]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/pnv.c
ea20a1dc3e2f68597669cd0a4fc8101ecac544f8
[mirror_qemu.git] / hw / ppc / pnv.c
1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 #include "hw/pci/msi.h"
44
45 #include "hw/ppc/xics.h"
46 #include "hw/qdev-properties.h"
47 #include "hw/ppc/pnv_xscom.h"
48 #include "hw/ppc/pnv_pnor.h"
49
50 #include "hw/isa/isa.h"
51 #include "hw/boards.h"
52 #include "hw/char/serial.h"
53 #include "hw/rtc/mc146818rtc.h"
54
55 #include <libfdt.h>
56
57 #define FDT_MAX_SIZE (1 * MiB)
58
59 #define FW_FILE_NAME "skiboot.lid"
60 #define FW_LOAD_ADDR 0x0
61 #define FW_MAX_SIZE (4 * MiB)
62
63 #define KERNEL_LOAD_ADDR 0x20000000
64 #define KERNEL_MAX_SIZE (256 * MiB)
65 #define INITRD_LOAD_ADDR 0x60000000
66 #define INITRD_MAX_SIZE (256 * MiB)
67
68 static const char *pnv_chip_core_typename(const PnvChip *o)
69 {
70 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
71 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
72 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
73 const char *core_type = object_class_get_name(object_class_by_name(s));
74 g_free(s);
75 return core_type;
76 }
77
78 /*
79 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
80 * 4 * 4 sockets * 12 cores * 8 threads = 1536
81 * Let's make it 2^11
82 */
83 #define MAX_CPUS 2048
84
85 /*
86 * Memory nodes are created by hostboot, one for each range of memory
87 * that has a different "affinity". In practice, it means one range
88 * per chip.
89 */
90 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
91 {
92 char *mem_name;
93 uint64_t mem_reg_property[2];
94 int off;
95
96 mem_reg_property[0] = cpu_to_be64(start);
97 mem_reg_property[1] = cpu_to_be64(size);
98
99 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
100 off = fdt_add_subnode(fdt, 0, mem_name);
101 g_free(mem_name);
102
103 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
104 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
105 sizeof(mem_reg_property))));
106 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
107 }
108
109 static int get_cpus_node(void *fdt)
110 {
111 int cpus_offset = fdt_path_offset(fdt, "/cpus");
112
113 if (cpus_offset < 0) {
114 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
115 if (cpus_offset) {
116 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
117 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
118 }
119 }
120 _FDT(cpus_offset);
121 return cpus_offset;
122 }
123
124 /*
125 * The PowerNV cores (and threads) need to use real HW ids and not an
126 * incremental index like it has been done on other platforms. This HW
127 * id is stored in the CPU PIR, it is used to create cpu nodes in the
128 * device tree, used in XSCOM to address cores and in interrupt
129 * servers.
130 */
131 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
132 {
133 PowerPCCPU *cpu = pc->threads[0];
134 CPUState *cs = CPU(cpu);
135 DeviceClass *dc = DEVICE_GET_CLASS(cs);
136 int smt_threads = CPU_CORE(pc)->nr_threads;
137 CPUPPCState *env = &cpu->env;
138 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
139 uint32_t servers_prop[smt_threads];
140 int i;
141 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
142 0xffffffff, 0xffffffff};
143 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
144 uint32_t cpufreq = 1000000000;
145 uint32_t page_sizes_prop[64];
146 size_t page_sizes_prop_size;
147 const uint8_t pa_features[] = { 24, 0,
148 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
149 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
150 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
151 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
152 int offset;
153 char *nodename;
154 int cpus_offset = get_cpus_node(fdt);
155
156 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
157 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
158 _FDT(offset);
159 g_free(nodename);
160
161 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
162
163 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
164 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
165 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
166
167 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
168 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
169 env->dcache_line_size)));
170 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
171 env->dcache_line_size)));
172 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
173 env->icache_line_size)));
174 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
175 env->icache_line_size)));
176
177 if (pcc->l1_dcache_size) {
178 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
179 pcc->l1_dcache_size)));
180 } else {
181 warn_report("Unknown L1 dcache size for cpu");
182 }
183 if (pcc->l1_icache_size) {
184 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
185 pcc->l1_icache_size)));
186 } else {
187 warn_report("Unknown L1 icache size for cpu");
188 }
189
190 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
191 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
192 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
193 cpu->hash64_opts->slb_size)));
194 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
195 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
196
197 if (env->spr_cb[SPR_PURR].oea_read) {
198 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
199 }
200
201 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
202 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
203 segs, sizeof(segs))));
204 }
205
206 /*
207 * Advertise VMX/VSX (vector extensions) if available
208 * 0 / no property == no vector extensions
209 * 1 == VMX / Altivec available
210 * 2 == VSX available
211 */
212 if (env->insns_flags & PPC_ALTIVEC) {
213 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
214
215 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
216 }
217
218 /*
219 * Advertise DFP (Decimal Floating Point) if available
220 * 0 / no property == no DFP
221 * 1 == DFP available
222 */
223 if (env->insns_flags2 & PPC2_DFP) {
224 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
225 }
226
227 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
228 sizeof(page_sizes_prop));
229 if (page_sizes_prop_size) {
230 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
231 page_sizes_prop, page_sizes_prop_size)));
232 }
233
234 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
235 pa_features, sizeof(pa_features))));
236
237 /* Build interrupt servers properties */
238 for (i = 0; i < smt_threads; i++) {
239 servers_prop[i] = cpu_to_be32(pc->pir + i);
240 }
241 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
242 servers_prop, sizeof(servers_prop))));
243 }
244
245 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
246 uint32_t nr_threads)
247 {
248 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
249 char *name;
250 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
251 uint32_t irange[2], i, rsize;
252 uint64_t *reg;
253 int offset;
254
255 irange[0] = cpu_to_be32(pir);
256 irange[1] = cpu_to_be32(nr_threads);
257
258 rsize = sizeof(uint64_t) * 2 * nr_threads;
259 reg = g_malloc(rsize);
260 for (i = 0; i < nr_threads; i++) {
261 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
262 reg[i * 2 + 1] = cpu_to_be64(0x1000);
263 }
264
265 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
266 offset = fdt_add_subnode(fdt, 0, name);
267 _FDT(offset);
268 g_free(name);
269
270 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
271 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
272 _FDT((fdt_setprop_string(fdt, offset, "device_type",
273 "PowerPC-External-Interrupt-Presentation")));
274 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
275 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
276 irange, sizeof(irange))));
277 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
278 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
279 g_free(reg);
280 }
281
282 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
283 {
284 static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
285 int i;
286
287 pnv_dt_xscom(chip, fdt, 0,
288 cpu_to_be64(PNV_XSCOM_BASE(chip)),
289 cpu_to_be64(PNV_XSCOM_SIZE),
290 compat, sizeof(compat));
291
292 for (i = 0; i < chip->nr_cores; i++) {
293 PnvCore *pnv_core = chip->cores[i];
294
295 pnv_dt_core(chip, pnv_core, fdt);
296
297 /* Interrupt Control Presenters (ICP). One per core. */
298 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
299 }
300
301 if (chip->ram_size) {
302 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
303 }
304 }
305
