]> git.proxmox.com Git - mirror_qemu.git/blob - hw/omap1.c
Rename target_phys_addr_t to hwaddr
[mirror_qemu.git] / hw / omap1.c
1 /*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "hw.h"
20 #include "arm-misc.h"
21 #include "omap.h"
22 #include "sysemu.h"
23 #include "soc_dma.h"
24 #include "blockdev.h"
25 #include "range.h"
26 #include "sysbus.h"
27
28 /* Should signal the TCMI/GPMC */
29 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
30 {
31 uint8_t ret;
32
33 OMAP_8B_REG(addr);
34 cpu_physical_memory_read(addr, (void *) &ret, 1);
35 return ret;
36 }
37
38 void omap_badwidth_write8(void *opaque, hwaddr addr,
39 uint32_t value)
40 {
41 uint8_t val8 = value;
42
43 OMAP_8B_REG(addr);
44 cpu_physical_memory_write(addr, (void *) &val8, 1);
45 }
46
47 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
48 {
49 uint16_t ret;
50
51 OMAP_16B_REG(addr);
52 cpu_physical_memory_read(addr, (void *) &ret, 2);
53 return ret;
54 }
55
56 void omap_badwidth_write16(void *opaque, hwaddr addr,
57 uint32_t value)
58 {
59 uint16_t val16 = value;
60
61 OMAP_16B_REG(addr);
62 cpu_physical_memory_write(addr, (void *) &val16, 2);
63 }
64
65 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
66 {
67 uint32_t ret;
68
69 OMAP_32B_REG(addr);
70 cpu_physical_memory_read(addr, (void *) &ret, 4);
71 return ret;
72 }
73
74 void omap_badwidth_write32(void *opaque, hwaddr addr,
75 uint32_t value)
76 {
77 OMAP_32B_REG(addr);
78 cpu_physical_memory_write(addr, (void *) &value, 4);
79 }
80
81 /* MPU OS timers */
82 struct omap_mpu_timer_s {
83 MemoryRegion iomem;
84 qemu_irq irq;
85 omap_clk clk;
86 uint32_t val;
87 int64_t time;
88 QEMUTimer *timer;
89 QEMUBH *tick;
90 int64_t rate;
91 int it_ena;
92
93 int enable;
94 int ptv;
95 int ar;
96 int st;
97 uint32_t reset_val;
98 };
99
100 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
101 {
102 uint64_t distance = qemu_get_clock_ns(vm_clock) - timer->time;
103
104 if (timer->st && timer->enable && timer->rate)
105 return timer->val - muldiv64(distance >> (timer->ptv + 1),
106 timer->rate, get_ticks_per_sec());
107 else
108 return timer->val;
109 }
110
111 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
112 {
113 timer->val = omap_timer_read(timer);
114 timer->time = qemu_get_clock_ns(vm_clock);
115 }
116
117 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
118 {
119 int64_t expires;
120
121 if (timer->enable && timer->st && timer->rate) {
122 timer->val = timer->reset_val; /* Should skip this on clk enable */
123 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
124 get_ticks_per_sec(), timer->rate);
125
126 /* If timer expiry would be sooner than in about 1 ms and
127 * auto-reload isn't set, then fire immediately. This is a hack
128 * to make systems like PalmOS run in acceptable time. PalmOS
129 * sets the interval to a very low value and polls the status bit
130 * in a busy loop when it wants to sleep just a couple of CPU
131 * ticks. */
132 if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
133 qemu_mod_timer(timer->timer, timer->time + expires);
134 else
135 qemu_bh_schedule(timer->tick);
136 } else
137 qemu_del_timer(timer->timer);
138 }
139
140 static void omap_timer_fire(void *opaque)
141 {
142 struct omap_mpu_timer_s *timer = opaque;
143
144 if (!timer->ar) {
145 timer->val = 0;
146 timer->st = 0;
147 }
148
149 if (timer->it_ena)
150 /* Edge-triggered irq */
151 qemu_irq_pulse(timer->irq);
152 }
153
154 static void omap_timer_tick(void *opaque)
155 {
156 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
157
158 omap_timer_sync(timer);
159 omap_timer_fire(timer);
160 omap_timer_update(timer);
161 }
162
163 static void omap_timer_clk_update(void *opaque, int line, int on)
164 {
165 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
166
167 omap_timer_sync(timer);
168 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
169 omap_timer_update(timer);
170 }
171
172 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
173 {
174 omap_clk_adduser(timer->clk,
175 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
176 timer->rate = omap_clk_getrate(timer->clk);
177 }
178
179 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
180 unsigned size)
181 {
182 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
183
184 if (size != 4) {
185 return omap_badwidth_read32(opaque, addr);
186 }
187
188 switch (addr) {
189 case 0x00: /* CNTL_TIMER */
190 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
191
192 case 0x04: /* LOAD_TIM */
193 break;
194
195 case 0x08: /* READ_TIM */
196 return omap_timer_read(s);
197 }
198
199 OMAP_BAD_REG(addr);
200 return 0;
201 }
202
203 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
204 uint64_t value, unsigned size)
205 {
206 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
207
208 if (size != 4) {
209 return omap_badwidth_write32(opaque, addr, value);
210 }
211
212 switch (addr) {
213 case 0x00: /* CNTL_TIMER */
214 omap_timer_sync(s);
215 s->enable = (value >> 5) & 1;
216 s->ptv = (value >> 2) & 7;
217 s->ar = (value >> 1) & 1;
218 s->st = value & 1;
219 omap_timer_update(s);
220 return;
221
222 case 0x04: /* LOAD_TIM */
223 s->reset_val = value;
224 return;
225
226 case 0x08: /* READ_TIM */
227 OMAP_RO_REG(addr);
228 break;
229
230 default:
231 OMAP_BAD_REG(addr);
232 }
233 }
234
235 static const MemoryRegionOps omap_mpu_timer_ops = {
236 .read = omap_mpu_timer_read,
237 .write = omap_mpu_timer_write,
238 .endianness = DEVICE_LITTLE_ENDIAN,
239 };
240
241 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
242 {
243 qemu_del_timer(s->timer);
244 s->enable = 0;
245 s->reset_val = 31337;
246 s->val = 0;
247 s->ptv = 0;
248 s->ar = 0;
249 s->st = 0;
250 s->it_ena = 1;
251 }
252
253 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
254 hwaddr base,
255 qemu_irq irq, omap_clk clk)
256 {
257 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
258 g_malloc0(sizeof(struct omap_mpu_timer_s));
259
260 s->irq = irq;
261 s->clk = clk;
262 s->timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, s);
263 s->tick = qemu_bh_new(omap_timer_fire, s);
264 omap_mpu_timer_reset(s);
265 omap_timer_clk_setup(s);
266
267 memory_region_init_io(&s->iomem, &omap_mpu_timer_ops, s,
268 "omap-mpu-timer", 0x100);
269
270 memory_region_add_subregion(system_memory, base, &s->iomem);
271
272 return s;
273 }
274
275 /* Watchdog timer */
276 struct omap_watchdog_timer_s {
277 struct omap_mpu_timer_s timer;
278 MemoryRegion iomem;
279 uint8_t last_wr;
280 int mode;
281 int free;
282 int reset;
283 };
284
285 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
286 unsigned size)
287 {
288 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
289
290 if (size != 2) {
291 return omap_badwidth_read16(opaque, addr);
292 }
293
294 switch (addr) {
295 case 0x00: /* CNTL_TIMER */
296 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
297 (s->timer.st << 7) | (s->free << 1);
298
299 case 0x04: /* READ_TIMER */
300 return omap_timer_read(&s->timer);
301
302 case 0x08: /* TIMER_MODE */
303 return s->mode << 15;
304 }
305
306 OMAP_BAD_REG(addr);
307 return 0;
308 }
309
310 static void omap_wd_timer_write(void *opaque, hwaddr addr,
311 uint64_t value, unsigned size)
312 {
313 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
314
315 if (size != 2) {
316 return omap_badwidth_write16(opaque, addr, value);
317 }
318
319 switch (addr) {
320 case 0x00: /* CNTL_TIMER */
321 omap_timer_sync(&s->timer);
322 s->timer.ptv = (value >> 9) & 7;
323 s->timer.ar = (value >> 8) & 1;
324 s->timer.st = (value >> 7) & 1;
325 s->free = (value >> 1) & 1;
326 omap_timer_update(&s->timer);
327 break;
328
329 case 0x04: /* LOAD_TIMER */
330 s->timer.reset_val = value & 0xffff;
331 break;
332
333 case 0x08: /* TIMER_MODE */
334 if (!s->mode && ((value >> 15) & 1))
335 omap_clk_get(s->timer.clk);
336 s->mode |= (value >> 15) & 1;
337 if (s->last_wr == 0xf5) {
338 if ((value & 0xff) == 0xa0) {
339 if (s->mode) {
340 s->mode = 0;
341 omap_clk_put(s->timer.clk);
342 }
343 } else {
344 /* XXX: on T|E hardware somehow this has no effect,
345 * on Zire 71 it works as specified. */
346 s->reset = 1;
347 qemu_system_reset_request();
348 }
349 }
350 s->last_wr = value & 0xff;
351 break;
352
353 default:
354 OMAP_BAD_REG(addr);
355 }
356 }
357
358 static const MemoryRegionOps omap_wd_timer_ops = {
359 .read = omap_wd_timer_read,
360 .write = omap_wd_timer_write,
361 .endianness = DEVICE_NATIVE_ENDIAN,
362 };
363
364 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
365 {
366 qemu_del_timer(s->timer.timer);
367 if (!s->mode)
368 omap_clk_get(s->timer.clk);
369 s->mode = 1;
370 s->free = 1;
371 s->reset = 0;
372 s->timer.enable = 1;
373 s->timer.it_ena = 1;
374 s->timer.reset_val = 0xffff;
375 s->timer.val = 0;
376 s->timer.st = 0;
377 s->timer.ptv = 0;
378 s->timer.ar = 0;
379 omap_timer_update(&s->timer);
380 }
381
382 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
383 hwaddr base,
384 qemu_irq irq, omap_clk clk)
385 {
386 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
387 g_malloc0(sizeof(struct omap_watchdog_timer_s));
388
389 s->timer.irq = irq;
390 s->timer.clk = clk;
391 s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
392 omap_wd_timer_reset(s);
393 omap_timer_clk_setup(&s->timer);
394
395 memory_region_init_io(&s->iomem, &omap_wd_timer_ops, s,
396 "omap-wd-timer", 0x100);
397 memory_region_add_subregion(memory, base, &s->iomem);
398
399 return s;
400 }
401
402 /* 32-kHz timer */
403 struct omap_32khz_timer_s {
404 struct omap_mpu_timer_s timer;
405 MemoryRegion iomem;
406 };
407
408 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
409 unsigned size)
410 {
411 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
412 int offset = addr & OMAP_MPUI_REG_MASK;
413
414 if (size != 4) {
415 return omap_badwidth_read32(opaque, addr);
416 }
417
418 switch (offset) {
419 case 0x00: /* TVR */
420 return s->timer.reset_val;
421
422 case 0x04: /* TCR */
423 return omap_timer_read(&s->timer);
424
425 case 0x08: /* CR */
426 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
427
428 default:
429 break;
430 }
431 OMAP_BAD_REG(addr);
432 return 0;
433 }
434
435 static void omap_os_timer_write(void *opaque, hwaddr addr,
436 uint64_t value, unsigned size)
437 {
438 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
439 int offset = addr & OMAP_MPUI_REG_MASK;
440
441 if (size != 4) {
442 return omap_badwidth_write32(opaque, addr, value);
443 }
444
445 switch (offset) {
446 case 0x00: /* TVR */
447 s->timer.reset_val = value & 0x00ffffff;
448 break;
449
450 case 0x04: /* TCR */
451 OMAP_RO_REG(addr);
452 break;
453
454 case 0x08: /* CR */
455 s->timer.ar = (value >> 3) & 1;
456 s->timer.it_ena = (value >> 2) & 1;
457 if (s->timer.st != (value & 1) || (value & 2)) {
458 omap_timer_sync(&s->timer);
459 s->timer.enable = value & 1;
460 s->timer.st = value & 1;
461 omap_timer_update(&s->timer);
462 }
463 break;
464
465 default:
466 OMAP_BAD_REG(addr);
467 }
468 }
469
470 static const MemoryRegionOps omap_os_timer_ops = {
471 .read = omap_os_timer_read,
472 .write = omap_os_timer_write,
473 .endianness = DEVICE_NATIVE_ENDIAN,
474 };
475
476 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
477 {
478 qemu_del_timer(s->timer.timer);
479 s->timer.enable = 0;
480 s->timer.it_ena = 0;
481 s->timer.reset_val = 0x00ffffff;
482 s->timer.val = 0;
483 s->timer.st = 0;
484 s->timer.ptv = 0;
485 s->timer.ar = 1;
486 }
487
488 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
489 hwaddr base,
490 qemu_irq irq, omap_clk clk)
491 {
492 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
493 g_malloc0(sizeof(struct omap_32khz_timer_s));
494
495 s->timer.irq = irq;
496 s->timer.clk = clk;
497 s->timer.timer = qemu_new_timer_ns(vm_clock, omap_timer_tick, &s->timer);
498 omap_os_timer_reset(s);
499 omap_timer_clk_setup(&s->timer);
500
501 memory_region_init_io(&s->iomem, &omap_os_timer_ops, s,
502 "omap-os-timer", 0x800);
503 memory_region_add_subregion(memory, base, &s->iomem);
504
505 return s;
506 }
507
508 /* Ultra Low-Power Device Module */
509 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
510 unsigned size)
511 {
512 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
513 uint16_t ret;
514
515 if (size != 2) {
516 return omap_badwidth_read16(opaque, addr);
517 }
518
519 switch (addr) {
520 case 0x14: /* IT_STATUS */
521 ret = s->ulpd_pm_regs[addr >> 2];
522 s->ulpd_pm_regs[addr >> 2] = 0;
523 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
524 return ret;
525
526 case 0x18: /* Reserved */
527 case 0x1c: /* Reserved */
528 case 0x20: /* Reserved */
529 case 0x28: /* Reserved */
530 case 0x2c: /* Reserved */
531 OMAP_BAD_REG(addr);
532 case 0x00: /* COUNTER_32_LSB */
533 case 0x04: /* COUNTER_32_MSB */
534 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
535 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
536 case 0x10: /* GAUGING_CTRL */
537 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
538 case 0x30: /* CLOCK_CTRL */
539 case 0x34: /* SOFT_REQ */
540 case 0x38: /* COUNTER_32_FIQ */
541 case 0x3c: /* DPLL_CTRL */
542 case 0x40: /* STATUS_REQ */
543 /* XXX: check clk::usecount state for every clock */
544 case 0x48: /* LOCL_TIME */
545 case 0x4c: /* APLL_CTRL */
546 case 0x50: /* POWER_CTRL */
547 return s->ulpd_pm_regs[addr >> 2];
548 }
549
550 OMAP_BAD_REG(addr);
551 return 0;
552 }
553
554 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
555 uint16_t diff, uint16_t value)
556 {
557 if (diff & (1 << 4)) /* USB_MCLK_EN */
558 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
559 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
560 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
561 }
562
563 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
564 uint16_t diff, uint16_t value)
565 {
566 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
567 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
568 if (diff & (1 << 1)) /* SOFT_COM_REQ */
569 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
570 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
