return status | NVME_DNR;
3647 }
3648
3649 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3650 {
3651 return nvme_do_write(n, req, false, false);
3652 }
3653
3654 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3655 {
3656 return nvme_do_write(n, req, false, true);
3657 }
3658
3659 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3660 {
3661 return nvme_do_write(n, req, true, false);
3662 }
3663
3664 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3665 uint64_t *slba, uint32_t *zone_idx)
3666 {
3667 uint32_t dw10 = le32_to_cpu(c->cdw10);
3668 uint32_t dw11 = le32_to_cpu(c->cdw11);
3669
3670 if (!ns->params.zoned) {
3671 trace_pci_nvme_err_invalid_opc(c->opcode);
3672 return NVME_INVALID_OPCODE | NVME_DNR;
3673 }
3674
3675 *slba = ((uint64_t)dw11) << 32 | dw10;
3676 if (unlikely(*slba >= ns->id_ns.nsze)) {
3677 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3678 *slba = 0;
3679 return NVME_LBA_RANGE | NVME_DNR;
3680 }
3681
3682 *zone_idx = nvme_zone_idx(ns, *slba);
3683 assert(*zone_idx < ns->num_zones);
3684
3685 return NVME_SUCCESS;
3686 }
3687
3688 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3689 NvmeRequest *);
3690
3691 enum NvmeZoneProcessingMask {
3692 NVME_PROC_CURRENT_ZONE = 0,
3693 NVME_PROC_OPENED_ZONES = 1 << 0,
3694 NVME_PROC_CLOSED_ZONES = 1 << 1,
3695 NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3696 NVME_PROC_FULL_ZONES = 1 << 3,
3697 };
3698
3699 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3700 NvmeZoneState state, NvmeRequest *req)
3701 {
3702 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3703 int flags = 0;
3704
3705 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3706 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3707
3708 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3709 return NVME_INVALID_ZONE_OP | NVME_DNR;
3710 }
3711
3712 if (zone->w_ptr % ns->zns.zrwafg) {
3713 return NVME_NOZRWA | NVME_DNR;
3714 }
3715
3716 flags = NVME_ZRM_ZRWA;
3717 }
3718
3719 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3720 }
3721
3722 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3723 NvmeZoneState state, NvmeRequest *req)
3724 {
3725 return nvme_zrm_close(ns, zone);
3726 }
3727
3728 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3729 NvmeZoneState state, NvmeRequest *req)
3730 {
3731 return nvme_zrm_finish(ns, zone);
3732 }
3733
3734 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3735 NvmeZoneState state, NvmeRequest *req)
3736 {
3737 switch (state) {
3738 case NVME_ZONE_STATE_READ_ONLY:
3739 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3740 /* fall through */
3741 case NVME_ZONE_STATE_OFFLINE:
3742 return NVME_SUCCESS;
3743 default:
3744 return NVME_ZONE_INVAL_TRANSITION;
3745 }
3746 }
3747
3748 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3749 {
3750 uint16_t status;
3751 uint8_t state = nvme_get_zone_state(zone);
3752
3753 if (state == NVME_ZONE_STATE_EMPTY) {
3754 status = nvme_aor_check(ns, 1, 0);
3755 if (status) {
3756 return status;
3757 }
3758 nvme_aor_inc_active(ns);
3759 zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3760 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3761 return NVME_SUCCESS;
3762 }
3763
3764 return NVME_ZONE_INVAL_TRANSITION;
3765 }
3766
3767 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3768 enum NvmeZoneProcessingMask proc_mask,
3769 op_handler_t op_hndlr, NvmeRequest *req)
3770 {
3771 uint16_t status = NVME_SUCCESS;
3772 NvmeZoneState zs = nvme_get_zone_state(zone);
3773 bool proc_zone;
3774
3775 switch (zs) {
3776 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3777 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3778 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3779 break;
3780 case NVME_ZONE_STATE_CLOSED:
3781 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3782 break;
3783 case NVME_ZONE_STATE_READ_ONLY:
3784 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3785 break;
3786 case NVME_ZONE_STATE_FULL:
3787 proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3788 break;
3789 default:
3790 proc_zone = false;
3791 }
3792
3793 if (proc_zone) {
3794 status = op_hndlr(ns, zone, zs, req);
3795 }
3796
3797 return status;
3798 }
3799
3800 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3801 enum NvmeZoneProcessingMask proc_mask,
3802 op_handler_t op_hndlr, NvmeRequest *req)
3803 {
3804 NvmeZone *next;
3805 uint16_t status = NVME_SUCCESS;
3806 int i;
3807
3808 if (!proc_mask) {
3809 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3810 } else {
3811 if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3812 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3813 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3814 req);
3815 if (status && status != NVME_NO_COMPLETE) {
3816 goto out;
3817 }
3818 }
3819 }
3820 if (proc_mask & NVME_PROC_OPENED_ZONES) {
3821 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3822 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3823 req);
3824 if (status && status != NVME_NO_COMPLETE) {
3825 goto out;
3826 }
3827 }
3828
3829 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3830 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3831 req);
3832 if (status && status != NVME_NO_COMPLETE) {
3833 goto out;
3834 }
3835 }
3836 }
3837 if (proc_mask & NVME_PROC_FULL_ZONES) {
3838 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3839 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3840 req);
3841 if (status && status != NVME_NO_COMPLETE) {
3842 goto out;
3843 }
3844 }
3845 }
3846
3847 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3848 for (i = 0; i < ns->num_zones; i++, zone++) {
3849 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3850 req);
3851 if (status && status != NVME_NO_COMPLETE) {
3852 goto out;
3853 }
3854 }
3855 }
3856 }
3857
3858 out:
3859 return status;
3860 }
3861
3862 typedef struct NvmeZoneResetAIOCB {
3863 BlockAIOCB common;
3864 BlockAIOCB *aiocb;
3865 NvmeRequest *req;
3866 int ret;
3867
3868 bool all;
3869 int idx;
3870 NvmeZone *zone;
3871 } NvmeZoneResetAIOCB;
3872
3873 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3874 {
3875 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3876 NvmeRequest *req = iocb->req;
3877 NvmeNamespace *ns = req->ns;
3878
3879 iocb->idx = ns->num_zones;
3880
3881 iocb->ret = -ECANCELED;
3882
3883 if (iocb->aiocb) {
3884 blk_aio_cancel_async(iocb->aiocb);
3885 iocb->aiocb = NULL;
3886 }
3887 }
3888
3889 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3890 .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3891 .cancel_async = nvme_zone_reset_cancel,
3892 };
3893
3894 static void nvme_zone_reset_cb(void *opaque, int ret);
3895
3896 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3897 {
3898 NvmeZoneResetAIOCB *iocb = opaque;
3899 NvmeRequest *req = iocb->req;
3900 NvmeNamespace *ns = req->ns;
3901 int64_t moff;
3902 int count;
3903
3904 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3905 goto out;
3906 }
3907
3908 moff = nvme_moff(ns, iocb->zone->d.zslba);
3909 count = nvme_m2b(ns, ns->zone_size);
3910
3911 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3912 BDRV_REQ_MAY_UNMAP,
3913 nvme_zone_reset_cb, iocb);
3914 return;
3915
3916 out:
3917 nvme_zone_reset_cb(iocb, ret);
3918 }
3919
3920 static void nvme_zone_reset_cb(void *opaque, int ret)
3921 {
3922 NvmeZoneResetAIOCB *iocb = opaque;
3923 NvmeRequest *req = iocb->req;
3924 NvmeNamespace *ns = req->ns;
3925
3926 if (iocb->ret < 0) {
3927 goto done;
3928 } else if (ret < 0) {
3929 iocb->ret = ret;
3930 goto done;
3931 }
3932
3933 if (iocb->zone) {
3934 nvme_zrm_reset(ns, iocb->zone);
3935
3936 if (!iocb->all) {
3937 goto done;
3938 }
3939 }
3940
3941 while (iocb->idx < ns->num_zones) {
3942 NvmeZone *zone = &ns->zone_array[iocb->idx++];
3943
3944 switch (nvme_get_zone_state(zone)) {
3945 case NVME_ZONE_STATE_EMPTY:
3946 if (!iocb->all) {
3947 goto done;
3948 }
3949
3950 continue;
3951
3952 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3953 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3954 case NVME_ZONE_STATE_CLOSED:
3955 case NVME_ZONE_STATE_FULL:
3956 iocb->zone = zone;
3957 break;
3958
3959 default:
3960 continue;
3961 }
3962
3963 trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3964
3965 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3966 nvme_l2b(ns, zone->d.zslba),
3967 nvme_l2b(ns, ns->zone_size),
3968 BDRV_REQ_MAY_UNMAP,
3969 nvme_zone_reset_epilogue_cb,
3970 iocb);
3971 return;
3972 }
3973
3974 done:
3975 iocb->aiocb = NULL;
3976
3977 iocb->common.cb(iocb->common.opaque, iocb->ret);
3978 qemu_aio_unref(iocb);
3979 }
3980
3981 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3982 uint64_t elba, NvmeRequest *req)
3983 {
3984 NvmeNamespace *ns = req->ns;
3985 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3986 uint64_t wp = zone->d.wp;
3987 uint32_t nlb = elba - wp + 1;
3988 uint16_t status;
3989
3990
3991 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3992 return NVME_INVALID_ZONE_OP | NVME_DNR;
3993 }
3994
3995 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3996 return NVME_INVALID_FIELD | NVME_DNR;
3997 }
3998
3999 if (elba < wp || elba > wp + ns->zns.zrwas) {
4000 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
4001 }
4002
4003 if (nlb % ns->zns.zrwafg) {
4004 return NVME_INVALID_FIELD | NVME_DNR;
4005 }
4006
4007 status = nvme_zrm_auto(n, ns, zone);
4008 if (status) {
4009 return status;
4010 }
4011
4012 zone->w_ptr += nlb;
4013
4014 nvme_advance_zone_wp(ns, zone, nlb);
4015
4016 return NVME_SUCCESS;
4017 }
4018
4019 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
4020 {
4021 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
4022 NvmeNamespace *ns = req->ns;
4023 NvmeZone *zone;
4024 NvmeZoneResetAIOCB *iocb;
4025 uint8_t *zd_ext;
4026 uint64_t slba = 0;
4027 uint32_t zone_idx = 0;
4028 uint16_t status;
4029 uint8_t action = cmd->zsa;
4030 bool all;
4031 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
4032
4033 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
4034
4035 req->status = NVME_SUCCESS;
4036
4037 if (!all) {
4038 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
4039 if (status) {
4040 return status;
4041 }
4042 }
4043
4044 zone = &ns->zone_array[zone_idx];
4045 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
4046 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
4047 return NVME_INVALID_FIELD | NVME_DNR;
4048 }
4049
4050 switch (action) {
4051
4052 case NVME_ZONE_ACTION_OPEN:
4053 if (all) {
4054 proc_mask = NVME_PROC_CLOSED_ZONES;
4055 }
4056 trace_pci_nvme_open_zone(slba, zone_idx, all);
4057 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
4058 break;
4059
4060 case NVME_ZONE_ACTION_CLOSE:
4061 if (all) {
4062 proc_mask = NVME_PROC_OPENED_ZONES;
4063 }
4064 trace_pci_nvme_close_zone(slba, zone_idx, all);
4065 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
4066 break;
4067
4068 case NVME_ZONE_ACTION_FINISH:
4069 if (all) {
4070 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
4071 }
4072 trace_pci_nvme_finish_zone(slba, zone_idx, all);
4073 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
4074 break;
4075
4076 case NVME_ZONE_ACTION_RESET:
4077 trace_pci_nvme_reset_zone(slba, zone_idx, all);
4078
4079 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
4080 nvme_misc_cb, req);
4081
4082 iocb->req = req;
4083 iocb->ret = 0;
4084 iocb->all = all;
4085 iocb->idx = zone_idx;
4086 iocb->zone = NULL;
4087
4088 req->aiocb = &iocb->common;
4089 nvme_zone_reset_cb(iocb, 0);
4090
4091 return NVME_NO_COMPLETE;
4092
4093 case NVME_ZONE_ACTION_OFFLINE:
4094 if (all) {
4095 proc_mask = NVME_PROC_READ_ONLY_ZONES;
4096 }
4097 trace_pci_nvme_offline_zone(slba, zone_idx, all);
4098 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
4099 break;
4100
4101 case NVME_ZONE_ACTION_SET_ZD_EXT:
4102 trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
4103 if (all || !ns->params.zd_extension_size) {
4104 return NVME_INVALID_FIELD | NVME_DNR;
4105 }
4106 zd_ext = nvme_get_zd_extension(ns, zone_idx);
4107 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
4108 if (status) {
4109 trace_pci_nvme_err_zd_extension_map_error(zone_idx);
4110 return status;
4111 }
4112
4113 status = nvme_set_zd_ext(ns, zone);
4114 if (status == NVME_SUCCESS) {
4115 trace_pci_nvme_zd_extension_set(zone_idx);
4116 return status;
4117 }
4118 break;
4119
4120 case NVME_ZONE_ACTION_ZRWA_FLUSH:
4121 if (all) {
4122 return NVME_INVALID_FIELD | NVME_DNR;
4123 }
4124
4125 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
4126
4127 default:
4128 trace_pci_nvme_err_invalid_mgmt_action(action);
4129 status = NVME_INVALID_FIELD;
4130 }
4131
4132 if (status == NVME_ZONE_INVAL_TRANSITION) {
4133 trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
4134 zone->d.za);
4135 }
4136 if (status) {
4137 status |= NVME_DNR;
4138 }
4139
4140 return status;
4141 }
4142
4143 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
4144 {
4145 NvmeZoneState zs = nvme_get_zone_state(zl);
4146
4147 switch (zafs) {
4148 case NVME_ZONE_REPORT_ALL:
4149 return true;
4150 case NVME_ZONE_REPORT_EMPTY:
4151 return zs == NVME_ZONE_STATE_EMPTY;
4152 case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
4153 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
4154 case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
4155 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
4156 case NVME_ZONE_REPORT_CLOSED:
4157 return zs == NVME_ZONE_STATE_CLOSED;
4158 case NVME_ZONE_REPORT_FULL:
4159 return zs == NVME_ZONE_STATE_FULL;
4160 case NVME_ZONE_REPORT_READ_ONLY:
4161 return zs == NVME_ZONE_STATE_READ_ONLY;
4162 case NVME_ZONE_REPORT_OFFLINE:
4163 return zs == NVME_ZONE_STATE_OFFLINE;
4164 default:
4165 return false;
4166 }
4167 }
4168
4169 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4170 {
4171 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
4172 NvmeNamespace *ns = req->ns;
4173 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4174 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4175 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4176 uint32_t zone_idx, zra, zrasf, partial;
4177 uint64_t max_zones, nr_zones = 0;
4178 uint16_t status;
4179 uint64_t slba;
4180 NvmeZoneDescr *z;
4181 NvmeZone *zone;
4182 NvmeZoneReportHeader *header;
4183 void *buf, *buf_p;
4184 size_t zone_entry_sz;
4185 int i;
4186
4187 req->status = NVME_SUCCESS;
4188
4189 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4190 if (status) {
4191 return status;
4192 }
4193
4194 zra = dw13 & 0xff;
4195 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4196 return NVME_INVALID_FIELD | NVME_DNR;
4197 }
4198 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4199 return NVME_INVALID_FIELD | NVME_DNR;
4200 }
4201
4202 zrasf = (dw13 >> 8) & 0xff;
4203 if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4204 return NVME_INVALID_FIELD | NVME_DNR;
4205 }
4206
4207 if (data_size < sizeof(NvmeZoneReportHeader)) {
4208 return NVME_INVALID_FIELD | NVME_DNR;
4209 }
4210
4211 status = nvme_check_mdts(n, data_size);
4212 if (status) {
4213 return status;
4214 }
4215
4216 partial = (dw13 >> 16) & 0x01;
4217
4218 zone_entry_sz = sizeof(NvmeZoneDescr);
4219 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4220 zone_entry_sz += ns->params.zd_extension_size;
4221 }
4222
4223 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4224 buf = g_malloc0(data_size);
4225
4226 zone = &ns->zone_array[zone_idx];
4227 for (i = zone_idx; i < ns->num_zones; i++) {
4228 if (partial && nr_zones >= max_zones) {
4229 break;
4230 }
4231 if (nvme_zone_matches_filter(zrasf, zone++)) {
4232 nr_zones++;
4233 }
4234 }
4235 header = buf;
4236 header->nr_zones = cpu_to_le64(nr_zones);
4237
4238 buf_p = buf + sizeof(NvmeZoneReportHeader);
4239 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4240 zone = &ns->zone_array[zone_idx];
4241 if (nvme_zone_matches_filter(zrasf, zone)) {
4242 z = buf_p;
4243 buf_p += sizeof(NvmeZoneDescr);
4244
4245 z->zt = zone->d.zt;
4246 z->zs = zone->d.zs;
4247 z->zcap = cpu_to_le64(zone->d.zcap);
4248 z->zslba = cpu_to_le64(zone->d.zslba);
4249 z->za = zone->d.za;
4250
4251 if (nvme_wp_is_valid(zone)) {
4252 z->wp = cpu_to_le64(zone->d.wp);
4253 } else {
4254 z->wp = cpu_to_le64(~0ULL);
4255 }
4256
4257 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4258 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4259 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4260 ns->params.zd_extension_size);
4261 }
4262 buf_p += ns->params.zd_extension_size;
4263 }
4264
4265 max_zones--;
4266 }
4267 }
4268
4269 status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4270
4271 g_free(buf);
4272
4273 return status;
4274 }
4275
4276 static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req,
4277 size_t len)
4278 {
4279 NvmeNamespace *ns = req->ns;
4280 NvmeEnduranceGroup *endgrp;
4281 NvmeRuhStatus *hdr;
4282 NvmeRuhStatusDescr *ruhsd;
4283 unsigned int nruhsd;
4284 uint16_t rg, ph, *ruhid;
4285 size_t trans_len;
4286 g_autofree uint8_t *buf = NULL;
4287
4288 if (!n->subsys) {
4289 return NVME_INVALID_FIELD | NVME_DNR;
4290 }
4291
4292 if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) {
4293 return NVME_INVALID_NSID | NVME_DNR;
4294 }
4295
4296 if (!n->subsys->endgrp.fdp.enabled) {
4297 return NVME_FDP_DISABLED | NVME_DNR;
4298 }
4299
4300 endgrp = ns->endgrp;
4301
4302 nruhsd = ns->fdp.nphs * endgrp->fdp.nrg;
4303 trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr);
4304 buf = g_malloc(trans_len);
4305
4306 trans_len = MIN(trans_len, len);
4307
4308 hdr = (NvmeRuhStatus *)buf;
4309 ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus));
4310
4311 hdr->nruhsd = cpu_to_le16(nruhsd);
4312
4313 ruhid = ns->fdp.phs;
4314
4315 for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) {
4316 NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid];
4317
4318 for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) {
4319 uint16_t pid = nvme_make_pid(ns, rg, ph);
4320
4321 ruhsd->pid = cpu_to_le16(pid);
4322 ruhsd->ruhid = *ruhid;
4323 ruhsd->earutr = 0;
4324 ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw);
4325 }
4326 }
4327
4328 return nvme_c2h(n, buf, trans_len, req);
4329 }
4330
4331 static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4332 {
4333 NvmeCmd *cmd = &req->cmd;
4334 uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4335 uint32_t numd = le32_to_cpu(cmd->cdw11);
4336 uint8_t mo = (cdw10 & 0xff);
4337 size_t len = (numd + 1) << 2;
4338
4339 switch (mo) {
4340 case NVME_IOMR_MO_NOP:
4341 return 0;
4342 case NVME_IOMR_MO_RUH_STATUS:
4343 return nvme_io_mgmt_recv_ruhs(n, req, len);
4344 default:
4345 return NVME_INVALID_FIELD | NVME_DNR;
4346 };
4347 }
4348
4349 static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req)
4350 {
4351 NvmeCmd *cmd = &req->cmd;
4352 NvmeNamespace *ns = req->ns;
4353 uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4354 uint16_t ret = NVME_SUCCESS;
4355 uint32_t npid = (cdw10 >> 1) + 1;
4356 unsigned int i = 0;
4357 g_autofree uint16_t *pids = NULL;
4358 uint32_t maxnpid;
4359
4360 if (!ns->endgrp || !ns->endgrp->fdp.enabled) {
4361 return NVME_FDP_DISABLED | NVME_DNR;
4362 }
4363
4364 maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh;
4365
4366 if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) {
4367 return NVME_INVALID_FIELD | NVME_DNR;
4368 }
4369
4370 pids = g_new(uint16_t, npid);
4371
4372 ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req);
4373 if (ret) {
4374 return ret;
4375 }
4376
4377 for (; i < npid; i++) {
4378 if (!nvme_update_ruh(n, ns, pids[i])) {
4379 return NVME_INVALID_FIELD | NVME_DNR;
4380 }
4381 }
4382
4383 return ret;
4384 }
4385
4386 static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
4387 {
4388 NvmeCmd *cmd = &req->cmd;
4389 uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4390 uint8_t mo = (cdw10 & 0xff);
4391
4392 switch (mo) {
4393 case NVME_IOMS_MO_NOP:
4394 return 0;
4395 case NVME_IOMS_MO_RUH_UPDATE:
4396 return nvme_io_mgmt_send_ruh_update(n, req);
4397 default:
4398 return NVME_INVALID_FIELD | NVME_DNR;
4399 };
4400 }
4401
4402 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4403 {
4404 NvmeNamespace *ns;
4405 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4406
4407 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4408 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4409
4410 if (!nvme_nsid_valid(n, nsid)) {
4411 return NVME_INVALID_NSID | NVME_DNR;
4412 }
4413
4414 /*
4415 * In the base NVM command set, Flush may apply to all namespaces
4416 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4417 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4418 *
4419 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4420 * opcode with a specific command since we cannot determine a unique I/O
4421 * command set. Opcode 0h could have any other meaning than something
4422 * equivalent to flushing and say it DOES have completely different
4423 * semantics in some other command set - does an NSID of FFFFFFFFh then
4424 * mean "for all namespaces, apply whatever command set specific command
4425 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4426 * whatever command that uses the 0h opcode if, and only if, it allows NSID
4427 * to be FFFFFFFFh"?