306 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
307 {
308 static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
309 int i;
310
311 pnv_dt_xscom(chip, fdt, 0,
312 cpu_to_be64(PNV9_XSCOM_BASE(chip)),
313 cpu_to_be64(PNV9_XSCOM_SIZE),
314 compat, sizeof(compat));
315
316 for (i = 0; i < chip->nr_cores; i++) {
317 PnvCore *pnv_core = chip->cores[i];
318
319 pnv_dt_core(chip, pnv_core, fdt);
320 }
321
322 if (chip->ram_size) {
323 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
324 }
325
326 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
327 }
328
329 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
330 {
331 static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
332 int i;
333
334 pnv_dt_xscom(chip, fdt, 0,
335 cpu_to_be64(PNV10_XSCOM_BASE(chip)),
336 cpu_to_be64(PNV10_XSCOM_SIZE),
337 compat, sizeof(compat));
338
339 for (i = 0; i < chip->nr_cores; i++) {
340 PnvCore *pnv_core = chip->cores[i];
341
342 pnv_dt_core(chip, pnv_core, fdt);
343 }
344
345 if (chip->ram_size) {
346 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
347 }
348
349 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
350 }
351
352 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
353 {
354 uint32_t io_base = d->ioport_id;
355 uint32_t io_regs[] = {
356 cpu_to_be32(1),
357 cpu_to_be32(io_base),
358 cpu_to_be32(2)
359 };
360 char *name;
361 int node;
362
363 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
364 node = fdt_add_subnode(fdt, lpc_off, name);
365 _FDT(node);
366 g_free(name);
367
368 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
369 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
370 }
371
372 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
373 {
374 const char compatible[] = "ns16550\0pnpPNP,501";
375 uint32_t io_base = d->ioport_id;
376 uint32_t io_regs[] = {
377 cpu_to_be32(1),
378 cpu_to_be32(io_base),
379 cpu_to_be32(8)
380 };
381 char *name;
382 int node;
383
384 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
385 node = fdt_add_subnode(fdt, lpc_off, name);
386 _FDT(node);
387 g_free(name);
388
389 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
390 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
391 sizeof(compatible))));
392
393 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
394 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
395 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
396 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
397 fdt_get_phandle(fdt, lpc_off))));
398
399 /* This is needed by Linux */
400 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
401 }
402
403 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
404 {
405 const char compatible[] = "bt\0ipmi-bt";
406 uint32_t io_base;
407 uint32_t io_regs[] = {
408 cpu_to_be32(1),
409 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
410 cpu_to_be32(3)
411 };
412 uint32_t irq;
413 char *name;
414 int node;
415
416 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
417 io_regs[1] = cpu_to_be32(io_base);
418
419 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
420
421 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
422 node = fdt_add_subnode(fdt, lpc_off, name);
423 _FDT(node);
424 g_free(name);
425
426 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
427 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
428 sizeof(compatible))));
429
430 /* Mark it as reserved to avoid Linux trying to claim it */
431 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
432 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
433 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
434 fdt_get_phandle(fdt, lpc_off))));
435 }
436
437 typedef struct ForeachPopulateArgs {
438 void *fdt;
439 int offset;
440 } ForeachPopulateArgs;
441
442 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
443 {
444 ForeachPopulateArgs *args = opaque;
445 ISADevice *d = ISA_DEVICE(dev);
446
447 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
448 pnv_dt_rtc(d, args->fdt, args->offset);
449 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
450 pnv_dt_serial(d, args->fdt, args->offset);
451 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
452 pnv_dt_ipmi_bt(d, args->fdt, args->offset);
453 } else {
454 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
455 d->ioport_id);
456 }
457
458 return 0;
459 }
460
461 /*
462 * The default LPC bus of a multichip system is on chip 0. It's
463 * recognized by the firmware (skiboot) using a "primary" property.
464 */
465 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
466 {
467 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
468 ForeachPopulateArgs args = {
469 .fdt = fdt,
470 .offset = isa_offset,
471 };
472 uint32_t phandle;
473
474 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
475
476 phandle = qemu_fdt_alloc_phandle(fdt);
477 assert(phandle > 0);
478 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
479
480 /*
481 * ISA devices are not necessarily parented to the ISA bus so we
482 * can not use object_child_foreach()
483 */
484 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
485 &args);
486 }
487
488 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
489 {
490 int off;
491
492 off = fdt_add_subnode(fdt, 0, "ibm,opal");
493 off = fdt_add_subnode(fdt, off, "power-mgt");
494
495 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
496 }
497
498 static void *pnv_dt_create(MachineState *machine)
499 {
500 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
501 PnvMachineState *pnv = PNV_MACHINE(machine);
502 void *fdt;
503 char *buf;
504 int off;
505 int i;
506
507 fdt = g_malloc0(FDT_MAX_SIZE);
508 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
509
510 /* /qemu node */
511 _FDT((fdt_add_subnode(fdt, 0, "qemu")));
512
513 /* Root node */
514 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
515 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
516 _FDT((fdt_setprop_string(fdt, 0, "model",
517 "IBM PowerNV (emulated by qemu)")));
518 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
519
520 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
521 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
522 if (qemu_uuid_set) {
523 _FDT((fdt_property_string(fdt, "system-id", buf)));
524 }
525 g_free(buf);
526
527 off = fdt_add_subnode(fdt, 0, "chosen");
528 if (machine->kernel_cmdline) {
529 _FDT((fdt_setprop_string(fdt, off, "bootargs",
530 machine->kernel_cmdline)));
531 }
532
533 if (pnv->initrd_size) {
534 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
535 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
536
537 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
538 &start_prop, sizeof(start_prop))));
539 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
540 &end_prop, sizeof(end_prop))));
541 }
542
543 /* Populate device tree for each chip */
544 for (i = 0; i < pnv->num_chips; i++) {
545 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
546 }
547
548 /* Populate ISA devices on chip 0 */
549 pnv_dt_isa(pnv, fdt);
550
551 if (pnv->bmc) {
552 pnv_dt_bmc_sensors(pnv->bmc, fdt);
553 }
554
555 /* Create an extra node for power management on machines that support it */
556 if (pmc->dt_power_mgt) {
557 pmc->dt_power_mgt(pnv, fdt);
558 }
559
560 return fdt;
561 }
562
563 static void pnv_powerdown_notify(Notifier *n, void *opaque)
564 {
565 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
566
567 if (pnv->bmc) {
568 pnv_bmc_powerdown(pnv->bmc);
569 }
570 }
571
572 static void pnv_reset(MachineState *machine)
573 {
574 void *fdt;
575
576 qemu_devices_reset();
577
578 fdt = pnv_dt_create(machine);
579
580 /* Pack resulting tree */
581 _FDT((fdt_pack(fdt)));
582
583 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
584 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
585 }
586
587 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
588 {
589 Pnv8Chip *chip8 = PNV8_CHIP(chip);
590 return pnv_lpc_isa_create(&chip8->lpc, true, errp);
591 }
592
593 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
594 {
595 Pnv8Chip *chip8 = PNV8_CHIP(chip);
596 return pnv_lpc_isa_create(&chip8->lpc, false, errp);
597 }
598
599 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
600 {
601 Pnv9Chip *chip9 = PNV9_CHIP(chip);
602 return pnv_lpc_isa_create(&chip9->lpc, false, errp);
603 }
604
605 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
606 {
607 Pnv10Chip *chip10 = PNV10_CHIP(chip);
608 return pnv_lpc_isa_create(&chip10->lpc, false, errp);
609 }
610
611 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
612 {
613 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