571 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
572 if (diff & (1 << 3)) /* SOFT_USB_REQ */
573 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
574 }
575
576 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
577 uint64_t value, unsigned size)
578 {
579 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
580 int64_t now, ticks;
581 int div, mult;
582 static const int bypass_div[4] = { 1, 2, 4, 4 };
583 uint16_t diff;
584
585 if (size != 2) {
586 return omap_badwidth_write16(opaque, addr, value);
587 }
588
589 switch (addr) {
590 case 0x00: /* COUNTER_32_LSB */
591 case 0x04: /* COUNTER_32_MSB */
592 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
593 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
594 case 0x14: /* IT_STATUS */
595 case 0x40: /* STATUS_REQ */
596 OMAP_RO_REG(addr);
597 break;
598
599 case 0x10: /* GAUGING_CTRL */
600 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
601 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
602 now = qemu_get_clock_ns(vm_clock);
603
604 if (value & 1)
605 s->ulpd_gauge_start = now;
606 else {
607 now -= s->ulpd_gauge_start;
608
609 /* 32-kHz ticks */
610 ticks = muldiv64(now, 32768, get_ticks_per_sec());
611 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
612 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
613 if (ticks >> 32) /* OVERFLOW_32K */
614 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
615
616 /* High frequency ticks */
617 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
618 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
619 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
620 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
621 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
622
623 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
624 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
625 }
626 }
627 s->ulpd_pm_regs[addr >> 2] = value;
628 break;
629
630 case 0x18: /* Reserved */
631 case 0x1c: /* Reserved */
632 case 0x20: /* Reserved */
633 case 0x28: /* Reserved */
634 case 0x2c: /* Reserved */
635 OMAP_BAD_REG(addr);
636 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
637 case 0x38: /* COUNTER_32_FIQ */
638 case 0x48: /* LOCL_TIME */
639 case 0x50: /* POWER_CTRL */
640 s->ulpd_pm_regs[addr >> 2] = value;
641 break;
642
643 case 0x30: /* CLOCK_CTRL */
644 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
645 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
646 omap_ulpd_clk_update(s, diff, value);
647 break;
648
649 case 0x34: /* SOFT_REQ */
650 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
651 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
652 omap_ulpd_req_update(s, diff, value);
653 break;
654
655 case 0x3c: /* DPLL_CTRL */
656 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
657 * omitted altogether, probably a typo. */
658 /* This register has identical semantics with DPLL(1:3) control
659 * registers, see omap_dpll_write() */
660 diff = s->ulpd_pm_regs[addr >> 2] & value;
661 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
662 if (diff & (0x3ff << 2)) {
663 if (value & (1 << 4)) { /* PLL_ENABLE */
664 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
665 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
666 } else {
667 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
668 mult = 1;
669 }
670 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
671 }
672
673 /* Enter the desired mode. */
674 s->ulpd_pm_regs[addr >> 2] =
675 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
676 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
677
678 /* Act as if the lock is restored. */
679 s->ulpd_pm_regs[addr >> 2] |= 2;
680 break;
681
682 case 0x4c: /* APLL_CTRL */
683 diff = s->ulpd_pm_regs[addr >> 2] & value;
684 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
685 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
686 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
687 (value & (1 << 0)) ? "apll" : "dpll4"));
688 break;
689
690 default:
691 OMAP_BAD_REG(addr);
692 }
693 }
694
695 static const MemoryRegionOps omap_ulpd_pm_ops = {
696 .read = omap_ulpd_pm_read,
697 .write = omap_ulpd_pm_write,
698 .endianness = DEVICE_NATIVE_ENDIAN,
699 };
700
701 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
702 {
703 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
704 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
705 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
706 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
707 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
708 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
709 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
710 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
711 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
712 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
713 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
714 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
715 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
716 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
717 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
718 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
719 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
720 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
721 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
722 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
723 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
724 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
725 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
726 }
727
728 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
729 hwaddr base,
730 struct omap_mpu_state_s *mpu)
731 {
732 memory_region_init_io(&mpu->ulpd_pm_iomem, &omap_ulpd_pm_ops, mpu,
733 "omap-ulpd-pm", 0x800);
734 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
735 omap_ulpd_pm_reset(mpu);
736 }
737
738 /* OMAP Pin Configuration */
739 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
740 unsigned size)
741 {
742 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
743
744 if (size != 4) {
745 return omap_badwidth_read32(opaque, addr);
746 }
747
748 switch (addr) {
749 case 0x00: /* FUNC_MUX_CTRL_0 */
750 case 0x04: /* FUNC_MUX_CTRL_1 */
751 case 0x08: /* FUNC_MUX_CTRL_2 */
752 return s->func_mux_ctrl[addr >> 2];
753
754 case 0x0c: /* COMP_MODE_CTRL_0 */
755 return s->comp_mode_ctrl[0];
756
757 case 0x10: /* FUNC_MUX_CTRL_3 */
758 case 0x14: /* FUNC_MUX_CTRL_4 */
759 case 0x18: /* FUNC_MUX_CTRL_5 */
760 case 0x1c: /* FUNC_MUX_CTRL_6 */
761 case 0x20: /* FUNC_MUX_CTRL_7 */
762 case 0x24: /* FUNC_MUX_CTRL_8 */
763 case 0x28: /* FUNC_MUX_CTRL_9 */
764 case 0x2c: /* FUNC_MUX_CTRL_A */
765 case 0x30: /* FUNC_MUX_CTRL_B */
766 case 0x34: /* FUNC_MUX_CTRL_C */
767 case 0x38: /* FUNC_MUX_CTRL_D */
768 return s->func_mux_ctrl[(addr >> 2) - 1];
769
770 case 0x40: /* PULL_DWN_CTRL_0 */
771 case 0x44: /* PULL_DWN_CTRL_1 */
772 case 0x48: /* PULL_DWN_CTRL_2 */
773 case 0x4c: /* PULL_DWN_CTRL_3 */
774 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
775
776 case 0x50: /* GATE_INH_CTRL_0 */
777 return s->gate_inh_ctrl[0];
778
779 case 0x60: /* VOLTAGE_CTRL_0 */
780 return s->voltage_ctrl[0];
781
782 case 0x70: /* TEST_DBG_CTRL_0 */
783 return s->test_dbg_ctrl[0];
784
785 case 0x80: /* MOD_CONF_CTRL_0 */
786 return s->mod_conf_ctrl[0];
787 }
788
789 OMAP_BAD_REG(addr);
790 return 0;
791 }
792
793 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
794 uint32_t diff, uint32_t value)
795 {
796 if (s->compat1509) {
797 if (diff & (1 << 9)) /* BLUETOOTH */
798 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
799 (~value >> 9) & 1);
800 if (diff & (1 << 7)) /* USB.CLKO */
801 omap_clk_onoff(omap_findclk(s, "usb.clko"),
802 (value >> 7) & 1);
803 }
804 }
805
806 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
807 uint32_t diff, uint32_t value)
808 {
809 if (s->compat1509) {
810 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
811 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
812 (value >> 31) & 1);
813 if (diff & (1 << 1)) /* CLK32K */
814 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
815 (~value >> 1) & 1);
816 }
817 }
818
819 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
820 uint32_t diff, uint32_t value)
821 {
822 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
823 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
824 omap_findclk(s, ((value >> 31) & 1) ?
825 "ck_48m" : "armper_ck"));
826 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
827 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
828 omap_findclk(s, ((value >> 30) & 1) ?
829 "ck_48m" : "armper_ck"));
830 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
831 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
832 omap_findclk(s, ((value >> 29) & 1) ?
833 "ck_48m" : "armper_ck"));
834 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
835 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
836 omap_findclk(s, ((value >> 23) & 1) ?
837 "ck_48m" : "armper_ck"));
838 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
839 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
840 omap_findclk(s, ((value >> 12) & 1) ?
841 "ck_48m" : "armper_ck"));
842 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
843 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
844 }
845
846 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
847 uint64_t value, unsigned size)
848 {
849 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
850 uint32_t diff;
851
852 if (size != 4) {
853 return omap_badwidth_write32(opaque, addr, value);
854 }
855
856 switch (addr) {
857 case 0x00: /* FUNC_MUX_CTRL_0 */
858 diff = s->func_mux_ctrl[addr >> 2] ^ value;
859 s->func_mux_ctrl[addr >> 2] = value;
860 omap_pin_funcmux0_update(s, diff, value);
861 return;
862
863 case 0x04: /* FUNC_MUX_CTRL_1 */
864 diff = s->func_mux_ctrl[addr >> 2] ^ value;
865 s->func_mux_ctrl[addr >> 2] = value;
866 omap_pin_funcmux1_update(s, diff, value);
867 return;
868
869 case 0x08: /* FUNC_MUX_CTRL_2 */
870 s->func_mux_ctrl[addr >> 2] = value;
871 return;
872
873 case 0x0c: /* COMP_MODE_CTRL_0 */
874 s->comp_mode_ctrl[0] = value;
875 s->compat1509 = (value != 0x0000eaef);
876 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
877 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
878 return;
879
880 case 0x10: /* FUNC_MUX_CTRL_3 */
881 case 0x14: /* FUNC_MUX_CTRL_4 */
882 case 0x18: /* FUNC_MUX_CTRL_5 */
883 case 0x1c: /* FUNC_MUX_CTRL_6 */
884 case 0x20: /* FUNC_MUX_CTRL_7 */
885 case 0x24: /* FUNC_MUX_CTRL_8 */
886 case 0x28: /* FUNC_MUX_CTRL_9 */
887 case 0x2c: /* FUNC_MUX_CTRL_A */
888 case 0x30: /* FUNC_MUX_CTRL_B */
889 case 0x34: /* FUNC_MUX_CTRL_C */
890 case 0x38: /* FUNC_MUX_CTRL_D */
891 s->func_mux_ctrl[(addr >> 2) - 1] = value;
892 return;
893
894 case 0x40: /* PULL_DWN_CTRL_0 */
895 case 0x44: /* PULL_DWN_CTRL_1 */
896 case 0x48: /* PULL_DWN_CTRL_2 */
897 case 0x4c: /* PULL_DWN_CTRL_3 */
898 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
899 return;
900
901 case 0x50: /* GATE_INH_CTRL_0 */
902 s->gate_inh_ctrl[0] = value;
903 return;
904
905 case 0x60: /* VOLTAGE_CTRL_0 */
906 s->voltage_ctrl[0] = value;
907 return;
908
909 case 0x70: /* TEST_DBG_CTRL_0 */
910 s->test_dbg_ctrl[0] = value;
911 return;
912
913 case 0x80: /* MOD_CONF_CTRL_0 */
914 diff = s->mod_conf_ctrl[0] ^ value;
915 s->mod_conf_ctrl[0] = value;
916 omap_pin_modconf1_update(s, diff, value);
917 return;
918
919 default:
920 OMAP_BAD_REG(addr);
921 }
922 }
923
924 static const MemoryRegionOps omap_pin_cfg_ops = {
925 .read = omap_pin_cfg_read,
926 .write = omap_pin_cfg_write,
927 .endianness = DEVICE_NATIVE_ENDIAN,
928 };
929
930 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
931 {
932 /* Start in Compatibility Mode. */
933 mpu->compat1509 = 1;
934 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
935 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
936 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
937 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
938 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
939 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
940 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
941 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
942 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
943 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
944 }
945
946 static void omap_pin_cfg_init(MemoryRegion *system_memory,
947 hwaddr base,
948 struct omap_mpu_state_s *mpu)
949 {
950 memory_region_init_io(&mpu->pin_cfg_iomem, &omap_pin_cfg_ops, mpu,
951 "omap-pin-cfg", 0x800);
952 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
953 omap_pin_cfg_reset(mpu);
954 }
955
956 /* Device Identification, Die Identification */
957 static uint64_t omap_id_read(void *opaque, hwaddr addr,
958 unsigned size)
959 {
960 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
961
962 if (size != 4) {
963 return omap_badwidth_read32(opaque, addr);
964 }
965
966 switch (addr) {
967 case 0xfffe1800: /* DIE_ID_LSB */
968 return 0xc9581f0e;
969 case 0xfffe1804: /* DIE_ID_MSB */
970 return 0xa8858bfa;
971
972 case 0xfffe2000: /* PRODUCT_ID_LSB */
973 return 0x00aaaafc;
974 case 0xfffe2004: /* PRODUCT_ID_MSB */
975 return 0xcafeb574;
976
977 case 0xfffed400: /* JTAG_ID_LSB */
978 switch (s->mpu_model) {
979 case omap310:
980 return 0x03310315;
981 case omap1510:
982 return 0x03310115;
983 default:
984 hw_error("%s: bad mpu model\n", __FUNCTION__);
985 }
986 break;
987
988 case 0xfffed404: /* JTAG_ID_MSB */
989 switch (s->mpu_model) {
990 case omap310:
991 return 0xfb57402f;
992 case omap1510:
993 return 0xfb47002f;
994 default:
995 hw_error("%s: bad mpu model\n", __FUNCTION__);
996 }
997 break;
998 }
999
1000 OMAP_BAD_REG(addr);
1001 return 0;
1002 }
1003
1004 static void omap_id_write(void *opaque, hwaddr addr,
1005 uint64_t value, unsigned size)
1006 {
1007 if (size != 4) {
1008 return omap_badwidth_write32(opaque, addr, value);
1009 }
1010
1011 OMAP_BAD_REG(addr);
