]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
51256ac9ca2925c4e088d9dec796d7a38c8df80c
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/numa.h"
33 #include "sysemu/qtest.h"
34 #include "hw/hw.h"
35 #include "qemu/log.h"
36 #include "hw/fw-path-provider.h"
37 #include "elf.h"
38 #include "net/net.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/cpus.h"
41 #include "sysemu/hw_accel.h"
42 #include "kvm_ppc.h"
43 #include "migration/misc.h"
44 #include "migration/global_state.h"
45 #include "migration/register.h"
46 #include "mmu-hash64.h"
47 #include "mmu-book3s-v3.h"
48 #include "cpu-models.h"
49 #include "qom/cpu.h"
50
51 #include "hw/boards.h"
52 #include "hw/ppc/ppc.h"
53 #include "hw/loader.h"
54
55 #include "hw/ppc/fdt.h"
56 #include "hw/ppc/spapr.h"
57 #include "hw/ppc/spapr_vio.h"
58 #include "hw/pci-host/spapr.h"
59 #include "hw/pci/msi.h"
60
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
65
66 #include "exec/address-spaces.h"
67 #include "exec/ram_addr.h"
68 #include "hw/usb.h"
69 #include "qemu/config-file.h"
70 #include "qemu/error-report.h"
71 #include "trace.h"
72 #include "hw/nmi.h"
73 #include "hw/intc/intc.h"
74
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
77 #include "hw/mem/memory-device.h"
78
79 #include <libfdt.h>
80
81 /* SLOF memory layout:
82 *
83 * SLOF raw image loaded at 0, copies its romfs right below the flat
84 * device-tree, then position SLOF itself 31M below that
85 *
86 * So we set FW_OVERHEAD to 40MB which should account for all of that
87 * and more
88 *
89 * We load our kernel at 4M, leaving space for SLOF initial image
90 */
91 #define FDT_MAX_SIZE 0x100000
92 #define RTAS_MAX_SIZE 0x10000
93 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
94 #define FW_MAX_SIZE 0x400000
95 #define FW_FILE_NAME "slof.bin"
96 #define FW_OVERHEAD 0x2800000
97 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98
99 #define MIN_RMA_SLOF 128UL
100
101 #define PHANDLE_INTC 0x00001111
102
103 /* These two functions implement the VCPU id numbering: one to compute them
104 * all and one to identify thread 0 of a VCORE. Any change to the first one
105 * is likely to have an impact on the second one, so let's keep them close.
106 */
107 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
108 {
109 MachineState *ms = MACHINE(spapr);
110 unsigned int smp_threads = ms->smp.threads;
111
112 assert(spapr->vsmt);
113 return
114 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
115 }
116 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
117 PowerPCCPU *cpu)
118 {
119 assert(spapr->vsmt);
120 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
121 }
122
123 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
124 {
125 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
126 * and newer QEMUs don't even have them. In both cases, we don't want
127 * to send anything on the wire.