614 }
615
616 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
617 {
618 Pnv8Chip *chip8 = PNV8_CHIP(chip);
619 int i;
620
621 ics_pic_print_info(&chip8->psi.ics, mon);
622 for (i = 0; i < chip->num_phbs; i++) {
623 pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
624 ics_pic_print_info(&chip8->phbs[i].lsis, mon);
625 }
626 }
627
628 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
629 {
630 Pnv9Chip *chip9 = PNV9_CHIP(chip);
631 int i, j;
632
633 pnv_xive_pic_print_info(&chip9->xive, mon);
634 pnv_psi_pic_print_info(&chip9->psi, mon);
635
636 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
637 PnvPhb4PecState *pec = &chip9->pecs[i];
638 for (j = 0; j < pec->num_stacks; j++) {
639 pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
640 }
641 }
642 }
643
644 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
645 uint32_t core_id)
646 {
647 return PNV_XSCOM_EX_BASE(core_id);
648 }
649
650 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
651 uint32_t core_id)
652 {
653 return PNV9_XSCOM_EC_BASE(core_id);
654 }
655
656 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
657 uint32_t core_id)
658 {
659 return PNV10_XSCOM_EC_BASE(core_id);
660 }
661
662 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
663 {
664 PowerPCCPUClass *ppc_default =
665 POWERPC_CPU_CLASS(object_class_by_name(default_type));
666 PowerPCCPUClass *ppc =
667 POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
668
669 return ppc_default->pvr_match(ppc_default, ppc->pvr);
670 }
671
672 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
673 {
674 Object *obj;
675
676 obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
677 object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
678 object_property_set_int(obj, irq, "irq", &error_fatal);
679 object_property_set_bool(obj, true, "realized", &error_fatal);
680 }
681
682 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
683 {
684 Pnv10Chip *chip10 = PNV10_CHIP(chip);
685
686 pnv_psi_pic_print_info(&chip10->psi, mon);
687 }
688
689 static void pnv_init(MachineState *machine)
690 {
691 PnvMachineState *pnv = PNV_MACHINE(machine);
692 MachineClass *mc = MACHINE_GET_CLASS(machine);
693 char *fw_filename;
694 long fw_size;
695 int i;
696 char *chip_typename;
697 DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
698 DeviceState *dev;
699
700 /* allocate RAM */
701 if (machine->ram_size < (1 * GiB)) {
702 warn_report("skiboot may not work with < 1GB of RAM");
703 }
704 memory_region_add_subregion(get_system_memory(), 0, machine->ram);
705
706 /*
707 * Create our simple PNOR device
708 */
709 dev = qdev_create(NULL, TYPE_PNV_PNOR);
710 if (pnor) {
711 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
712 &error_abort);
713 }
714 qdev_init_nofail(dev);
715 pnv->pnor = PNV_PNOR(dev);
716
717 /* load skiboot firmware */
718 if (bios_name == NULL) {
719 bios_name = FW_FILE_NAME;
720 }
721
722 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
723 if (!fw_filename) {
724 error_report("Could not find OPAL firmware '%s'", bios_name);
725 exit(1);
726 }
727
728 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
729 if (fw_size < 0) {
730 error_report("Could not load OPAL firmware '%s'", fw_filename);
731 exit(1);
732 }
733 g_free(fw_filename);
734
735 /* load kernel */
736 if (machine->kernel_filename) {
737 long kernel_size;
738
739 kernel_size = load_image_targphys(machine->kernel_filename,
740 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
741 if (kernel_size < 0) {
742 error_report("Could not load kernel '%s'",
743 machine->kernel_filename);
744 exit(1);
745 }
746 }
747
748 /* load initrd */
749 if (machine->initrd_filename) {
750 pnv->initrd_base = INITRD_LOAD_ADDR;
751 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
752 pnv->initrd_base, INITRD_MAX_SIZE);
753 if (pnv->initrd_size < 0) {
754 error_report("Could not load initial ram disk '%s'",
755 machine->initrd_filename);
756 exit(1);
757 }
758 }
759
760 /* MSIs are supported on this platform */
761 msi_nonbroken = true;
762
763 /*
764 * Check compatibility of the specified CPU with the machine
765 * default.
766 */
767 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
768 error_report("invalid CPU model '%s' for %s machine",
769 machine->cpu_type, mc->name);
770 exit(1);
771 }
772
773 /* Create the processor chips */
774 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
775 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
776 i, machine->cpu_type);
777 if (!object_class_by_name(chip_typename)) {
778 error_report("invalid chip model '%.*s' for %s machine",
779 i, machine->cpu_type, mc->name);
780 exit(1);
781 }
782
783 pnv->num_chips =
784 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
785 /*
786 * TODO: should we decide on how many chips we can create based
787 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
788 */
789 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
790 error_report("invalid number of chips: '%d'", pnv->num_chips);
791 error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
792 exit(1);
793 }
794
795 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
796 for (i = 0; i < pnv->num_chips; i++) {
797 char chip_name[32];
798 Object *chip = object_new(chip_typename);
799
800 pnv->chips[i] = PNV_CHIP(chip);
801
802 /*
803 * TODO: put all the memory in one node on chip 0 until we find a
804 * way to specify different ranges for each chip
805 */
806 if (i == 0) {
807 object_property_set_int(chip, machine->ram_size, "ram-size",
808 &error_fatal);
809 }
810
811 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
812 object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
813 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
814 &error_fatal);
815 object_property_set_int(chip, machine->smp.cores,
816 "nr-cores", &error_fatal);
817 object_property_set_int(chip, machine->smp.threads,
818 "nr-threads", &error_fatal);
819 /*
820 * The POWER8 machine use the XICS interrupt interface.
821 * Propagate the XICS fabric to the chip and its controllers.
822 */
823 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
824 object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
825 }
826 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
827 object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
828 &error_abort);
829 }
830 object_property_set_bool(chip, true, "realized", &error_fatal);
831 }
832 g_free(chip_typename);
833
834 /* Create the machine BMC simulator */
835 pnv->bmc = pnv_bmc_create(pnv->pnor);
836
837 /* Instantiate ISA bus on chip 0 */
838 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
839
840 /* Create serial port */
841 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
842
843 /* Create an RTC ISA device too */
844 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
845
846 /* Create the IPMI BT device for communication with the BMC */
847 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
848
849 /*
850 * OpenPOWER systems use a IPMI SEL Event message to notify the
851 * host to powerdown
852 */
853 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
854 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
855 }
856
857 /*
858 * 0:21 Reserved - Read as zeros
859 * 22:24 Chip ID
860 * 25:28 Core number
861 * 29:31 Thread ID
862 */
863 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
864 {
865 return (chip->chip_id << 7) | (core_id << 3);
866 }
867
868 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
869 Error **errp)
870 {
871 Pnv8Chip *chip8 = PNV8_CHIP(chip);
872 Error *local_err = NULL;
873 Object *obj;
874 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
875
876 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
877 if (local_err) {
878 error_propagate(errp, local_err);
879 return;
880 }
881
882 pnv_cpu->intc = obj;
883 }
884
885
886 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
887 {
888 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
889
890 icp_reset(ICP(pnv_cpu->intc));
891 }
892
893 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
894 {
895 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
896
897 icp_destroy(ICP(pnv_cpu->intc));
898 pnv_cpu->intc = NULL;
899 }
900
901 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
902 Monitor *mon)
903 {
904 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
905 }
906
907 /*
908 * 0:48 Reserved - Read as zeroes
909 * 49:52 Node ID
910 * 53:55 Chip ID
911 * 56 Reserved - Read as zero
912 * 57:61 Core number
913 * 62:63 Thread ID
914 *
915 * We only care about the lower bits. uint32_t is fine for the moment.