1012 }
1013
1014 static const MemoryRegionOps omap_id_ops = {
1015 .read = omap_id_read,
1016 .write = omap_id_write,
1017 .endianness = DEVICE_NATIVE_ENDIAN,
1018 };
1019
1020 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1021 {
1022 memory_region_init_io(&mpu->id_iomem, &omap_id_ops, mpu,
1023 "omap-id", 0x100000000ULL);
1024 memory_region_init_alias(&mpu->id_iomem_e18, "omap-id-e18", &mpu->id_iomem,
1025 0xfffe1800, 0x800);
1026 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1027 memory_region_init_alias(&mpu->id_iomem_ed4, "omap-id-ed4", &mpu->id_iomem,
1028 0xfffed400, 0x100);
1029 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1030 if (!cpu_is_omap15xx(mpu)) {
1031 memory_region_init_alias(&mpu->id_iomem_ed4, "omap-id-e20",
1032 &mpu->id_iomem, 0xfffe2000, 0x800);
1033 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1034 }
1035 }
1036
1037 /* MPUI Control (Dummy) */
1038 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1039 unsigned size)
1040 {
1041 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1042
1043 if (size != 4) {
1044 return omap_badwidth_read32(opaque, addr);
1045 }
1046
1047 switch (addr) {
1048 case 0x00: /* CTRL */
1049 return s->mpui_ctrl;
1050 case 0x04: /* DEBUG_ADDR */
1051 return 0x01ffffff;
1052 case 0x08: /* DEBUG_DATA */
1053 return 0xffffffff;
1054 case 0x0c: /* DEBUG_FLAG */
1055 return 0x00000800;
1056 case 0x10: /* STATUS */
1057 return 0x00000000;
1058
1059 /* Not in OMAP310 */
1060 case 0x14: /* DSP_STATUS */
1061 case 0x18: /* DSP_BOOT_CONFIG */
1062 return 0x00000000;
1063 case 0x1c: /* DSP_MPUI_CONFIG */
1064 return 0x0000ffff;
1065 }
1066
1067 OMAP_BAD_REG(addr);
1068 return 0;
1069 }
1070
1071 static void omap_mpui_write(void *opaque, hwaddr addr,
1072 uint64_t value, unsigned size)
1073 {
1074 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1075
1076 if (size != 4) {
1077 return omap_badwidth_write32(opaque, addr, value);
1078 }
1079
1080 switch (addr) {
1081 case 0x00: /* CTRL */
1082 s->mpui_ctrl = value & 0x007fffff;
1083 break;
1084
1085 case 0x04: /* DEBUG_ADDR */
1086 case 0x08: /* DEBUG_DATA */
1087 case 0x0c: /* DEBUG_FLAG */
1088 case 0x10: /* STATUS */
1089 /* Not in OMAP310 */
1090 case 0x14: /* DSP_STATUS */
1091 OMAP_RO_REG(addr);
1092 case 0x18: /* DSP_BOOT_CONFIG */
1093 case 0x1c: /* DSP_MPUI_CONFIG */
1094 break;
1095
1096 default:
1097 OMAP_BAD_REG(addr);
1098 }
1099 }
1100
1101 static const MemoryRegionOps omap_mpui_ops = {
1102 .read = omap_mpui_read,
1103 .write = omap_mpui_write,
1104 .endianness = DEVICE_NATIVE_ENDIAN,
1105 };
1106
1107 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1108 {
1109 s->mpui_ctrl = 0x0003ff1b;
1110 }
1111
1112 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1113 struct omap_mpu_state_s *mpu)
1114 {
1115 memory_region_init_io(&mpu->mpui_iomem, &omap_mpui_ops, mpu,
1116 "omap-mpui", 0x100);
1117 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1118
1119 omap_mpui_reset(mpu);
1120 }
1121
1122 /* TIPB Bridges */
1123 struct omap_tipb_bridge_s {
1124 qemu_irq abort;
1125 MemoryRegion iomem;
1126
1127 int width_intr;
1128 uint16_t control;
1129 uint16_t alloc;
1130 uint16_t buffer;
1131 uint16_t enh_control;
1132 };
1133
1134 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1135 unsigned size)
1136 {
1137 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1138
1139 if (size < 2) {
1140 return omap_badwidth_read16(opaque, addr);
1141 }
1142
1143 switch (addr) {
1144 case 0x00: /* TIPB_CNTL */
1145 return s->control;
1146 case 0x04: /* TIPB_BUS_ALLOC */
1147 return s->alloc;
1148 case 0x08: /* MPU_TIPB_CNTL */
1149 return s->buffer;
1150 case 0x0c: /* ENHANCED_TIPB_CNTL */
1151 return s->enh_control;
1152 case 0x10: /* ADDRESS_DBG */
1153 case 0x14: /* DATA_DEBUG_LOW */
1154 case 0x18: /* DATA_DEBUG_HIGH */
1155 return 0xffff;
1156 case 0x1c: /* DEBUG_CNTR_SIG */
1157 return 0x00f8;
1158 }
1159
1160 OMAP_BAD_REG(addr);
1161 return 0;
1162 }
1163
1164 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1165 uint64_t value, unsigned size)
1166 {
1167 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1168
1169 if (size < 2) {
1170 return omap_badwidth_write16(opaque, addr, value);
1171 }
1172
1173 switch (addr) {
1174 case 0x00: /* TIPB_CNTL */
1175 s->control = value & 0xffff;
1176 break;
1177
1178 case 0x04: /* TIPB_BUS_ALLOC */
1179 s->alloc = value & 0x003f;
1180 break;
1181
1182 case 0x08: /* MPU_TIPB_CNTL */
1183 s->buffer = value & 0x0003;
1184 break;
1185
1186 case 0x0c: /* ENHANCED_TIPB_CNTL */
1187 s->width_intr = !(value & 2);
1188 s->enh_control = value & 0x000f;
1189 break;
1190
1191 case 0x10: /* ADDRESS_DBG */
1192 case 0x14: /* DATA_DEBUG_LOW */
1193 case 0x18: /* DATA_DEBUG_HIGH */
1194 case 0x1c: /* DEBUG_CNTR_SIG */
1195 OMAP_RO_REG(addr);
1196 break;
1197
1198 default:
1199 OMAP_BAD_REG(addr);
1200 }
1201 }
1202
1203 static const MemoryRegionOps omap_tipb_bridge_ops = {
1204 .read = omap_tipb_bridge_read,
1205 .write = omap_tipb_bridge_write,
1206 .endianness = DEVICE_NATIVE_ENDIAN,
1207 };
1208
1209 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1210 {
1211 s->control = 0xffff;
1212 s->alloc = 0x0009;
1213 s->buffer = 0x0000;
1214 s->enh_control = 0x000f;
1215 }
1216
1217 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1218 MemoryRegion *memory, hwaddr base,
1219 qemu_irq abort_irq, omap_clk clk)
1220 {
1221 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1222 g_malloc0(sizeof(struct omap_tipb_bridge_s));
1223
1224 s->abort = abort_irq;
1225 omap_tipb_bridge_reset(s);
1226
1227 memory_region_init_io(&s->iomem, &omap_tipb_bridge_ops, s,
1228 "omap-tipb-bridge", 0x100);
1229 memory_region_add_subregion(memory, base, &s->iomem);
1230
1231 return s;
1232 }
1233
1234 /* Dummy Traffic Controller's Memory Interface */
1235 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1236 unsigned size)
1237 {
1238 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1239 uint32_t ret;
1240
1241 if (size != 4) {
1242 return omap_badwidth_read32(opaque, addr);
1243 }
1244
1245 switch (addr) {
1246 case 0x00: /* IMIF_PRIO */
1247 case 0x04: /* EMIFS_PRIO */
1248 case 0x08: /* EMIFF_PRIO */
1249 case 0x0c: /* EMIFS_CONFIG */
1250 case 0x10: /* EMIFS_CS0_CONFIG */
1251 case 0x14: /* EMIFS_CS1_CONFIG */
1252 case 0x18: /* EMIFS_CS2_CONFIG */
1253 case 0x1c: /* EMIFS_CS3_CONFIG */
1254 case 0x24: /* EMIFF_MRS */
1255 case 0x28: /* TIMEOUT1 */
1256 case 0x2c: /* TIMEOUT2 */
1257 case 0x30: /* TIMEOUT3 */
1258 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1259 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1260 return s->tcmi_regs[addr >> 2];
1261
1262 case 0x20: /* EMIFF_SDRAM_CONFIG */
1263 ret = s->tcmi_regs[addr >> 2];
1264 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1265 /* XXX: We can try using the VGA_DIRTY flag for this */
1266 return ret;
1267 }
1268
1269 OMAP_BAD_REG(addr);
1270 return 0;
1271 }
1272
1273 static void omap_tcmi_write(void *opaque, hwaddr addr,
1274 uint64_t value, unsigned size)
1275 {
1276 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1277
1278 if (size != 4) {
1279 return omap_badwidth_write32(opaque, addr, value);
1280 }
1281
1282 switch (addr) {
1283 case 0x00: /* IMIF_PRIO */
1284 case 0x04: /* EMIFS_PRIO */
1285 case 0x08: /* EMIFF_PRIO */
1286 case 0x10: /* EMIFS_CS0_CONFIG */
1287 case 0x14: /* EMIFS_CS1_CONFIG */
1288 case 0x18: /* EMIFS_CS2_CONFIG */
1289 case 0x1c: /* EMIFS_CS3_CONFIG */
1290 case 0x20: /* EMIFF_SDRAM_CONFIG */
1291 case 0x24: /* EMIFF_MRS */
1292 case 0x28: /* TIMEOUT1 */
1293 case 0x2c: /* TIMEOUT2 */
1294 case 0x30: /* TIMEOUT3 */
1295 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1296 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1297 s->tcmi_regs[addr >> 2] = value;
1298 break;
1299 case 0x0c: /* EMIFS_CONFIG */
1300 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1301 break;
1302
1303 default:
1304 OMAP_BAD_REG(addr);
1305 }
1306 }
1307
1308 static const MemoryRegionOps omap_tcmi_ops = {
1309 .read = omap_tcmi_read,
1310 .write = omap_tcmi_write,
1311 .endianness = DEVICE_NATIVE_ENDIAN,
1312 };
1313
1314 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1315 {
1316 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1317 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1318 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1319 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1320 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1321 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1322 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1323 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1324 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1325 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1326 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1327 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1328 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1329 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1330 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1331 }
1332
1333 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1334 struct omap_mpu_state_s *mpu)
1335 {
1336 memory_region_init_io(&mpu->tcmi_iomem, &omap_tcmi_ops, mpu,
1337 "omap-tcmi", 0x100);
1338 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1339 omap_tcmi_reset(mpu);
1340 }
1341
1342 /* Digital phase-locked loops control */
1343 struct dpll_ctl_s {
1344 MemoryRegion iomem;
1345 uint16_t mode;
1346 omap_clk dpll;
1347 };
1348
1349 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1350 unsigned size)
1351 {
1352 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1353
1354 if (size != 2) {
1355 return omap_badwidth_read16(opaque, addr);
1356 }
1357
1358 if (addr == 0x00) /* CTL_REG */
1359 return s->mode;
1360
1361 OMAP_BAD_REG(addr);
1362 return 0;
1363 }
1364
1365 static void omap_dpll_write(void *opaque, hwaddr addr,
1366 uint64_t value, unsigned size)
1367 {
1368 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1369 uint16_t diff;
1370 static const int bypass_div[4] = { 1, 2, 4, 4 };
1371 int div, mult;
1372
1373 if (size != 2) {
1374 return omap_badwidth_write16(opaque, addr, value);
1375 }
1376
1377 if (addr == 0x00) { /* CTL_REG */
1378 /* See omap_ulpd_pm_write() too */
1379 diff = s->mode & value;
1380 s->mode = value & 0x2fff;
1381 if (diff & (0x3ff << 2)) {
1382 if (value & (1 << 4)) { /* PLL_ENABLE */
1383 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1384 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1385 } else {
1386 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1387 mult = 1;
1388 }
1389 omap_clk_setrate(s->dpll, div, mult);
1390 }
1391
1392 /* Enter the desired mode. */
1393 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1394
1395 /* Act as if the lock is restored. */
1396 s->mode |= 2;
1397 } else {
1398 OMAP_BAD_REG(addr);
1399 }
1400 }
1401
1402 static const MemoryRegionOps omap_dpll_ops = {
1403 .read = omap_dpll_read,
1404 .write = omap_dpll_write,
1405 .endianness = DEVICE_NATIVE_ENDIAN,
1406 };
1407
1408 static void omap_dpll_reset(struct dpll_ctl_s *s)
1409 {
1410 s->mode = 0x2002;
1411 omap_clk_setrate(s->dpll, 1, 1);
1412 }
1413
1414 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1415 hwaddr base, omap_clk clk)
1416 {
1417 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1418 memory_region_init_io(&s->iomem, &omap_dpll_ops, s, "omap-dpll", 0x100);
1419
1420 s->dpll = clk;
1421 omap_dpll_reset(s);
1422
1423 memory_region_add_subregion(memory, base, &s->iomem);
1424 return s;
1425 }
1426
1427 /* MPU Clock/Reset/Power Mode Control */
1428 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1429 unsigned size)
1430 {
1431 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1432
1433 if (size != 2) {
1434 return omap_badwidth_read16(opaque, addr);
1435 }
1436
1437 switch (addr) {
1438 case 0x00: /* ARM_CKCTL */
1439 return s->clkm.arm_ckctl;
1440
1441 case 0x04: /* ARM_IDLECT1 */
1442 return s->clkm.arm_idlect1;
1443
1444 case 0x08: /* ARM_IDLECT2 */
1445 return s->clkm.arm_idlect2;
1446
1447 case 0x0c: /* ARM_EWUPCT */
1448 return s->clkm.arm_ewupct;
1449
1450 case 0x10: /* ARM_RSTCT1 */
1451 return s->clkm.arm_rstct1;
1452
1453 case 0x14: /* ARM_RSTCT2 */
1454 return s->clkm.arm_rstct2;
1455
1456 case 0x18: /* ARM_SYSST */
1457 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1458
1459 case 0x1c: /* ARM_CKOUT1 */
1460 return s->clkm.arm_ckout1;
1461
1462 case 0x20: /* ARM_CKOUT2 */
1463 break;
1464 }
1465
1466 OMAP_BAD_REG(addr);
1467 return 0;
1468 }
1469
1470 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1471 uint16_t diff, uint16_t value)
1472 {
1473 omap_clk clk;
1474
1475 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1476 if (value & (1 << 14))
1477 /* Reserved */;
1478 else {
1479 clk = omap_findclk(s, "arminth_ck");
1480 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1481 }
1482 }
1483 if (diff & (1 << 12)) { /* ARM_TIMXO */
1484 clk = omap_findclk(s, "armtim_ck");
1485 if (value & (1 << 12))
1486 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1487 else
1488 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1489 }
1490 /* XXX: en_dspck */
1491 if (diff & (3 << 10)) { /* DSPMMUDIV */
1492 clk = omap_findclk(s, "dspmmu_ck");
1493 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1494 }
1495 if (diff & (3 << 8)) { /* TCDIV */
1496 clk = omap_findclk(s, "tc_ck");
1497 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1498 }
1499 if (diff & (3 << 6)) { /* DSPDIV */
1500 clk = omap_findclk(s, "dsp_ck");
1501 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1502 }
1503 if (diff & (3 << 4)) { /* ARMDIV */
1504 clk = omap_findclk(s, "arm_ck");
1505 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1506 }
1507 if (diff & (3 << 2)) { /* LCDDIV */
1508 clk = omap_findclk(s, "lcd_ck");
1509 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1510 }
1511 if (diff & (3 << 0)) { /* PERDIV */
1512 clk = omap_findclk(s, "armper_ck");
1513 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1514 }