128 */
129 return false;
130 }
131
132 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
133 .name = "icp/server",
134 .version_id = 1,
135 .minimum_version_id = 1,
136 .needed = pre_2_10_vmstate_dummy_icp_needed,
137 .fields = (VMStateField[]) {
138 VMSTATE_UNUSED(4), /* uint32_t xirr */
139 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
140 VMSTATE_UNUSED(1), /* uint8_t mfrr */
141 VMSTATE_END_OF_LIST()
142 },
143 };
144
145 static void pre_2_10_vmstate_register_dummy_icp(int i)
146 {
147 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
148 (void *)(uintptr_t) i);
149 }
150
151 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
152 {
153 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
154 (void *)(uintptr_t) i);
155 }
156
157 int spapr_max_server_number(SpaprMachineState *spapr)
158 {
159 MachineState *ms = MACHINE(spapr);
160
161 assert(spapr->vsmt);
162 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
163 }
164
165 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
166 int smt_threads)
167 {
168 int i, ret = 0;
169 uint32_t servers_prop[smt_threads];
170 uint32_t gservers_prop[smt_threads * 2];
171 int index = spapr_get_vcpu_id(cpu);
172
173 if (cpu->compat_pvr) {
174 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
175 if (ret < 0) {
176 return ret;
177 }
178 }
179
180 /* Build interrupt servers and gservers properties */
181 for (i = 0; i < smt_threads; i++) {
182 servers_prop[i] = cpu_to_be32(index + i);
183 /* Hack, direct the group queues back to cpu 0 */
184 gservers_prop[i*2] = cpu_to_be32(index + i);
185 gservers_prop[i*2 + 1] = 0;
186 }
187 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
188 servers_prop, sizeof(servers_prop));
189 if (ret < 0) {
190 return ret;
191 }
192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
193 gservers_prop, sizeof(gservers_prop));
194
195 return ret;
196 }
197
198 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
199 {
200 int index = spapr_get_vcpu_id(cpu);
201 uint32_t associativity[] = {cpu_to_be32(0x5),
202 cpu_to_be32(0x0),
203 cpu_to_be32(0x0),
204 cpu_to_be32(0x0),
205 cpu_to_be32(cpu->node_id),
206 cpu_to_be32(index)};
207
208 /* Advertise NUMA via ibm,associativity */
209 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
210 sizeof(associativity));
211 }
212
213 /* Populate the "ibm,pa-features" property */
214 static void spapr_populate_pa_features(SpaprMachineState *spapr,
215 PowerPCCPU *cpu,
216 void *fdt, int offset,
217 bool legacy_guest)
218 {
219 uint8_t pa_features_206[] = { 6, 0,
220 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
221 uint8_t pa_features_207[] = { 24, 0,
222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
223 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
224 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
225 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
226 uint8_t pa_features_300[] = { 66, 0,
227 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
228 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
229 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
230 /* 6: DS207 */
231 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
232 /* 16: Vector */
233 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
234 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
235 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
236 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
238 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
239 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
240 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
242 /* 42: PM, 44: PC RA, 46: SC vec'd */
243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
244 /* 48: SIMD, 50: QP BFP, 52: String */
245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
246 /* 54: DecFP, 56: DecI, 58: SHA */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
248 /* 60: NM atomic, 62: RNG */
249 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
250 };
251 uint8_t *pa_features = NULL;
252 size_t pa_size;
253
254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
255 pa_features = pa_features_206;
256 pa_size = sizeof(pa_features_206);
257 }
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_207;
260 pa_size = sizeof(pa_features_207);
261 }
262 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
263 pa_features = pa_features_300;
264 pa_size = sizeof(pa_features_300);
265 }
266 if (!pa_features) {
267 return;
268 }
269
270 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
271 /*
272 * Note: we keep CI large pages off by default because a 64K capable
273 * guest provisioned with large pages might otherwise try to map a qemu
274 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
275 * even if that qemu runs on a 4k host.