4428 *
4429 * Anyway (and luckily), for now, we do not care about this since the
4430 * device only supports namespace types that includes the NVM Flush command
4431 * (NVM and Zoned), so always do an NVM Flush.
4432 */
4433 if (req->cmd.opcode == NVME_CMD_FLUSH) {
4434 return nvme_flush(n, req);
4435 }
4436
4437 ns = nvme_ns(n, nsid);
4438 if (unlikely(!ns)) {
4439 return NVME_INVALID_FIELD | NVME_DNR;
4440 }
4441
4442 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4443 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4444 return NVME_INVALID_OPCODE | NVME_DNR;
4445 }
4446
4447 if (ns->status) {
4448 return ns->status;
4449 }
4450
4451 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4452 return NVME_INVALID_FIELD;
4453 }
4454
4455 req->ns = ns;
4456
4457 switch (req->cmd.opcode) {
4458 case NVME_CMD_WRITE_ZEROES:
4459 return nvme_write_zeroes(n, req);
4460 case NVME_CMD_ZONE_APPEND:
4461 return nvme_zone_append(n, req);
4462 case NVME_CMD_WRITE:
4463 return nvme_write(n, req);
4464 case NVME_CMD_READ:
4465 return nvme_read(n, req);
4466 case NVME_CMD_COMPARE:
4467 return nvme_compare(n, req);
4468 case NVME_CMD_DSM:
4469 return nvme_dsm(n, req);
4470 case NVME_CMD_VERIFY:
4471 return nvme_verify(n, req);
4472 case NVME_CMD_COPY:
4473 return nvme_copy(n, req);
4474 case NVME_CMD_ZONE_MGMT_SEND:
4475 return nvme_zone_mgmt_send(n, req);
4476 case NVME_CMD_ZONE_MGMT_RECV:
4477 return nvme_zone_mgmt_recv(n, req);
4478 case NVME_CMD_IO_MGMT_RECV:
4479 return nvme_io_mgmt_recv(n, req);
4480 case NVME_CMD_IO_MGMT_SEND:
4481 return nvme_io_mgmt_send(n, req);
4482 default:
4483 assert(false);
4484 }
4485
4486 return NVME_INVALID_OPCODE | NVME_DNR;
4487 }
4488
4489 static void nvme_cq_notifier(EventNotifier *e)
4490 {
4491 NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4492 NvmeCtrl *n = cq->ctrl;
4493
4494 if (!event_notifier_test_and_clear(e)) {
4495 return;
4496 }
4497
4498 nvme_update_cq_head(cq);
4499
4500 if (cq->tail == cq->head) {
4501 if (cq->irq_enabled) {
4502 n->cq_pending--;
4503 }
4504
4505 nvme_irq_deassert(n, cq);
4506 }
4507
4508 qemu_bh_schedule(cq->bh);
4509 }
4510
4511 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4512 {
4513 NvmeCtrl *n = cq->ctrl;
4514 uint16_t offset = (cq->cqid << 3) + (1 << 2);
4515 int ret;
4516
4517 ret = event_notifier_init(&cq->notifier, 0);
4518 if (ret < 0) {
4519 return ret;
4520 }
4521
4522 event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4523 memory_region_add_eventfd(&n->iomem,
4524 0x1000 + offset, 4, false, 0, &cq->notifier);
4525
4526 return 0;
4527 }
4528
4529 static void nvme_sq_notifier(EventNotifier *e)
4530 {
4531 NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4532
4533 if (!event_notifier_test_and_clear(e)) {
4534 return;
4535 }
4536
4537 nvme_process_sq(sq);
4538 }
4539
4540 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4541 {
4542 NvmeCtrl *n = sq->ctrl;
4543 uint16_t offset = sq->sqid << 3;
4544 int ret;
4545
4546 ret = event_notifier_init(&sq->notifier, 0);
4547 if (ret < 0) {
4548 return ret;
4549 }
4550
4551 event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4552 memory_region_add_eventfd(&n->iomem,
4553 0x1000 + offset, 4, false, 0, &sq->notifier);
4554
4555 return 0;
4556 }
4557
4558 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4559 {
4560 uint16_t offset = sq->sqid << 3;
4561
4562 n->sq[sq->sqid] = NULL;
4563 qemu_bh_delete(sq->bh);
4564 if (sq->ioeventfd_enabled) {
4565 memory_region_del_eventfd(&n->iomem,
4566 0x1000 + offset, 4, false, 0, &sq->notifier);
4567 event_notifier_set_handler(&sq->notifier, NULL);
4568 event_notifier_cleanup(&sq->notifier);
4569 }
4570 g_free(sq->io_req);
4571 if (sq->sqid) {
4572 g_free(sq);
4573 }
4574 }
4575
4576 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4577 {
4578 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4579 NvmeRequest *r, *next;
4580 NvmeSQueue *sq;
4581 NvmeCQueue *cq;
4582 uint16_t qid = le16_to_cpu(c->qid);
4583
4584 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4585 trace_pci_nvme_err_invalid_del_sq(qid);
4586 return NVME_INVALID_QID | NVME_DNR;
4587 }
4588
4589 trace_pci_nvme_del_sq(qid);
4590
4591 sq = n->sq[qid];
4592 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4593 r = QTAILQ_FIRST(&sq->out_req_list);
4594 assert(r->aiocb);
4595 blk_aio_cancel(r->aiocb);
4596 }
4597
4598 assert(QTAILQ_EMPTY(&sq->out_req_list));
4599
4600 if (!nvme_check_cqid(n, sq->cqid)) {
4601 cq = n->cq[sq->cqid];
4602 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4603
4604 nvme_post_cqes(cq);
4605 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4606 if (r->sq == sq) {
4607 QTAILQ_REMOVE(&cq->req_list, r, entry);
4608 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4609 }
4610 }
4611 }
4612
4613 nvme_free_sq(sq, n);
4614 return NVME_SUCCESS;
4615 }
4616
4617 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4618 uint16_t sqid, uint16_t cqid, uint16_t size)
4619 {
4620 int i;
4621 NvmeCQueue *cq;
4622
4623 sq->ctrl = n;
4624 sq->dma_addr = dma_addr;
4625 sq->sqid = sqid;
4626 sq->size = size;
4627 sq->cqid = cqid;
4628 sq->head = sq->tail = 0;
4629 sq->io_req = g_new0(NvmeRequest, sq->size);
4630
4631 QTAILQ_INIT(&sq->req_list);
4632 QTAILQ_INIT(&sq->out_req_list);
4633 for (i = 0; i < sq->size; i++) {
4634 sq->io_req[i].sq = sq;
4635 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4636 }
4637
4638 sq->bh = qemu_bh_new_guarded(nvme_process_sq, sq,
4639 &DEVICE(sq->ctrl)->mem_reentrancy_guard);
4640
4641 if (n->dbbuf_enabled) {
4642 sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4643 sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4644
4645 if (n->params.ioeventfd && sq->sqid != 0) {
4646 if (!nvme_init_sq_ioeventfd(sq)) {
4647 sq->ioeventfd_enabled = true;
4648 }
4649 }
4650 }
4651
4652 assert(n->cq[cqid]);
4653 cq = n->cq[cqid];
4654 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4655 n->sq[sqid] = sq;
4656 }
4657
4658 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4659 {
4660 NvmeSQueue *sq;
4661 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4662
4663 uint16_t cqid = le16_to_cpu(c->cqid);
4664 uint16_t sqid = le16_to_cpu(c->sqid);
4665 uint16_t qsize = le16_to_cpu(c->qsize);
4666 uint16_t qflags = le16_to_cpu(c->sq_flags);
4667 uint64_t prp1 = le64_to_cpu(c->prp1);
4668
4669 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4670
4671 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4672 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4673 return NVME_INVALID_CQID | NVME_DNR;
4674 }
4675 if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4676 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4677 return NVME_INVALID_QID | NVME_DNR;
4678 }
4679 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4680 trace_pci_nvme_err_invalid_create_sq_size(qsize);
4681 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4682 }
4683 if (unlikely(prp1 & (n->page_size - 1))) {
4684 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4685 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4686 }
4687 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4688 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4689 return NVME_INVALID_FIELD | NVME_DNR;
4690 }
4691 sq = g_malloc0(sizeof(*sq));
4692 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4693 return NVME_SUCCESS;
4694 }
4695
4696 struct nvme_stats {
4697 uint64_t units_read;
4698 uint64_t units_written;
4699 uint64_t read_commands;
4700 uint64_t write_commands;
4701 };
4702
4703 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4704 {
4705 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4706
4707 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ];
4708 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE];
4709 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4710 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4711 }
4712
4713 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4714 uint64_t off, NvmeRequest *req)
4715 {
4716 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4717 struct nvme_stats stats = { 0 };
4718 NvmeSmartLog smart = { 0 };
4719 uint32_t trans_len;
4720 NvmeNamespace *ns;
4721 time_t current_ms;
4722 uint64_t u_read, u_written;
4723
4724 if (off >= sizeof(smart)) {
4725 return NVME_INVALID_FIELD | NVME_DNR;
4726 }
4727
4728 if (nsid != 0xffffffff) {
4729 ns = nvme_ns(n, nsid);
4730 if (!ns) {
4731 return NVME_INVALID_NSID | NVME_DNR;
4732 }
4733 nvme_set_blk_stats(ns, &stats);
4734 } else {
4735 int i;
4736
4737 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4738 ns = nvme_ns(n, i);
4739 if (!ns) {
4740 continue;
4741 }
4742 nvme_set_blk_stats(ns, &stats);
4743 }
4744 }
4745
4746 trans_len = MIN(sizeof(smart) - off, buf_len);
4747 smart.critical_warning = n->smart_critical_warning;
4748
4749 u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000);
4750 u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000);
4751
4752 smart.data_units_read[0] = cpu_to_le64(u_read);
4753 smart.data_units_written[0] = cpu_to_le64(u_written);
4754 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4755 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4756
4757 smart.temperature = cpu_to_le16(n->temperature);
4758
4759 if ((n->temperature >= n->features.temp_thresh_hi) ||
4760 (n->temperature <= n->features.temp_thresh_low)) {
4761 smart.critical_warning |= NVME_SMART_TEMPERATURE;
4762 }
4763
4764 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4765 smart.power_on_hours[0] =
4766 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4767
4768 if (!rae) {
4769 nvme_clear_events(n, NVME_AER_TYPE_SMART);
4770 }
4771
4772 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4773 }
4774
4775 static uint16_t nvme_endgrp_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4776 uint64_t off, NvmeRequest *req)
4777 {
4778 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
4779 uint16_t endgrpid = (dw11 >> 16) & 0xffff;
4780 struct nvme_stats stats = {};
4781 NvmeEndGrpLog info = {};
4782 int i;
4783
4784 if (!n->subsys || endgrpid != 0x1) {
4785 return NVME_INVALID_FIELD | NVME_DNR;
4786 }
4787
4788 if (off >= sizeof(info)) {
4789 return NVME_INVALID_FIELD | NVME_DNR;
4790 }
4791
4792 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4793 NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i);
4794 if (!ns) {
4795 continue;
4796 }
4797
4798 nvme_set_blk_stats(ns, &stats);
4799 }
4800
4801 info.data_units_read[0] =
4802 cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000));
4803 info.data_units_written[0] =
4804 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4805 info.media_units_written[0] =
4806 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4807
4808 info.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4809 info.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4810
4811 buf_len = MIN(sizeof(info) - off, buf_len);
4812
4813 return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req);
4814 }
4815
4816
4817 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4818 NvmeRequest *req)
4819 {
4820 uint32_t trans_len;
4821 NvmeFwSlotInfoLog fw_log = {
4822 .afi = 0x1,
4823 };
4824
4825 if (off >= sizeof(fw_log)) {
4826 return NVME_INVALID_FIELD | NVME_DNR;
4827 }
4828
4829 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4830 trans_len = MIN(sizeof(fw_log) - off, buf_len);
4831
4832 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4833 }
4834
4835 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4836 uint64_t off, NvmeRequest *req)
4837 {
4838 uint32_t trans_len;
4839 NvmeErrorLog errlog;
4840
4841 if (off >= sizeof(errlog)) {
4842 return NVME_INVALID_FIELD | NVME_DNR;
4843 }
4844
4845 if (!rae) {
4846 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4847 }
4848
4849 memset(&errlog, 0x0, sizeof(errlog));
4850 trans_len = MIN(sizeof(errlog) - off, buf_len);
4851
4852 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4853 }
4854
4855 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4856 uint64_t off, NvmeRequest *req)
4857 {
4858 uint32_t nslist[1024];
4859 uint32_t trans_len;
4860 int i = 0;
4861 uint32_t nsid;
4862
4863 if (off >= sizeof(nslist)) {
4864 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4865 return NVME_INVALID_FIELD | NVME_DNR;
4866 }
4867
4868 memset(nslist, 0x0, sizeof(nslist));
4869 trans_len = MIN(sizeof(nslist) - off, buf_len);
4870
4871 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4872 NVME_CHANGED_NSID_SIZE) {
4873 /*
4874 * If more than 1024 namespaces, the first entry in the log page should
4875 * be set to FFFFFFFFh and the others to 0 as spec.
4876 */
4877 if (i == ARRAY_SIZE(nslist)) {
4878 memset(nslist, 0x0, sizeof(nslist));
4879 nslist[0] = 0xffffffff;
4880 break;
4881 }
4882
4883 nslist[i++] = nsid;
4884 clear_bit(nsid, n->changed_nsids);
4885 }
4886
4887 /*
4888 * Remove all the remaining list entries in case returns directly due to
4889 * more than 1024 namespaces.