1515 }
1516
1517 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1518 uint16_t diff, uint16_t value)
1519 {
1520 omap_clk clk;
1521
1522 if (value & (1 << 11)) { /* SETARM_IDLE */
1523 cpu_interrupt(&s->cpu->env, CPU_INTERRUPT_HALT);
1524 }
1525 if (!(value & (1 << 10))) /* WKUP_MODE */
1526 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1527
1528 #define SET_CANIDLE(clock, bit) \
1529 if (diff & (1 << bit)) { \
1530 clk = omap_findclk(s, clock); \
1531 omap_clk_canidle(clk, (value >> bit) & 1); \
1532 }
1533 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1534 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1535 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1536 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1537 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1538 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1539 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1540 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1541 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1542 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1543 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1544 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1545 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1546 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1547 }
1548
1549 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1550 uint16_t diff, uint16_t value)
1551 {
1552 omap_clk clk;
1553
1554 #define SET_ONOFF(clock, bit) \
1555 if (diff & (1 << bit)) { \
1556 clk = omap_findclk(s, clock); \
1557 omap_clk_onoff(clk, (value >> bit) & 1); \
1558 }
1559 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1560 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1561 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1562 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1563 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1564 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1565 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1566 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1567 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1568 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1569 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1570 }
1571
1572 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1573 uint16_t diff, uint16_t value)
1574 {
1575 omap_clk clk;
1576
1577 if (diff & (3 << 4)) { /* TCLKOUT */
1578 clk = omap_findclk(s, "tclk_out");
1579 switch ((value >> 4) & 3) {
1580 case 1:
1581 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1582 omap_clk_onoff(clk, 1);
1583 break;
1584 case 2:
1585 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1586 omap_clk_onoff(clk, 1);
1587 break;
1588 default:
1589 omap_clk_onoff(clk, 0);
1590 }
1591 }
1592 if (diff & (3 << 2)) { /* DCLKOUT */
1593 clk = omap_findclk(s, "dclk_out");
1594 switch ((value >> 2) & 3) {
1595 case 0:
1596 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1597 break;
1598 case 1:
1599 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1600 break;
1601 case 2:
1602 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1603 break;
1604 case 3:
1605 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1606 break;
1607 }
1608 }
1609 if (diff & (3 << 0)) { /* ACLKOUT */
1610 clk = omap_findclk(s, "aclk_out");
1611 switch ((value >> 0) & 3) {
1612 case 1:
1613 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1614 omap_clk_onoff(clk, 1);
1615 break;
1616 case 2:
1617 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1618 omap_clk_onoff(clk, 1);
1619 break;
1620 case 3:
1621 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1622 omap_clk_onoff(clk, 1);
1623 break;
1624 default:
1625 omap_clk_onoff(clk, 0);
1626 }
1627 }
1628 }
1629
1630 static void omap_clkm_write(void *opaque, hwaddr addr,
1631 uint64_t value, unsigned size)
1632 {
1633 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1634 uint16_t diff;
1635 omap_clk clk;
1636 static const char *clkschemename[8] = {
1637 "fully synchronous", "fully asynchronous", "synchronous scalable",
1638 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1639 };
1640
1641 if (size != 2) {
1642 return omap_badwidth_write16(opaque, addr, value);
1643 }
1644
1645 switch (addr) {
1646 case 0x00: /* ARM_CKCTL */
1647 diff = s->clkm.arm_ckctl ^ value;
1648 s->clkm.arm_ckctl = value & 0x7fff;
1649 omap_clkm_ckctl_update(s, diff, value);
1650 return;
1651
1652 case 0x04: /* ARM_IDLECT1 */
1653 diff = s->clkm.arm_idlect1 ^ value;
1654 s->clkm.arm_idlect1 = value & 0x0fff;
1655 omap_clkm_idlect1_update(s, diff, value);
1656 return;
1657
1658 case 0x08: /* ARM_IDLECT2 */
1659 diff = s->clkm.arm_idlect2 ^ value;
1660 s->clkm.arm_idlect2 = value & 0x07ff;
1661 omap_clkm_idlect2_update(s, diff, value);
1662 return;
1663
1664 case 0x0c: /* ARM_EWUPCT */
1665 s->clkm.arm_ewupct = value & 0x003f;
1666 return;
1667
1668 case 0x10: /* ARM_RSTCT1 */
1669 diff = s->clkm.arm_rstct1 ^ value;
1670 s->clkm.arm_rstct1 = value & 0x0007;
1671 if (value & 9) {
1672 qemu_system_reset_request();
1673 s->clkm.cold_start = 0xa;
1674 }
1675 if (diff & ~value & 4) { /* DSP_RST */
1676 omap_mpui_reset(s);
1677 omap_tipb_bridge_reset(s->private_tipb);
1678 omap_tipb_bridge_reset(s->public_tipb);
1679 }
1680 if (diff & 2) { /* DSP_EN */
1681 clk = omap_findclk(s, "dsp_ck");
1682 omap_clk_canidle(clk, (~value >> 1) & 1);
1683 }
1684 return;
1685
1686 case 0x14: /* ARM_RSTCT2 */
1687 s->clkm.arm_rstct2 = value & 0x0001;
1688 return;
1689
1690 case 0x18: /* ARM_SYSST */
1691 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1692 s->clkm.clocking_scheme = (value >> 11) & 7;
1693 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1694 clkschemename[s->clkm.clocking_scheme]);
1695 }
1696 s->clkm.cold_start &= value & 0x3f;
1697 return;
1698
1699 case 0x1c: /* ARM_CKOUT1 */
1700 diff = s->clkm.arm_ckout1 ^ value;
1701 s->clkm.arm_ckout1 = value & 0x003f;
1702 omap_clkm_ckout1_update(s, diff, value);
1703 return;
1704
1705 case 0x20: /* ARM_CKOUT2 */
1706 default:
1707 OMAP_BAD_REG(addr);
1708 }
1709 }
1710
1711 static const MemoryRegionOps omap_clkm_ops = {
1712 .read = omap_clkm_read,
1713 .write = omap_clkm_write,
1714 .endianness = DEVICE_NATIVE_ENDIAN,
1715 };
1716
1717 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1718 unsigned size)
1719 {
1720 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1721
1722 if (size != 2) {
1723 return omap_badwidth_read16(opaque, addr);
1724 }
1725
1726 switch (addr) {
1727 case 0x04: /* DSP_IDLECT1 */
1728 return s->clkm.dsp_idlect1;
1729
1730 case 0x08: /* DSP_IDLECT2 */
1731 return s->clkm.dsp_idlect2;
1732
1733 case 0x14: /* DSP_RSTCT2 */
1734 return s->clkm.dsp_rstct2;
1735
1736 case 0x18: /* DSP_SYSST */
1737 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1738 (s->cpu->env.halted << 6); /* Quite useless... */
1739 }
1740
1741 OMAP_BAD_REG(addr);
1742 return 0;
1743 }
1744
1745 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1746 uint16_t diff, uint16_t value)
1747 {
1748 omap_clk clk;
1749
1750 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1751 }
1752
1753 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1754 uint16_t diff, uint16_t value)
1755 {
1756 omap_clk clk;
1757
1758 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1759 }
1760
1761 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1762 uint64_t value, unsigned size)
1763 {
1764 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1765 uint16_t diff;
1766
1767 if (size != 2) {
1768 return omap_badwidth_write16(opaque, addr, value);
1769 }
1770
1771 switch (addr) {
1772 case 0x04: /* DSP_IDLECT1 */
1773 diff = s->clkm.dsp_idlect1 ^ value;
1774 s->clkm.dsp_idlect1 = value & 0x01f7;
1775 omap_clkdsp_idlect1_update(s, diff, value);
1776 break;
1777
1778 case 0x08: /* DSP_IDLECT2 */
1779 s->clkm.dsp_idlect2 = value & 0x0037;
1780 diff = s->clkm.dsp_idlect1 ^ value;
1781 omap_clkdsp_idlect2_update(s, diff, value);
1782 break;
1783
1784 case 0x14: /* DSP_RSTCT2 */
1785 s->clkm.dsp_rstct2 = value & 0x0001;
1786 break;
1787
1788 case 0x18: /* DSP_SYSST */
1789 s->clkm.cold_start &= value & 0x3f;
1790 break;
1791
1792 default:
1793 OMAP_BAD_REG(addr);
1794 }
1795 }
1796
1797 static const MemoryRegionOps omap_clkdsp_ops = {
1798 .read = omap_clkdsp_read,
1799 .write = omap_clkdsp_write,
1800 .endianness = DEVICE_NATIVE_ENDIAN,
1801 };
1802
1803 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1804 {
1805 if (s->wdt && s->wdt->reset)
1806 s->clkm.cold_start = 0x6;
1807 s->clkm.clocking_scheme = 0;
1808 omap_clkm_ckctl_update(s, ~0, 0x3000);
1809 s->clkm.arm_ckctl = 0x3000;
1810 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1811 s->clkm.arm_idlect1 = 0x0400;
1812 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1813 s->clkm.arm_idlect2 = 0x0100;
1814 s->clkm.arm_ewupct = 0x003f;
1815 s->clkm.arm_rstct1 = 0x0000;
1816 s->clkm.arm_rstct2 = 0x0000;
1817 s->clkm.arm_ckout1 = 0x0015;
1818 s->clkm.dpll1_mode = 0x2002;
1819 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1820 s->clkm.dsp_idlect1 = 0x0040;
1821 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1822 s->clkm.dsp_idlect2 = 0x0000;
1823 s->clkm.dsp_rstct2 = 0x0000;
1824 }
1825
1826 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1827 hwaddr dsp_base, struct omap_mpu_state_s *s)
1828 {
1829 memory_region_init_io(&s->clkm_iomem, &omap_clkm_ops, s,
1830 "omap-clkm", 0x100);
1831 memory_region_init_io(&s->clkdsp_iomem, &omap_clkdsp_ops, s,
1832 "omap-clkdsp", 0x1000);
1833
1834 s->clkm.arm_idlect1 = 0x03ff;
1835 s->clkm.arm_idlect2 = 0x0100;
1836 s->clkm.dsp_idlect1 = 0x0002;
1837 omap_clkm_reset(s);
1838 s->clkm.cold_start = 0x3a;
1839
1840 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1841 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1842 }
1843
1844 /* MPU I/O */
1845 struct omap_mpuio_s {
1846 qemu_irq irq;
1847 qemu_irq kbd_irq;
1848 qemu_irq *in;
1849 qemu_irq handler[16];
1850 qemu_irq wakeup;
1851 MemoryRegion iomem;
1852
1853 uint16_t inputs;
1854 uint16_t outputs;
1855 uint16_t dir;
1856 uint16_t edge;
1857 uint16_t mask;
1858 uint16_t ints;
1859
1860 uint16_t debounce;
1861 uint16_t latch;
1862 uint8_t event;
1863
1864 uint8_t buttons[5];
1865 uint8_t row_latch;
1866 uint8_t cols;
1867 int kbd_mask;
1868 int clk;
1869 };
1870
1871 static void omap_mpuio_set(void *opaque, int line, int level)
1872 {
1873 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1874 uint16_t prev = s->inputs;
1875
1876 if (level)
1877 s->inputs |= 1 << line;
1878 else
1879 s->inputs &= ~(1 << line);
1880
1881 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1882 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1883 s->ints |= 1 << line;
1884 qemu_irq_raise(s->irq);
1885 /* TODO: wakeup */
1886 }
1887 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1888 (s->event >> 1) == line) /* PIN_SELECT */
1889 s->latch = s->inputs;
1890 }
1891 }
1892
1893 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1894 {
1895 int i;
1896 uint8_t *row, rows = 0, cols = ~s->cols;
1897
1898 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1899 if (*row & cols)
1900 rows |= i;
1901
1902 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1903 s->row_latch = ~rows;
1904 }
1905
1906 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1907 unsigned size)
1908 {
1909 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1910 int offset = addr & OMAP_MPUI_REG_MASK;
1911 uint16_t ret;
1912
1913 if (size != 2) {
1914 return omap_badwidth_read16(opaque, addr);
1915 }
1916
1917 switch (offset) {
1918 case 0x00: /* INPUT_LATCH */
1919 return s->inputs;
1920
1921 case 0x04: /* OUTPUT_REG */
1922 return s->outputs;
1923
1924 case 0x08: /* IO_CNTL */
1925 return s->dir;
1926
1927 case 0x10: /* KBR_LATCH */
1928 return s->row_latch;
1929
1930 case 0x14: /* KBC_REG */
1931 return s->cols;
1932
1933 case 0x18: /* GPIO_EVENT_MODE_REG */
1934 return s->event;
1935
1936 case 0x1c: /* GPIO_INT_EDGE_REG */
1937 return s->edge;
1938
1939 case 0x20: /* KBD_INT */
1940 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1941
1942 case 0x24: /* GPIO_INT */
1943 ret = s->ints;
1944 s->ints &= s->mask;
1945 if (ret)
1946 qemu_irq_lower(s->irq);
1947 return ret;
1948
1949 case 0x28: /* KBD_MASKIT */
1950 return s->kbd_mask;
1951
1952 case 0x2c: /* GPIO_MASKIT */
1953 return s->mask;
1954
1955 case 0x30: /* GPIO_DEBOUNCING_REG */
1956 return s->debounce;
1957
1958 case 0x34: /* GPIO_LATCH_REG */
1959 return s->latch;
1960 }
1961
1962 OMAP_BAD_REG(addr);
1963 return 0;
1964 }
1965
1966 static void omap_mpuio_write(void *opaque, hwaddr addr,
1967 uint64_t value, unsigned size)
1968 {
1969 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1970 int offset = addr & OMAP_MPUI_REG_MASK;
1971 uint16_t diff;
1972 int ln;
1973
1974 if (size != 2) {
1975 return omap_badwidth_write16(opaque, addr, value);
1976 }
1977
1978 switch (offset) {
1979 case 0x04: /* OUTPUT_REG */
1980 diff = (s->outputs ^ value) & ~s->dir;
1981 s->outputs = value;
1982 while ((ln = ffs(diff))) {
1983 ln --;
1984 if (s->handler[ln])
1985 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1986 diff &= ~(1 << ln);
1987 }
1988 break;
1989
1990 case 0x08: /* IO_CNTL */
1991 diff = s->outputs & (s->dir ^ value);
1992 s->dir = value;
1993
1994 value = s->outputs & ~s->dir;
1995 while ((ln = ffs(diff))) {
1996 ln --;
1997 if (s->handler[ln])
1998 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
1999 diff &= ~(1 << ln);
2000 }
2001 break;
2002
2003 case 0x14: /* KBC_REG */
2004 s->cols = value;
2005 omap_mpuio_kbd_update(s);
2006 break;
2007
2008 case 0x18: /* GPIO_EVENT_MODE_REG */
2009 s->event = value & 0x1f;
2010 break;
2011
2012 case 0x1c: /* GPIO_INT_EDGE_REG */
2013 s->edge = value;
2014 break;
2015
2016 case 0x28: /* KBD_MASKIT */
2017 s->kbd_mask = value & 1;
2018 omap_mpuio_kbd_update(s);
2019 break;
2020
2021 case 0x2c: /* GPIO_MASKIT */
2022 s->mask = value;
2023 break;
2024
2025 case 0x30: /* GPIO_DEBOUNCING_REG */
2026 s->debounce = value & 0x1ff;