276 * We dd this bit back here if we are confident this is not an issue
277 */
278 pa_features[3] |= 0x20;
279 }
280 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
281 pa_features[24] |= 0x80; /* Transactional memory support */
282 }
283 if (legacy_guest && pa_size > 40) {
284 /* Workaround for broken kernels that attempt (guest) radix
285 * mode when they can't handle it, if they see the radix bit set
286 * in pa-features. So hide it from them. */
287 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
288 }
289
290 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
291 }
292
293 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
294 {
295 MachineState *ms = MACHINE(spapr);
296 int ret = 0, offset, cpus_offset;
297 CPUState *cs;
298 char cpu_model[32];
299 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
300
301 CPU_FOREACH(cs) {
302 PowerPCCPU *cpu = POWERPC_CPU(cs);
303 DeviceClass *dc = DEVICE_GET_CLASS(cs);
304 int index = spapr_get_vcpu_id(cpu);
305 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
306
307 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
308 continue;
309 }
310
311 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
312
313 cpus_offset = fdt_path_offset(fdt, "/cpus");
314 if (cpus_offset < 0) {
315 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
316 if (cpus_offset < 0) {
317 return cpus_offset;
318 }
319 }
320 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
321 if (offset < 0) {
322 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
323 if (offset < 0) {
324 return offset;
325 }
326 }
327
328 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
329 pft_size_prop, sizeof(pft_size_prop));
330 if (ret < 0) {
331 return ret;
332 }
333
334 if (nb_numa_nodes > 1) {
335 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
336 if (ret < 0) {
337 return ret;
338 }
339 }
340
341 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
342 if (ret < 0) {
343 return ret;
344 }
345
346 spapr_populate_pa_features(spapr, cpu, fdt, offset,
347 spapr->cas_legacy_guest_workaround);
348 }
349 return ret;
350 }
351
352 static hwaddr spapr_node0_size(MachineState *machine)
353 {
354 if (nb_numa_nodes) {
355 int i;
356 for (i = 0; i < nb_numa_nodes; ++i) {
357 if (numa_info[i].node_mem) {
358 return MIN(pow2floor(numa_info[i].node_mem),
359 machine->ram_size);
360 }
361 }
362 }
363 return machine->ram_size;
364 }
365
366 static void add_str(GString *s, const gchar *s1)
367 {
368 g_string_append_len(s, s1, strlen(s1) + 1);
369 }
370
371 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
372 hwaddr size)
373 {
374 uint32_t associativity[] = {
375 cpu_to_be32(0x4), /* length */
376 cpu_to_be32(0x0), cpu_to_be32(0x0),
377 cpu_to_be32(0x0), cpu_to_be32(nodeid)
378 };
379 char mem_name[32];
380 uint64_t mem_reg_property[2];
381 int off;
382
383 mem_reg_property[0] = cpu_to_be64(start);
384 mem_reg_property[1] = cpu_to_be64(size);
385
386 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
387 off = fdt_add_subnode(fdt, 0, mem_name);
388 _FDT(off);
389 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
390 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
391 sizeof(mem_reg_property))));
392 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
393 sizeof(associativity))));
394 return off;
395 }
396
397 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
398 {
399 MachineState *machine = MACHINE(spapr);
400 hwaddr mem_start, node_size;
401 int i, nb_nodes = nb_numa_nodes;
402 NodeInfo *nodes = numa_info;
403 NodeInfo ramnode;
404
405 /* No NUMA nodes, assume there is just one node with whole RAM */
406 if (!nb_numa_nodes) {
407 nb_nodes = 1;
408 ramnode.node_mem = machine->ram_size;
409 nodes = &ramnode;
410 }
411
412 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
413 if (!nodes[i].node_mem) {
414 continue;
415 }
416 if (mem_start >= machine->ram_size) {
417 node_size = 0;
418 } else {
419 node_size = nodes[i].node_mem;
420 if (node_size > machine->ram_size - mem_start) {
421 node_size = machine->ram_size - mem_start;
422 }
423 }
424 if (!mem_start) {
425 /* spapr_machine_init() checks for rma_size <= node0_size
426 * already */
427 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
428 mem_start += spapr->rma_size;
429 node_size -= spapr->rma_size;
430 }
431 for ( ; node_size; ) {
432 hwaddr sizetmp = pow2floor(node_size);
433
434 /* mem_start != 0 here */
435 if (ctzl(mem_start) < ctzl(sizetmp)) {
436 sizetmp = 1ULL << ctzl(mem_start);
437 }
438
439 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
440 node_size -= sizetmp;
441 mem_start += sizetmp;
442 }
443 }
444
445 return 0;
446 }
447
448 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
449 SpaprMachineState *spapr)
450 {
451 MachineState *ms = MACHINE(spapr);
452 PowerPCCPU *cpu = POWERPC_CPU(cs);
453 CPUPPCState *env = &cpu->env;
454 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
455 int index = spapr_get_vcpu_id(cpu);
456 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