4890 */
4891 if (nslist[0] == 0xffffffff) {
4892 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4893 }
4894
4895 if (!rae) {
4896 nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4897 }
4898
4899 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4900 }
4901
4902 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4903 uint64_t off, NvmeRequest *req)
4904 {
4905 NvmeEffectsLog log = {};
4906 const uint32_t *src_iocs = NULL;
4907 uint32_t trans_len;
4908
4909 if (off >= sizeof(log)) {
4910 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4911 return NVME_INVALID_FIELD | NVME_DNR;
4912 }
4913
4914 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4915 case NVME_CC_CSS_NVM:
4916 src_iocs = nvme_cse_iocs_nvm;
4917 /* fall through */
4918 case NVME_CC_CSS_ADMIN_ONLY:
4919 break;
4920 case NVME_CC_CSS_CSI:
4921 switch (csi) {
4922 case NVME_CSI_NVM:
4923 src_iocs = nvme_cse_iocs_nvm;
4924 break;
4925 case NVME_CSI_ZONED:
4926 src_iocs = nvme_cse_iocs_zoned;
4927 break;
4928 }
4929 }
4930
4931 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4932
4933 if (src_iocs) {
4934 memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4935 }
4936
4937 trans_len = MIN(sizeof(log) - off, buf_len);
4938
4939 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4940 }
4941
4942 static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss)
4943 {
4944 size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr)
4945 + vss;
4946 return ROUND_UP(entry_siz, 8);
4947 }
4948
4949 static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
4950 uint64_t off, NvmeRequest *req)
4951 {
4952 uint32_t log_size, trans_len;
4953 g_autofree uint8_t *buf = NULL;
4954 NvmeFdpDescrHdr *hdr;
4955 NvmeRuhDescr *ruhd;
4956 NvmeEnduranceGroup *endgrp;
4957 NvmeFdpConfsHdr *log;
4958 size_t nruh, fdp_descr_size;
4959 int i;
4960
4961 if (endgrpid != 1 || !n->subsys) {
4962 return NVME_INVALID_FIELD | NVME_DNR;
4963 }
4964
4965 endgrp = &n->subsys->endgrp;
4966
4967 if (endgrp->fdp.enabled) {
4968 nruh = endgrp->fdp.nruh;
4969 } else {
4970 nruh = 1;
4971 }
4972
4973 fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS);
4974 log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size;
4975
4976 if (off >= log_size) {
4977 return NVME_INVALID_FIELD | NVME_DNR;
4978 }
4979
4980 trans_len = MIN(log_size - off, buf_len);
4981
4982 buf = g_malloc0(log_size);
4983 log = (NvmeFdpConfsHdr *)buf;
4984 hdr = (NvmeFdpDescrHdr *)(log + 1);
4985 ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr));
4986
4987 log->num_confs = cpu_to_le16(0);
4988 log->size = cpu_to_le32(log_size);
4989
4990 hdr->descr_size = cpu_to_le16(fdp_descr_size);
4991 if (endgrp->fdp.enabled) {
4992 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1);
4993 hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif);
4994 hdr->nrg = cpu_to_le16(endgrp->fdp.nrg);
4995 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
4996 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
4997 hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES);
4998 hdr->runs = cpu_to_le64(endgrp->fdp.runs);
4999
5000 for (i = 0; i < nruh; i++) {
5001 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
5002 ruhd++;
5003 }
5004 } else {
5005 /* 1 bit for RUH in PIF -> 2 RUHs max. */
5006 hdr->nrg = cpu_to_le16(1);
5007 hdr->nruh = cpu_to_le16(1);
5008 hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
5009 hdr->nnss = cpu_to_le32(1);
5010 hdr->runs = cpu_to_le64(96 * MiB);
5011
5012 ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
5013 }
5014
5015 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
5016 }
5017
5018 static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid,
5019 uint32_t dw10, uint32_t dw12,
5020 uint32_t buf_len, uint64_t off,
5021 NvmeRequest *req)
5022 {
5023 NvmeRuHandle *ruh;
5024 NvmeRuhuLog *hdr;
5025 NvmeRuhuDescr *ruhud;
5026 NvmeEnduranceGroup *endgrp;
5027 g_autofree uint8_t *buf = NULL;
5028 uint32_t log_size, trans_len;
5029 uint16_t i;
5030
5031 if (endgrpid != 1 || !n->subsys) {
5032 return NVME_INVALID_FIELD | NVME_DNR;
5033 }
5034
5035 endgrp = &n->subsys->endgrp;
5036
5037 if (!endgrp->fdp.enabled) {
5038 return NVME_FDP_DISABLED | NVME_DNR;
5039 }
5040
5041 log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr);
5042
5043 if (off >= log_size) {
5044 return NVME_INVALID_FIELD | NVME_DNR;
5045 }
5046
5047 trans_len = MIN(log_size - off, buf_len);
5048
5049 buf = g_malloc0(log_size);
5050 hdr = (NvmeRuhuLog *)buf;
5051 ruhud = (NvmeRuhuDescr *)(hdr + 1);
5052
5053 ruh = endgrp->fdp.ruhs;
5054 hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
5055
5056 for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) {
5057 ruhud->ruha = ruh->ruha;
5058 }
5059
5060 return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
5061 }
5062
5063 static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
5064 uint64_t off, NvmeRequest *req)
5065 {
5066 NvmeEnduranceGroup *endgrp;
5067 NvmeFdpStatsLog log = {};
5068 uint32_t trans_len;
5069
5070 if (off >= sizeof(NvmeFdpStatsLog)) {
5071 return NVME_INVALID_FIELD | NVME_DNR;
5072 }
5073
5074 if (endgrpid != 1 || !n->subsys) {
5075 return NVME_INVALID_FIELD | NVME_DNR;
5076 }
5077
5078 if (!n->subsys->endgrp.fdp.enabled) {
5079 return NVME_FDP_DISABLED | NVME_DNR;
5080 }
5081
5082 endgrp = &n->subsys->endgrp;
5083
5084 trans_len = MIN(sizeof(log) - off, buf_len);
5085
5086 /* spec value is 128 bit, we only use 64 bit */
5087 log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw);
5088 log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw);
5089 log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe);
5090
5091 return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req);
5092 }
5093
5094 static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid,
5095 uint32_t buf_len, uint64_t off,
5096 NvmeRequest *req)
5097 {
5098 NvmeEnduranceGroup *endgrp;
5099 NvmeCmd *cmd = &req->cmd;
5100 bool host_events = (cmd->cdw10 >> 8) & 0x1;
5101 uint32_t log_size, trans_len;
5102 NvmeFdpEventBuffer *ebuf;
5103 g_autofree NvmeFdpEventsLog *elog = NULL;
5104 NvmeFdpEvent *event;
5105
5106 if (endgrpid != 1 || !n->subsys) {
5107 return NVME_INVALID_FIELD | NVME_DNR;
5108 }
5109
5110 endgrp = &n->subsys->endgrp;
5111
5112 if (!endgrp->fdp.enabled) {
5113 return NVME_FDP_DISABLED | NVME_DNR;
5114 }
5115
5116 if (host_events) {
5117 ebuf = &endgrp->fdp.host_events;
5118 } else {
5119 ebuf = &endgrp->fdp.ctrl_events;
5120 }
5121
5122 log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent);
5123
5124 if (off >= log_size) {
5125 return NVME_INVALID_FIELD | NVME_DNR;
5126 }
5127
5128 trans_len = MIN(log_size - off, buf_len);
5129 elog = g_malloc0(log_size);
5130 elog->num_events = cpu_to_le32(ebuf->nelems);
5131 event = (NvmeFdpEvent *)(elog + 1);
5132
5133 if (ebuf->nelems && ebuf->start == ebuf->next) {
5134 unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start);
5135 /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */
5136 memcpy(event, &ebuf->events[ebuf->start],
5137 sizeof(NvmeFdpEvent) * nelems);
5138 memcpy(event + nelems, ebuf->events,
5139 sizeof(NvmeFdpEvent) * ebuf->next);
5140 } else if (ebuf->start < ebuf->next) {
5141 memcpy(event, &ebuf->events[ebuf->start],
5142 sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start));
5143 }
5144
5145 return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req);
5146 }
5147
5148 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
5149 {
5150 NvmeCmd *cmd = &req->cmd;
5151
5152 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5153 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5154 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
5155 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
5156 uint8_t lid = dw10 & 0xff;
5157 uint8_t lsp = (dw10 >> 8) & 0xf;
5158 uint8_t rae = (dw10 >> 15) & 0x1;
5159 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
5160 uint32_t numdl, numdu, lspi;
5161 uint64_t off, lpol, lpou;
5162 size_t len;
5163 uint16_t status;
5164
5165 numdl = (dw10 >> 16);
5166 numdu = (dw11 & 0xffff);
5167 lspi = (dw11 >> 16);
5168 lpol = dw12;
5169 lpou = dw13;
5170
5171 len = (((numdu << 16) | numdl) + 1) << 2;
5172 off = (lpou << 32ULL) | lpol;
5173
5174 if (off & 0x3) {
5175 return NVME_INVALID_FIELD | NVME_DNR;
5176 }
5177
5178 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
5179
5180 status = nvme_check_mdts(n, len);
5181 if (status) {
5182 return status;
5183 }
5184
5185 switch (lid) {
5186 case NVME_LOG_ERROR_INFO:
5187 return nvme_error_info(n, rae, len, off, req);
5188 case NVME_LOG_SMART_INFO:
5189 return nvme_smart_info(n, rae, len, off, req);
5190 case NVME_LOG_FW_SLOT_INFO:
5191 return nvme_fw_log_info(n, len, off, req);
5192 case NVME_LOG_CHANGED_NSLIST:
5193 return nvme_changed_nslist(n, rae, len, off, req);
5194 case NVME_LOG_CMD_EFFECTS:
5195 return nvme_cmd_effects(n, csi, len, off, req);
5196 case NVME_LOG_ENDGRP:
5197 return nvme_endgrp_info(n, rae, len, off, req);
5198 case NVME_LOG_FDP_CONFS:
5199 return nvme_fdp_confs(n, lspi, len, off, req);
5200 case NVME_LOG_FDP_RUH_USAGE:
5201 return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req);
5202 case NVME_LOG_FDP_STATS:
5203 return nvme_fdp_stats(n, lspi, len, off, req);
5204 case NVME_LOG_FDP_EVENTS:
5205 return nvme_fdp_events(n, lspi, len, off, req);
5206 default:
5207 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
5208 return NVME_INVALID_FIELD | NVME_DNR;
5209 }
5210 }
5211
5212 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
5213 {
5214 PCIDevice *pci = PCI_DEVICE(n);
5215 uint16_t offset = (cq->cqid << 3) + (1 << 2);
5216
5217 n->cq[cq->cqid] = NULL;
5218 qemu_bh_delete(cq->bh);
5219 if (cq->ioeventfd_enabled) {
5220 memory_region_del_eventfd(&n->iomem,
5221 0x1000 + offset, 4, false, 0, &cq->notifier);
5222 event_notifier_set_handler(&cq->notifier, NULL);
5223 event_notifier_cleanup(&cq->notifier);
5224 }
5225 if (msix_enabled(pci)) {
5226 msix_vector_unuse(pci, cq->vector);
5227 }
5228 if (cq->cqid) {
5229 g_free(cq);
5230 }
5231 }
5232
5233 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
5234 {
5235 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
5236 NvmeCQueue *cq;
5237 uint16_t qid = le16_to_cpu(c->qid);
5238
5239 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
5240 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
5241 return NVME_INVALID_CQID | NVME_DNR;
5242 }
5243
5244 cq = n->cq[qid];
5245 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
5246 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
5247 return NVME_INVALID_QUEUE_DEL;
5248 }
5249
5250 if (cq->irq_enabled && cq->tail != cq->head) {
5251 n->cq_pending--;
5252 }
5253
5254 nvme_irq_deassert(n, cq);
5255 trace_pci_nvme_del_cq(qid);
5256 nvme_free_cq(cq, n);
5257 return NVME_SUCCESS;
5258 }
5259
5260 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
5261 uint16_t cqid, uint16_t vector, uint16_t size,
5262 uint16_t irq_enabled)
5263 {
5264 PCIDevice *pci = PCI_DEVICE(n);
5265
5266 if (msix_enabled(pci)) {
5267 msix_vector_use(pci, vector);
5268 }
5269 cq->ctrl = n;
5270 cq->cqid = cqid;
5271 cq->size = size;
5272 cq->dma_addr = dma_addr;
5273 cq->phase = 1;
5274 cq->irq_enabled = irq_enabled;
5275 cq->vector = vector;
5276 cq->head = cq->tail = 0;
5277 QTAILQ_INIT(&cq->req_list);
5278 QTAILQ_INIT(&cq->sq_list);
5279 if (n->dbbuf_enabled) {
5280 cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
5281 cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
5282
5283 if (n->params.ioeventfd && cqid != 0) {
5284 if (!nvme_init_cq_ioeventfd(cq)) {
5285 cq->ioeventfd_enabled = true;
5286 }
5287 }
5288 }
5289 n->cq[cqid] = cq;
5290 cq->bh = qemu_bh_new_guarded(nvme_post_cqes, cq,
5291 &DEVICE(cq->ctrl)->mem_reentrancy_guard);
5292 }
5293
5294 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
5295 {
5296 NvmeCQueue *cq;
5297 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
5298 uint16_t cqid = le16_to_cpu(c->cqid);
5299 uint16_t vector = le16_to_cpu(c->irq_vector);
5300 uint16_t qsize = le16_to_cpu(c->qsize);
5301 uint16_t qflags = le16_to_cpu(c->cq_flags);
5302 uint64_t prp1 = le64_to_cpu(c->prp1);
5303 uint32_t cc = ldq_le_p(&n->bar.cc);
5304 uint8_t iocqes = NVME_CC_IOCQES(cc);
5305 uint8_t iosqes = NVME_CC_IOSQES(cc);
5306
5307 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
5308 NVME_CQ_FLAGS_IEN(qflags) != 0);
5309
5310 if (iosqes != NVME_SQES || iocqes != NVME_CQES) {
5311 trace_pci_nvme_err_invalid_create_cq_entry_size(iosqes, iocqes);
5312 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
5313 }
5314
5315 if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
5316 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
5317 return NVME_INVALID_QID | NVME_DNR;
5318 }
5319 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
5320 trace_pci_nvme_err_invalid_create_cq_size(qsize);
5321 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
5322 }
5323 if (unlikely(prp1 & (n->page_size - 1))) {
5324 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
5325 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
5326 }
5327 if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) {
5328 trace_pci_nvme_err_invalid_create_cq_vector(vector);
5329 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5330 }
5331 if (unlikely(vector >= n->conf_msix_qsize)) {
5332 trace_pci_nvme_err_invalid_create_cq_vector(vector);
5333 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5334 }
5335 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
5336 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
5337 return NVME_INVALID_FIELD | NVME_DNR;
5338 }
5339
5340 cq = g_malloc0(sizeof(*cq));
5341 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
5342 NVME_CQ_FLAGS_IEN(qflags));
5343
5344 /*
5345 * It is only required to set qs_created when creating a completion queue;
5346 * creating a submission queue without a matching completion queue will
5347 * fail.
5348 */
5349 n->qs_created = true;
5350 return NVME_SUCCESS;
5351 }
5352
5353 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
5354 {
5355 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5356
5357 return nvme_c2h(n, id, sizeof(id), req);
5358 }
5359
5360 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
5361 {
5362 trace_pci_nvme_identify_ctrl();
5363
5364 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
5365 }
5366
5367 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
5368 {
5369 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5370 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5371 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
5372
5373 trace_pci_nvme_identify_ctrl_csi(c->csi);
5374
5375 switch (c->csi) {
5376 case NVME_CSI_NVM:
5377 id_nvm->vsl = n->params.vsl;
5378 id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
5379 break;
5380
5381 case NVME_CSI_ZONED:
5382 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
5383 break;
5384
5385 default:
5386 return NVME_INVALID_FIELD | NVME_DNR;
5387 }
5388
5389 return nvme_c2h(n, id, sizeof(id), req);
5390 }
5391
5392 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
5393 {
5394 NvmeNamespace *ns;
5395 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5396 uint32_t nsid = le32_to_cpu(c->nsid);
5397
5398 trace_pci_nvme_identify_ns(nsid);
5399
5400 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5401 return NVME_INVALID_NSID | NVME_DNR;
5402 }
5403
5404 ns = nvme_ns(n, nsid);
5405 if (unlikely(!ns)) {
5406 if (!active) {
5407 ns = nvme_subsys_ns(n->subsys, nsid);
5408 if (!ns) {
5409 return nvme_rpt_empty_id_struct(n, req);
5410 }
5411 } else {
5412 return nvme_rpt_empty_id_struct(n, req);
5413 }
5414 }
5415
5416 if (active || ns->csi == NVME_CSI_NVM) {
5417 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
5418 }
5419
5420 return NVME_INVALID_CMD_SET | NVME_DNR;
5421 }
5422
5423 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
5424 bool attached)
5425 {
5426 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5427 uint32_t nsid = le32_to_cpu(c->nsid);
5428 uint16_t min_id = le16_to_cpu(c->ctrlid);
5429 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5430 uint16_t *ids = &list[1];
5431 NvmeNamespace *ns;
5432 NvmeCtrl *ctrl;
5433 int cntlid, nr_ids = 0;
5434
5435 trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
5436
5437 if (!n->subsys) {
5438 return NVME_INVALID_FIELD | NVME_DNR;
5439 }
5440
5441 if (attached) {
5442 if (nsid == NVME_NSID_BROADCAST) {
5443 return NVME_INVALID_FIELD | NVME_DNR;
5444 }
5445
5446 ns = nvme_subsys_ns(n->subsys, nsid);
5447 if (!ns) {
5448 return NVME_INVALID_FIELD | NVME_DNR;
5449 }
5450 }
5451
5452 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
5453 ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
5454 if (!ctrl) {
5455 continue;
5456 }
5457
5458 if (attached && !nvme_ns(ctrl, nsid)) {
5459 continue;
5460 }
5461
5462 ids[nr_ids++] = cntlid;
5463 }
5464
5465 list[0] = nr_ids;
5466
5467 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
5468 }
5469
5470 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
5471 {
5472 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
5473
5474 return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
5475 sizeof(NvmePriCtrlCap), req);
5476 }
5477
5478 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
5479 {
5480 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5481 uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
5482 uint16_t min_id = le16_to_cpu(c->ctrlid);
5483 uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
5484 NvmeSecCtrlList list = {0};
5485 uint8_t i;
5486
5487 for (i = 0; i < num_sec_ctrl; i++) {
5488 if (n->sec_ctrl_list.sec[i].scid >= min_id) {
5489 list.numcntl = num_sec_ctrl - i;
5490 memcpy(&list.sec, n->sec_ctrl_list.sec + i,
5491 list.numcntl * sizeof(NvmeSecCtrlEntry));
5492 break;
5493 }
5494 }
5495
5496 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
5497
5498 return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
5499 }
5500
5501 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
5502 bool active)
5503 {
5504 NvmeNamespace *ns;
5505 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5506 uint32_t nsid = le32_to_cpu(c->nsid);
5507
5508 trace_pci_nvme_identify_ns_csi(nsid, c->csi);
5509
5510 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5511 return NVME_INVALID_NSID | NVME_DNR;
5512 }
5513
5514 ns = nvme_ns(n, nsid);
5515 if (unlikely(!ns)) {
5516 if (!active) {
5517 ns = nvme_subsys_ns(n->subsys, nsid);
5518 if (!ns) {
5519 return nvme_rpt_empty_id_struct(n, req);
5520 }
5521 } else {
5522 return nvme_rpt_empty_id_struct(n, req);
5523 }
5524 }
5525
5526 if (c->csi == NVME_CSI_NVM) {
5527 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
5528 req);
5529 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
5530 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
5531 req);
5532 }
5533
5534 return NVME_INVALID_FIELD | NVME_DNR;
5535 }
5536
5537 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
5538 bool active)
5539 {
5540 NvmeNamespace *ns;
5541 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5542 uint32_t min_nsid = le32_to_cpu(c->nsid);
5543 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5544 static const int data_len = sizeof(list);
5545 uint32_t *list_ptr = (uint32_t *)list;
5546 int i, j = 0;
5547
5548 trace_pci_nvme_identify_nslist(min_nsid);
5549
5550 /*
5551 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
5552 * since the Active Namespace ID List should return namespaces with ids
5553 * *higher* than the NSID specified in the command. This is also specified
5554 * in the spec (NVM Express v1.3d, Section 5.15.4).