2027 break;
2028
2029 case 0x00: /* INPUT_LATCH */
2030 case 0x10: /* KBR_LATCH */
2031 case 0x20: /* KBD_INT */
2032 case 0x24: /* GPIO_INT */
2033 case 0x34: /* GPIO_LATCH_REG */
2034 OMAP_RO_REG(addr);
2035 return;
2036
2037 default:
2038 OMAP_BAD_REG(addr);
2039 return;
2040 }
2041 }
2042
2043 static const MemoryRegionOps omap_mpuio_ops = {
2044 .read = omap_mpuio_read,
2045 .write = omap_mpuio_write,
2046 .endianness = DEVICE_NATIVE_ENDIAN,
2047 };
2048
2049 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2050 {
2051 s->inputs = 0;
2052 s->outputs = 0;
2053 s->dir = ~0;
2054 s->event = 0;
2055 s->edge = 0;
2056 s->kbd_mask = 0;
2057 s->mask = 0;
2058 s->debounce = 0;
2059 s->latch = 0;
2060 s->ints = 0;
2061 s->row_latch = 0x1f;
2062 s->clk = 1;
2063 }
2064
2065 static void omap_mpuio_onoff(void *opaque, int line, int on)
2066 {
2067 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2068
2069 s->clk = on;
2070 if (on)
2071 omap_mpuio_kbd_update(s);
2072 }
2073
2074 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2075 hwaddr base,
2076 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2077 omap_clk clk)
2078 {
2079 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2080 g_malloc0(sizeof(struct omap_mpuio_s));
2081
2082 s->irq = gpio_int;
2083 s->kbd_irq = kbd_int;
2084 s->wakeup = wakeup;
2085 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2086 omap_mpuio_reset(s);
2087
2088 memory_region_init_io(&s->iomem, &omap_mpuio_ops, s,
2089 "omap-mpuio", 0x800);
2090 memory_region_add_subregion(memory, base, &s->iomem);
2091
2092 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2093
2094 return s;
2095 }
2096
2097 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2098 {
2099 return s->in;
2100 }
2101
2102 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2103 {
2104 if (line >= 16 || line < 0)
2105 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2106 s->handler[line] = handler;
2107 }
2108
2109 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2110 {
2111 if (row >= 5 || row < 0)
2112 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2113
2114 if (down)
2115 s->buttons[row] |= 1 << col;
2116 else
2117 s->buttons[row] &= ~(1 << col);
2118
2119 omap_mpuio_kbd_update(s);
2120 }
2121
2122 /* MicroWire Interface */
2123 struct omap_uwire_s {
2124 MemoryRegion iomem;
2125 qemu_irq txirq;
2126 qemu_irq rxirq;
2127 qemu_irq txdrq;
2128
2129 uint16_t txbuf;
2130 uint16_t rxbuf;
2131 uint16_t control;
2132 uint16_t setup[5];
2133
2134 uWireSlave *chip[4];
2135 };
2136
2137 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2138 {
2139 int chipselect = (s->control >> 10) & 3; /* INDEX */
2140 uWireSlave *slave = s->chip[chipselect];
2141
2142 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2143 if (s->control & (1 << 12)) /* CS_CMD */
2144 if (slave && slave->send)
2145 slave->send(slave->opaque,
2146 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2147 s->control &= ~(1 << 14); /* CSRB */
2148 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2149 * a DRQ. When is the level IRQ supposed to be reset? */
2150 }
2151
2152 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2153 if (s->control & (1 << 12)) /* CS_CMD */
2154 if (slave && slave->receive)
2155 s->rxbuf = slave->receive(slave->opaque);
2156 s->control |= 1 << 15; /* RDRB */
2157 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2158 * a DRQ. When is the level IRQ supposed to be reset? */
2159 }
2160 }
2161
2162 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2163 unsigned size)
2164 {
2165 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2166 int offset = addr & OMAP_MPUI_REG_MASK;
2167
2168 if (size != 2) {
2169 return omap_badwidth_read16(opaque, addr);
2170 }
2171
2172 switch (offset) {
2173 case 0x00: /* RDR */
2174 s->control &= ~(1 << 15); /* RDRB */
2175 return s->rxbuf;
2176
2177 case 0x04: /* CSR */
2178 return s->control;
2179
2180 case 0x08: /* SR1 */
2181 return s->setup[0];
2182 case 0x0c: /* SR2 */
2183 return s->setup[1];
2184 case 0x10: /* SR3 */
2185 return s->setup[2];
2186 case 0x14: /* SR4 */
2187 return s->setup[3];
2188 case 0x18: /* SR5 */
2189 return s->setup[4];
2190 }
2191
2192 OMAP_BAD_REG(addr);
2193 return 0;
2194 }
2195
2196 static void omap_uwire_write(void *opaque, hwaddr addr,
2197 uint64_t value, unsigned size)
2198 {
2199 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2200 int offset = addr & OMAP_MPUI_REG_MASK;
2201
2202 if (size != 2) {
2203 return omap_badwidth_write16(opaque, addr, value);
2204 }
2205
2206 switch (offset) {
2207 case 0x00: /* TDR */
2208 s->txbuf = value; /* TD */
2209 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2210 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2211 (s->control & (1 << 12)))) { /* CS_CMD */
2212 s->control |= 1 << 14; /* CSRB */
2213 omap_uwire_transfer_start(s);
2214 }
2215 break;
2216
2217 case 0x04: /* CSR */
2218 s->control = value & 0x1fff;
2219 if (value & (1 << 13)) /* START */
2220 omap_uwire_transfer_start(s);
2221 break;
2222
2223 case 0x08: /* SR1 */
2224 s->setup[0] = value & 0x003f;
2225 break;
2226
2227 case 0x0c: /* SR2 */
2228 s->setup[1] = value & 0x0fc0;
2229 break;
2230
2231 case 0x10: /* SR3 */
2232 s->setup[2] = value & 0x0003;
2233 break;
2234
2235 case 0x14: /* SR4 */
2236 s->setup[3] = value & 0x0001;
2237 break;
2238
2239 case 0x18: /* SR5 */
2240 s->setup[4] = value & 0x000f;
2241 break;
2242
2243 default:
2244 OMAP_BAD_REG(addr);
2245 return;
2246 }
2247 }
2248
2249 static const MemoryRegionOps omap_uwire_ops = {
2250 .read = omap_uwire_read,
2251 .write = omap_uwire_write,
2252 .endianness = DEVICE_NATIVE_ENDIAN,
2253 };
2254
2255 static void omap_uwire_reset(struct omap_uwire_s *s)
2256 {
2257 s->control = 0;
2258 s->setup[0] = 0;
2259 s->setup[1] = 0;
2260 s->setup[2] = 0;
2261 s->setup[3] = 0;
2262 s->setup[4] = 0;
2263 }
2264
2265 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2266 hwaddr base,
2267 qemu_irq txirq, qemu_irq rxirq,
2268 qemu_irq dma,
2269 omap_clk clk)
2270 {
2271 struct omap_uwire_s *s = (struct omap_uwire_s *)
2272 g_malloc0(sizeof(struct omap_uwire_s));
2273
2274 s->txirq = txirq;
2275 s->rxirq = rxirq;
2276 s->txdrq = dma;
2277 omap_uwire_reset(s);
2278
2279 memory_region_init_io(&s->iomem, &omap_uwire_ops, s, "omap-uwire", 0x800);
2280 memory_region_add_subregion(system_memory, base, &s->iomem);
2281
2282 return s;
2283 }
2284
2285 void omap_uwire_attach(struct omap_uwire_s *s,
2286 uWireSlave *slave, int chipselect)
2287 {
2288 if (chipselect < 0 || chipselect > 3) {
2289 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2290 exit(-1);
2291 }
2292
2293 s->chip[chipselect] = slave;
2294 }
2295
2296 /* Pseudonoise Pulse-Width Light Modulator */
2297 struct omap_pwl_s {
2298 MemoryRegion iomem;
2299 uint8_t output;
2300 uint8_t level;
2301 uint8_t enable;
2302 int clk;
2303 };
2304
2305 static void omap_pwl_update(struct omap_pwl_s *s)
2306 {
2307 int output = (s->clk && s->enable) ? s->level : 0;
2308
2309 if (output != s->output) {
2310 s->output = output;
2311 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2312 }
2313 }
2314
2315 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2316 unsigned size)
2317 {
2318 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2319 int offset = addr & OMAP_MPUI_REG_MASK;
2320
2321 if (size != 1) {
2322 return omap_badwidth_read8(opaque, addr);
2323 }
2324
2325 switch (offset) {
2326 case 0x00: /* PWL_LEVEL */
2327 return s->level;
2328 case 0x04: /* PWL_CTRL */
2329 return s->enable;
2330 }
2331 OMAP_BAD_REG(addr);
2332 return 0;
2333 }
2334
2335 static void omap_pwl_write(void *opaque, hwaddr addr,
2336 uint64_t value, unsigned size)
2337 {
2338 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2339 int offset = addr & OMAP_MPUI_REG_MASK;
2340
2341 if (size != 1) {
2342 return omap_badwidth_write8(opaque, addr, value);
2343 }
2344
2345 switch (offset) {
2346 case 0x00: /* PWL_LEVEL */
2347 s->level = value;
2348 omap_pwl_update(s);
2349 break;
2350 case 0x04: /* PWL_CTRL */
2351 s->enable = value & 1;
2352 omap_pwl_update(s);
2353 break;
2354 default:
2355 OMAP_BAD_REG(addr);
2356 return;
2357 }
2358 }
2359
2360 static const MemoryRegionOps omap_pwl_ops = {
2361 .read = omap_pwl_read,
2362 .write = omap_pwl_write,
2363 .endianness = DEVICE_NATIVE_ENDIAN,
2364 };
2365
2366 static void omap_pwl_reset(struct omap_pwl_s *s)
2367 {
2368 s->output = 0;
2369 s->level = 0;
2370 s->enable = 0;
2371 s->clk = 1;
2372 omap_pwl_update(s);
2373 }
2374
2375 static void omap_pwl_clk_update(void *opaque, int line, int on)
2376 {
2377 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2378
2379 s->clk = on;
2380 omap_pwl_update(s);
2381 }
2382
2383 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2384 hwaddr base,
2385 omap_clk clk)
2386 {
2387 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2388
2389 omap_pwl_reset(s);
2390
2391 memory_region_init_io(&s->iomem, &omap_pwl_ops, s,
2392 "omap-pwl", 0x800);
2393 memory_region_add_subregion(system_memory, base, &s->iomem);
2394
2395 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
2396 return s;
2397 }
2398
2399 /* Pulse-Width Tone module */
2400 struct omap_pwt_s {
2401 MemoryRegion iomem;
2402 uint8_t frc;
2403 uint8_t vrc;
2404 uint8_t gcr;
2405 omap_clk clk;
2406 };
2407
2408 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2409 unsigned size)
2410 {
2411 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2412 int offset = addr & OMAP_MPUI_REG_MASK;
2413
2414 if (size != 1) {
2415 return omap_badwidth_read8(opaque, addr);
2416 }
2417
2418 switch (offset) {
2419 case 0x00: /* FRC */
2420 return s->frc;
2421 case 0x04: /* VCR */
2422 return s->vrc;
2423 case 0x08: /* GCR */
2424 return s->gcr;
2425 }
2426 OMAP_BAD_REG(addr);
2427 return 0;
2428 }
2429
2430 static void omap_pwt_write(void *opaque, hwaddr addr,
2431 uint64_t value, unsigned size)
2432 {
2433 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2434 int offset = addr & OMAP_MPUI_REG_MASK;
2435
2436 if (size != 1) {
2437 return omap_badwidth_write8(opaque, addr, value);
2438 }
2439
2440 switch (offset) {
2441 case 0x00: /* FRC */
2442 s->frc = value & 0x3f;
2443 break;
2444 case 0x04: /* VRC */
2445 if ((value ^ s->vrc) & 1) {
2446 if (value & 1)
2447 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2448 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2449 ((omap_clk_getrate(s->clk) >> 3) /
2450 /* Pre-multiplexer divider */
2451 ((s->gcr & 2) ? 1 : 154) /
2452 /* Octave multiplexer */
2453 (2 << (value & 3)) *
2454 /* 101/107 divider */
2455 ((value & (1 << 2)) ? 101 : 107) *
2456 /* 49/55 divider */
2457 ((value & (1 << 3)) ? 49 : 55) *
2458 /* 50/63 divider */
2459 ((value & (1 << 4)) ? 50 : 63) *
2460 /* 80/127 divider */
2461 ((value & (1 << 5)) ? 80 : 127) /
2462 (107 * 55 * 63 * 127)));
2463 else
2464 printf("%s: silence!\n", __FUNCTION__);
2465 }
2466 s->vrc = value & 0x7f;
2467 break;
2468 case 0x08: /* GCR */
2469 s->gcr = value & 3;
2470 break;
2471 default:
2472 OMAP_BAD_REG(addr);
2473 return;
2474 }
2475 }
2476
2477 static const MemoryRegionOps omap_pwt_ops = {
2478 .read =omap_pwt_read,
2479 .write = omap_pwt_write,
2480 .endianness = DEVICE_NATIVE_ENDIAN,
2481 };
2482
2483 static void omap_pwt_reset(struct omap_pwt_s *s)
2484 {
2485 s->frc = 0;
2486 s->vrc = 0;
2487 s->gcr = 0;
2488 }
2489
2490 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2491 hwaddr base,
2492 omap_clk clk)
2493 {
2494 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2495 s->clk = clk;
2496 omap_pwt_reset(s);
2497
2498 memory_region_init_io(&s->iomem, &omap_pwt_ops, s,
2499 "omap-pwt", 0x800);
2500 memory_region_add_subregion(system_memory, base, &s->iomem);
2501 return s;
2502 }
2503
2504 /* Real-time Clock module */
2505 struct omap_rtc_s {
2506 MemoryRegion iomem;
2507 qemu_irq irq;
2508 qemu_irq alarm;
2509 QEMUTimer *clk;
2510
2511 uint8_t interrupts;
2512 uint8_t status;
2513 int16_t comp_reg;
2514 int running;
2515 int pm_am;
2516 int auto_comp;
2517 int round;
2518 struct tm alarm_tm;
2519 time_t alarm_ti;
2520
2521 struct tm current_tm;
2522 time_t ti;
2523 uint64_t tick;
2524 };
2525
2526 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2527 {
2528 /* s->alarm is level-triggered */
2529 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2530 }
2531
2532 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2533 {
2534 s->alarm_ti = mktimegm(&s->alarm_tm);
2535 if (s->alarm_ti == -1)
2536 printf("%s: conversion failed\n", __FUNCTION__);
2537 }
2538
2539 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2540 unsigned size)
2541 {
2542 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2543 int offset = addr & OMAP_MPUI_REG_MASK;
2544 uint8_t i;
2545
2546 if (size != 1) {
2547 return omap_badwidth_read8(opaque, addr);
2548 }
2549
2550 switch (offset) {
2551 case 0x00: /* SECONDS_REG */
2552 return to_bcd(s->current_tm.tm_sec);
2553
2554 case 0x04: /* MINUTES_REG */
2555 return to_bcd(s->current_tm.tm_min);
2556
2557 case 0x08: /* HOURS_REG */
2558 if (s->pm_am)
2559 return ((s->current_tm.tm_hour > 11) << 7) |
2560 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2561 else
2562 return to_bcd(s->current_tm.tm_hour);
2563
2564 case 0x0c: /* DAYS_REG */
2565 return to_bcd(s->current_tm.tm_mday);
2566
2567 case 0x10: /* MONTHS_REG */
2568 return to_bcd(s->current_tm.tm_mon + 1);
2569
2570 case 0x14: /* YEARS_REG */
2571 return to_bcd(s->current_tm.tm_year % 100);
2572
2573 case 0x18: /* WEEK_REG */
2574 return s->current_tm.tm_wday;
2575
2576 case 0x20: /* ALARM_SECONDS_REG */
2577 return to_bcd(s->alarm_tm.tm_sec);
2578
2579 case 0x24: /* ALARM_MINUTES_REG */
2580 return to_bcd(s->alarm_tm.tm_min);
2581
2582 case 0x28: /* ALARM_HOURS_REG */
2583 if (s->pm_am)
2584 return ((s->alarm_tm.tm_hour > 11) << 7) |
2585 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2586 else
2587 return to_bcd(s->alarm_tm.tm_hour);
2588
2589 case 0x2c: /* ALARM_DAYS_REG */
2590 return to_bcd(s->alarm_tm.tm_mday);
2591
2592 case 0x30: /* ALARM_MONTHS_REG */