457 0xffffffff, 0xffffffff};
458 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
459 : SPAPR_TIMEBASE_FREQ;
460 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
461 uint32_t page_sizes_prop[64];
462 size_t page_sizes_prop_size;
463 unsigned int smp_threads = ms->smp.threads;
464 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
465 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
466 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
467 SpaprDrc *drc;
468 int drc_index;
469 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
470 int i;
471
472 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
473 if (drc) {
474 drc_index = spapr_drc_index(drc);
475 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
476 }
477
478 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
479 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
480
481 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
482 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
483 env->dcache_line_size)));
484 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
485 env->dcache_line_size)));
486 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
487 env->icache_line_size)));
488 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
489 env->icache_line_size)));
490
491 if (pcc->l1_dcache_size) {
492 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
493 pcc->l1_dcache_size)));
494 } else {
495 warn_report("Unknown L1 dcache size for cpu");
496 }
497 if (pcc->l1_icache_size) {
498 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
499 pcc->l1_icache_size)));
500 } else {
501 warn_report("Unknown L1 icache size for cpu");
502 }
503
504 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
505 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
506 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
507 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
508 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
509 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
510
511 if (env->spr_cb[SPR_PURR].oea_read) {
512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
513 }
514 if (env->spr_cb[SPR_SPURR].oea_read) {
515 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
516 }
517
518 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
519 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
520 segs, sizeof(segs))));
521 }
522
523 /* Advertise VSX (vector extensions) if available
524 * 1 == VMX / Altivec available
525 * 2 == VSX available
526 *
527 * Only CPUs for which we create core types in spapr_cpu_core.c
528 * are possible, and all of those have VMX */
529 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
530 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
531 } else {
532 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
533 }
534
535 /* Advertise DFP (Decimal Floating Point) if available
536 * 0 / no property == no DFP
537 * 1 == DFP available */
538 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
540 }
541
542 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
543 sizeof(page_sizes_prop));
544 if (page_sizes_prop_size) {
545 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
546 page_sizes_prop, page_sizes_prop_size)));
547 }
548
549 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
550
551 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
552 cs->cpu_index / vcpus_per_socket)));
553
554 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
555 pft_size_prop, sizeof(pft_size_prop))));
556
557 if (nb_numa_nodes > 1) {
558 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
559 }
560
561 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
562
563 if (pcc->radix_page_info) {
564 for (i = 0; i < pcc->radix_page_info->count; i++) {
565 radix_AP_encodings[i] =
566 cpu_to_be32(pcc->radix_page_info->entries[i]);
567 }
568 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
569 radix_AP_encodings,
570 pcc->radix_page_info->count *
571 sizeof(radix_AP_encodings[0]))));
572 }
573
574 /*
575 * We set this property to let the guest know that it can use the large
576 * decrementer and its width in bits.
577 */
578 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
579 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
580 pcc->lrg_decr_bits)));
581 }
582
583 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
584 {
585 CPUState **rev;
586 CPUState *cs;
587 int n_cpus;
588 int cpus_offset;
589 char *nodename;
590 int i;
591
592 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
593 _FDT(cpus_offset);
594 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
595 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
596
597 /*
598 * We walk the CPUs in reverse order to ensure that CPU DT nodes
599 * created by fdt_add_subnode() end up in the right order in FDT
600 * for the guest kernel the enumerate the CPUs correctly.
601 *
602 * The CPU list cannot be traversed in reverse order, so we need
603 * to do extra work.