5555 */
5556 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5557 return NVME_INVALID_NSID | NVME_DNR;
5558 }
5559
5560 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5561 ns = nvme_ns(n, i);
5562 if (!ns) {
5563 if (!active) {
5564 ns = nvme_subsys_ns(n->subsys, i);
5565 if (!ns) {
5566 continue;
5567 }
5568 } else {
5569 continue;
5570 }
5571 }
5572 if (ns->params.nsid <= min_nsid) {
5573 continue;
5574 }
5575 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5576 if (j == data_len / sizeof(uint32_t)) {
5577 break;
5578 }
5579 }
5580
5581 return nvme_c2h(n, list, data_len, req);
5582 }
5583
5584 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
5585 bool active)
5586 {
5587 NvmeNamespace *ns;
5588 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5589 uint32_t min_nsid = le32_to_cpu(c->nsid);
5590 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5591 static const int data_len = sizeof(list);
5592 uint32_t *list_ptr = (uint32_t *)list;
5593 int i, j = 0;
5594
5595 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
5596
5597 /*
5598 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5599 */
5600 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5601 return NVME_INVALID_NSID | NVME_DNR;
5602 }
5603
5604 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
5605 return NVME_INVALID_FIELD | NVME_DNR;
5606 }
5607
5608 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5609 ns = nvme_ns(n, i);
5610 if (!ns) {
5611 if (!active) {
5612 ns = nvme_subsys_ns(n->subsys, i);
5613 if (!ns) {
5614 continue;
5615 }
5616 } else {
5617 continue;
5618 }
5619 }
5620 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5621 continue;
5622 }
5623 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5624 if (j == data_len / sizeof(uint32_t)) {
5625 break;
5626 }
5627 }
5628
5629 return nvme_c2h(n, list, data_len, req);
5630 }
5631
5632 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5633 {
5634 NvmeNamespace *ns;
5635 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5636 uint32_t nsid = le32_to_cpu(c->nsid);
5637 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5638 uint8_t *pos = list;
5639 struct {
5640 NvmeIdNsDescr hdr;
5641 uint8_t v[NVME_NIDL_UUID];
5642 } QEMU_PACKED uuid = {};
5643 struct {
5644 NvmeIdNsDescr hdr;
5645 uint64_t v;
5646 } QEMU_PACKED eui64 = {};
5647 struct {
5648 NvmeIdNsDescr hdr;
5649 uint8_t v;
5650 } QEMU_PACKED csi = {};
5651
5652 trace_pci_nvme_identify_ns_descr_list(nsid);
5653
5654 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5655 return NVME_INVALID_NSID | NVME_DNR;
5656 }
5657
5658 ns = nvme_ns(n, nsid);
5659 if (unlikely(!ns)) {
5660 return NVME_INVALID_FIELD | NVME_DNR;
5661 }
5662
5663 if (!qemu_uuid_is_null(&ns->params.uuid)) {
5664 uuid.hdr.nidt = NVME_NIDT_UUID;
5665 uuid.hdr.nidl = NVME_NIDL_UUID;
5666 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5667 memcpy(pos, &uuid, sizeof(uuid));
5668 pos += sizeof(uuid);
5669 }
5670
5671 if (ns->params.eui64) {
5672 eui64.hdr.nidt = NVME_NIDT_EUI64;
5673 eui64.hdr.nidl = NVME_NIDL_EUI64;
5674 eui64.v = cpu_to_be64(ns->params.eui64);
5675 memcpy(pos, &eui64, sizeof(eui64));
5676 pos += sizeof(eui64);
5677 }
5678
5679 csi.hdr.nidt = NVME_NIDT_CSI;
5680 csi.hdr.nidl = NVME_NIDL_CSI;
5681 csi.v = ns->csi;
5682 memcpy(pos, &csi, sizeof(csi));
5683 pos += sizeof(csi);
5684
5685 return nvme_c2h(n, list, sizeof(list), req);
5686 }
5687
5688 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5689 {
5690 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5691 static const int data_len = sizeof(list);
5692
5693 trace_pci_nvme_identify_cmd_set();
5694
5695 NVME_SET_CSI(*list, NVME_CSI_NVM);
5696 NVME_SET_CSI(*list, NVME_CSI_ZONED);
5697
5698 return nvme_c2h(n, list, data_len, req);
5699 }
5700
5701 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5702 {
5703 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5704
5705 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5706 c->csi);
5707
5708 switch (c->cns) {
5709 case NVME_ID_CNS_NS:
5710 return nvme_identify_ns(n, req, true);
5711 case NVME_ID_CNS_NS_PRESENT:
5712 return nvme_identify_ns(n, req, false);
5713 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5714 return nvme_identify_ctrl_list(n, req, true);
5715 case NVME_ID_CNS_CTRL_LIST:
5716 return nvme_identify_ctrl_list(n, req, false);
5717 case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5718 return nvme_identify_pri_ctrl_cap(n, req);
5719 case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5720 return nvme_identify_sec_ctrl_list(n, req);
5721 case NVME_ID_CNS_CS_NS:
5722 return nvme_identify_ns_csi(n, req, true);
5723 case NVME_ID_CNS_CS_NS_PRESENT:
5724 return nvme_identify_ns_csi(n, req, false);
5725 case NVME_ID_CNS_CTRL:
5726 return nvme_identify_ctrl(n, req);
5727 case NVME_ID_CNS_CS_CTRL:
5728 return nvme_identify_ctrl_csi(n, req);
5729 case NVME_ID_CNS_NS_ACTIVE_LIST:
5730 return nvme_identify_nslist(n, req, true);
5731 case NVME_ID_CNS_NS_PRESENT_LIST:
5732 return nvme_identify_nslist(n, req, false);
5733 case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5734 return nvme_identify_nslist_csi(n, req, true);
5735 case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5736 return nvme_identify_nslist_csi(n, req, false);
5737 case NVME_ID_CNS_NS_DESCR_LIST:
5738 return nvme_identify_ns_descr_list(n, req);
5739 case NVME_ID_CNS_IO_COMMAND_SET:
5740 return nvme_identify_cmd_set(n, req);
5741 default:
5742 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5743 return NVME_INVALID_FIELD | NVME_DNR;
5744 }
5745 }
5746
5747 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5748 {
5749 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5750
5751 req->cqe.result = 1;
5752 if (nvme_check_sqid(n, sqid)) {
5753 return NVME_INVALID_FIELD | NVME_DNR;
5754 }
5755
5756 return NVME_SUCCESS;
5757 }
5758
5759 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5760 {
5761 trace_pci_nvme_setfeat_timestamp(ts);
5762
5763 n->host_timestamp = le64_to_cpu(ts);
5764 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5765 }
5766
5767 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5768 {
5769 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5770 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5771
5772 union nvme_timestamp {
5773 struct {
5774 uint64_t timestamp:48;
5775 uint64_t sync:1;
5776 uint64_t origin:3;
5777 uint64_t rsvd1:12;
5778 };
5779 uint64_t all;
5780 };
5781
5782 union nvme_timestamp ts;
5783 ts.all = 0;
5784 ts.timestamp = n->host_timestamp + elapsed_time;
5785
5786 /* If the host timestamp is non-zero, set the timestamp origin */
5787 ts.origin = n->host_timestamp ? 0x01 : 0x00;
5788
5789 trace_pci_nvme_getfeat_timestamp(ts.all);
5790
5791 return cpu_to_le64(ts.all);
5792 }
5793
5794 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5795 {
5796 uint64_t timestamp = nvme_get_timestamp(n);
5797
5798 return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5799 }
5800
5801 static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid,
5802 uint32_t *result)
5803 {
5804 *result = 0;
5805
5806 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
5807 return NVME_INVALID_FIELD | NVME_DNR;
5808 }
5809
5810 *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1);
5811 *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0);
5812
5813 return NVME_SUCCESS;
5814 }
5815
5816 static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
5817 NvmeRequest *req, uint32_t *result)
5818 {
5819 NvmeCmd *cmd = &req->cmd;
5820 uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
5821 uint16_t ph = cdw11 & 0xffff;
5822 uint8_t noet = (cdw11 >> 16) & 0xff;
5823 uint16_t ruhid, ret;
5824 uint32_t nentries = 0;
5825 uint8_t s_events_ndx = 0;
5826 size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet;
5827 g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz);
5828 NvmeRuHandle *ruh;
5829 NvmeFdpEventDescr *s_event;
5830
5831 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
5832 return NVME_FDP_DISABLED | NVME_DNR;
5833 }
5834
5835 if (!nvme_ph_valid(ns, ph)) {
5836 return NVME_INVALID_FIELD | NVME_DNR;
5837 }
5838
5839 ruhid = ns->fdp.phs[ph];
5840 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
5841
5842 assert(ruh);
5843
5844 if (unlikely(noet == 0)) {
5845 return NVME_INVALID_FIELD | NVME_DNR;
5846 }
5847
5848 for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) {
5849 uint8_t shift = nvme_fdp_evf_shifts[event_type];
5850 if (!shift && event_type) {
5851 /*
5852 * only first entry (event_type == 0) has a shift value of 0
5853 * other entries are simply unpopulated.
5854 */
5855 continue;
5856 }
5857
5858 nentries++;
5859
5860 s_event = &s_events[s_events_ndx];
5861 s_event->evt = event_type;
5862 s_event->evta = (ruh->event_filter >> shift) & 0x1;
5863
5864 /* break if all `noet` entries are filled */
5865 if ((++s_events_ndx) == noet) {
5866 break;
5867 }
5868 }
5869
5870 ret = nvme_c2h(n, s_events, s_events_siz, req);
5871 if (ret) {
5872 return ret;
5873 }
5874
5875 *result = nentries;
5876 return NVME_SUCCESS;
5877 }
5878
5879 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5880 {
5881 NvmeCmd *cmd = &req->cmd;
5882 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5883 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5884 uint32_t nsid = le32_to_cpu(cmd->nsid);
5885 uint32_t result;
5886 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5887 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5888 uint16_t iv;
5889 NvmeNamespace *ns;
5890 int i;
5891 uint16_t endgrpid = 0, ret = NVME_SUCCESS;
5892
5893 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5894 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5895 };
5896
5897 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5898
5899 if (!nvme_feature_support[fid]) {
5900 return NVME_INVALID_FIELD | NVME_DNR;
5901 }
5902
5903 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5904 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5905 /*
5906 * The Reservation Notification Mask and Reservation Persistence
5907 * features require a status code of Invalid Field in Command when
5908 * NSID is FFFFFFFFh. Since the device does not support those
5909 * features we can always return Invalid Namespace or Format as we
5910 * should do for all other features.
5911 */
5912 return NVME_INVALID_NSID | NVME_DNR;
5913 }
5914
5915 if (!nvme_ns(n, nsid)) {
5916 return NVME_INVALID_FIELD | NVME_DNR;
5917 }
5918 }
5919
5920 switch (sel) {
5921 case NVME_GETFEAT_SELECT_CURRENT:
5922 break;
5923 case NVME_GETFEAT_SELECT_SAVED:
5924 /* no features are saveable by the controller; fallthrough */
5925 case NVME_GETFEAT_SELECT_DEFAULT:
5926 goto defaults;
5927 case NVME_GETFEAT_SELECT_CAP:
5928 result = nvme_feature_cap[fid];
5929 goto out;
5930 }
5931
5932 switch (fid) {
5933 case NVME_TEMPERATURE_THRESHOLD:
5934 result = 0;
5935
5936 /*
5937 * The controller only implements the Composite Temperature sensor, so
5938 * return 0 for all other sensors.
5939 */
5940 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5941 goto out;
5942 }
5943
5944 switch (NVME_TEMP_THSEL(dw11)) {
5945 case NVME_TEMP_THSEL_OVER:
5946 result = n->features.temp_thresh_hi;
5947 goto out;
5948 case NVME_TEMP_THSEL_UNDER:
5949 result = n->features.temp_thresh_low;
5950 goto out;
5951 }
5952
5953 return NVME_INVALID_FIELD | NVME_DNR;
5954 case NVME_ERROR_RECOVERY:
5955 if (!nvme_nsid_valid(n, nsid)) {
5956 return NVME_INVALID_NSID | NVME_DNR;
5957 }
5958
5959 ns = nvme_ns(n, nsid);
5960 if (unlikely(!ns)) {
5961 return NVME_INVALID_FIELD | NVME_DNR;
5962 }
5963
5964 result = ns->features.err_rec;
5965 goto out;
5966 case NVME_VOLATILE_WRITE_CACHE:
5967 result = 0;
5968 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5969 ns = nvme_ns(n, i);
5970 if (!ns) {
5971 continue;
5972 }
5973
5974 result = blk_enable_write_cache(ns->blkconf.blk);
5975 if (result) {
5976 break;
5977 }
5978 }
5979 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5980 goto out;
5981 case NVME_ASYNCHRONOUS_EVENT_CONF:
5982 result = n->features.async_config;
5983 goto out;
5984 case NVME_TIMESTAMP:
5985 return nvme_get_feature_timestamp(n, req);
5986 case NVME_HOST_BEHAVIOR_SUPPORT:
5987 return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5988 sizeof(n->features.hbs), req);
5989 case NVME_FDP_MODE:
5990 endgrpid = dw11 & 0xff;
5991
5992 if (endgrpid != 0x1) {
5993 return NVME_INVALID_FIELD | NVME_DNR;
5994 }
5995
5996 ret = nvme_get_feature_fdp(n, endgrpid, &result);
5997 if (ret) {
5998 return ret;
5999 }
6000 goto out;
6001 case NVME_FDP_EVENTS:
6002 if (!nvme_nsid_valid(n, nsid)) {
6003 return NVME_INVALID_NSID | NVME_DNR;
6004 }
6005
6006 ns = nvme_ns(n, nsid);
6007 if (unlikely(!ns)) {
6008 return NVME_INVALID_FIELD | NVME_DNR;
6009 }
6010
6011 ret = nvme_get_feature_fdp_events(n, ns, req, &result);
6012 if (ret) {
6013 return ret;
6014 }
6015 goto out;
6016 default:
6017 break;
6018 }
6019
6020 defaults:
6021 switch (fid) {
6022 case NVME_TEMPERATURE_THRESHOLD:
6023 result = 0;
6024
6025 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
6026 break;
6027 }
6028
6029 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
6030 result = NVME_TEMPERATURE_WARNING;
6031 }
6032
6033 break;
6034 case NVME_NUMBER_OF_QUEUES:
6035 result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
6036 trace_pci_nvme_getfeat_numq(result);
6037 break;
6038 case NVME_INTERRUPT_VECTOR_CONF:
6039 iv = dw11 & 0xffff;
6040 if (iv >= n->conf_ioqpairs + 1) {
6041 return NVME_INVALID_FIELD | NVME_DNR;
6042 }
6043
6044 result = iv;
6045 if (iv == n->admin_cq.vector) {
6046 result |= NVME_INTVC_NOCOALESCING;
6047 }
6048 break;
6049 case NVME_FDP_MODE:
6050 endgrpid = dw11 & 0xff;
6051
6052 if (endgrpid != 0x1) {
6053 return NVME_INVALID_FIELD | NVME_DNR;
6054 }
6055
6056 ret = nvme_get_feature_fdp(n, endgrpid, &result);
6057 if (ret) {
6058 return ret;
6059 }
6060 goto out;
6061
6062 break;
6063 default:
6064 result = nvme_feature_default[fid];
6065 break;
6066 }
6067
6068 out:
6069 req->cqe.result = cpu_to_le32(result);
6070 return ret;
6071 }
6072
6073 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
6074 {
6075 uint16_t ret;
6076 uint64_t timestamp;
6077
6078 ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
6079 if (ret) {
6080 return ret;
6081 }
6082
6083 nvme_set_timestamp(n, timestamp);
6084
6085 return NVME_SUCCESS;
6086 }
6087
6088 static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
6089 NvmeRequest *req)
6090 {
6091 NvmeCmd *cmd = &req->cmd;
6092 uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
6093 uint16_t ph = cdw11 & 0xffff;
6094 uint8_t noet = (cdw11 >> 16) & 0xff;
6095 uint16_t ret, ruhid;
6096 uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1;
6097 uint8_t event_mask = 0;
6098 unsigned int i;
6099 g_autofree uint8_t *events = g_malloc0(noet);
6100 NvmeRuHandle *ruh = NULL;
6101
6102 assert(ns);
6103
6104 if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
6105 return NVME_FDP_DISABLED | NVME_DNR;
6106 }
6107
6108 if (!nvme_ph_valid(ns, ph)) {
6109 return NVME_INVALID_FIELD | NVME_DNR;
6110 }
6111
6112 ruhid = ns->fdp.phs[ph];
6113 ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
6114
6115 ret = nvme_h2c(n, events, noet, req);
6116 if (ret) {
6117 return ret;
6118 }
6119
6120 for (i = 0; i < noet; i++) {
6121 event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]);
6122 }
6123
6124 if (enable) {
6125 ruh->event_filter |= event_mask;
6126 } else {
6127 ruh->event_filter = ruh->event_filter & ~event_mask;
6128 }
6129
6130 return NVME_SUCCESS;
6131 }
6132
6133 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
6134 {
6135 NvmeNamespace *ns = NULL;
6136
6137 NvmeCmd *cmd = &req->cmd;
6138 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
6139 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
6140 uint32_t nsid = le32_to_cpu(cmd->nsid);
6141 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
6142 uint8_t save = NVME_SETFEAT_SAVE(dw10);
6143 uint16_t status;
6144 int i;
6145
6146 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
6147
6148 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
6149 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
6150 }
6151
6152 if (!nvme_feature_support[fid]) {
6153 return NVME_INVALID_FIELD | NVME_DNR;
6154 }
6155
6156 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
6157 if (nsid != NVME_NSID_BROADCAST) {
6158 if (!nvme_nsid_valid(n, nsid)) {
6159 return NVME_INVALID_NSID | NVME_DNR;
6160 }
6161
6162 ns = nvme_ns(n, nsid);
6163 if (unlikely(!ns)) {
6164 return NVME_INVALID_FIELD | NVME_DNR;
6165 }
6166 }
6167 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
6168 if (!nvme_nsid_valid(n, nsid)) {
6169 return NVME_INVALID_NSID | NVME_DNR;
6170 }
6171
6172 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
6173 }
6174
6175 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
6176 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6177 }
6178
6179 switch (fid) {
6180 case NVME_TEMPERATURE_THRESHOLD:
6181 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
6182 break;
6183 }
6184
6185 switch (NVME_TEMP_THSEL(dw11)) {
6186 case NVME_TEMP_THSEL_OVER:
6187 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
6188 break;
6189 case NVME_TEMP_THSEL_UNDER:
6190 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
6191 break;
6192 default:
6193 return NVME_INVALID_FIELD | NVME_DNR;
6194 }
6195
6196 if ((n->temperature >= n->features.temp_thresh_hi) ||
6197 (n->temperature <= n->features.temp_thresh_low)) {
6198 nvme_smart_event(n, NVME_SMART_TEMPERATURE);
6199 }
6200
6201 break;
6202 case NVME_ERROR_RECOVERY:
6203 if (nsid == NVME_NSID_BROADCAST) {
6204 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6205 ns = nvme_ns(n, i);
6206
6207 if (!ns) {
6208 continue;
6209 }
6210
6211 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
6212 ns->features.err_rec = dw11;
6213 }
6214 }
6215
6216 break;
6217 }
6218
6219 assert(ns);
6220 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
6221 ns->features.err_rec = dw11;
6222 }
6223 break;
6224 case NVME_VOLATILE_WRITE_CACHE:
6225 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6226 ns = nvme_ns(n, i);
6227 if (!ns) {
6228 continue;
6229 }
6230
6231 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
6232 blk_flush(ns->blkconf.blk);
6233 }
6234
6235 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
6236 }
6237
6238 break;
6239
6240 case NVME_NUMBER_OF_QUEUES:
6241 if (n->qs_created) {
6242 return NVME_CMD_SEQ_ERROR | NVME_DNR;
6243 }
6244
6245 /*
6246 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
6247 * and NSQR.