2593 return to_bcd(s->alarm_tm.tm_mon + 1);
2594
2595 case 0x34: /* ALARM_YEARS_REG */
2596 return to_bcd(s->alarm_tm.tm_year % 100);
2597
2598 case 0x40: /* RTC_CTRL_REG */
2599 return (s->pm_am << 3) | (s->auto_comp << 2) |
2600 (s->round << 1) | s->running;
2601
2602 case 0x44: /* RTC_STATUS_REG */
2603 i = s->status;
2604 s->status &= ~0x3d;
2605 return i;
2606
2607 case 0x48: /* RTC_INTERRUPTS_REG */
2608 return s->interrupts;
2609
2610 case 0x4c: /* RTC_COMP_LSB_REG */
2611 return ((uint16_t) s->comp_reg) & 0xff;
2612
2613 case 0x50: /* RTC_COMP_MSB_REG */
2614 return ((uint16_t) s->comp_reg) >> 8;
2615 }
2616
2617 OMAP_BAD_REG(addr);
2618 return 0;
2619 }
2620
2621 static void omap_rtc_write(void *opaque, hwaddr addr,
2622 uint64_t value, unsigned size)
2623 {
2624 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2625 int offset = addr & OMAP_MPUI_REG_MASK;
2626 struct tm new_tm;
2627 time_t ti[2];
2628
2629 if (size != 1) {
2630 return omap_badwidth_write8(opaque, addr, value);
2631 }
2632
2633 switch (offset) {
2634 case 0x00: /* SECONDS_REG */
2635 #ifdef ALMDEBUG
2636 printf("RTC SEC_REG <-- %02x\n", value);
2637 #endif
2638 s->ti -= s->current_tm.tm_sec;
2639 s->ti += from_bcd(value);
2640 return;
2641
2642 case 0x04: /* MINUTES_REG */
2643 #ifdef ALMDEBUG
2644 printf("RTC MIN_REG <-- %02x\n", value);
2645 #endif
2646 s->ti -= s->current_tm.tm_min * 60;
2647 s->ti += from_bcd(value) * 60;
2648 return;
2649
2650 case 0x08: /* HOURS_REG */
2651 #ifdef ALMDEBUG
2652 printf("RTC HRS_REG <-- %02x\n", value);
2653 #endif
2654 s->ti -= s->current_tm.tm_hour * 3600;
2655 if (s->pm_am) {
2656 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2657 s->ti += ((value >> 7) & 1) * 43200;
2658 } else
2659 s->ti += from_bcd(value & 0x3f) * 3600;
2660 return;
2661
2662 case 0x0c: /* DAYS_REG */
2663 #ifdef ALMDEBUG
2664 printf("RTC DAY_REG <-- %02x\n", value);
2665 #endif
2666 s->ti -= s->current_tm.tm_mday * 86400;
2667 s->ti += from_bcd(value) * 86400;
2668 return;
2669
2670 case 0x10: /* MONTHS_REG */
2671 #ifdef ALMDEBUG
2672 printf("RTC MTH_REG <-- %02x\n", value);
2673 #endif
2674 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2675 new_tm.tm_mon = from_bcd(value);
2676 ti[0] = mktimegm(&s->current_tm);
2677 ti[1] = mktimegm(&new_tm);
2678
2679 if (ti[0] != -1 && ti[1] != -1) {
2680 s->ti -= ti[0];
2681 s->ti += ti[1];
2682 } else {
2683 /* A less accurate version */
2684 s->ti -= s->current_tm.tm_mon * 2592000;
2685 s->ti += from_bcd(value) * 2592000;
2686 }
2687 return;
2688
2689 case 0x14: /* YEARS_REG */
2690 #ifdef ALMDEBUG
2691 printf("RTC YRS_REG <-- %02x\n", value);
2692 #endif
2693 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2694 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2695 ti[0] = mktimegm(&s->current_tm);
2696 ti[1] = mktimegm(&new_tm);
2697
2698 if (ti[0] != -1 && ti[1] != -1) {
2699 s->ti -= ti[0];
2700 s->ti += ti[1];
2701 } else {
2702 /* A less accurate version */
2703 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
2704 s->ti += from_bcd(value) * 31536000;
2705 }
2706 return;
2707
2708 case 0x18: /* WEEK_REG */
2709 return; /* Ignored */
2710
2711 case 0x20: /* ALARM_SECONDS_REG */
2712 #ifdef ALMDEBUG
2713 printf("ALM SEC_REG <-- %02x\n", value);
2714 #endif
2715 s->alarm_tm.tm_sec = from_bcd(value);
2716 omap_rtc_alarm_update(s);
2717 return;
2718
2719 case 0x24: /* ALARM_MINUTES_REG */
2720 #ifdef ALMDEBUG
2721 printf("ALM MIN_REG <-- %02x\n", value);
2722 #endif
2723 s->alarm_tm.tm_min = from_bcd(value);
2724 omap_rtc_alarm_update(s);
2725 return;
2726
2727 case 0x28: /* ALARM_HOURS_REG */
2728 #ifdef ALMDEBUG
2729 printf("ALM HRS_REG <-- %02x\n", value);
2730 #endif
2731 if (s->pm_am)
2732 s->alarm_tm.tm_hour =
2733 ((from_bcd(value & 0x3f)) % 12) +
2734 ((value >> 7) & 1) * 12;
2735 else
2736 s->alarm_tm.tm_hour = from_bcd(value);
2737 omap_rtc_alarm_update(s);
2738 return;
2739
2740 case 0x2c: /* ALARM_DAYS_REG */
2741 #ifdef ALMDEBUG
2742 printf("ALM DAY_REG <-- %02x\n", value);
2743 #endif
2744 s->alarm_tm.tm_mday = from_bcd(value);
2745 omap_rtc_alarm_update(s);
2746 return;
2747
2748 case 0x30: /* ALARM_MONTHS_REG */
2749 #ifdef ALMDEBUG
2750 printf("ALM MON_REG <-- %02x\n", value);
2751 #endif
2752 s->alarm_tm.tm_mon = from_bcd(value);
2753 omap_rtc_alarm_update(s);
2754 return;
2755
2756 case 0x34: /* ALARM_YEARS_REG */
2757 #ifdef ALMDEBUG
2758 printf("ALM YRS_REG <-- %02x\n", value);
2759 #endif
2760 s->alarm_tm.tm_year = from_bcd(value);
2761 omap_rtc_alarm_update(s);
2762 return;
2763
2764 case 0x40: /* RTC_CTRL_REG */
2765 #ifdef ALMDEBUG
2766 printf("RTC CONTROL <-- %02x\n", value);
2767 #endif
2768 s->pm_am = (value >> 3) & 1;
2769 s->auto_comp = (value >> 2) & 1;
2770 s->round = (value >> 1) & 1;
2771 s->running = value & 1;
2772 s->status &= 0xfd;
2773 s->status |= s->running << 1;
2774 return;
2775
2776 case 0x44: /* RTC_STATUS_REG */
2777 #ifdef ALMDEBUG
2778 printf("RTC STATUSL <-- %02x\n", value);
2779 #endif
2780 s->status &= ~((value & 0xc0) ^ 0x80);
2781 omap_rtc_interrupts_update(s);
2782 return;
2783
2784 case 0x48: /* RTC_INTERRUPTS_REG */
2785 #ifdef ALMDEBUG
2786 printf("RTC INTRS <-- %02x\n", value);
2787 #endif
2788 s->interrupts = value;
2789 return;
2790
2791 case 0x4c: /* RTC_COMP_LSB_REG */
2792 #ifdef ALMDEBUG
2793 printf("RTC COMPLSB <-- %02x\n", value);
2794 #endif
2795 s->comp_reg &= 0xff00;
2796 s->comp_reg |= 0x00ff & value;
2797 return;
2798
2799 case 0x50: /* RTC_COMP_MSB_REG */
2800 #ifdef ALMDEBUG
2801 printf("RTC COMPMSB <-- %02x\n", value);
2802 #endif
2803 s->comp_reg &= 0x00ff;
2804 s->comp_reg |= 0xff00 & (value << 8);
2805 return;
2806
2807 default:
2808 OMAP_BAD_REG(addr);
2809 return;
2810 }
2811 }
2812
2813 static const MemoryRegionOps omap_rtc_ops = {
2814 .read = omap_rtc_read,
2815 .write = omap_rtc_write,
2816 .endianness = DEVICE_NATIVE_ENDIAN,
2817 };
2818
2819 static void omap_rtc_tick(void *opaque)
2820 {
2821 struct omap_rtc_s *s = opaque;
2822
2823 if (s->round) {
2824 /* Round to nearest full minute. */
2825 if (s->current_tm.tm_sec < 30)
2826 s->ti -= s->current_tm.tm_sec;
2827 else
2828 s->ti += 60 - s->current_tm.tm_sec;
2829
2830 s->round = 0;
2831 }
2832
2833 memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
2834
2835 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2836 s->status |= 0x40;
2837 omap_rtc_interrupts_update(s);
2838 }
2839
2840 if (s->interrupts & 0x04)
2841 switch (s->interrupts & 3) {
2842 case 0:
2843 s->status |= 0x04;
2844 qemu_irq_pulse(s->irq);
2845 break;
2846 case 1:
2847 if (s->current_tm.tm_sec)
2848 break;
2849 s->status |= 0x08;
2850 qemu_irq_pulse(s->irq);
2851 break;
2852 case 2:
2853 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2854 break;
2855 s->status |= 0x10;
2856 qemu_irq_pulse(s->irq);
2857 break;
2858 case 3:
2859 if (s->current_tm.tm_sec ||
2860 s->current_tm.tm_min || s->current_tm.tm_hour)
2861 break;
2862 s->status |= 0x20;
2863 qemu_irq_pulse(s->irq);
2864 break;
2865 }
2866
2867 /* Move on */
2868 if (s->running)
2869 s->ti ++;
2870 s->tick += 1000;
2871
2872 /*
2873 * Every full hour add a rough approximation of the compensation
2874 * register to the 32kHz Timer (which drives the RTC) value.
2875 */
2876 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2877 s->tick += s->comp_reg * 1000 / 32768;
2878
2879 qemu_mod_timer(s->clk, s->tick);
2880 }
2881
2882 static void omap_rtc_reset(struct omap_rtc_s *s)
2883 {
2884 struct tm tm;
2885
2886 s->interrupts = 0;
2887 s->comp_reg = 0;
2888 s->running = 0;
2889 s->pm_am = 0;
2890 s->auto_comp = 0;
2891 s->round = 0;
2892 s->tick = qemu_get_clock_ms(rtc_clock);
2893 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2894 s->alarm_tm.tm_mday = 0x01;
2895 s->status = 1 << 7;
2896 qemu_get_timedate(&tm, 0);
2897 s->ti = mktimegm(&tm);
2898
2899 omap_rtc_alarm_update(s);
2900 omap_rtc_tick(s);
2901 }
2902
2903 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2904 hwaddr base,
2905 qemu_irq timerirq, qemu_irq alarmirq,
2906 omap_clk clk)
2907 {
2908 struct omap_rtc_s *s = (struct omap_rtc_s *)
2909 g_malloc0(sizeof(struct omap_rtc_s));
2910
2911 s->irq = timerirq;
2912 s->alarm = alarmirq;
2913 s->clk = qemu_new_timer_ms(rtc_clock, omap_rtc_tick, s);
2914
2915 omap_rtc_reset(s);
2916
2917 memory_region_init_io(&s->iomem, &omap_rtc_ops, s,
2918 "omap-rtc", 0x800);
2919 memory_region_add_subregion(system_memory, base, &s->iomem);
2920
2921 return s;
2922 }
2923
2924 /* Multi-channel Buffered Serial Port interfaces */
2925 struct omap_mcbsp_s {
2926 MemoryRegion iomem;
2927 qemu_irq txirq;
2928 qemu_irq rxirq;
2929 qemu_irq txdrq;
2930 qemu_irq rxdrq;
2931
2932 uint16_t spcr[2];
2933 uint16_t rcr[2];
2934 uint16_t xcr[2];
2935 uint16_t srgr[2];
2936 uint16_t mcr[2];
2937 uint16_t pcr;
2938 uint16_t rcer[8];
2939 uint16_t xcer[8];
2940 int tx_rate;
2941 int rx_rate;
2942 int tx_req;
2943 int rx_req;
2944
2945 I2SCodec *codec;
2946 QEMUTimer *source_timer;
2947 QEMUTimer *sink_timer;
2948 };
2949
2950 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2951 {
2952 int irq;
2953
2954 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2955 case 0:
2956 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2957 break;
2958 case 3:
2959 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2960 break;
2961 default:
2962 irq = 0;
2963 break;
2964 }
2965
2966 if (irq)
2967 qemu_irq_pulse(s->rxirq);
2968
2969 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
2970 case 0:
2971 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
2972 break;
2973 case 3:
2974 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
2975 break;
2976 default:
2977 irq = 0;
2978 break;
2979 }
2980
2981 if (irq)
2982 qemu_irq_pulse(s->txirq);
2983 }
2984
2985 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
2986 {
2987 if ((s->spcr[0] >> 1) & 1) /* RRDY */
2988 s->spcr[0] |= 1 << 2; /* RFULL */
2989 s->spcr[0] |= 1 << 1; /* RRDY */
2990 qemu_irq_raise(s->rxdrq);
2991 omap_mcbsp_intr_update(s);
2992 }
2993
2994 static void omap_mcbsp_source_tick(void *opaque)
2995 {
2996 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
2997 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2998
2999 if (!s->rx_rate)
3000 return;
3001 if (s->rx_req)
3002 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3003
3004 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3005
3006 omap_mcbsp_rx_newdata(s);
3007 qemu_mod_timer(s->source_timer, qemu_get_clock_ns(vm_clock) +
3008 get_ticks_per_sec());
3009 }
3010
3011 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3012 {
3013 if (!s->codec || !s->codec->rts)
3014 omap_mcbsp_source_tick(s);
3015 else if (s->codec->in.len) {
3016 s->rx_req = s->codec->in.len;
3017 omap_mcbsp_rx_newdata(s);
3018 }
3019 }
3020
3021 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3022 {
3023 qemu_del_timer(s->source_timer);
3024 }
3025
3026 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3027 {
3028 s->spcr[0] &= ~(1 << 1); /* RRDY */
3029 qemu_irq_lower(s->rxdrq);
3030 omap_mcbsp_intr_update(s);
3031 }
3032
3033 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3034 {
3035 s->spcr[1] |= 1 << 1; /* XRDY */
3036 qemu_irq_raise(s->txdrq);
3037 omap_mcbsp_intr_update(s);
3038 }
3039
3040 static void omap_mcbsp_sink_tick(void *opaque)
3041 {
3042 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3043 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3044
3045 if (!s->tx_rate)
3046 return;
3047 if (s->tx_req)
3048 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3049
3050 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3051
3052 omap_mcbsp_tx_newdata(s);
3053 qemu_mod_timer(s->sink_timer, qemu_get_clock_ns(vm_clock) +
3054 get_ticks_per_sec());
3055 }
3056
3057 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3058 {
3059 if (!s->codec || !s->codec->cts)
3060 omap_mcbsp_sink_tick(s);
3061 else if (s->codec->out.size) {
3062 s->tx_req = s->codec->out.size;
3063 omap_mcbsp_tx_newdata(s);
3064 }
3065 }
3066
3067 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3068 {
3069 s->spcr[1] &= ~(1 << 1); /* XRDY */
3070 qemu_irq_lower(s->txdrq);
3071 omap_mcbsp_intr_update(s);
3072 if (s->codec && s->codec->cts)
3073 s->codec->tx_swallow(s->codec->opaque);
3074 }
3075
3076 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3077 {
3078 s->tx_req = 0;
3079 omap_mcbsp_tx_done(s);
3080 qemu_del_timer(s->sink_timer);
3081 }
3082
3083 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3084 {
3085 int prev_rx_rate, prev_tx_rate;
3086 int rx_rate = 0, tx_rate = 0;
3087 int cpu_rate = 1500000; /* XXX */
3088
3089 /* TODO: check CLKSTP bit */
3090 if (s->spcr[1] & (1 << 6)) { /* GRST */
3091 if (s->spcr[0] & (1 << 0)) { /* RRST */
3092 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3093 (s->pcr & (1 << 8))) { /* CLKRM */
3094 if (~s->pcr & (1 << 7)) /* SCLKME */
3095 rx_rate = cpu_rate /
3096 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3097 } else
3098 if (s->codec)
3099 rx_rate = s->codec->rx_rate;
3100 }
3101
3102 if (s->spcr[1] & (1 << 0)) { /* XRST */
3103 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3104 (s->pcr & (1 << 9))) { /* CLKXM */
3105 if (~s->pcr & (1 << 7)) /* SCLKME */
3106 tx_rate = cpu_rate /
3107 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3108 } else
3109 if (s->codec)
3110 tx_rate = s->codec->tx_rate;
3111 }
3112 }
3113 prev_tx_rate = s->tx_rate;
3114 prev_rx_rate = s->rx_rate;
3115 s->tx_rate = tx_rate;
3116 s->rx_rate = rx_rate;
3117
3118 if (s->codec)
3119 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3120
3121 if (!prev_tx_rate && tx_rate)
3122 omap_mcbsp_tx_start(s);
3123 else if (s->tx_rate && !tx_rate)
3124 omap_mcbsp_tx_stop(s);
3125
3126 if (!prev_rx_rate && rx_rate)
3127 omap_mcbsp_rx_start(s);
3128 else if (prev_tx_rate && !tx_rate)
3129 omap_mcbsp_rx_stop(s);
3130 }
3131
3132 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3133 unsigned size)
3134 {
3135 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3136 int offset = addr & OMAP_MPUI_REG_MASK;
3137 uint16_t ret;