604 */
605 n_cpus = 0;
606 rev = NULL;
607 CPU_FOREACH(cs) {
608 rev = g_renew(CPUState *, rev, n_cpus + 1);
609 rev[n_cpus++] = cs;
610 }
611
612 for (i = n_cpus - 1; i >= 0; i--) {
613 CPUState *cs = rev[i];
614 PowerPCCPU *cpu = POWERPC_CPU(cs);
615 int index = spapr_get_vcpu_id(cpu);
616 DeviceClass *dc = DEVICE_GET_CLASS(cs);
617 int offset;
618
619 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
620 continue;
621 }
622
623 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
624 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
625 g_free(nodename);
626 _FDT(offset);
627 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
628 }
629
630 g_free(rev);
631 }
632
633 static int spapr_rng_populate_dt(void *fdt)
634 {
635 int node;
636 int ret;
637
638 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
639 if (node <= 0) {
640 return -1;
641 }
642 ret = fdt_setprop_string(fdt, node, "device_type",
643 "ibm,platform-facilities");
644 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
645 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
646
647 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
648 if (node <= 0) {
649 return -1;
650 }
651 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
652
653 return ret ? -1 : 0;
654 }
655
656 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
657 {
658 MemoryDeviceInfoList *info;
659
660 for (info = list; info; info = info->next) {
661 MemoryDeviceInfo *value = info->value;
662
663 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
664 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
665
666 if (addr >= pcdimm_info->addr &&
667 addr < (pcdimm_info->addr + pcdimm_info->size)) {
668 return pcdimm_info->node;
669 }
670 }
671 }
672
673 return -1;
674 }
675
676 struct sPAPRDrconfCellV2 {
677 uint32_t seq_lmbs;
678 uint64_t base_addr;
679 uint32_t drc_index;
680 uint32_t aa_index;
681 uint32_t flags;
682 } QEMU_PACKED;
683
684 typedef struct DrconfCellQueue {
685 struct sPAPRDrconfCellV2 cell;
686 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
687 } DrconfCellQueue;
688
689 static DrconfCellQueue *
690 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
691 uint32_t drc_index, uint32_t aa_index,
692 uint32_t flags)
693 {
694 DrconfCellQueue *elem;
695
696 elem = g_malloc0(sizeof(*elem));
697 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
698 elem->cell.base_addr = cpu_to_be64(base_addr);
699 elem->cell.drc_index = cpu_to_be32(drc_index);
700 elem->cell.aa_index = cpu_to_be32(aa_index);
701 elem->cell.flags = cpu_to_be32(flags);
702
703 return elem;
704 }
705
706 /* ibm,dynamic-memory-v2 */
707 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
708 int offset, MemoryDeviceInfoList *dimms)
709 {
710 MachineState *machine = MACHINE(spapr);
711 uint8_t *int_buf, *cur_index;
712 int ret;
713 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
714 uint64_t addr, cur_addr, size;
715 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
716 uint64_t mem_end = machine->device_memory->base +
717 memory_region_size(&machine->device_memory->mr);
718 uint32_t node, buf_len, nr_entries = 0;
719 SpaprDrc *drc;
720 DrconfCellQueue *elem, *next;
721 MemoryDeviceInfoList *info;
722 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
723 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
724
725 /* Entry to cover RAM and the gap area */
726 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
727 SPAPR_LMB_FLAGS_RESERVED |
728 SPAPR_LMB_FLAGS_DRC_INVALID);
729 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
730 nr_entries++;
731
732 cur_addr = machine->device_memory->base;
733 for (info = dimms; info; info = info->next) {
734 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
735
736 addr = di->addr;
737 size = di->size;
738 node = di->node;
739
740 /* Entry for hot-pluggable area */
741 if (cur_addr < addr) {
742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
743 g_assert(drc);
744 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
745 cur_addr, spapr_drc_index(drc), -1, 0);
746 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
747 nr_entries++;
748 }
749
750 /* Entry for DIMM */
751 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
752 g_assert(drc);
753 elem = spapr_get_drconf_cell(size / lmb_size, addr,
754 spapr_drc_index(drc), node,
755 SPAPR_LMB_FLAGS_ASSIGNED);
756 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
757 nr_entries++;
758 cur_addr = addr + size;
759 }
760
761 /* Entry for remaining hotpluggable area */
762 if (cur_addr < mem_end) {
763 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
764 g_assert(drc);
765 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
766 cur_addr, spapr_drc_index(drc), -1, 0);
767 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
768 nr_entries++;
769 }
770
771 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
772 int_buf = cur_index = g_malloc0(buf_len);
773 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
774 cur_index += sizeof(nr_entries);
775
776 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