916 */
917 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
918 {
919 return (chip->chip_id << 8) | (core_id << 2);
920 }
921
922 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
923 {
924 return (chip->chip_id << 8) | (core_id << 2);
925 }
926
927 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
928 Error **errp)
929 {
930 Pnv9Chip *chip9 = PNV9_CHIP(chip);
931 Error *local_err = NULL;
932 Object *obj;
933 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
934
935 /*
936 * The core creates its interrupt presenter but the XIVE interrupt
937 * controller object is initialized afterwards. Hopefully, it's
938 * only used at runtime.
939 */
940 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
941 &local_err);
942 if (local_err) {
943 error_propagate(errp, local_err);
944 return;
945 }
946
947 pnv_cpu->intc = obj;
948 }
949
950 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
951 {
952 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
953
954 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
955 }
956
957 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
958 {
959 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
960
961 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
962 pnv_cpu->intc = NULL;
963 }
964
965 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
966 Monitor *mon)
967 {
968 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
969 }
970
971 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
972 Error **errp)
973 {
974 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
975
976 /* Will be defined when the interrupt controller is */
977 pnv_cpu->intc = NULL;
978 }
979
980 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
981 {
982 ;
983 }
984
985 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
986 {
987 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
988
989 pnv_cpu->intc = NULL;
990 }
991
992 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
993 Monitor *mon)
994 {
995 }
996
997 /*
998 * Allowed core identifiers on a POWER8 Processor Chip :
999 *
1000 * <EX0 reserved>
1001 * EX1 - Venice only
1002 * EX2 - Venice only
1003 * EX3 - Venice only
1004 * EX4
1005 * EX5
1006 * EX6
1007 * <EX7,8 reserved> <reserved>
1008 * EX9 - Venice only
1009 * EX10 - Venice only
1010 * EX11 - Venice only
1011 * EX12
1012 * EX13
1013 * EX14
1014 * <EX15 reserved>
1015 */
1016 #define POWER8E_CORE_MASK (0x7070ull)
1017 #define POWER8_CORE_MASK (0x7e7eull)
1018
1019 /*
1020 * POWER9 has 24 cores, ids starting at 0x0
1021 */
1022 #define POWER9_CORE_MASK (0xffffffffffffffull)
1023
1024
1025 #define POWER10_CORE_MASK (0xffffffffffffffull)
1026
1027 static void pnv_chip_power8_instance_init(Object *obj)
1028 {
1029 PnvChip *chip = PNV_CHIP(obj);
1030 Pnv8Chip *chip8 = PNV8_CHIP(obj);
1031 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1032 int i;
1033
1034 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1035 (Object **)&chip8->xics,
1036 object_property_allow_set_link,
1037 OBJ_PROP_LINK_STRONG,
1038 &error_abort);
1039
1040 object_initialize_child(obj, "psi", &chip8->psi, sizeof(chip8->psi),
1041 TYPE_PNV8_PSI, &error_abort, NULL);
1042
1043 object_initialize_child(obj, "lpc", &chip8->lpc, sizeof(chip8->lpc),
1044 TYPE_PNV8_LPC, &error_abort, NULL);
1045
1046 object_initialize_child(obj, "occ", &chip8->occ, sizeof(chip8->occ),
1047 TYPE_PNV8_OCC, &error_abort, NULL);
1048
1049 object_initialize_child(obj, "homer", &chip8->homer, sizeof(chip8->homer),
1050 TYPE_PNV8_HOMER, &error_abort, NULL);
1051
1052 for (i = 0; i < pcc->num_phbs; i++) {
1053 object_initialize_child(obj, "phb[*]", &chip8->phbs[i],
1054 sizeof(chip8->phbs[i]), TYPE_PNV_PHB3,
1055 &error_abort, NULL);
1056 }
1057
1058 /*
1059 * Number of PHBs is the chip default
1060 */
1061 chip->num_phbs = pcc->num_phbs;
1062 }
1063
1064 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1065 {
1066 PnvChip *chip = PNV_CHIP(chip8);
1067 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1068 int i, j;
1069 char *name;
1070
1071 name = g_strdup_printf("icp-%x", chip->chip_id);
1072 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1073 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1074 g_free(name);
1075
1076 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1077
1078 /* Map the ICP registers for each thread */
1079 for (i = 0; i < chip->nr_cores; i++) {
1080 PnvCore *pnv_core = chip->cores[i];
1081 int core_hwid = CPU_CORE(pnv_core)->core_id;
1082
1083 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1084 uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1085 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1086
1087 memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1088 &icp->mmio);
1089 }
1090 }
1091 }
1092
1093 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1094 {
1095 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1096 PnvChip *chip = PNV_CHIP(dev);
1097 Pnv8Chip *chip8 = PNV8_CHIP(dev);
1098 Pnv8Psi *psi8 = &chip8->psi;
1099 Error *local_err = NULL;
1100 int i;
1101
1102 assert(chip8->xics);
1103
1104 /* XSCOM bridge is first */
1105 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1106 if (local_err) {
1107 error_propagate(errp, local_err);
1108 return;
1109 }
1110 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1111
1112 pcc->parent_realize(dev, &local_err);
1113 if (local_err) {
1114 error_propagate(errp, local_err);
1115 return;
1116 }
1117
1118 /* Processor Service Interface (PSI) Host Bridge */
1119 object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1120 "bar", &error_fatal);
1121 object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1122 ICS_PROP_XICS, &error_abort);
1123 object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1124 if (local_err) {
1125 error_propagate(errp, local_err);
1126 return;
1127 }
1128 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1129 &PNV_PSI(psi8)->xscom_regs);
1130
1131 /* Create LPC controller */
1132 object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1133 &error_abort);
1134 object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1135 &error_fatal);
1136 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1137
1138 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1139 (uint64_t) PNV_XSCOM_BASE(chip),
1140 PNV_XSCOM_LPC_BASE);
1141
1142 /*
1143 * Interrupt Management Area. This is the memory region holding
1144 * all the Interrupt Control Presenter (ICP) registers
1145 */
1146 pnv_chip_icp_realize(chip8, &local_err);
1147 if (local_err) {
1148 error_propagate(errp, local_err);
1149 return;
1150 }
1151
1152 /* Create the simplified OCC model */
1153 object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1154 &error_abort);
1155 object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1156 if (local_err) {
1157 error_propagate(errp, local_err);
1158 return;
1159 }
1160 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1161
1162 /* OCC SRAM model */
1163 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1164 &chip8->occ.sram_regs);
1165
1166 /* HOMER */
1167 object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1168 &error_abort);
1169 object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1170 &local_err);