3138
3139 if (size != 2) {
3140 return omap_badwidth_read16(opaque, addr);
3141 }
3142
3143 switch (offset) {
3144 case 0x00: /* DRR2 */
3145 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3146 return 0x0000;
3147 /* Fall through. */
3148 case 0x02: /* DRR1 */
3149 if (s->rx_req < 2) {
3150 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3151 omap_mcbsp_rx_done(s);
3152 } else {
3153 s->tx_req -= 2;
3154 if (s->codec && s->codec->in.len >= 2) {
3155 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3156 ret |= s->codec->in.fifo[s->codec->in.start ++];
3157 s->codec->in.len -= 2;
3158 } else
3159 ret = 0x0000;
3160 if (!s->tx_req)
3161 omap_mcbsp_rx_done(s);
3162 return ret;
3163 }
3164 return 0x0000;
3165
3166 case 0x04: /* DXR2 */
3167 case 0x06: /* DXR1 */
3168 return 0x0000;
3169
3170 case 0x08: /* SPCR2 */
3171 return s->spcr[1];
3172 case 0x0a: /* SPCR1 */
3173 return s->spcr[0];
3174 case 0x0c: /* RCR2 */
3175 return s->rcr[1];
3176 case 0x0e: /* RCR1 */
3177 return s->rcr[0];
3178 case 0x10: /* XCR2 */
3179 return s->xcr[1];
3180 case 0x12: /* XCR1 */
3181 return s->xcr[0];
3182 case 0x14: /* SRGR2 */
3183 return s->srgr[1];
3184 case 0x16: /* SRGR1 */
3185 return s->srgr[0];
3186 case 0x18: /* MCR2 */
3187 return s->mcr[1];
3188 case 0x1a: /* MCR1 */
3189 return s->mcr[0];
3190 case 0x1c: /* RCERA */
3191 return s->rcer[0];
3192 case 0x1e: /* RCERB */
3193 return s->rcer[1];
3194 case 0x20: /* XCERA */
3195 return s->xcer[0];
3196 case 0x22: /* XCERB */
3197 return s->xcer[1];
3198 case 0x24: /* PCR0 */
3199 return s->pcr;
3200 case 0x26: /* RCERC */
3201 return s->rcer[2];
3202 case 0x28: /* RCERD */
3203 return s->rcer[3];
3204 case 0x2a: /* XCERC */
3205 return s->xcer[2];
3206 case 0x2c: /* XCERD */
3207 return s->xcer[3];
3208 case 0x2e: /* RCERE */
3209 return s->rcer[4];
3210 case 0x30: /* RCERF */
3211 return s->rcer[5];
3212 case 0x32: /* XCERE */
3213 return s->xcer[4];
3214 case 0x34: /* XCERF */
3215 return s->xcer[5];
3216 case 0x36: /* RCERG */
3217 return s->rcer[6];
3218 case 0x38: /* RCERH */
3219 return s->rcer[7];
3220 case 0x3a: /* XCERG */
3221 return s->xcer[6];
3222 case 0x3c: /* XCERH */
3223 return s->xcer[7];
3224 }
3225
3226 OMAP_BAD_REG(addr);
3227 return 0;
3228 }
3229
3230 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3231 uint32_t value)
3232 {
3233 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3234 int offset = addr & OMAP_MPUI_REG_MASK;
3235
3236 switch (offset) {
3237 case 0x00: /* DRR2 */
3238 case 0x02: /* DRR1 */
3239 OMAP_RO_REG(addr);
3240 return;
3241
3242 case 0x04: /* DXR2 */
3243 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3244 return;
3245 /* Fall through. */
3246 case 0x06: /* DXR1 */
3247 if (s->tx_req > 1) {
3248 s->tx_req -= 2;
3249 if (s->codec && s->codec->cts) {
3250 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3251 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3252 }
3253 if (s->tx_req < 2)
3254 omap_mcbsp_tx_done(s);
3255 } else
3256 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3257 return;
3258
3259 case 0x08: /* SPCR2 */
3260 s->spcr[1] &= 0x0002;
3261 s->spcr[1] |= 0x03f9 & value;
3262 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3263 if (~value & 1) /* XRST */
3264 s->spcr[1] &= ~6;
3265 omap_mcbsp_req_update(s);
3266 return;
3267 case 0x0a: /* SPCR1 */
3268 s->spcr[0] &= 0x0006;
3269 s->spcr[0] |= 0xf8f9 & value;
3270 if (value & (1 << 15)) /* DLB */
3271 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3272 if (~value & 1) { /* RRST */
3273 s->spcr[0] &= ~6;
3274 s->rx_req = 0;
3275 omap_mcbsp_rx_done(s);
3276 }
3277 omap_mcbsp_req_update(s);
3278 return;
3279
3280 case 0x0c: /* RCR2 */
3281 s->rcr[1] = value & 0xffff;
3282 return;
3283 case 0x0e: /* RCR1 */
3284 s->rcr[0] = value & 0x7fe0;
3285 return;
3286 case 0x10: /* XCR2 */
3287 s->xcr[1] = value & 0xffff;
3288 return;
3289 case 0x12: /* XCR1 */
3290 s->xcr[0] = value & 0x7fe0;
3291 return;
3292 case 0x14: /* SRGR2 */
3293 s->srgr[1] = value & 0xffff;
3294 omap_mcbsp_req_update(s);
3295 return;
3296 case 0x16: /* SRGR1 */
3297 s->srgr[0] = value & 0xffff;
3298 omap_mcbsp_req_update(s);
3299 return;
3300 case 0x18: /* MCR2 */
3301 s->mcr[1] = value & 0x03e3;
3302 if (value & 3) /* XMCM */
3303 printf("%s: Tx channel selection mode enable attempt\n",
3304 __FUNCTION__);
3305 return;
3306 case 0x1a: /* MCR1 */
3307 s->mcr[0] = value & 0x03e1;
3308 if (value & 1) /* RMCM */
3309 printf("%s: Rx channel selection mode enable attempt\n",
3310 __FUNCTION__);
3311 return;
3312 case 0x1c: /* RCERA */
3313 s->rcer[0] = value & 0xffff;
3314 return;
3315 case 0x1e: /* RCERB */
3316 s->rcer[1] = value & 0xffff;
3317 return;
3318 case 0x20: /* XCERA */
3319 s->xcer[0] = value & 0xffff;
3320 return;
3321 case 0x22: /* XCERB */
3322 s->xcer[1] = value & 0xffff;
3323 return;
3324 case 0x24: /* PCR0 */
3325 s->pcr = value & 0x7faf;
3326 return;
3327 case 0x26: /* RCERC */
3328 s->rcer[2] = value & 0xffff;
3329 return;
3330 case 0x28: /* RCERD */
3331 s->rcer[3] = value & 0xffff;
3332 return;
3333 case 0x2a: /* XCERC */
3334 s->xcer[2] = value & 0xffff;
3335 return;
3336 case 0x2c: /* XCERD */
3337 s->xcer[3] = value & 0xffff;
3338 return;
3339 case 0x2e: /* RCERE */
3340 s->rcer[4] = value & 0xffff;
3341 return;
3342 case 0x30: /* RCERF */
3343 s->rcer[5] = value & 0xffff;
3344 return;
3345 case 0x32: /* XCERE */
3346 s->xcer[4] = value & 0xffff;
3347 return;
3348 case 0x34: /* XCERF */
3349 s->xcer[5] = value & 0xffff;
3350 return;
3351 case 0x36: /* RCERG */
3352 s->rcer[6] = value & 0xffff;
3353 return;
3354 case 0x38: /* RCERH */
3355 s->rcer[7] = value & 0xffff;
3356 return;
3357 case 0x3a: /* XCERG */
3358 s->xcer[6] = value & 0xffff;
3359 return;
3360 case 0x3c: /* XCERH */
3361 s->xcer[7] = value & 0xffff;
3362 return;
3363 }
3364
3365 OMAP_BAD_REG(addr);
3366 }
3367
3368 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3369 uint32_t value)
3370 {
3371 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3372 int offset = addr & OMAP_MPUI_REG_MASK;
3373
3374 if (offset == 0x04) { /* DXR */
3375 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3376 return;
3377 if (s->tx_req > 3) {
3378 s->tx_req -= 4;
3379 if (s->codec && s->codec->cts) {
3380 s->codec->out.fifo[s->codec->out.len ++] =
3381 (value >> 24) & 0xff;
3382 s->codec->out.fifo[s->codec->out.len ++] =
3383 (value >> 16) & 0xff;
3384 s->codec->out.fifo[s->codec->out.len ++] =
3385 (value >> 8) & 0xff;
3386 s->codec->out.fifo[s->codec->out.len ++] =
3387 (value >> 0) & 0xff;
3388 }
3389 if (s->tx_req < 4)
3390 omap_mcbsp_tx_done(s);
3391 } else
3392 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3393 return;
3394 }
3395
3396 omap_badwidth_write16(opaque, addr, value);
3397 }
3398
3399 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3400 uint64_t value, unsigned size)
3401 {
3402 switch (size) {
3403 case 2: return omap_mcbsp_writeh(opaque, addr, value);
3404 case 4: return omap_mcbsp_writew(opaque, addr, value);
3405 default: return omap_badwidth_write16(opaque, addr, value);
3406 }
3407 }
3408
3409 static const MemoryRegionOps omap_mcbsp_ops = {
3410 .read = omap_mcbsp_read,
3411 .write = omap_mcbsp_write,
3412 .endianness = DEVICE_NATIVE_ENDIAN,
3413 };
3414
3415 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3416 {
3417 memset(&s->spcr, 0, sizeof(s->spcr));
3418 memset(&s->rcr, 0, sizeof(s->rcr));
3419 memset(&s->xcr, 0, sizeof(s->xcr));
3420 s->srgr[0] = 0x0001;
3421 s->srgr[1] = 0x2000;
3422 memset(&s->mcr, 0, sizeof(s->mcr));
3423 memset(&s->pcr, 0, sizeof(s->pcr));
3424 memset(&s->rcer, 0, sizeof(s->rcer));
3425 memset(&s->xcer, 0, sizeof(s->xcer));
3426 s->tx_req = 0;
3427 s->rx_req = 0;
3428 s->tx_rate = 0;
3429 s->rx_rate = 0;
3430 qemu_del_timer(s->source_timer);
3431 qemu_del_timer(s->sink_timer);
3432 }
3433
3434 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3435 hwaddr base,
3436 qemu_irq txirq, qemu_irq rxirq,
3437 qemu_irq *dma, omap_clk clk)
3438 {
3439 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
3440 g_malloc0(sizeof(struct omap_mcbsp_s));
3441
3442 s->txirq = txirq;
3443 s->rxirq = rxirq;
3444 s->txdrq = dma[0];
3445 s->rxdrq = dma[1];
3446 s->sink_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_sink_tick, s);
3447 s->source_timer = qemu_new_timer_ns(vm_clock, omap_mcbsp_source_tick, s);
3448 omap_mcbsp_reset(s);
3449
3450 memory_region_init_io(&s->iomem, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3451 memory_region_add_subregion(system_memory, base, &s->iomem);
3452
3453 return s;
3454 }
3455
3456 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3457 {
3458 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3459
3460 if (s->rx_rate) {
3461 s->rx_req = s->codec->in.len;
3462 omap_mcbsp_rx_newdata(s);
3463 }
3464 }
3465
3466 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3467 {
3468 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3469
3470 if (s->tx_rate) {
3471 s->tx_req = s->codec->out.size;
3472 omap_mcbsp_tx_newdata(s);
3473 }
3474 }
3475
3476 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3477 {
3478 s->codec = slave;
3479 slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
3480 slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
3481 }
3482
3483 /* LED Pulse Generators */
3484 struct omap_lpg_s {
3485 MemoryRegion iomem;
3486 QEMUTimer *tm;
3487
3488 uint8_t control;
3489 uint8_t power;
3490 int64_t on;
3491 int64_t period;
3492 int clk;
3493 int cycle;
3494 };
3495
3496 static void omap_lpg_tick(void *opaque)
3497 {
3498 struct omap_lpg_s *s = opaque;
3499
3500 if (s->cycle)
3501 qemu_mod_timer(s->tm, qemu_get_clock_ms(vm_clock) + s->period - s->on);
3502 else
3503 qemu_mod_timer(s->tm, qemu_get_clock_ms(vm_clock) + s->on);
3504
3505 s->cycle = !s->cycle;
3506 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3507 }
3508
3509 static void omap_lpg_update(struct omap_lpg_s *s)
3510 {
3511 int64_t on, period = 1, ticks = 1000;
3512 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3513
3514 if (~s->control & (1 << 6)) /* LPGRES */
3515 on = 0;
3516 else if (s->control & (1 << 7)) /* PERM_ON */
3517 on = period;
3518 else {
3519 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3520 256 / 32);
3521 on = (s->clk && s->power) ? muldiv64(ticks,
3522 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3523 }
3524
3525 qemu_del_timer(s->tm);
3526 if (on == period && s->on < s->period)
3527 printf("%s: LED is on\n", __FUNCTION__);
3528 else if (on == 0 && s->on)
3529 printf("%s: LED is off\n", __FUNCTION__);
3530 else if (on && (on != s->on || period != s->period)) {
3531 s->cycle = 0;
3532 s->on = on;
3533 s->period = period;
3534 omap_lpg_tick(s);
3535 return;
3536 }
3537
3538 s->on = on;
3539 s->period = period;
3540 }
3541
3542 static void omap_lpg_reset(struct omap_lpg_s *s)
3543 {
3544 s->control = 0x00;
3545 s->power = 0x00;
3546 s->clk = 1;
3547 omap_lpg_update(s);
3548 }
3549
3550 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3551 unsigned size)
3552 {
3553 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3554 int offset = addr & OMAP_MPUI_REG_MASK;
3555
3556 if (size != 1) {
3557 return omap_badwidth_read8(opaque, addr);
3558 }
3559
3560 switch (offset) {
3561 case 0x00: /* LCR */
3562 return s->control;
3563
3564 case 0x04: /* PMR */
3565 return s->power;
3566 }
3567
3568 OMAP_BAD_REG(addr);
3569 return 0;
3570 }
3571
3572 static void omap_lpg_write(void *opaque, hwaddr addr,
3573 uint64_t value, unsigned size)
3574 {
3575 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3576 int offset = addr & OMAP_MPUI_REG_MASK;
3577
3578 if (size != 1) {
3579 return omap_badwidth_write8(opaque, addr, value);
3580 }
3581
3582 switch (offset) {
3583 case 0x00: /* LCR */
3584 if (~value & (1 << 6)) /* LPGRES */
3585 omap_lpg_reset(s);
3586 s->control = value & 0xff;
3587 omap_lpg_update(s);
3588 return;
3589
3590 case 0x04: /* PMR */
3591 s->power = value & 0x01;
3592 omap_lpg_update(s);
3593 return;
3594
3595 default:
3596 OMAP_BAD_REG(addr);
3597 return;
3598 }
3599 }
3600
3601 static const MemoryRegionOps omap_lpg_ops = {
3602 .read = omap_lpg_read,
3603 .write = omap_lpg_write,
3604 .endianness = DEVICE_NATIVE_ENDIAN,
3605 };
3606
3607 static void omap_lpg_clk_update(void *opaque, int line, int on)
3608 {
3609 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3610
3611 s->clk = on;
3612 omap_lpg_update(s);
3613 }
3614
3615 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3616 hwaddr base, omap_clk clk)
3617 {
3618 struct omap_lpg_s *s = (struct omap_lpg_s *)
3619 g_malloc0(sizeof(struct omap_lpg_s));
3620
3621 s->tm = qemu_new_timer_ms(vm_clock, omap_lpg_tick, s);
3622
3623 omap_lpg_reset(s);
3624
3625 memory_region_init_io(&s->iomem, &omap_lpg_ops, s, "omap-lpg", 0x800);
3626 memory_region_add_subregion(system_memory, base, &s->iomem);
3627
3628 omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
3629
3630 return s;
3631 }
3632
3633 /* MPUI Peripheral Bridge configuration */
3634 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3635 unsigned size)
3636 {
3637 if (size != 2) {
3638 return omap_badwidth_read16(opaque, addr);
3639 }
3640
3641 if (addr == OMAP_MPUI_BASE) /* CMR */
3642 return 0xfe4d;
3643
3644 OMAP_BAD_REG(addr);
3645 return 0;
3646 }
3647
3648 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3649 uint64_t value, unsigned size)
3650 {
3651 /* FIXME: infinite loop */
3652 omap_badwidth_write16(opaque, addr, value);
3653 }
3654
3655 static const MemoryRegionOps omap_mpui_io_ops = {
3656 .read = omap_mpui_io_read,
3657 .write = omap_mpui_io_write,
3658 .endianness = DEVICE_NATIVE_ENDIAN,
3659 };
3660
3661 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3662 struct omap_mpu_state_s *mpu)
3663 {
3664 memory_region_init_io(&mpu->mpui_io_iomem, &omap_mpui_io_ops, mpu,
3665 "omap-mpui-io", 0x7fff);
3666 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3667 &mpu->mpui_io_iomem);
3668 }
3669
3670 /* General chip reset */
3671 static void omap1_mpu_reset(void *opaque)
3672 {