777 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
778 cur_index += sizeof(elem->cell);
779 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
780 g_free(elem);
781 }
782
783 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
784 g_free(int_buf);
785 if (ret < 0) {
786 return -1;
787 }
788 return 0;
789 }
790
791 /* ibm,dynamic-memory */
792 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
793 int offset, MemoryDeviceInfoList *dimms)
794 {
795 MachineState *machine = MACHINE(spapr);
796 int i, ret;
797 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
798 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
799 uint32_t nr_lmbs = (machine->device_memory->base +
800 memory_region_size(&machine->device_memory->mr)) /
801 lmb_size;
802 uint32_t *int_buf, *cur_index, buf_len;
803
804 /*
805 * Allocate enough buffer size to fit in ibm,dynamic-memory
806 */
807 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
808 cur_index = int_buf = g_malloc0(buf_len);
809 int_buf[0] = cpu_to_be32(nr_lmbs);
810 cur_index++;
811 for (i = 0; i < nr_lmbs; i++) {
812 uint64_t addr = i * lmb_size;
813 uint32_t *dynamic_memory = cur_index;
814
815 if (i >= device_lmb_start) {
816 SpaprDrc *drc;
817
818 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
819 g_assert(drc);
820
821 dynamic_memory[0] = cpu_to_be32(addr >> 32);
822 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
823 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
824 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
825 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
826 if (memory_region_present(get_system_memory(), addr)) {
827 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
828 } else {
829 dynamic_memory[5] = cpu_to_be32(0);
830 }
831 } else {
832 /*
833 * LMB information for RMA, boot time RAM and gap b/n RAM and
834 * device memory region -- all these are marked as reserved
835 * and as having no valid DRC.
836 */
837 dynamic_memory[0] = cpu_to_be32(addr >> 32);
838 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
839 dynamic_memory[2] = cpu_to_be32(0);
840 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
841 dynamic_memory[4] = cpu_to_be32(-1);
842 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
843 SPAPR_LMB_FLAGS_DRC_INVALID);
844 }
845
846 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
847 }
848 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
849 g_free(int_buf);
850 if (ret < 0) {
851 return -1;
852 }
853 return 0;
854 }
855
856 /*
857 * Adds ibm,dynamic-reconfiguration-memory node.
858 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
859 * of this device tree node.
860 */
861 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
862 {
863 MachineState *machine = MACHINE(spapr);
864 int ret, i, offset;
865 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
866 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
867 uint32_t *int_buf, *cur_index, buf_len;
868 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
869 MemoryDeviceInfoList *dimms = NULL;
870
871 /*
872 * Don't create the node if there is no device memory
873 */
874 if (machine->ram_size == machine->maxram_size) {
875 return 0;
876 }
877
878 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
879
880 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
881 sizeof(prop_lmb_size));
882 if (ret < 0) {
883 return ret;
884 }
885
886 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
887 if (ret < 0) {
888 return ret;
889 }
890
891 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
892 if (ret < 0) {
893 return ret;
894 }
895
896 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
897 dimms = qmp_memory_device_list();
898 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
899 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
900 } else {
901 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
902 }
903 qapi_free_MemoryDeviceInfoList(dimms);
904
905 if (ret < 0) {
906 return ret;
907 }
908
909 /* ibm,associativity-lookup-arrays */
910 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
911 cur_index = int_buf = g_malloc0(buf_len);
912 int_buf[0] = cpu_to_be32(nr_nodes);
913 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
914 cur_index += 2;
915 for (i = 0; i < nr_nodes; i++) {
916 uint32_t associativity[] = {
917 cpu_to_be32(0x0),
918 cpu_to_be32(0x0),
919 cpu_to_be32(0x0),
920 cpu_to_be32(i)
921 };
922 memcpy(cur_index, associativity, sizeof(associativity));
923 cur_index += 4;
924 }
925 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
926 (cur_index - int_buf) * sizeof(uint32_t));
927 g_free(int_buf);
928
929 return ret;
930 }
931
932 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
933 SpaprOptionVector *ov5_updates)
934 {
935 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
936 int ret = 0, offset;
937
938 /* Generate ibm,dynamic-reconfiguration-memory node if required */
939 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
940 g_assert(smc->dr_lmb_enabled);