1171 if (local_err) {
1172 error_propagate(errp, local_err);
1173 return;
1174 }
1175 /* Homer Xscom region */
1176 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1177
1178 /* Homer mmio region */
1179 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1180 &chip8->homer.regs);
1181
1182 /* PHB3 controllers */
1183 for (i = 0; i < chip->num_phbs; i++) {
1184 PnvPHB3 *phb = &chip8->phbs[i];
1185 PnvPBCQState *pbcq = &phb->pbcq;
1186
1187 object_property_set_int(OBJECT(phb), i, "index", &error_fatal);
1188 object_property_set_int(OBJECT(phb), chip->chip_id, "chip-id",
1189 &error_fatal);
1190 object_property_set_bool(OBJECT(phb), true, "realized", &local_err);
1191 if (local_err) {
1192 error_propagate(errp, local_err);
1193 return;
1194 }
1195 qdev_set_parent_bus(DEVICE(phb), sysbus_get_default());
1196
1197 /* Populate the XSCOM address space. */
1198 pnv_xscom_add_subregion(chip,
1199 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1200 &pbcq->xscom_nest_regs);
1201 pnv_xscom_add_subregion(chip,
1202 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1203 &pbcq->xscom_pci_regs);
1204 pnv_xscom_add_subregion(chip,
1205 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1206 &pbcq->xscom_spci_regs);
1207 }
1208 }
1209
1210 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1211 {
1212 addr &= (PNV_XSCOM_SIZE - 1);
1213 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1214 }
1215
1216 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1217 {
1218 DeviceClass *dc = DEVICE_CLASS(klass);
1219 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1220
1221 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
1222 k->cores_mask = POWER8E_CORE_MASK;
1223 k->num_phbs = 3;
1224 k->core_pir = pnv_chip_core_pir_p8;
1225 k->intc_create = pnv_chip_power8_intc_create;
1226 k->intc_reset = pnv_chip_power8_intc_reset;
1227 k->intc_destroy = pnv_chip_power8_intc_destroy;
1228 k->intc_print_info = pnv_chip_power8_intc_print_info;
1229 k->isa_create = pnv_chip_power8_isa_create;
1230 k->dt_populate = pnv_chip_power8_dt_populate;
1231 k->pic_print_info = pnv_chip_power8_pic_print_info;
1232 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1233 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1234 dc->desc = "PowerNV Chip POWER8E";
1235
1236 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1237 &k->parent_realize);
1238 }
1239
1240 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1241 {
1242 DeviceClass *dc = DEVICE_CLASS(klass);
1243 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1244
1245 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1246 k->cores_mask = POWER8_CORE_MASK;
1247 k->num_phbs = 3;
1248 k->core_pir = pnv_chip_core_pir_p8;
1249 k->intc_create = pnv_chip_power8_intc_create;
1250 k->intc_reset = pnv_chip_power8_intc_reset;
1251 k->intc_destroy = pnv_chip_power8_intc_destroy;
1252 k->intc_print_info = pnv_chip_power8_intc_print_info;
1253 k->isa_create = pnv_chip_power8_isa_create;
1254 k->dt_populate = pnv_chip_power8_dt_populate;
1255 k->pic_print_info = pnv_chip_power8_pic_print_info;
1256 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1257 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1258 dc->desc = "PowerNV Chip POWER8";
1259
1260 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1261 &k->parent_realize);
1262 }
1263
1264 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1265 {
1266 DeviceClass *dc = DEVICE_CLASS(klass);
1267 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1268
1269 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
1270 k->cores_mask = POWER8_CORE_MASK;
1271 k->num_phbs = 3;
1272 k->core_pir = pnv_chip_core_pir_p8;
1273 k->intc_create = pnv_chip_power8_intc_create;
1274 k->intc_reset = pnv_chip_power8_intc_reset;
1275 k->intc_destroy = pnv_chip_power8_intc_destroy;
1276 k->intc_print_info = pnv_chip_power8_intc_print_info;
1277 k->isa_create = pnv_chip_power8nvl_isa_create;
1278 k->dt_populate = pnv_chip_power8_dt_populate;
1279 k->pic_print_info = pnv_chip_power8_pic_print_info;
1280 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1281 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1282 dc->desc = "PowerNV Chip POWER8NVL";
1283
1284 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1285 &k->parent_realize);
1286 }
1287
1288 static void pnv_chip_power9_instance_init(Object *obj)
1289 {
1290 PnvChip *chip = PNV_CHIP(obj);
1291 Pnv9Chip *chip9 = PNV9_CHIP(obj);
1292 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1293 int i;
1294
1295 object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1296 TYPE_PNV_XIVE, &error_abort, NULL);
1297 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1298 "xive-fabric", &error_abort);
1299
1300 object_initialize_child(obj, "psi", &chip9->psi, sizeof(chip9->psi),
1301 TYPE_PNV9_PSI, &error_abort, NULL);
1302
1303 object_initialize_child(obj, "lpc", &chip9->lpc, sizeof(chip9->lpc),
1304 TYPE_PNV9_LPC, &error_abort, NULL);
1305
1306 object_initialize_child(obj, "occ", &chip9->occ, sizeof(chip9->occ),
1307 TYPE_PNV9_OCC, &error_abort, NULL);
1308
1309 object_initialize_child(obj, "homer", &chip9->homer, sizeof(chip9->homer),
1310 TYPE_PNV9_HOMER, &error_abort, NULL);
1311
1312 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1313 object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1314 sizeof(chip9->pecs[i]), TYPE_PNV_PHB4_PEC,
1315 &error_abort, NULL);
1316 }
1317
1318 /*
1319 * Number of PHBs is the chip default
1320 */
1321 chip->num_phbs = pcc->num_phbs;
1322 }
1323
1324 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1325 {
1326 PnvChip *chip = PNV_CHIP(chip9);
1327 int i;
1328
1329 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1330 chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1331
1332 for (i = 0; i < chip9->nr_quads; i++) {
1333 char eq_name[32];
1334 PnvQuad *eq = &chip9->quads[i];
1335 PnvCore *pnv_core = chip->cores[i * 4];
1336 int core_id = CPU_CORE(pnv_core)->core_id;
1337
1338 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1339 object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1340 TYPE_PNV_QUAD, &error_fatal, NULL);
1341
1342 object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1343 object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1344
1345 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1346 &eq->xscom_regs);
1347 }
1348 }
1349
1350 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1351 {
1352 Pnv9Chip *chip9 = PNV9_CHIP(chip);
1353 Error *local_err = NULL;
1354 int i, j;
1355 int phb_id = 0;
1356
1357 for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1358 PnvPhb4PecState *pec = &chip9->pecs[i];
1359 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1360 uint32_t pec_nest_base;
1361 uint32_t pec_pci_base;
1362
1363 object_property_set_int(OBJECT(pec), i, "index", &error_fatal);
1364 /*
1365 * PEC0 -> 1 stack
1366 * PEC1 -> 2 stacks
1367 * PEC2 -> 3 stacks
1368 */
1369 object_property_set_int(OBJECT(pec), i + 1, "num-stacks",
1370 &error_fatal);
1371 object_property_set_int(OBJECT(pec), chip->chip_id, "chip-id",
1372 &error_fatal);
1373 object_property_set_link(OBJECT(pec), OBJECT(get_system_memory()),