6248 */
6249 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
6250 return NVME_INVALID_FIELD | NVME_DNR;
6251 }
6252
6253 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
6254 ((dw11 >> 16) & 0xffff) + 1,
6255 n->conf_ioqpairs,
6256 n->conf_ioqpairs);
6257 req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
6258 ((n->conf_ioqpairs - 1) << 16));
6259 break;
6260 case NVME_ASYNCHRONOUS_EVENT_CONF:
6261 n->features.async_config = dw11;
6262 break;
6263 case NVME_TIMESTAMP:
6264 return nvme_set_feature_timestamp(n, req);
6265 case NVME_HOST_BEHAVIOR_SUPPORT:
6266 status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
6267 sizeof(n->features.hbs), req);
6268 if (status) {
6269 return status;
6270 }
6271
6272 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6273 ns = nvme_ns(n, i);
6274
6275 if (!ns) {
6276 continue;
6277 }
6278
6279 ns->id_ns.nlbaf = ns->nlbaf - 1;
6280 if (!n->features.hbs.lbafee) {
6281 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
6282 }
6283 }
6284
6285 return status;
6286 case NVME_COMMAND_SET_PROFILE:
6287 if (dw11 & 0x1ff) {
6288 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
6289 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
6290 }
6291 break;
6292 case NVME_FDP_MODE:
6293 /* spec: abort with cmd seq err if there's one or more NS' in endgrp */
6294 return NVME_CMD_SEQ_ERROR | NVME_DNR;
6295 case NVME_FDP_EVENTS:
6296 return nvme_set_feature_fdp_events(n, ns, req);
6297 default:
6298 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6299 }
6300 return NVME_SUCCESS;
6301 }
6302
6303 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
6304 {
6305 trace_pci_nvme_aer(nvme_cid(req));
6306
6307 if (n->outstanding_aers > n->params.aerl) {
6308 trace_pci_nvme_aer_aerl_exceeded();
6309 return NVME_AER_LIMIT_EXCEEDED;
6310 }
6311
6312 n->aer_reqs[n->outstanding_aers] = req;
6313 n->outstanding_aers++;
6314
6315 if (!QTAILQ_EMPTY(&n->aer_queue)) {
6316 nvme_process_aers(n);
6317 }
6318
6319 return NVME_NO_COMPLETE;
6320 }
6321
6322 static void nvme_update_dmrsl(NvmeCtrl *n)
6323 {
6324 int nsid;
6325
6326 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
6327 NvmeNamespace *ns = nvme_ns(n, nsid);
6328 if (!ns) {
6329 continue;
6330 }
6331
6332 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
6333 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
6334 }
6335 }
6336
6337 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
6338 {
6339 uint32_t cc = ldl_le_p(&n->bar.cc);
6340
6341 ns->iocs = nvme_cse_iocs_none;
6342 switch (ns->csi) {
6343 case NVME_CSI_NVM:
6344 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
6345 ns->iocs = nvme_cse_iocs_nvm;
6346 }
6347 break;
6348 case NVME_CSI_ZONED:
6349 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
6350 ns->iocs = nvme_cse_iocs_zoned;
6351 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
6352 ns->iocs = nvme_cse_iocs_nvm;
6353 }
6354 break;
6355 }
6356 }
6357
6358 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
6359 {
6360 NvmeNamespace *ns;
6361 NvmeCtrl *ctrl;
6362 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
6363 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6364 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6365 uint8_t sel = dw10 & 0xf;
6366 uint16_t *nr_ids = &list[0];
6367 uint16_t *ids = &list[1];
6368 uint16_t ret;
6369 int i;
6370
6371 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
6372
6373 if (!nvme_nsid_valid(n, nsid)) {
6374 return NVME_INVALID_NSID | NVME_DNR;
6375 }
6376
6377 ns = nvme_subsys_ns(n->subsys, nsid);
6378 if (!ns) {
6379 return NVME_INVALID_FIELD | NVME_DNR;
6380 }
6381
6382 ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
6383 if (ret) {
6384 return ret;
6385 }
6386
6387 if (!*nr_ids) {
6388 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6389 }
6390
6391 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
6392 for (i = 0; i < *nr_ids; i++) {
6393 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
6394 if (!ctrl) {
6395 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6396 }
6397
6398 switch (sel) {
6399 case NVME_NS_ATTACHMENT_ATTACH:
6400 if (nvme_ns(ctrl, nsid)) {
6401 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
6402 }
6403
6404 if (ns->attached && !ns->params.shared) {
6405 return NVME_NS_PRIVATE | NVME_DNR;
6406 }
6407
6408 nvme_attach_ns(ctrl, ns);
6409 nvme_select_iocs_ns(ctrl, ns);
6410
6411 break;
6412
6413 case NVME_NS_ATTACHMENT_DETACH:
6414 if (!nvme_ns(ctrl, nsid)) {
6415 return NVME_NS_NOT_ATTACHED | NVME_DNR;
6416 }
6417
6418 ctrl->namespaces[nsid] = NULL;
6419 ns->attached--;
6420
6421 nvme_update_dmrsl(ctrl);
6422
6423 break;
6424
6425 default:
6426 return NVME_INVALID_FIELD | NVME_DNR;
6427 }
6428
6429 /*
6430 * Add namespace id to the changed namespace id list for event clearing
6431 * via Get Log Page command.
6432 */
6433 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
6434 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
6435 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
6436 NVME_LOG_CHANGED_NSLIST);
6437 }
6438 }
6439
6440 return NVME_SUCCESS;
6441 }
6442
6443 typedef struct NvmeFormatAIOCB {
6444 BlockAIOCB common;
6445 BlockAIOCB *aiocb;
6446 NvmeRequest *req;
6447 int ret;
6448
6449 NvmeNamespace *ns;
6450 uint32_t nsid;
6451 bool broadcast;
6452 int64_t offset;
6453
6454 uint8_t lbaf;
6455 uint8_t mset;
6456 uint8_t pi;
6457 uint8_t pil;
6458 } NvmeFormatAIOCB;
6459
6460 static void nvme_format_cancel(BlockAIOCB *aiocb)
6461 {
6462 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
6463
6464 iocb->ret = -ECANCELED;
6465
6466 if (iocb->aiocb) {
6467 blk_aio_cancel_async(iocb->aiocb);
6468 iocb->aiocb = NULL;
6469 }
6470 }
6471
6472 static const AIOCBInfo nvme_format_aiocb_info = {
6473 .aiocb_size = sizeof(NvmeFormatAIOCB),
6474 .cancel_async = nvme_format_cancel,
6475 };
6476
6477 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
6478 uint8_t pi, uint8_t pil)
6479 {
6480 uint8_t lbafl = lbaf & 0xf;
6481 uint8_t lbafu = lbaf >> 4;
6482
6483 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
6484
6485 ns->id_ns.dps = (pil << 3) | pi;
6486 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
6487
6488 nvme_ns_init_format(ns);
6489 }
6490
6491 static void nvme_do_format(NvmeFormatAIOCB *iocb);
6492
6493 static void nvme_format_ns_cb(void *opaque, int ret)
6494 {
6495 NvmeFormatAIOCB *iocb = opaque;
6496 NvmeNamespace *ns = iocb->ns;
6497 int bytes;
6498
6499 if (iocb->ret < 0) {
6500 goto done;
6501 } else if (ret < 0) {
6502 iocb->ret = ret;
6503 goto done;
6504 }
6505
6506 assert(ns);
6507
6508 if (iocb->offset < ns->size) {
6509 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
6510
6511 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
6512 bytes, BDRV_REQ_MAY_UNMAP,
6513 nvme_format_ns_cb, iocb);
6514
6515 iocb->offset += bytes;
6516 return;
6517 }
6518
6519 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
6520 ns->status = 0x0;
6521 iocb->ns = NULL;
6522 iocb->offset = 0;
6523
6524 done:
6525 nvme_do_format(iocb);
6526 }
6527
6528 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
6529 {
6530 if (ns->params.zoned) {
6531 return NVME_INVALID_FORMAT | NVME_DNR;
6532 }
6533
6534 if (lbaf > ns->id_ns.nlbaf) {
6535 return NVME_INVALID_FORMAT | NVME_DNR;
6536 }
6537
6538 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
6539 return NVME_INVALID_FORMAT | NVME_DNR;
6540 }
6541
6542 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
6543 return NVME_INVALID_FIELD | NVME_DNR;
6544 }
6545
6546 return NVME_SUCCESS;
6547 }
6548
6549 static void nvme_do_format(NvmeFormatAIOCB *iocb)
6550 {
6551 NvmeRequest *req = iocb->req;
6552 NvmeCtrl *n = nvme_ctrl(req);
6553 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6554 uint8_t lbaf = dw10 & 0xf;
6555 uint8_t pi = (dw10 >> 5) & 0x7;
6556 uint16_t status;
6557 int i;
6558
6559 if (iocb->ret < 0) {
6560 goto done;
6561 }
6562
6563 if (iocb->broadcast) {
6564 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
6565 iocb->ns = nvme_ns(n, i);
6566 if (iocb->ns) {
6567 iocb->nsid = i;
6568 break;
6569 }
6570 }
6571 }
6572
6573 if (!iocb->ns) {
6574 goto done;
6575 }
6576
6577 status = nvme_format_check(iocb->ns, lbaf, pi);
6578 if (status) {
6579 req->status = status;
6580 goto done;
6581 }
6582
6583 iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
6584 nvme_format_ns_cb(iocb, 0);
6585 return;
6586
6587 done:
6588 iocb->common.cb(iocb->common.opaque, iocb->ret);
6589 qemu_aio_unref(iocb);
6590 }
6591
6592 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
6593 {
6594 NvmeFormatAIOCB *iocb;
6595 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6596 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6597 uint8_t lbaf = dw10 & 0xf;
6598 uint8_t mset = (dw10 >> 4) & 0x1;
6599 uint8_t pi = (dw10 >> 5) & 0x7;
6600 uint8_t pil = (dw10 >> 8) & 0x1;
6601 uint8_t lbafu = (dw10 >> 12) & 0x3;
6602 uint16_t status;
6603
6604 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
6605
6606 iocb->req = req;
6607 iocb->ret = 0;
6608 iocb->ns = NULL;
6609 iocb->nsid = 0;
6610 iocb->lbaf = lbaf;
6611 iocb->mset = mset;
6612 iocb->pi = pi;
6613 iocb->pil = pil;
6614 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
6615 iocb->offset = 0;
6616
6617 if (n->features.hbs.lbafee) {
6618 iocb->lbaf |= lbafu << 4;
6619 }
6620
6621 if (!iocb->broadcast) {
6622 if (!nvme_nsid_valid(n, nsid)) {
6623 status = NVME_INVALID_NSID | NVME_DNR;
6624 goto out;
6625 }
6626
6627 iocb->ns = nvme_ns(n, nsid);
6628 if (!iocb->ns) {
6629 status = NVME_INVALID_FIELD | NVME_DNR;
6630 goto out;
6631 }
6632 }
6633
6634 req->aiocb = &iocb->common;
6635 nvme_do_format(iocb);
6636
6637 return NVME_NO_COMPLETE;
6638
6639 out:
6640 qemu_aio_unref(iocb);
6641
6642 return status;
6643 }
6644
6645 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
6646 int *num_prim, int *num_sec)
6647 {
6648 *num_total = le32_to_cpu(rt ?
6649 n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
6650 *num_prim = le16_to_cpu(rt ?
6651 n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
6652 *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
6653 }
6654
6655 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
6656 uint16_t cntlid, uint8_t rt,
6657 int nr)
6658 {
6659 int num_total, num_prim, num_sec;
6660
6661 if (cntlid != n->cntlid) {
6662 return NVME_INVALID_CTRL_ID | NVME_DNR;
6663 }
6664
6665 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6666
6667 if (nr > num_total) {
6668 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6669 }
6670
6671 if (nr > num_total - num_sec) {
6672 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6673 }
6674
6675 if (rt) {
6676 n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
6677 } else {
6678 n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
6679 }
6680
6681 req->cqe.result = cpu_to_le32(nr);
6682 return req->status;
6683 }
6684
6685 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
6686 uint8_t rt, int nr)
6687 {
6688 int prev_nr, prev_total;
6689
6690 if (rt) {
6691 prev_nr = le16_to_cpu(sctrl->nvi);
6692 prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
6693 sctrl->nvi = cpu_to_le16(nr);
6694 n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
6695 } else {
6696 prev_nr = le16_to_cpu(sctrl->nvq);
6697 prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
6698 sctrl->nvq = cpu_to_le16(nr);
6699 n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
6700 }
6701 }
6702
6703 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
6704 uint16_t cntlid, uint8_t rt, int nr)
6705 {
6706 int num_total, num_prim, num_sec, num_free, diff, limit;
6707 NvmeSecCtrlEntry *sctrl;
6708
6709 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6710 if (!sctrl) {
6711 return NVME_INVALID_CTRL_ID | NVME_DNR;
6712 }
6713
6714 if (sctrl->scs) {
6715 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6716 }
6717
6718 limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
6719 if (nr > limit) {
6720 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6721 }
6722
6723 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6724 num_free = num_total - num_prim - num_sec;
6725 diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
6726
6727 if (diff > num_free) {
6728 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6729 }
6730
6731 nvme_update_virt_res(n, sctrl, rt, nr);
6732 req->cqe.result = cpu_to_le32(nr);
6733
6734 return req->status;
6735 }
6736
6737 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
6738 {
6739 PCIDevice *pci = PCI_DEVICE(n);
6740 NvmeCtrl *sn = NULL;
6741 NvmeSecCtrlEntry *sctrl;
6742 int vf_index;
6743
6744 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6745 if (!sctrl) {
6746 return NVME_INVALID_CTRL_ID | NVME_DNR;
6747 }
6748
6749 if (!pci_is_vf(pci)) {
6750 vf_index = le16_to_cpu(sctrl->vfn) - 1;
6751 sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index));
6752 }
6753
6754 if (online) {
6755 if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
6756 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6757 }
6758
6759 if (!sctrl->scs) {
6760 sctrl->scs = 0x1;
6761 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6762 }
6763 } else {
6764 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
6765 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
6766
6767 if (sctrl->scs) {
6768 sctrl->scs = 0x0;
6769 if (sn) {
6770 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6771 }
6772 }
6773 }
6774
6775 return NVME_SUCCESS;
6776 }
6777
6778 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6779 {
6780 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6781 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6782 uint8_t act = dw10 & 0xf;
6783 uint8_t rt = (dw10 >> 8) & 0x7;
6784 uint16_t cntlid = (dw10 >> 16) & 0xffff;
6785 int nr = dw11 & 0xffff;
6786
6787 trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6788
6789 if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6790 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6791 }
6792
6793 switch (act) {
6794 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6795 return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6796 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6797 return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6798 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6799 return nvme_virt_set_state(n, cntlid, true);
6800 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6801 return nvme_virt_set_state(n, cntlid, false);
6802 default:
6803 return NVME_INVALID_FIELD | NVME_DNR;
6804 }
6805 }
6806
6807 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6808 {
6809 PCIDevice *pci = PCI_DEVICE(n);
6810 uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6811 uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6812 int i;
6813
6814 /* Address should be page aligned */
6815 if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6816 return NVME_INVALID_FIELD | NVME_DNR;
6817 }
6818
6819 /* Save shadow buffer base addr for use during queue creation */
6820 n->dbbuf_dbs = dbs_addr;
6821 n->dbbuf_eis = eis_addr;
6822 n->dbbuf_enabled = true;
6823
6824 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6825 NvmeSQueue *sq = n->sq[i];
6826 NvmeCQueue *cq = n->cq[i];
6827
6828 if (sq) {
6829 /*
6830 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6831 * nvme_process_db() uses this hard-coded way to calculate
6832 * doorbell offsets. Be consistent with that here.