941 ret = spapr_populate_drconf_memory(spapr, fdt);
942 if (ret) {
943 goto out;
944 }
945 }
946
947 offset = fdt_path_offset(fdt, "/chosen");
948 if (offset < 0) {
949 offset = fdt_add_subnode(fdt, 0, "chosen");
950 if (offset < 0) {
951 return offset;
952 }
953 }
954 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
955 "ibm,architecture-vec-5");
956
957 out:
958 return ret;
959 }
960
961 static bool spapr_hotplugged_dev_before_cas(void)
962 {
963 Object *drc_container, *obj;
964 ObjectProperty *prop;
965 ObjectPropertyIterator iter;
966
967 drc_container = container_get(object_get_root(), "/dr-connector");
968 object_property_iter_init(&iter, drc_container);
969 while ((prop = object_property_iter_next(&iter))) {
970 if (!strstart(prop->type, "link<", NULL)) {
971 continue;
972 }
973 obj = object_property_get_link(drc_container, prop->name, NULL);
974 if (spapr_drc_needed(obj)) {
975 return true;
976 }
977 }
978 return false;
979 }
980
981 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
982 target_ulong addr, target_ulong size,
983 SpaprOptionVector *ov5_updates)
984 {
985 void *fdt, *fdt_skel;
986 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
987
988 if (spapr_hotplugged_dev_before_cas()) {
989 return 1;
990 }
991
992 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
993 error_report("SLOF provided an unexpected CAS buffer size "
994 TARGET_FMT_lu " (min: %zu, max: %u)",
995 size, sizeof(hdr), FW_MAX_SIZE);
996 exit(EXIT_FAILURE);
997 }
998
999 size -= sizeof(hdr);
1000
1001 /* Create skeleton */
1002 fdt_skel = g_malloc0(size);
1003 _FDT((fdt_create(fdt_skel, size)));
1004 _FDT((fdt_finish_reservemap(fdt_skel)));
1005 _FDT((fdt_begin_node(fdt_skel, "")));
1006 _FDT((fdt_end_node(fdt_skel)));
1007 _FDT((fdt_finish(fdt_skel)));
1008 fdt = g_malloc0(size);
1009 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1010 g_free(fdt_skel);
1011
1012 /* Fixup cpu nodes */
1013 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1014
1015 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1016 return -1;
1017 }
1018
1019 /* Pack resulting tree */
1020 _FDT((fdt_pack(fdt)));
1021
1022 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1023 trace_spapr_cas_failed(size);
1024 return -1;
1025 }
1026
1027 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1028 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1029 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1030 g_free(fdt);
1031
1032 return 0;
1033 }
1034
1035 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1036 {
1037 MachineState *ms = MACHINE(spapr);
1038 int rtas;
1039 GString *hypertas = g_string_sized_new(256);
1040 GString *qemu_hypertas = g_string_sized_new(256);
1041 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1042 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1043 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1044 uint32_t lrdr_capacity[] = {
1045 cpu_to_be32(max_device_addr >> 32),
1046 cpu_to_be32(max_device_addr & 0xffffffff),
1047 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1048 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1049 };
1050 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1051 uint32_t maxdomains[] = {
1052 cpu_to_be32(4),
1053 maxdomain,
1054 maxdomain,
1055 maxdomain,
1056 cpu_to_be32(spapr->gpu_numa_id),
1057 };
1058
1059 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1060
1061 /* hypertas */
1062 add_str(hypertas, "hcall-pft");
1063 add_str(hypertas, "hcall-term");
1064 add_str(hypertas, "hcall-dabr");
1065 add_str(hypertas, "hcall-interrupt");
1066 add_str(hypertas, "hcall-tce");
1067 add_str(hypertas, "hcall-vio");
1068 add_str(hypertas, "hcall-splpar");
1069 add_str(hypertas, "hcall-bulk");
1070 add_str(hypertas, "hcall-set-mode");
1071 add_str(hypertas, "hcall-sprg0");
1072 add_str(hypertas, "hcall-copy");
1073 add_str(hypertas, "hcall-debug");
1074 add_str(hypertas, "hcall-vphn");
1075 add_str(qemu_hypertas, "hcall-memop1");
1076
1077 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1078 add_str(hypertas, "hcall-multi-tce");
1079 }
1080
1081 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1082 add_str(hypertas, "hcall-hpt-resize");
1083 }
1084
1085 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1086 hypertas->str, hypertas->len));
1087 g_string_free(hypertas, TRUE);
1088 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1089 qemu_hypertas->str, qemu_hypertas->len));
1090 g_string_free(qemu_hypertas, TRUE);
1091
1092 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1093 refpoints, sizeof(refpoints)));
1094
1095 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1096 maxdomains, sizeof(maxdomains)));
1097
1098 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1099 RTAS_ERROR_LOG_MAX));
1100 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1101 RTAS_EVENT_SCAN_RATE));
1102
1103 g_assert(msi_nonbroken);
1104 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1105
1106 /*
1107 * According to PAPR, rtas ibm,os-term does not guarantee a return
1108 * back to the guest cpu.