1374 "system-memory", &error_abort);
1375 object_property_set_bool(OBJECT(pec), true, "realized", &local_err);
1376 if (local_err) {
1377 error_propagate(errp, local_err);
1378 return;
1379 }
1380
1381 pec_nest_base = pecc->xscom_nest_base(pec);
1382 pec_pci_base = pecc->xscom_pci_base(pec);
1383
1384 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1385 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1386
1387 for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1388 j++, phb_id++) {
1389 PnvPhb4PecStack *stack = &pec->stacks[j];
1390 Object *obj = OBJECT(&stack->phb);
1391
1392 object_property_set_int(obj, phb_id, "index", &error_fatal);
1393 object_property_set_int(obj, chip->chip_id, "chip-id",
1394 &error_fatal);
1395 object_property_set_int(obj, PNV_PHB4_VERSION, "version",
1396 &error_fatal);
1397 object_property_set_int(obj, PNV_PHB4_DEVICE_ID, "device-id",
1398 &error_fatal);
1399 object_property_set_link(obj, OBJECT(stack), "stack", &error_abort);
1400 object_property_set_bool(obj, true, "realized", &local_err);
1401 if (local_err) {
1402 error_propagate(errp, local_err);
1403 return;
1404 }
1405 qdev_set_parent_bus(DEVICE(obj), sysbus_get_default());
1406
1407 /* Populate the XSCOM address space. */
1408 pnv_xscom_add_subregion(chip,
1409 pec_nest_base + 0x40 * (stack->stack_no + 1),
1410 &stack->nest_regs_mr);
1411 pnv_xscom_add_subregion(chip,
1412 pec_pci_base + 0x40 * (stack->stack_no + 1),
1413 &stack->pci_regs_mr);
1414 pnv_xscom_add_subregion(chip,
1415 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1416 0x40 * stack->stack_no,
1417 &stack->phb_regs_mr);
1418 }
1419 }
1420 }
1421
1422 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1423 {
1424 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1425 Pnv9Chip *chip9 = PNV9_CHIP(dev);
1426 PnvChip *chip = PNV_CHIP(dev);
1427 Pnv9Psi *psi9 = &chip9->psi;
1428 Error *local_err = NULL;
1429
1430 /* XSCOM bridge is first */
1431 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1432 if (local_err) {
1433 error_propagate(errp, local_err);
1434 return;
1435 }
1436 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1437
1438 pcc->parent_realize(dev, &local_err);
1439 if (local_err) {
1440 error_propagate(errp, local_err);
1441 return;
1442 }
1443
1444 pnv_chip_quad_realize(chip9, &local_err);
1445 if (local_err) {
1446 error_propagate(errp, local_err);
1447 return;
1448 }
1449
1450 /* XIVE interrupt controller (POWER9) */
1451 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1452 "ic-bar", &error_fatal);
1453 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1454 "vc-bar", &error_fatal);
1455 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1456 "pc-bar", &error_fatal);
1457 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1458 "tm-bar", &error_fatal);
1459 object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1460 &error_abort);
1461 object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1462 &local_err);
1463 if (local_err) {
1464 error_propagate(errp, local_err);
1465 return;
1466 }
1467 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1468 &chip9->xive.xscom_regs);
1469
1470 /* Processor Service Interface (PSI) Host Bridge */
1471 object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1472 "bar", &error_fatal);
1473 object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1474 if (local_err) {
1475 error_propagate(errp, local_err);
1476 return;
1477 }
1478 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1479 &PNV_PSI(psi9)->xscom_regs);
1480
1481 /* LPC */
1482 object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1483 &error_abort);
1484 object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1485 if (local_err) {
1486 error_propagate(errp, local_err);
1487 return;
1488 }
1489 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1490 &chip9->lpc.xscom_regs);
1491
1492 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1493 (uint64_t) PNV9_LPCM_BASE(chip));
1494
1495 /* Create the simplified OCC model */
1496 object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1497 &error_abort);
1498 object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1499 if (local_err) {
1500 error_propagate(errp, local_err);
1501 return;
1502 }
1503 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1504
1505 /* OCC SRAM model */
1506 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1507 &chip9->occ.sram_regs);
1508
1509 /* HOMER */
1510 object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1511 &error_abort);
1512 object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1513 &local_err);
1514 if (local_err) {
1515 error_propagate(errp, local_err);
1516 return;
1517 }
1518 /* Homer Xscom region */
1519 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1520
1521 /* Homer mmio region */
1522 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1523 &chip9->homer.regs);
1524
1525 /* PHBs */
1526 pnv_chip_power9_phb_realize(chip, &local_err);
1527 if (local_err) {
1528 error_propagate(errp, local_err);
1529 return;
1530 }
1531 }
1532
1533 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1534 {
1535 addr &= (PNV9_XSCOM_SIZE - 1);
1536 return addr >> 3;
1537 }
1538
1539 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1540 {
1541 DeviceClass *dc = DEVICE_CLASS(klass);
1542 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1543
1544 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1545 k->cores_mask = POWER9_CORE_MASK;
1546 k->core_pir = pnv_chip_core_pir_p9;
1547 k->intc_create = pnv_chip_power9_intc_create;
1548 k->intc_reset = pnv_chip_power9_intc_reset;
1549 k->intc_destroy = pnv_chip_power9_intc_destroy;
1550 k->intc_print_info = pnv_chip_power9_intc_print_info;
1551 k->isa_create = pnv_chip_power9_isa_create;
1552 k->dt_populate = pnv_chip_power9_dt_populate;
1553 k->pic_print_info = pnv_chip_power9_pic_print_info;
1554 k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1555 k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1556 dc->desc = "PowerNV Chip POWER9";
1557 k->num_phbs = 6;
1558
1559 device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1560 &k->parent_realize);
1561 }
1562
1563 static void pnv_chip_power10_instance_init(Object *obj)
1564 {
1565 Pnv10Chip *chip10 = PNV10_CHIP(obj);
1566
1567 object_initialize_child(obj, "psi", &chip10->psi, sizeof(chip10->psi),
1568 TYPE_PNV10_PSI, &error_abort, NULL);
1569 object_initialize_child(obj, "lpc", &chip10->lpc, sizeof(chip10->lpc),
1570 TYPE_PNV10_LPC, &error_abort, NULL);
1571 }
1572
1573 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1574 {
1575 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1576 PnvChip *chip = PNV_CHIP(dev);
1577 Pnv10Chip *chip10 = PNV10_CHIP(dev);
1578 Error *local_err = NULL;
1579
1580 /* XSCOM bridge is first */
1581 pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1582 if (local_err) {
1583 error_propagate(errp, local_err);
1584 return;
1585 }
1586 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1587
1588 pcc->parent_realize(dev, &local_err);
1589 if (local_err) {
1590 error_propagate(errp, local_err);
1591 return;
1592 }
1593
1594 /* Processor Service Interface (PSI) Host Bridge */