6833 */
6834 sq->db_addr = dbs_addr + (i << 3);
6835 sq->ei_addr = eis_addr + (i << 3);
6836 stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED);
6837
6838 if (n->params.ioeventfd && sq->sqid != 0) {
6839 if (!nvme_init_sq_ioeventfd(sq)) {
6840 sq->ioeventfd_enabled = true;
6841 }
6842 }
6843 }
6844
6845 if (cq) {
6846 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6847 cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6848 cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6849 stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED);
6850
6851 if (n->params.ioeventfd && cq->cqid != 0) {
6852 if (!nvme_init_cq_ioeventfd(cq)) {
6853 cq->ioeventfd_enabled = true;
6854 }
6855 }
6856 }
6857 }
6858
6859 trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6860
6861 return NVME_SUCCESS;
6862 }
6863
6864 static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req)
6865 {
6866 return NVME_INVALID_FIELD | NVME_DNR;
6867 }
6868
6869 static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req)
6870 {
6871 NvmeNamespace *ns;
6872 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6873 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6874 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6875 uint8_t doper, dtype;
6876 uint32_t numd, trans_len;
6877 NvmeDirectiveIdentify id = {
6878 .supported = 1 << NVME_DIRECTIVE_IDENTIFY,
6879 .enabled = 1 << NVME_DIRECTIVE_IDENTIFY,
6880 };
6881
6882 numd = dw10 + 1;
6883 doper = dw11 & 0xff;
6884 dtype = (dw11 >> 8) & 0xff;
6885
6886 trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2);
6887
6888 if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY ||
6889 doper != NVME_DIRECTIVE_RETURN_PARAMS) {
6890 return NVME_INVALID_FIELD | NVME_DNR;
6891 }
6892
6893 ns = nvme_ns(n, nsid);
6894 if (!ns) {
6895 return NVME_INVALID_FIELD | NVME_DNR;
6896 }
6897
6898 switch (dtype) {
6899 case NVME_DIRECTIVE_IDENTIFY:
6900 switch (doper) {
6901 case NVME_DIRECTIVE_RETURN_PARAMS:
6902 if (ns->endgrp && ns->endgrp->fdp.enabled) {
6903 id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6904 id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6905 id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6906 }
6907
6908 return nvme_c2h(n, (uint8_t *)&id, trans_len, req);
6909
6910 default:
6911 return NVME_INVALID_FIELD | NVME_DNR;
6912 }
6913
6914 default:
6915 return NVME_INVALID_FIELD;
6916 }
6917 }
6918
6919 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6920 {
6921 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6922 nvme_adm_opc_str(req->cmd.opcode));
6923
6924 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6925 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6926 return NVME_INVALID_OPCODE | NVME_DNR;
6927 }
6928
6929 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6930 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6931 return NVME_INVALID_FIELD | NVME_DNR;
6932 }
6933
6934 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6935 return NVME_INVALID_FIELD;
6936 }
6937
6938 switch (req->cmd.opcode) {
6939 case NVME_ADM_CMD_DELETE_SQ:
6940 return nvme_del_sq(n, req);
6941 case NVME_ADM_CMD_CREATE_SQ:
6942 return nvme_create_sq(n, req);
6943 case NVME_ADM_CMD_GET_LOG_PAGE:
6944 return nvme_get_log(n, req);
6945 case NVME_ADM_CMD_DELETE_CQ:
6946 return nvme_del_cq(n, req);
6947 case NVME_ADM_CMD_CREATE_CQ:
6948 return nvme_create_cq(n, req);
6949 case NVME_ADM_CMD_IDENTIFY:
6950 return nvme_identify(n, req);
6951 case NVME_ADM_CMD_ABORT:
6952 return nvme_abort(n, req);
6953 case NVME_ADM_CMD_SET_FEATURES:
6954 return nvme_set_feature(n, req);
6955 case NVME_ADM_CMD_GET_FEATURES:
6956 return nvme_get_feature(n, req);
6957 case NVME_ADM_CMD_ASYNC_EV_REQ:
6958 return nvme_aer(n, req);
6959 case NVME_ADM_CMD_NS_ATTACHMENT:
6960 return nvme_ns_attachment(n, req);
6961 case NVME_ADM_CMD_VIRT_MNGMT:
6962 return nvme_virt_mngmt(n, req);
6963 case NVME_ADM_CMD_DBBUF_CONFIG:
6964 return nvme_dbbuf_config(n, req);
6965 case NVME_ADM_CMD_FORMAT_NVM:
6966 return nvme_format(n, req);
6967 case NVME_ADM_CMD_DIRECTIVE_SEND:
6968 return nvme_directive_send(n, req);
6969 case NVME_ADM_CMD_DIRECTIVE_RECV:
6970 return nvme_directive_receive(n, req);
6971 default:
6972 assert(false);
6973 }
6974
6975 return NVME_INVALID_OPCODE | NVME_DNR;
6976 }
6977
6978 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6979 {
6980 trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail);
6981
6982 stl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->ei_addr, sq->tail,
6983 MEMTXATTRS_UNSPECIFIED);
6984 }
6985
6986 static void nvme_update_sq_tail(NvmeSQueue *sq)
6987 {
6988 ldl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->db_addr, &sq->tail,
6989 MEMTXATTRS_UNSPECIFIED);
6990
6991 trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail);
6992 }
6993
6994 static void nvme_process_sq(void *opaque)
6995 {
6996 NvmeSQueue *sq = opaque;
6997 NvmeCtrl *n = sq->ctrl;
6998 NvmeCQueue *cq = n->cq[sq->cqid];
6999
7000 uint16_t status;
7001 hwaddr addr;
7002 NvmeCmd cmd;
7003 NvmeRequest *req;
7004
7005 if (n->dbbuf_enabled) {
7006 nvme_update_sq_tail(sq);
7007 }
7008
7009 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
7010 addr = sq->dma_addr + (sq->head << NVME_SQES);
7011 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
7012 trace_pci_nvme_err_addr_read(addr);
7013 trace_pci_nvme_err_cfs();
7014 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7015 break;
7016 }
7017 nvme_inc_sq_head(sq);
7018
7019 req = QTAILQ_FIRST(&sq->req_list);
7020 QTAILQ_REMOVE(&sq->req_list, req, entry);
7021 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
7022 nvme_req_clear(req);
7023 req->cqe.cid = cmd.cid;
7024 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
7025
7026 status = sq->sqid ? nvme_io_cmd(n, req) :
7027 nvme_admin_cmd(n, req);
7028 if (status != NVME_NO_COMPLETE) {
7029 req->status = status;
7030 nvme_enqueue_req_completion(cq, req);
7031 }
7032
7033 if (n->dbbuf_enabled) {
7034 nvme_update_sq_eventidx(sq);
7035 nvme_update_sq_tail(sq);
7036 }
7037 }
7038 }
7039
7040 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
7041 {
7042 uint8_t *config;
7043
7044 if (!msix_present(pci_dev)) {
7045 return;
7046 }
7047
7048 assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
7049
7050 config = pci_dev->config + pci_dev->msix_cap;
7051 pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
7052 table_size - 1);
7053 }
7054
7055 static void nvme_activate_virt_res(NvmeCtrl *n)
7056 {
7057 PCIDevice *pci_dev = PCI_DEVICE(n);
7058 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7059 NvmeSecCtrlEntry *sctrl;
7060
7061 /* -1 to account for the admin queue */
7062 if (pci_is_vf(pci_dev)) {
7063 sctrl = nvme_sctrl(n);
7064 cap->vqprt = sctrl->nvq;
7065 cap->viprt = sctrl->nvi;
7066 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7067 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7068 } else {
7069 cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
7070 cap->virfap = n->next_pri_ctrl_cap.virfap;
7071 n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
7072 le16_to_cpu(cap->vqrfap) - 1;
7073 n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
7074 le16_to_cpu(cap->virfap);
7075 }
7076 }
7077
7078 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
7079 {
7080 PCIDevice *pci_dev = PCI_DEVICE(n);
7081 NvmeSecCtrlEntry *sctrl;
7082 NvmeNamespace *ns;
7083 int i;
7084
7085 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7086 ns = nvme_ns(n, i);
7087 if (!ns) {
7088 continue;
7089 }
7090
7091 nvme_ns_drain(ns);
7092 }
7093
7094 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7095 if (n->sq[i] != NULL) {
7096 nvme_free_sq(n->sq[i], n);
7097 }
7098 }
7099 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7100 if (n->cq[i] != NULL) {
7101 nvme_free_cq(n->cq[i], n);
7102 }
7103 }
7104
7105 while (!QTAILQ_EMPTY(&n->aer_queue)) {
7106 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
7107 QTAILQ_REMOVE(&n->aer_queue, event, entry);
7108 g_free(event);
7109 }
7110
7111 if (n->params.sriov_max_vfs) {
7112 if (!pci_is_vf(pci_dev)) {
7113 for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
7114 sctrl = &n->sec_ctrl_list.sec[i];
7115 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7116 }
7117
7118 if (rst != NVME_RESET_CONTROLLER) {
7119 pcie_sriov_pf_disable_vfs(pci_dev);
7120 }
7121 }
7122
7123 if (rst != NVME_RESET_CONTROLLER) {
7124 nvme_activate_virt_res(n);
7125 }
7126 }
7127
7128 n->aer_queued = 0;
7129 n->aer_mask = 0;
7130 n->outstanding_aers = 0;
7131 n->qs_created = false;
7132
7133 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7134
7135 if (pci_is_vf(pci_dev)) {
7136 sctrl = nvme_sctrl(n);
7137
7138 stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
7139 } else {
7140 stl_le_p(&n->bar.csts, 0);
7141 }
7142
7143 stl_le_p(&n->bar.intms, 0);
7144 stl_le_p(&n->bar.intmc, 0);
7145 stl_le_p(&n->bar.cc, 0);
7146
7147 n->dbbuf_dbs = 0;
7148 n->dbbuf_eis = 0;
7149 n->dbbuf_enabled = false;
7150 }
7151
7152 static void nvme_ctrl_shutdown(NvmeCtrl *n)
7153 {
7154 NvmeNamespace *ns;
7155 int i;
7156
7157 if (n->pmr.dev) {
7158 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7159 }
7160
7161 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7162 ns = nvme_ns(n, i);
7163 if (!ns) {
7164 continue;
7165 }
7166
7167 nvme_ns_shutdown(ns);
7168 }
7169 }
7170
7171 static void nvme_select_iocs(NvmeCtrl *n)
7172 {
7173 NvmeNamespace *ns;
7174 int i;
7175
7176 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7177 ns = nvme_ns(n, i);
7178 if (!ns) {
7179 continue;
7180 }
7181
7182 nvme_select_iocs_ns(n, ns);
7183 }
7184 }
7185
7186 static int nvme_start_ctrl(NvmeCtrl *n)
7187 {
7188 uint64_t cap = ldq_le_p(&n->bar.cap);
7189 uint32_t cc = ldl_le_p(&n->bar.cc);
7190 uint32_t aqa = ldl_le_p(&n->bar.aqa);
7191 uint64_t asq = ldq_le_p(&n->bar.asq);
7192 uint64_t acq = ldq_le_p(&n->bar.acq);
7193 uint32_t page_bits = NVME_CC_MPS(cc) + 12;
7194 uint32_t page_size = 1 << page_bits;
7195 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7196
7197 if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) {
7198 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
7199 le16_to_cpu(sctrl->nvq));
7200 return -1;
7201 }
7202 if (unlikely(n->cq[0])) {
7203 trace_pci_nvme_err_startfail_cq();
7204 return -1;
7205 }
7206 if (unlikely(n->sq[0])) {
7207 trace_pci_nvme_err_startfail_sq();
7208 return -1;
7209 }
7210 if (unlikely(asq & (page_size - 1))) {
7211 trace_pci_nvme_err_startfail_asq_misaligned(asq);
7212 return -1;
7213 }
7214 if (unlikely(acq & (page_size - 1))) {
7215 trace_pci_nvme_err_startfail_acq_misaligned(acq);
7216 return -1;
7217 }
7218 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
7219 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
7220 return -1;
7221 }
7222 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
7223 trace_pci_nvme_err_startfail_page_too_small(
7224 NVME_CC_MPS(cc),
7225 NVME_CAP_MPSMIN(cap));
7226 return -1;
7227 }
7228 if (unlikely(NVME_CC_MPS(cc) >
7229 NVME_CAP_MPSMAX(cap))) {
7230 trace_pci_nvme_err_startfail_page_too_large(
7231 NVME_CC_MPS(cc),
7232 NVME_CAP_MPSMAX(cap));
7233 return -1;
7234 }
7235 if (unlikely(!NVME_AQA_ASQS(aqa))) {
7236 trace_pci_nvme_err_startfail_asqent_sz_zero();
7237 return -1;
7238 }
7239 if (unlikely(!NVME_AQA_ACQS(aqa))) {
7240 trace_pci_nvme_err_startfail_acqent_sz_zero();
7241 return -1;
7242 }
7243
7244 n->page_bits = page_bits;
7245 n->page_size = page_size;
7246 n->max_prp_ents = n->page_size / sizeof(uint64_t);
7247 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
7248 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
7249
7250 nvme_set_timestamp(n, 0ULL);
7251
7252 nvme_select_iocs(n);
7253
7254 return 0;
7255 }
7256
7257 static void nvme_cmb_enable_regs(NvmeCtrl *n)
7258 {
7259 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
7260 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
7261
7262 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
7263 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
7264 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
7265 stl_le_p(&n->bar.cmbloc, cmbloc);
7266
7267 NVME_CMBSZ_SET_SQS(cmbsz, 1);
7268 NVME_CMBSZ_SET_CQS(cmbsz, 0);
7269 NVME_CMBSZ_SET_LISTS(cmbsz, 1);
7270 NVME_CMBSZ_SET_RDS(cmbsz, 1);
7271 NVME_CMBSZ_SET_WDS(cmbsz, 1);
7272 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
7273 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
7274 stl_le_p(&n->bar.cmbsz, cmbsz);
7275 }
7276
7277 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
7278 unsigned size)
7279 {
7280 PCIDevice *pci = PCI_DEVICE(n);
7281 uint64_t cap = ldq_le_p(&n->bar.cap);
7282 uint32_t cc = ldl_le_p(&n->bar.cc);
7283 uint32_t intms = ldl_le_p(&n->bar.intms);
7284 uint32_t csts = ldl_le_p(&n->bar.csts);
7285 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
7286
7287 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
7288 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
7289 "MMIO write not 32-bit aligned,"
7290 " offset=0x%"PRIx64"", offset);
7291 /* should be ignored, fall through for now */
7292 }
7293
7294 if (unlikely(size < sizeof(uint32_t))) {
7295 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
7296 "MMIO write smaller than 32-bits,"
7297 " offset=0x%"PRIx64", size=%u",
7298 offset, size);
7299 /* should be ignored, fall through for now */
7300 }
7301
7302 switch (offset) {
7303 case NVME_REG_INTMS:
7304 if (unlikely(msix_enabled(pci))) {
7305 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7306 "undefined access to interrupt mask set"
7307 " when MSI-X is enabled");
7308 /* should be ignored, fall through for now */
7309 }
7310 intms |= data;
7311 stl_le_p(&n->bar.intms, intms);
7312 n->bar.intmc = n->bar.intms;
7313 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
7314 nvme_irq_check(n);
7315 break;
7316 case NVME_REG_INTMC:
7317 if (unlikely(msix_enabled(pci))) {
7318 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7319 "undefined access to interrupt mask clr"
7320 " when MSI-X is enabled");
7321 /* should be ignored, fall through for now */
7322 }
7323 intms &= ~data;
7324 stl_le_p(&n->bar.intms, intms);
7325 n->bar.intmc = n->bar.intms;
7326 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
7327 nvme_irq_check(n);
7328 break;
7329 case NVME_REG_CC:
7330 stl_le_p(&n->bar.cc, data);
7331
7332 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
7333
7334 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
7335 trace_pci_nvme_mmio_shutdown_set();
7336 nvme_ctrl_shutdown(n);
7337 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7338 csts |= NVME_CSTS_SHST_COMPLETE;
7339 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
7340 trace_pci_nvme_mmio_shutdown_cleared();
7341 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7342 }
7343
7344 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
7345 if (unlikely(nvme_start_ctrl(n))) {
7346 trace_pci_nvme_err_startfail();
7347 csts = NVME_CSTS_FAILED;
7348 } else {
7349 trace_pci_nvme_mmio_start_success();
7350 csts = NVME_CSTS_READY;
7351 }
7352 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
7353 trace_pci_nvme_mmio_stopped();
7354 nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
7355
7356 break;
7357 }
7358
7359 stl_le_p(&n->bar.csts, csts);
7360
7361 break;
7362 case NVME_REG_CSTS:
7363 if (data & (1 << 4)) {
7364 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
7365 "attempted to W1C CSTS.NSSRO"
7366 " but CAP.NSSRS is zero (not supported)");
7367 } else if (data != 0) {
7368 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
7369 "attempted to set a read only bit"
7370 " of controller status");
7371 }
7372 break;
7373 case NVME_REG_NSSR:
7374 if (data == 0x4e564d65) {
7375 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
7376 } else {
7377 /* The spec says that writes of other values have no effect */
7378 return;
7379 }
7380 break;
7381 case NVME_REG_AQA:
7382 stl_le_p(&n->bar.aqa, data);
7383 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
7384 break;
7385 case NVME_REG_ASQ:
7386 stn_le_p(&n->bar.asq, size, data);
7387 trace_pci_nvme_mmio_asqaddr(data);
7388 break;
7389 case NVME_REG_ASQ + 4:
7390 stl_le_p((uint8_t *)&n->bar.asq + 4, data);
7391 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
7392 break;
7393 case NVME_REG_ACQ:
7394 trace_pci_nvme_mmio_acqaddr(data);
7395 stn_le_p(&n->bar.acq, size, data);
7396 break;
7397 case NVME_REG_ACQ + 4:
7398 stl_le_p((uint8_t *)&n->bar.acq + 4, data);
7399 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
7400 break;
7401 case NVME_REG_CMBLOC:
7402 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
7403 "invalid write to reserved CMBLOC"
7404 " when CMBSZ is zero, ignored");
7405 return;
7406 case NVME_REG_CMBSZ:
7407 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
7408 "invalid write to read only CMBSZ, ignored");
7409 return;
7410 case NVME_REG_CMBMSC:
7411 if (!NVME_CAP_CMBS(cap)) {
7412 return;
7413 }
7414
7415 stn_le_p(&n->bar.cmbmsc, size, data);
7416 n->cmb.cmse = false;
7417
7418 if (NVME_CMBMSC_CRE(data)) {
7419 nvme_cmb_enable_regs(n);
7420
7421 if (NVME_CMBMSC_CMSE(data)) {
7422 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
7423 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
7424 if (cba + int128_get64(n->cmb.mem.size) < cba) {
7425 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
7426 NVME_CMBSTS_SET_CBAI(cmbsts, 1);
7427 stl_le_p(&n->bar.cmbsts, cmbsts);
7428 return;
7429 }
7430
7431 n->cmb.cba = cba;
7432 n->cmb.cmse = true;
7433 }
7434 } else {
7435 n->bar.cmbsz = 0;
7436 n->bar.cmbloc = 0;
7437 }
7438
7439 return;
7440 case NVME_REG_CMBMSC + 4:
7441 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
7442 return;
7443
7444 case NVME_REG_PMRCAP:
7445 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
7446 "invalid write to PMRCAP register, ignored");
7447 return;
7448 case NVME_REG_PMRCTL:
7449 if (!NVME_CAP_PMRS(cap)) {
7450 return;
7451 }
7452
7453 stl_le_p(&n->bar.pmrctl, data);
7454 if (NVME_PMRCTL_EN(data)) {
7455 memory_region_set_enabled(&n->pmr.dev->mr, true);
7456 pmrsts = 0;
7457 } else {
7458 memory_region_set_enabled(&n->pmr.dev->mr, false);
7459 NVME_PMRSTS_SET_NRDY(pmrsts, 1);
7460 n->pmr.cmse = false;
7461 }
7462 stl_le_p(&n->bar.pmrsts, pmrsts);
7463 return;
7464 case NVME_REG_PMRSTS:
7465 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
7466 "invalid write to PMRSTS register, ignored");
7467 return;
7468 case NVME_REG_PMREBS:
7469 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
7470 "invalid write to PMREBS register, ignored");
7471 return;
7472 case NVME_REG_PMRSWTP:
7473 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
7474 "invalid write to PMRSWTP register, ignored");
7475 return;
7476 case NVME_REG_PMRMSCL:
7477 if (!NVME_CAP_PMRS(cap)) {
7478 return;
7479 }
7480
7481 stl_le_p(&n->bar.pmrmscl, data);
7482 n->pmr.cmse = false;
7483
7484 if (NVME_PMRMSCL_CMSE(data)) {
7485 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
7486 hwaddr cba = pmrmscu << 32 |
7487 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
7488 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
7489 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
7490 stl_le_p(&n->bar.pmrsts, pmrsts);
7491 return;
7492 }
7493
7494 n->pmr.cmse = true;
7495 n->pmr.cba = cba;
7496 }
7497
7498 return;
7499 case NVME_REG_PMRMSCU:
7500 if (!NVME_CAP_PMRS(cap)) {
7501 return;
7502 }
7503
7504 stl_le_p(&n->bar.pmrmscu, data);
7505 return;
7506 default:
7507 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
7508 "invalid MMIO write,"
7509 " offset=0x%"PRIx64", data=%"PRIx64"",
7510 offset, data);
7511 break;
7512 }
7513 }
7514
7515 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
7516 {
7517 NvmeCtrl *n = (NvmeCtrl *)opaque;
7518 uint8_t *ptr = (uint8_t *)&n->bar;
7519
7520 trace_pci_nvme_mmio_read(addr, size);
7521
7522 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
7523 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
7524 "MMIO read not 32-bit aligned,"
7525 " offset=0x%"PRIx64"", addr);
7526 /* should RAZ, fall through for now */
7527 } else if (unlikely(size < sizeof(uint32_t))) {
7528 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
7529 "MMIO read smaller than 32-bits,"
7530 " offset=0x%"PRIx64"", addr);
7531 /* should RAZ, fall through for now */
7532 }
7533
7534 if (addr > sizeof(n->bar) - size) {
7535 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
7536 "MMIO read beyond last register,"
7537 " offset=0x%"PRIx64", returning 0", addr);
7538
7539 return 0;
7540 }
7541
7542 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
7543 addr != NVME_REG_CSTS) {
7544 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7545 return 0;
7546 }
7547
7548 /*
7549 * When PMRWBM bit 1 is set then read from
7550 * from PMRSTS should ensure prior writes
7551 * made it to persistent media
7552 */
7553 if (addr == NVME_REG_PMRSTS &&
7554 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
7555 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7556 }
7557
7558 return ldn_le_p(ptr + addr, size);
7559 }
7560
7561 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
7562 {
7563 PCIDevice *pci = PCI_DEVICE(n);
7564 uint32_t qid;
7565
7566 if (unlikely(addr & ((1 << 2) - 1))) {
7567 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
7568 "doorbell write not 32-bit aligned,"
7569 " offset=0x%"PRIx64", ignoring", addr);
7570 return;
7571 }
7572
7573 if (((addr - 0x1000) >> 2) & 1) {
7574 /* Completion queue doorbell write */
7575
7576 uint16_t new_head = val & 0xffff;
7577 int start_sqs;
7578 NvmeCQueue *cq;
7579
7580 qid = (addr - (0x1000 + (1 << 2))) >> 3;
7581 if (unlikely(nvme_check_cqid(n, qid))) {
7582 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
7583 "completion queue doorbell write"
7584 " for nonexistent queue,"
7585 " sqid=%"PRIu32", ignoring", qid);
7586
7587 /*
7588 * NVM Express v1.3d, Section 4.1 state: "If host software writes
7589 * an invalid value to the Submission Queue Tail Doorbell or
7590 * Completion Queue Head Doorbell register and an Asynchronous Event
7591 * Request command is outstanding, then an asynchronous event is
7592 * posted to the Admin Completion Queue with a status code of
7593 * Invalid Doorbell Write Value."
7594 *
7595 * Also note that the spec includes the "Invalid Doorbell Register"
7596 * status code, but nowhere does it specify when to use it.
7597 * However, it seems reasonable to use it here in a similar
7598 * fashion.
7599 */
7600 if (n->outstanding_aers) {
7601 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7602 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
7603 NVME_LOG_ERROR_INFO);
7604 }
7605
7606 return;
7607 }
7608
7609 cq = n->cq[qid];
7610 if (unlikely(new_head >= cq->size)) {
7611 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
7612 "completion queue doorbell write value"
7613 " beyond queue size, sqid=%"PRIu32","
7614 " new_head=%"PRIu16", ignoring",
7615 qid, new_head);
7616
7617 if (n->outstanding_aers) {
7618 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7619 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
7620 NVME_LOG_ERROR_INFO);
7621 }
7622
7623 return;
7624 }
7625
7626 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
7627
7628 start_sqs = nvme_cq_full(cq) ? 1 : 0;
7629 cq->head = new_head;
7630 if (!qid && n->dbbuf_enabled) {
7631 stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED);
7632 }
7633 if (start_sqs) {
7634 NvmeSQueue *sq;
7635 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
7636 qemu_bh_schedule(sq->bh);
7637 }
7638 qemu_bh_schedule(cq->bh);
7639 }
7640
7641 if (cq->tail == cq->head) {
7642 if (cq->irq_enabled) {
7643 n->cq_pending--;
7644 }
7645
7646 nvme_irq_deassert(n, cq);
7647 }
7648 } else {
7649 /* Submission queue doorbell write */
7650
7651 uint16_t new_tail = val & 0xffff;
7652 NvmeSQueue *sq;
7653
7654 qid = (addr - 0x1000) >> 3;
7655 if (unlikely(nvme_check_sqid(n, qid))) {
7656 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
7657 "submission queue doorbell write"
7658 " for nonexistent queue,"
7659 " sqid=%"PRIu32", ignoring", qid);
7660
7661 if (n->outstanding_aers) {
7662 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7663 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
7664 NVME_LOG_ERROR_INFO);
7665 }
7666
7667 return;
7668 }
7669
7670 sq = n->sq[qid];
7671 if (unlikely(new_tail >= sq->size)) {
7672 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
7673 "submission queue doorbell write value"
7674 " beyond queue size, sqid=%"PRIu32","
7675 " new_tail=%"PRIu16", ignoring",
7676 qid, new_tail);
7677
7678 if (n->outstanding_aers) {
7679 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7680 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
7681 NVME_LOG_ERROR_INFO);
7682 }
7683
7684 return;
7685 }
7686
7687 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
7688
7689 sq->tail = new_tail;
7690 if (!qid && n->dbbuf_enabled) {
7691 /*
7692 * The spec states "the host shall also update the controller's
7693 * corresponding doorbell property to match the value of that entry
7694 * in the Shadow Doorbell buffer."
7695 *
7696 * Since this context is currently a VM trap, we can safely enforce
7697 * the requirement from the device side in case the host is
7698 * misbehaving.
7699 *
7700 * Note, we shouldn't have to do this, but various drivers
7701 * including ones that run on Linux, are not updating Admin Queues,
7702 * so we can't trust reading it for an appropriate sq tail.
7703 */
7704 stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED);
7705 }
7706
7707 qemu_bh_schedule(sq->bh);
7708 }
7709 }
7710
7711 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
7712 unsigned size)
7713 {
7714 NvmeCtrl *n = (NvmeCtrl *)opaque;
7715
7716 trace_pci_nvme_mmio_write(addr, data, size);
7717
7718 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
7719 addr != NVME_REG_CSTS) {
7720 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7721 return;
7722 }
7723
7724 if (addr < sizeof(n->bar)) {
7725 nvme_write_bar(n, addr, data, size);
7726 } else {
7727 nvme_process_db(n, addr, data);
7728 }
7729 }
7730
7731 static const MemoryRegionOps nvme_mmio_ops = {
7732 .read = nvme_mmio_read,
7733 .write = nvme_mmio_write,
7734 .endianness = DEVICE_LITTLE_ENDIAN,
7735 .impl = {
7736 .min_access_size = 2,
7737 .max_access_size = 8,
7738 },
7739 };
7740
7741 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
7742 unsigned size)
7743 {
7744 NvmeCtrl *n = (NvmeCtrl *)opaque;
7745 stn_le_p(&n->cmb.buf[addr], size, data);
7746 }
7747
7748 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
7749 {
7750 NvmeCtrl *n = (NvmeCtrl *)opaque;
7751 return ldn_le_p(&n->cmb.buf[addr], size);
7752 }
7753
7754 static const MemoryRegionOps nvme_cmb_ops = {
7755 .read = nvme_cmb_read,
7756 .write = nvme_cmb_write,
7757 .endianness = DEVICE_LITTLE_ENDIAN,
7758 .impl = {
7759 .min_access_size = 1,
7760 .max_access_size = 8,
7761 },
7762 };
7763
7764 static bool nvme_check_params(NvmeCtrl *n, Error **errp)
7765 {
7766 NvmeParams *params = &n->params;
7767
7768 if (params->num_queues) {
7769 warn_report("num_queues is deprecated; please use max_ioqpairs "
7770 "instead");
7771
7772 params->max_ioqpairs = params->num_queues - 1;
7773 }
7774
7775 if (n->namespace.blkconf.blk && n->subsys) {
7776 error_setg(errp, "subsystem support is unavailable with legacy "
7777 "namespace ('drive' property)");
7778 return false;
7779 }
7780
7781 if (params->max_ioqpairs < 1 ||
7782 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
7783 error_setg(errp, "max_ioqpairs must be between 1 and %d",
7784 NVME_MAX_IOQPAIRS);
7785 return false;
7786 }
7787
7788 if (params->msix_qsize < 1 ||
7789 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
7790 error_setg(errp, "msix_qsize must be between 1 and %d",
7791 PCI_MSIX_FLAGS_QSIZE + 1);
7792 return false;
7793 }
7794
7795 if (!params->serial) {
7796 error_setg(errp, "serial property not set");
7797 return false;
7798 }
7799
7800 if (n->pmr.dev) {
7801 if (host_memory_backend_is_mapped(n->pmr.dev)) {
7802 error_setg(errp, "can't use already busy memdev: %s",
7803 object_get_canonical_path_component(OBJECT(n->pmr.dev)));
7804 return false;
7805 }
7806
7807 if (!is_power_of_2(n->pmr.dev->size)) {
7808 error_setg(errp, "pmr backend size needs to be power of 2 in size");
7809 return false;
7810 }
7811
7812 host_memory_backend_set_mapped(n->pmr.dev, true);
7813 }
7814
7815 if (n->params.zasl > n->params.mdts) {
7816 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7817 "than or equal to mdts (Maximum Data Transfer Size)");
7818 return false;
7819 }
7820
7821 if (!n->params.vsl) {
7822 error_setg(errp, "vsl must be non-zero");
7823 return false;
7824 }
7825
7826 if (params->sriov_max_vfs) {
7827 if (!n->subsys) {
7828 error_setg(errp, "subsystem is required for the use of SR-IOV");
7829 return false;
7830 }
7831
7832 if (params->sriov_max_vfs > NVME_MAX_VFS) {
7833 error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7834 NVME_MAX_VFS);
7835 return false;
7836 }
7837
7838 if (params->cmb_size_mb) {
7839 error_setg(errp, "CMB is not supported with SR-IOV");
7840 return false;
7841 }
7842
7843 if (n->pmr.dev) {
7844 error_setg(errp, "PMR is not supported with SR-IOV");
7845 return false;
7846 }
7847
7848 if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7849 error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7850 " must be set for the use of SR-IOV");
7851 return false;
7852 }
7853
7854 if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7855 error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7856 " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7857 return false;
7858 }
7859
7860 if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7861 error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7862 " greater than or equal to 2");
7863 return false;
7864 }
7865
7866 if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7867 error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7868 " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7869 return false;
7870 }
7871
7872 if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7873 error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7874 " greater than or equal to 1");
7875 return false;
7876 }
7877
7878 if (params->sriov_max_vi_per_vf &&
7879 (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7880 error_setg(errp, "sriov_max_vi_per_vf must meet:"
7881 " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7882 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7883 return false;
7884 }
7885
7886 if (params->sriov_max_vq_per_vf &&
7887 (params->sriov_max_vq_per_vf < 2 ||
7888 (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7889 error_setg(errp, "sriov_max_vq_per_vf must meet:"
7890 " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7891 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7892 return false;
7893 }
7894 }
7895
7896 return true;
7897 }
7898
7899 static void nvme_init_state(NvmeCtrl *n)
7900 {
7901 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7902 NvmeSecCtrlList *list = &n->sec_ctrl_list;
7903 NvmeSecCtrlEntry *sctrl;
7904 PCIDevice *pci = PCI_DEVICE(n);
7905 uint8_t max_vfs;
7906 int i;
7907
7908 if (pci_is_vf(pci)) {
7909 sctrl = nvme_sctrl(n);
7910 max_vfs = 0;
7911 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7912 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7913 } else {
7914 max_vfs = n->params.sriov_max_vfs;
7915 n->conf_ioqpairs = n->params.max_ioqpairs;
7916 n->conf_msix_qsize = n->params.msix_qsize;
7917 }
7918
7919 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7920 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7921 n->temperature = NVME_TEMPERATURE;
7922 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7923 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7924 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7925 QTAILQ_INIT(&n->aer_queue);
7926
7927 list->numcntl = cpu_to_le16(max_vfs);
7928 for (i = 0; i < max_vfs; i++) {
7929 sctrl = &list->sec[i];
7930 sctrl->pcid = cpu_to_le16(n->cntlid);
7931 sctrl->vfn = cpu_to_le16(i + 1);
7932 }
7933
7934 cap->cntlid = cpu_to_le16(n->cntlid);
7935 cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7936
7937 if (pci_is_vf(pci)) {
7938 cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7939 } else {
7940 cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7941 n->params.sriov_vq_flexible);
7942 cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7943 cap->vqrfap = cap->vqfrt;
7944 cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7945 cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7946 cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7947 cap->vqfrt / MAX(max_vfs, 1);
7948 }
7949
7950 if (pci_is_vf(pci)) {
7951 cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7952 } else {
7953 cap->viprt = cpu_to_le16(n->params.msix_qsize -
7954 n->params.sriov_vi_flexible);
7955 cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7956 cap->virfap = cap->vifrt;
7957 cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7958 cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7959 cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7960 cap->vifrt / MAX(max_vfs, 1);
7961 }
7962 }
7963
7964 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7965 {
7966 uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7967 uint64_t cap = ldq_le_p(&n->bar.cap);
7968
7969 n->cmb.buf = g_malloc0(cmb_size);
7970 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7971 "nvme-cmb", cmb_size);
7972 pci_register_bar(pci_dev, NVME_CMB_BIR,
7973 PCI_BASE_ADDRESS_SPACE_MEMORY |
7974 PCI_BASE_ADDRESS_MEM_TYPE_64 |
7975 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7976
7977 NVME_CAP_SET_CMBS(cap, 1);
7978 stq_le_p(&n->bar.cap, cap);
7979
7980 if (n->params.legacy_cmb) {
7981 nvme_cmb_enable_regs(n);
7982 n->cmb.cmse = true;
7983 }
7984 }
7985
7986 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7987 {
7988 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7989
7990 NVME_PMRCAP_SET_RDS(pmrcap, 1);
7991 NVME_PMRCAP_SET_WDS(pmrcap, 1);
7992 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
7993 /* Turn on bit 1 support */
7994 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
7995 NVME_PMRCAP_SET_CMSS(pmrcap, 1);
7996 stl_le_p(&n->bar.pmrcap, pmrcap);
7997
7998 pci_register_bar(pci_dev, NVME_PMR_BIR,
7999 PCI_BASE_ADDRESS_SPACE_MEMORY |
8000 PCI_BASE_ADDRESS_MEM_TYPE_64 |
8001 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
8002
8003 memory_region_set_enabled(&n->pmr.dev->mr, false);
8004 }
8005
8006 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
8007 unsigned *msix_table_offset,
8008 unsigned *msix_pba_offset)
8009 {
8010 uint64_t bar_size, msix_table_size, msix_pba_size;
8011
8012 bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
8013 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8014
8015 if (msix_table_offset) {
8016 *msix_table_offset = bar_size;
8017 }
8018
8019 msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
8020 bar_size += msix_table_size;
8021 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8022
8023 if (msix_pba_offset) {
8024 *msix_pba_offset = bar_size;
8025 }
8026
8027 msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
8028 bar_size += msix_pba_size;
8029
8030 bar_size = pow2ceil(bar_size);
8031 return bar_size;
8032 }
8033
8034 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
8035 {
8036 uint16_t vf_dev_id = n->params.use_intel_id ?