3673 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3674
3675 omap_dma_reset(mpu->dma);
3676 omap_mpu_timer_reset(mpu->timer[0]);
3677 omap_mpu_timer_reset(mpu->timer[1]);
3678 omap_mpu_timer_reset(mpu->timer[2]);
3679 omap_wd_timer_reset(mpu->wdt);
3680 omap_os_timer_reset(mpu->os_timer);
3681 omap_lcdc_reset(mpu->lcd);
3682 omap_ulpd_pm_reset(mpu);
3683 omap_pin_cfg_reset(mpu);
3684 omap_mpui_reset(mpu);
3685 omap_tipb_bridge_reset(mpu->private_tipb);
3686 omap_tipb_bridge_reset(mpu->public_tipb);
3687 omap_dpll_reset(mpu->dpll[0]);
3688 omap_dpll_reset(mpu->dpll[1]);
3689 omap_dpll_reset(mpu->dpll[2]);
3690 omap_uart_reset(mpu->uart[0]);
3691 omap_uart_reset(mpu->uart[1]);
3692 omap_uart_reset(mpu->uart[2]);
3693 omap_mmc_reset(mpu->mmc);
3694 omap_mpuio_reset(mpu->mpuio);
3695 omap_uwire_reset(mpu->microwire);
3696 omap_pwl_reset(mpu->pwl);
3697 omap_pwt_reset(mpu->pwt);
3698 omap_rtc_reset(mpu->rtc);
3699 omap_mcbsp_reset(mpu->mcbsp1);
3700 omap_mcbsp_reset(mpu->mcbsp2);
3701 omap_mcbsp_reset(mpu->mcbsp3);
3702 omap_lpg_reset(mpu->led[0]);
3703 omap_lpg_reset(mpu->led[1]);
3704 omap_clkm_reset(mpu);
3705 cpu_reset(CPU(mpu->cpu));
3706 }
3707
3708 static const struct omap_map_s {
3709 hwaddr phys_dsp;
3710 hwaddr phys_mpu;
3711 uint32_t size;
3712 const char *name;
3713 } omap15xx_dsp_mm[] = {
3714 /* Strobe 0 */
3715 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3716 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3717 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3718 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3719 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3720 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3721 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3722 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3723 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3724 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3725 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3726 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3727 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3728 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3729 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3730 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3731 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3732 /* Strobe 1 */
3733 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3734
3735 { 0 }
3736 };
3737
3738 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3739 const struct omap_map_s *map)
3740 {
3741 MemoryRegion *io;
3742
3743 for (; map->phys_dsp; map ++) {
3744 io = g_new(MemoryRegion, 1);
3745 memory_region_init_alias(io, map->name,
3746 system_memory, map->phys_mpu, map->size);
3747 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3748 }
3749 }
3750
3751 void omap_mpu_wakeup(void *opaque, int irq, int req)
3752 {
3753 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3754
3755 if (mpu->cpu->env.halted) {
3756 cpu_interrupt(&mpu->cpu->env, CPU_INTERRUPT_EXITTB);
3757 }
3758 }
3759
3760 static const struct dma_irq_map omap1_dma_irq_map[] = {
3761 { 0, OMAP_INT_DMA_CH0_6 },
3762 { 0, OMAP_INT_DMA_CH1_7 },
3763 { 0, OMAP_INT_DMA_CH2_8 },
3764 { 0, OMAP_INT_DMA_CH3 },
3765 { 0, OMAP_INT_DMA_CH4 },
3766 { 0, OMAP_INT_DMA_CH5 },
3767 { 1, OMAP_INT_1610_DMA_CH6 },
3768 { 1, OMAP_INT_1610_DMA_CH7 },
3769 { 1, OMAP_INT_1610_DMA_CH8 },
3770 { 1, OMAP_INT_1610_DMA_CH9 },
3771 { 1, OMAP_INT_1610_DMA_CH10 },
3772 { 1, OMAP_INT_1610_DMA_CH11 },
3773 { 1, OMAP_INT_1610_DMA_CH12 },
3774 { 1, OMAP_INT_1610_DMA_CH13 },
3775 { 1, OMAP_INT_1610_DMA_CH14 },
3776 { 1, OMAP_INT_1610_DMA_CH15 }
3777 };
3778
3779 /* DMA ports for OMAP1 */
3780 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3781 hwaddr addr)
3782 {
3783 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3784 }
3785
3786 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3787 hwaddr addr)
3788 {
3789 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3790 addr);
3791 }
3792
3793 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3794 hwaddr addr)
3795 {
3796 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3797 }
3798
3799 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3800 hwaddr addr)
3801 {
3802 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3803 }
3804
3805 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3806 hwaddr addr)
3807 {
3808 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3809 }
3810
3811 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3812 hwaddr addr)
3813 {
3814 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3815 }
3816
3817 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3818 unsigned long sdram_size,
3819 const char *core)
3820 {
3821 int i;
3822 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
3823 g_malloc0(sizeof(struct omap_mpu_state_s));
3824 qemu_irq *cpu_irq;
3825 qemu_irq dma_irqs[6];
3826 DriveInfo *dinfo;
3827 SysBusDevice *busdev;
3828
3829 if (!core)
3830 core = "ti925t";
3831
3832 /* Core */
3833 s->mpu_model = omap310;
3834 s->cpu = cpu_arm_init(core);
3835 if (s->cpu == NULL) {
3836 fprintf(stderr, "Unable to find CPU definition\n");
3837 exit(1);
3838 }
3839 s->sdram_size = sdram_size;
3840 s->sram_size = OMAP15XX_SRAM_SIZE;
3841
3842 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
3843
3844 /* Clocks */
3845 omap_clk_init(s);
3846
3847 /* Memory-mapped stuff */
3848 memory_region_init_ram(&s->emiff_ram, "omap1.dram", s->sdram_size);
3849 vmstate_register_ram_global(&s->emiff_ram);
3850 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3851 memory_region_init_ram(&s->imif_ram, "omap1.sram", s->sram_size);
3852 vmstate_register_ram_global(&s->imif_ram);
3853 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3854
3855 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3856
3857 cpu_irq = arm_pic_init_cpu(s->cpu);
3858 s->ih[0] = qdev_create(NULL, "omap-intc");
3859 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3860 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3861 qdev_init_nofail(s->ih[0]);
3862 busdev = sysbus_from_qdev(s->ih[0]);
3863 sysbus_connect_irq(busdev, 0, cpu_irq[ARM_PIC_CPU_IRQ]);
3864 sysbus_connect_irq(busdev, 1, cpu_irq[ARM_PIC_CPU_FIQ]);
3865 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3866 s->ih[1] = qdev_create(NULL, "omap-intc");
3867 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3868 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3869 qdev_init_nofail(s->ih[1]);
3870 busdev = sysbus_from_qdev(s->ih[1]);
3871 sysbus_connect_irq(busdev, 0,
3872 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3873 /* The second interrupt controller's FIQ output is not wired up */
3874 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3875
3876 for (i = 0; i < 6; i++) {
3877 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3878 omap1_dma_irq_map[i].intr);
3879 }
3880 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3881 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3882 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3883
3884 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3885 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3886 s->port[imif ].addr_valid = omap_validate_imif_addr;
3887 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3888 s->port[local ].addr_valid = omap_validate_local_addr;
3889 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3890
3891 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3892 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3893 OMAP_EMIFF_BASE, s->sdram_size);
3894 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3895 OMAP_IMIF_BASE, s->sram_size);
3896
3897 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3898 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3899 omap_findclk(s, "mputim_ck"));
3900 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3901 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3902 omap_findclk(s, "mputim_ck"));
3903 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3904 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3905 omap_findclk(s, "mputim_ck"));
3906
3907 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3908 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3909 omap_findclk(s, "armwdt_ck"));
3910
3911 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3912 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3913 omap_findclk(s, "clk32-kHz"));
3914
3915 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3916 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3917 omap_dma_get_lcdch(s->dma),
3918 omap_findclk(s, "lcd_ck"));
3919
3920 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3921 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3922 omap_id_init(system_memory, s);
3923
3924 omap_mpui_init(system_memory, 0xfffec900, s);
3925
3926 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3927 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3928 omap_findclk(s, "tipb_ck"));
3929 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3930 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3931 omap_findclk(s, "tipb_ck"));
3932
3933 omap_tcmi_init(system_memory, 0xfffecc00, s);
3934
3935 s->uart[0] = omap_uart_init(0xfffb0000,
3936 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3937 omap_findclk(s, "uart1_ck"),
3938 omap_findclk(s, "uart1_ck"),
3939 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3940 "uart1",
3941 serial_hds[0]);
3942 s->uart[1] = omap_uart_init(0xfffb0800,
3943 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3944 omap_findclk(s, "uart2_ck"),
3945 omap_findclk(s, "uart2_ck"),
3946 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3947 "uart2",
3948 serial_hds[0] ? serial_hds[1] : NULL);
3949 s->uart[2] = omap_uart_init(0xfffb9800,
3950 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3951 omap_findclk(s, "uart3_ck"),
3952 omap_findclk(s, "uart3_ck"),
3953 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3954 "uart3",
3955 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3956
3957 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3958 omap_findclk(s, "dpll1"));
3959 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3960 omap_findclk(s, "dpll2"));
3961 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3962 omap_findclk(s, "dpll3"));
3963
3964 dinfo = drive_get(IF_SD, 0, 0);
3965 if (!dinfo) {
3966 fprintf(stderr, "qemu: missing SecureDigital device\n");
3967 exit(1);
3968 }
3969 s->mmc = omap_mmc_init(0xfffb7800, system_memory, dinfo->bdrv,
3970 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3971 &s->drq[OMAP_DMA_MMC_TX],
3972 omap_findclk(s, "mmc_ck"));
3973
3974 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
3975 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
3976 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
3977 s->wakeup, omap_findclk(s, "clk32-kHz"));
3978
3979 s->gpio = qdev_create(NULL, "omap-gpio");
3980 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
3981 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
3982 qdev_init_nofail(s->gpio);
3983 sysbus_connect_irq(sysbus_from_qdev(s->gpio), 0,
3984 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
3985 sysbus_mmio_map(sysbus_from_qdev(s->gpio), 0, 0xfffce000);
3986
3987 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
3988 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
3989 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
3990 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
3991
3992 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
3993 omap_findclk(s, "armxor_ck"));
3994 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
3995 omap_findclk(s, "armxor_ck"));
3996
3997 s->i2c[0] = qdev_create(NULL, "omap_i2c");
3998 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
3999 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4000 qdev_init_nofail(s->i2c[0]);
4001 busdev = sysbus_from_qdev(s->i2c[0]);
4002 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4003 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4004 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4005 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4006
4007 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4008 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4009 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4010 omap_findclk(s, "clk32-kHz"));
4011
4012 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4013 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4014 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4015 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4016 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4017 qdev_get_gpio_in(s->ih[0],
4018 OMAP_INT_310_McBSP2_TX),
4019 qdev_get_gpio_in(s->ih[0],
4020 OMAP_INT_310_McBSP2_RX),
4021 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4022 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4023 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4024 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4025 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4026
4027 s->led[0] = omap_lpg_init(system_memory,
4028 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4029 s->led[1] = omap_lpg_init(system_memory,
4030 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4031
4032 /* Register mappings not currenlty implemented:
4033 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4034 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4035 * USB W2FC fffb4000 - fffb47ff
4036 * Camera Interface fffb6800 - fffb6fff
4037 * USB Host fffba000 - fffba7ff
4038 * FAC fffba800 - fffbafff
4039 * HDQ/1-Wire fffbc000 - fffbc7ff
4040 * TIPB switches fffbc800 - fffbcfff
4041 * Mailbox fffcf000 - fffcf7ff
4042 * Local bus IF fffec100 - fffec1ff
4043 * Local bus MMU fffec200 - fffec2ff
4044 * DSP MMU fffed200 - fffed2ff
4045 */
4046
4047 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4048 omap_setup_mpui_io(system_memory, s);
4049
4050 qemu_register_reset(omap1_mpu_reset, s);
4051
4052 return s;
4053 }