1595 object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1596 "bar", &error_fatal);
1597 object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1598 &local_err);
1599 if (local_err) {
1600 error_propagate(errp, local_err);
1601 return;
1602 }
1603 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1604 &PNV_PSI(&chip10->psi)->xscom_regs);
1605
1606 /* LPC */
1607 object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1608 &error_abort);
1609 object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1610 &local_err);
1611 if (local_err) {
1612 error_propagate(errp, local_err);
1613 return;
1614 }
1615 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1616 &chip10->lpc.xscom_regs);
1617
1618 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1619 (uint64_t) PNV10_LPCM_BASE(chip));
1620 }
1621
1622 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1623 {
1624 addr &= (PNV10_XSCOM_SIZE - 1);
1625 return addr >> 3;
1626 }
1627
1628 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1629 {
1630 DeviceClass *dc = DEVICE_CLASS(klass);
1631 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1632
1633 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1634 k->cores_mask = POWER10_CORE_MASK;
1635 k->core_pir = pnv_chip_core_pir_p10;
1636 k->intc_create = pnv_chip_power10_intc_create;
1637 k->intc_reset = pnv_chip_power10_intc_reset;
1638 k->intc_destroy = pnv_chip_power10_intc_destroy;
1639 k->intc_print_info = pnv_chip_power10_intc_print_info;
1640 k->isa_create = pnv_chip_power10_isa_create;
1641 k->dt_populate = pnv_chip_power10_dt_populate;
1642 k->pic_print_info = pnv_chip_power10_pic_print_info;
1643 k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1644 k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1645 dc->desc = "PowerNV Chip POWER10";
1646
1647 device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1648 &k->parent_realize);
1649 }
1650
1651 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1652 {
1653 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1654 int cores_max;
1655
1656 /*
1657 * No custom mask for this chip, let's use the default one from *
1658 * the chip class
1659 */
1660 if (!chip->cores_mask) {
1661 chip->cores_mask = pcc->cores_mask;
1662 }
1663
1664 /* filter alien core ids ! some are reserved */
1665 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1666 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1667 chip->cores_mask);
1668 return;
1669 }
1670 chip->cores_mask &= pcc->cores_mask;
1671
1672 /* now that we have a sane layout, let check the number of cores */
1673 cores_max = ctpop64(chip->cores_mask);
1674 if (chip->nr_cores > cores_max) {
1675 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1676 cores_max);
1677 return;
1678 }
1679 }
1680
1681 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1682 {
1683 Error *error = NULL;
1684 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1685 const char *typename = pnv_chip_core_typename(chip);
1686 int i, core_hwid;
1687 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1688
1689 if (!object_class_by_name(typename)) {
1690 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1691 return;
1692 }
1693
1694 /* Cores */
1695 pnv_chip_core_sanitize(chip, &error);
1696 if (error) {
1697 error_propagate(errp, error);
1698 return;
1699 }
1700
1701 chip->cores = g_new0(PnvCore *, chip->nr_cores);
1702
1703 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1704 && (i < chip->nr_cores); core_hwid++) {
1705 char core_name[32];
1706 PnvCore *pnv_core;
1707 uint64_t xscom_core_base;
1708
1709 if (!(chip->cores_mask & (1ull << core_hwid))) {
1710 continue;
1711 }
1712
1713 pnv_core = PNV_CORE(object_new(typename));
1714
1715 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1716 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1717 &error_abort);
1718 chip->cores[i] = pnv_core;
1719 object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1720 "nr-threads", &error_fatal);
1721 object_property_set_int(OBJECT(pnv_core), core_hwid,
1722 CPU_CORE_PROP_CORE_ID, &error_fatal);
1723 object_property_set_int(OBJECT(pnv_core),
1724 pcc->core_pir(chip, core_hwid),
1725 "pir", &error_fatal);
1726 object_property_set_int(OBJECT(pnv_core), pnv->fw_load_addr,
1727 "hrmor", &error_fatal);
1728 object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1729 &error_abort);
1730 object_property_set_bool(OBJECT(pnv_core), true, "realized",
1731 &error_fatal);
1732
1733 /* Each core has an XSCOM MMIO region */
1734 xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1735
1736 pnv_xscom_add_subregion(chip, xscom_core_base,
1737 &pnv_core->xscom_regs);
1738 i++;
1739 }
1740 }
1741
1742 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1743 {
1744 PnvChip *chip = PNV_CHIP(dev);
1745 Error *error = NULL;
1746
1747 /* Cores */
1748 pnv_chip_core_realize(chip, &error);
1749 if (error) {
1750 error_propagate(errp, error);
1751 return;
1752 }
1753 }
1754
1755 static Property pnv_chip_properties[] = {
1756 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1757 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1758 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1759 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1760 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1761 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1762 DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1763 DEFINE_PROP_END_OF_LIST(),
1764 };
1765
1766 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1767 {
1768 DeviceClass *dc = DEVICE_CLASS(klass);
1769
1770 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1771 dc->realize = pnv_chip_realize;
1772 device_class_set_props(dc, pnv_chip_properties);
1773 dc->desc = "PowerNV Chip";
1774 }
1775
1776 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1777 {
1778 int i, j;
1779
1780 for (i = 0; i < chip->nr_cores; i++) {
1781 PnvCore *pc = chip->cores[i];
1782 CPUCore *cc = CPU_CORE(pc);
1783
1784 for (j = 0; j < cc->nr_threads; j++) {
1785 if (ppc_cpu_pir(pc->threads[j]) == pir) {
1786 return pc->threads[j];
1787 }
1788 }
1789 }
1790 return NULL;
1791 }
1792
1793 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1794 {
1795 PnvMachineState *pnv = PNV_MACHINE(xi);
1796 int i, j;
1797
1798 for (i = 0; i < pnv->num_chips; i++) {
1799 PnvChip *chip = pnv->chips[i];
1800 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1801
1802 if (ics_valid_irq(&chip8->psi.ics, irq)) {
1803 return &chip8->psi.ics;
1804 }
1805 for (j = 0; j < chip->num_phbs; j++) {
1806 if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1807 return &chip8->phbs[j].lsis;
1808 }
1809 if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1810 return ICS(&chip8->phbs[j].msis);
1811 }
1812 }
1813 }
1814 return NULL;
1815 }
1816
1817 static void pnv_ics_resend(XICSFabric *xi)
1818 {
1819 PnvMachineState *pnv = PNV_MACHINE(xi);
1820 int i, j;
1821
1822 for (i = 0; i < pnv->num_chips; i++) {
1823 PnvChip *chip = pnv->chips[i];
1824 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1825
1826 ics_resend(&chip8->psi.ics);
1827 for (j = 0; j < chip->num_phbs; j++) {
1828 ics_resend(&chip8->phbs[j].lsis);
1829 ics_resend(ICS(&chip8->phbs[j].msis));