8037 PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
8038 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
8039 uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
8040 le16_to_cpu(cap->vifrsm),
8041 NULL, NULL);
8042
8043 pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
8044 n->params.sriov_max_vfs, n->params.sriov_max_vfs,
8045 NVME_VF_OFFSET, NVME_VF_STRIDE);
8046
8047 pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8048 PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
8049 }
8050
8051 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
8052 {
8053 Error *err = NULL;
8054 int ret;
8055
8056 ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
8057 PCI_PM_SIZEOF, &err);
8058 if (err) {
8059 error_report_err(err);
8060 return ret;
8061 }
8062
8063 pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
8064 PCI_PM_CAP_VER_1_2);
8065 pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
8066 PCI_PM_CTRL_NO_SOFT_RESET);
8067 pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
8068 PCI_PM_CTRL_STATE_MASK);
8069
8070 return 0;
8071 }
8072
8073 static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
8074 {
8075 ERRP_GUARD();
8076 uint8_t *pci_conf = pci_dev->config;
8077 uint64_t bar_size;
8078 unsigned msix_table_offset, msix_pba_offset;
8079 int ret;
8080
8081 pci_conf[PCI_INTERRUPT_PIN] = 1;
8082 pci_config_set_prog_interface(pci_conf, 0x2);
8083
8084 if (n->params.use_intel_id) {
8085 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
8086 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
8087 } else {
8088 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
8089 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
8090 }
8091
8092 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
8093 nvme_add_pm_capability(pci_dev, 0x60);
8094 pcie_endpoint_cap_init(pci_dev, 0x80);
8095 pcie_cap_flr_init(pci_dev);
8096 if (n->params.sriov_max_vfs) {
8097 pcie_ari_init(pci_dev, 0x100);
8098 }
8099
8100 /* add one to max_ioqpairs to account for the admin queue pair */
8101 bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
8102 &msix_table_offset, &msix_pba_offset);
8103
8104 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
8105 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
8106 msix_table_offset);
8107 memory_region_add_subregion(&n->bar0, 0, &n->iomem);
8108
8109 if (pci_is_vf(pci_dev)) {
8110 pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
8111 } else {
8112 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8113 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
8114 }
8115 ret = msix_init(pci_dev, n->params.msix_qsize,
8116 &n->bar0, 0, msix_table_offset,
8117 &n->bar0, 0, msix_pba_offset, 0, errp);
8118 if (ret == -ENOTSUP) {
8119 /* report that msix is not supported, but do not error out */
8120 warn_report_err(*errp);
8121 *errp = NULL;
8122 } else if (ret < 0) {
8123 /* propagate error to caller */
8124 return false;
8125 }
8126
8127 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
8128
8129 if (n->params.cmb_size_mb) {
8130 nvme_init_cmb(n, pci_dev);
8131 }
8132
8133 if (n->pmr.dev) {
8134 nvme_init_pmr(n, pci_dev);
8135 }
8136
8137 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8138 nvme_init_sriov(n, pci_dev, 0x120);
8139 }
8140
8141 return true;
8142 }
8143
8144 static void nvme_init_subnqn(NvmeCtrl *n)
8145 {
8146 NvmeSubsystem *subsys = n->subsys;
8147 NvmeIdCtrl *id = &n->id_ctrl;
8148
8149 if (!subsys) {
8150 snprintf((char *)id->subnqn, sizeof(id->subnqn),
8151 "nqn.2019-08.org.qemu:%s", n->params.serial);
8152 } else {
8153 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
8154 }
8155 }
8156
8157 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
8158 {
8159 NvmeIdCtrl *id = &n->id_ctrl;
8160 uint8_t *pci_conf = pci_dev->config;
8161 uint64_t cap = ldq_le_p(&n->bar.cap);
8162 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
8163 uint32_t ctratt;
8164
8165 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
8166 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
8167 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
8168 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
8169 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
8170
8171 id->cntlid = cpu_to_le16(n->cntlid);
8172
8173 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
8174 ctratt = NVME_CTRATT_ELBAS;
8175
8176 id->rab = 6;
8177
8178 if (n->params.use_intel_id) {
8179 id->ieee[0] = 0xb3;
8180 id->ieee[1] = 0x02;
8181 id->ieee[2] = 0x00;
8182 } else {
8183 id->ieee[0] = 0x00;
8184 id->ieee[1] = 0x54;
8185 id->ieee[2] = 0x52;
8186 }
8187
8188 id->mdts = n->params.mdts;
8189 id->ver = cpu_to_le32(NVME_SPEC_VER);
8190 id->oacs =
8191 cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF |
8192 NVME_OACS_DIRECTIVES);
8193 id->cntrltype = 0x1;
8194
8195 /*
8196 * Because the controller always completes the Abort command immediately,
8197 * there can never be more than one concurrently executing Abort command,
8198 * so this value is never used for anything. Note that there can easily be
8199 * many Abort commands in the queues, but they are not considered
8200 * "executing" until processed by nvme_abort.
8201 *
8202 * The specification recommends a value of 3 for Abort Command Limit (four
8203 * concurrently outstanding Abort commands), so lets use that though it is
8204 * inconsequential.
8205 */
8206 id->acl = 3;
8207 id->aerl = n->params.aerl;
8208 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
8209 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
8210
8211 /* recommended default value (~70 C) */
8212 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
8213 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
8214
8215 id->sqes = (NVME_SQES << 4) | NVME_SQES;
8216 id->cqes = (NVME_CQES << 4) | NVME_CQES;
8217 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
8218 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
8219 NVME_ONCS_FEATURES | NVME_ONCS_DSM |
8220 NVME_ONCS_COMPARE | NVME_ONCS_COPY);
8221
8222 /*
8223 * NOTE: If this device ever supports a command set that does NOT use 0x0
8224 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
8225 * should probably be removed.
8226 *
8227 * See comment in nvme_io_cmd.
8228 */
8229 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
8230
8231 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
8232 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
8233
8234 nvme_init_subnqn(n);
8235
8236 id->psd[0].mp = cpu_to_le16(0x9c4);
8237 id->psd[0].enlat = cpu_to_le32(0x10);
8238 id->psd[0].exlat = cpu_to_le32(0x4);
8239
8240 if (n->subsys) {
8241 id->cmic |= NVME_CMIC_MULTI_CTRL;
8242 ctratt |= NVME_CTRATT_ENDGRPS;
8243
8244 id->endgidmax = cpu_to_le16(0x1);
8245
8246 if (n->subsys->endgrp.fdp.enabled) {
8247 ctratt |= NVME_CTRATT_FDPS;
8248 }
8249 }
8250
8251 id->ctratt = cpu_to_le32(ctratt);
8252
8253 NVME_CAP_SET_MQES(cap, 0x7ff);
8254 NVME_CAP_SET_CQR(cap, 1);
8255 NVME_CAP_SET_TO(cap, 0xf);
8256 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
8257 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
8258 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
8259 NVME_CAP_SET_MPSMAX(cap, 4);
8260 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
8261 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
8262 stq_le_p(&n->bar.cap, cap);
8263
8264 stl_le_p(&n->bar.vs, NVME_SPEC_VER);
8265 n->bar.intmc = n->bar.intms = 0;
8266
8267 if (pci_is_vf(pci_dev) && !sctrl->scs) {
8268 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
8269 }
8270 }
8271
8272 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
8273 {
8274 int cntlid;
8275
8276 if (!n->subsys) {
8277 return 0;
8278 }
8279
8280 cntlid = nvme_subsys_register_ctrl(n, errp);
8281 if (cntlid < 0) {
8282 return -1;
8283 }
8284
8285 n->cntlid = cntlid;
8286
8287 return 0;
8288 }
8289
8290 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
8291 {
8292 uint32_t nsid = ns->params.nsid;
8293 assert(nsid && nsid <= NVME_MAX_NAMESPACES);
8294
8295 n->namespaces[nsid] = ns;
8296 ns->attached++;
8297
8298 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
8299 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
8300 }
8301
8302 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
8303 {
8304 NvmeCtrl *n = NVME(pci_dev);
8305 DeviceState *dev = DEVICE(pci_dev);
8306 NvmeNamespace *ns;
8307 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
8308
8309 if (pci_is_vf(pci_dev)) {
8310 /*
8311 * VFs derive settings from the parent. PF's lifespan exceeds
8312 * that of VF's, so it's safe to share params.serial.
8313 */
8314 memcpy(&n->params, &pn->params, sizeof(NvmeParams));
8315 n->subsys = pn->subsys;
8316 }
8317
8318 if (!nvme_check_params(n, errp)) {
8319 return;
8320 }
8321
8322 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id);
8323
8324 if (nvme_init_subsys(n, errp)) {
8325 return;
8326 }
8327 nvme_init_state(n);
8328 if (!nvme_init_pci(n, pci_dev, errp)) {
8329 return;
8330 }
8331 nvme_init_ctrl(n, pci_dev);
8332
8333 /* setup a namespace if the controller drive property was given */
8334 if (n->namespace.blkconf.blk) {
8335 ns = &n->namespace;
8336 ns->params.nsid = 1;
8337
8338 if (nvme_ns_setup(ns, errp)) {
8339 return;
8340 }
8341
8342 nvme_attach_ns(n, ns);
8343 }
8344 }
8345
8346 static void nvme_exit(PCIDevice *pci_dev)
8347 {
8348 NvmeCtrl *n = NVME(pci_dev);
8349 NvmeNamespace *ns;
8350 int i;
8351
8352 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
8353
8354 if (n->subsys) {
8355 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
8356 ns = nvme_ns(n, i);
8357 if (ns) {
8358 ns->attached--;
8359 }
8360 }
8361
8362 nvme_subsys_unregister_ctrl(n->subsys, n);
8363 }
8364
8365 g_free(n->cq);
8366 g_free(n->sq);
8367 g_free(n->aer_reqs);
8368
8369 if (n->params.cmb_size_mb) {
8370 g_free(n->cmb.buf);
8371 }
8372
8373 if (n->pmr.dev) {
8374 host_memory_backend_set_mapped(n->pmr.dev, false);
8375 }
8376
8377 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8378 pcie_sriov_pf_exit(pci_dev);
8379 }
8380
8381 msix_uninit(pci_dev, &n->bar0, &n->bar0);
8382 memory_region_del_subregion(&n->bar0, &n->iomem);
8383 }
8384
8385 static Property nvme_props[] = {
8386 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
8387 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
8388 HostMemoryBackend *),
8389 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
8390 NvmeSubsystem *),
8391 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
8392 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
8393 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
8394 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
8395 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
8396 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
8397 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
8398 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
8399 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
8400 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
8401 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
8402 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
8403 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
8404 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
8405 params.auto_transition_zones, true),
8406 DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
8407 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
8408 params.sriov_vq_flexible, 0),
8409 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
8410 params.sriov_vi_flexible, 0),
8411 DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
8412 params.sriov_max_vi_per_vf, 0),
8413 DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
8414 params.sriov_max_vq_per_vf, 0),
8415 DEFINE_PROP_END_OF_LIST(),
8416 };
8417
8418 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
8419 void *opaque, Error **errp)
8420 {
8421 NvmeCtrl *n = NVME(obj);
8422 uint8_t value = n->smart_critical_warning;
8423
8424 visit_type_uint8(v, name, &value, errp);
8425 }
8426
8427 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
8428 void *opaque, Error **errp)
8429 {
8430 NvmeCtrl *n = NVME(obj);
8431 uint8_t value, old_value, cap = 0, index, event;
8432
8433 if (!visit_type_uint8(v, name, &value, errp)) {
8434 return;
8435 }
8436
8437 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
8438 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
8439 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
8440 cap |= NVME_SMART_PMR_UNRELIABLE;
8441 }
8442
8443 if ((value & cap) != value) {
8444 error_setg(errp, "unsupported smart critical warning bits: 0x%x",
8445 value & ~cap);
8446 return;
8447 }
8448
8449 old_value = n->smart_critical_warning;
8450 n->smart_critical_warning = value;
8451
8452 /* only inject new bits of smart critical warning */
8453 for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
8454 event = 1 << index;
8455 if (value & ~old_value & event)
8456 nvme_smart_event(n, event);
8457 }
8458 }
8459
8460 static void nvme_pci_reset(DeviceState *qdev)
8461 {
8462 PCIDevice *pci_dev = PCI_DEVICE(qdev);
8463 NvmeCtrl *n = NVME(pci_dev);
8464
8465 trace_pci_nvme_pci_reset();
8466 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
8467 }
8468
8469 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
8470 uint32_t val, int len)
8471 {
8472 NvmeCtrl *n = NVME(dev);
8473 NvmeSecCtrlEntry *sctrl;
8474 uint16_t sriov_cap = dev->exp.sriov_cap;
8475 uint32_t off = address - sriov_cap;
8476 int i, num_vfs;
8477
8478 if (!sriov_cap) {
8479 return;
8480 }
8481
8482 if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
8483 if (!(val & PCI_SRIOV_CTRL_VFE)) {
8484 num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
8485 for (i = 0; i < num_vfs; i++) {
8486 sctrl = &n->sec_ctrl_list.sec[i];
8487 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
8488 }
8489 }
8490 }
8491 }
8492
8493 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
8494 uint32_t val, int len)
8495 {
8496 nvme_sriov_pre_write_ctrl(dev, address, val, len);
8497 pci_default_write_config(dev, address, val, len);
8498 pcie_cap_flr_write_config(dev, address, val, len);
8499 }
8500
8501 static const VMStateDescription nvme_vmstate = {
8502 .name = "nvme",
8503 .unmigratable = 1,
8504 };
8505
8506 static void nvme_class_init(ObjectClass *oc, void *data)
8507 {
8508 DeviceClass *dc = DEVICE_CLASS(oc);
8509 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
8510
8511 pc->realize = nvme_realize;
8512 pc->config_write = nvme_pci_write_config;
8513 pc->exit = nvme_exit;
8514 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
8515 pc->revision = 2;
8516
8517 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
8518 dc->desc = "Non-Volatile Memory Express";
8519 device_class_set_props(dc, nvme_props);
8520 dc->vmsd = &nvme_vmstate;
8521 dc->reset = nvme_pci_reset;
8522 }
8523
8524 static void nvme_instance_init(Object *obj)
8525 {
8526 NvmeCtrl *n = NVME(obj);
8527
8528 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
8529 "bootindex", "/namespace@1,0",
8530 DEVICE(obj));
8531
8532 object_property_add(obj, "smart_critical_warning", "uint8",
8533 nvme_get_smart_warning,
8534 nvme_set_smart_warning, NULL, NULL);
8535 }
8536
8537 static const TypeInfo nvme_info = {
8538 .name = TYPE_NVME,
8539 .parent = TYPE_PCI_DEVICE,
8540 .instance_size = sizeof(NvmeCtrl),
8541 .instance_init = nvme_instance_init,
8542 .class_init = nvme_class_init,
8543 .interfaces = (InterfaceInfo[]) {
8544 { INTERFACE_PCIE_DEVICE },
8545 { }
8546 },
8547 };
8548
8549 static const TypeInfo nvme_bus_info = {
8550 .name = TYPE_NVME_BUS,
8551 .parent = TYPE_BUS,
8552 .instance_size = sizeof(NvmeBus),
8553 };
8554
8555 static void nvme_register_types(void)
8556 {
8557 type_register_static(&nvme_info);
8558 type_register_static(&nvme_bus_info);
8559 }
8560
8561 type_init(nvme_register_types)