1830 }
1831 }
1832 }
1833
1834 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1835 {
1836 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1837
1838 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1839 }
1840
1841 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1842 Monitor *mon)
1843 {
1844 PnvMachineState *pnv = PNV_MACHINE(obj);
1845 int i;
1846 CPUState *cs;
1847
1848 CPU_FOREACH(cs) {
1849 PowerPCCPU *cpu = POWERPC_CPU(cs);
1850
1851 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1852 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1853 mon);
1854 }
1855
1856 for (i = 0; i < pnv->num_chips; i++) {
1857 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1858 }
1859 }
1860
1861 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1862 uint8_t nvt_blk, uint32_t nvt_idx,
1863 bool cam_ignore, uint8_t priority,
1864 uint32_t logic_serv,
1865 XiveTCTXMatch *match)
1866 {
1867 PnvMachineState *pnv = PNV_MACHINE(xfb);
1868 int total_count = 0;
1869 int i;
1870
1871 for (i = 0; i < pnv->num_chips; i++) {
1872 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1873 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1874 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1875 int count;
1876
1877 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1878 priority, logic_serv, match);
1879
1880 if (count < 0) {
1881 return count;
1882 }
1883
1884 total_count += count;
1885 }
1886
1887 return total_count;
1888 }
1889
1890 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1891 {
1892 MachineClass *mc = MACHINE_CLASS(oc);
1893 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1894 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1895 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1896
1897 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1898 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1899
1900 xic->icp_get = pnv_icp_get;
1901 xic->ics_get = pnv_ics_get;
1902 xic->ics_resend = pnv_ics_resend;
1903
1904 pmc->compat = compat;
1905 pmc->compat_size = sizeof(compat);
1906 }
1907
1908 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1909 {
1910 MachineClass *mc = MACHINE_CLASS(oc);
1911 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1912 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1913 static const char compat[] = "qemu,powernv9\0ibm,powernv";
1914
1915 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1916 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1917 xfc->match_nvt = pnv_match_nvt;
1918
1919 mc->alias = "powernv";
1920
1921 pmc->compat = compat;
1922 pmc->compat_size = sizeof(compat);
1923 pmc->dt_power_mgt = pnv_dt_power_mgt;
1924 }
1925
1926 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1927 {
1928 MachineClass *mc = MACHINE_CLASS(oc);
1929 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1930 static const char compat[] = "qemu,powernv10\0ibm,powernv";
1931
1932 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1933 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1934
1935 pmc->compat = compat;
1936 pmc->compat_size = sizeof(compat);
1937 pmc->dt_power_mgt = pnv_dt_power_mgt;
1938 }
1939
1940 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1941 {
1942 PnvMachineState *pnv = PNV_MACHINE(obj);
1943
1944 return !!pnv->fw_load_addr;
1945 }
1946
1947 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1948 {
1949 PnvMachineState *pnv = PNV_MACHINE(obj);
1950
1951 if (value) {
1952 pnv->fw_load_addr = 0x8000000;
1953 }
1954 }
1955
1956 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1957 {
1958 MachineClass *mc = MACHINE_CLASS(oc);
1959 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1960
1961 mc->desc = "IBM PowerNV (Non-Virtualized)";
1962 mc->init = pnv_init;
1963 mc->reset = pnv_reset;
1964 mc->max_cpus = MAX_CPUS;
1965 /* Pnv provides a AHCI device for storage */
1966 mc->block_default_type = IF_IDE;
1967 mc->no_parallel = 1;
1968 mc->default_boot_order = NULL;
1969 /*
1970 * RAM defaults to less than 2048 for 32-bit hosts, and large
1971 * enough to fit the maximum initrd size at it's load address
1972 */
1973 mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1974 mc->default_ram_id = "pnv.ram";
1975 ispc->print_info = pnv_pic_print_info;
1976
1977 object_class_property_add_bool(oc, "hb-mode",
1978 pnv_machine_get_hb, pnv_machine_set_hb,
1979 &error_abort);
1980 object_class_property_set_description(oc, "hb-mode",
1981 "Use a hostboot like boot loader",
1982 NULL);
1983 }
1984
1985 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1986 { \
1987 .name = type, \
1988 .class_init = class_initfn, \
1989 .parent = TYPE_PNV8_CHIP, \
1990 }
1991
1992 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1993 { \
1994 .name = type, \
1995 .class_init = class_initfn, \
1996 .parent = TYPE_PNV9_CHIP, \
1997 }
1998
1999 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2000 { \
2001 .name = type, \
2002 .class_init = class_initfn, \
2003 .parent = TYPE_PNV10_CHIP, \
2004 }
2005
2006 static const TypeInfo types[] = {
2007 {
2008 .name = MACHINE_TYPE_NAME("powernv10"),
2009 .parent = TYPE_PNV_MACHINE,
2010 .class_init = pnv_machine_power10_class_init,
2011 },
2012 {
2013 .name = MACHINE_TYPE_NAME("powernv9"),
2014 .parent = TYPE_PNV_MACHINE,
2015 .class_init = pnv_machine_power9_class_init,
2016 .interfaces = (InterfaceInfo[]) {
2017 { TYPE_XIVE_FABRIC },
2018 { },
2019 },
2020 },
2021 {
2022 .name = MACHINE_TYPE_NAME("powernv8"),
2023 .parent = TYPE_PNV_MACHINE,
2024 .class_init = pnv_machine_power8_class_init,
2025 .interfaces = (InterfaceInfo[]) {
2026 { TYPE_XICS_FABRIC },
2027 { },
2028 },
2029 },
2030 {
2031 .name = TYPE_PNV_MACHINE,
2032 .parent = TYPE_MACHINE,
2033 .abstract = true,
2034 .instance_size = sizeof(PnvMachineState),
2035 .class_init = pnv_machine_class_init,
2036 .class_size = sizeof(PnvMachineClass),
2037 .interfaces = (InterfaceInfo[]) {
2038 { TYPE_INTERRUPT_STATS_PROVIDER },
2039 { },
2040 },
2041 },
2042 {
2043 .name = TYPE_PNV_CHIP,
2044 .parent = TYPE_SYS_BUS_DEVICE,
2045 .class_init = pnv_chip_class_init,
2046 .instance_size = sizeof(PnvChip),
2047 .class_size = sizeof(PnvChipClass),
2048 .abstract = true,
2049 },
2050
2051 /*
2052 * P10 chip and variants
2053 */
2054 {
2055 .name = TYPE_PNV10_CHIP,
2056 .parent = TYPE_PNV_CHIP,
2057 .instance_init = pnv_chip_power10_instance_init,
2058 .instance_size = sizeof(Pnv10Chip),
2059 },
2060 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2061
2062 /*
2063 * P9 chip and variants
2064 */
2065 {
2066 .name = TYPE_PNV9_CHIP,
2067 .parent = TYPE_PNV_CHIP,
2068 .instance_init = pnv_chip_power9_instance_init,
2069 .instance_size = sizeof(Pnv9Chip),
2070 },
2071 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2072
2073 /*
2074 * P8 chip and variants
2075 */
2076 {
2077 .name = TYPE_PNV8_CHIP,
2078 .parent = TYPE_PNV_CHIP,
2079 .instance_init = pnv_chip_power8_instance_init,
2080 .instance_size = sizeof(Pnv8Chip),
2081 },
2082 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2083 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2084 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2085 pnv_chip_power8nvl_class_init),
2086 };
2087
2088 DEFINE_TYPES(types)