1109 *
1110 * While an additional ibm,extended-os-term property indicates
1111 * that rtas call return will always occur. Set this property.
1112 */
1113 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1114
1115 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1116 lrdr_capacity, sizeof(lrdr_capacity)));
1117
1118 spapr_dt_rtas_tokens(fdt, rtas);
1119 }
1120
1121 /*
1122 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1123 * and the XIVE features that the guest may request and thus the valid
1124 * values for bytes 23..26 of option vector 5:
1125 */
1126 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1127 int chosen)
1128 {
1129 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1130
1131 char val[2 * 4] = {
1132 23, spapr->irq->ov5, /* Xive mode. */
1133 24, 0x00, /* Hash/Radix, filled in below. */
1134 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1135 26, 0x40, /* Radix options: GTSE == yes. */
1136 };
1137
1138 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1139 first_ppc_cpu->compat_pvr)) {
1140 /*
1141 * If we're in a pre POWER9 compat mode then the guest should
1142 * do hash and use the legacy interrupt mode
1143 */
1144 val[1] = 0x00; /* XICS */
1145 val[3] = 0x00; /* Hash */
1146 } else if (kvm_enabled()) {
1147 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1148 val[3] = 0x80; /* OV5_MMU_BOTH */
1149 } else if (kvmppc_has_cap_mmu_radix()) {
1150 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1151 } else {
1152 val[3] = 0x00; /* Hash */
1153 }
1154 } else {
1155 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1156 val[3] = 0xC0;
1157 }
1158 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1159 val, sizeof(val)));
1160 }
1161
1162 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1163 {
1164 MachineState *machine = MACHINE(spapr);
1165 int chosen;
1166 const char *boot_device = machine->boot_order;
1167 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1168 size_t cb = 0;
1169 char *bootlist = get_boot_devices_list(&cb);
1170
1171 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1172
1173 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1174 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1175 spapr->initrd_base));
1176 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1177 spapr->initrd_base + spapr->initrd_size));
1178
1179 if (spapr->kernel_size) {
1180 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1181 cpu_to_be64(spapr->kernel_size) };
1182
1183 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1184 &kprop, sizeof(kprop)));
1185 if (spapr->kernel_le) {
1186 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1187 }
1188 }
1189 if (boot_menu) {
1190 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1191 }
1192 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1193 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1194 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1195
1196 if (cb && bootlist) {
1197 int i;
1198
1199 for (i = 0; i < cb; i++) {
1200 if (bootlist[i] == '\n') {
1201 bootlist[i] = ' ';
1202 }
1203 }
1204 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1205 }
1206
1207 if (boot_device && strlen(boot_device)) {
1208 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1209 }
1210
1211 if (!spapr->has_graphics && stdout_path) {
1212 /*
1213 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1214 * kernel. New platforms should only use the "stdout-path" property. Set
1215 * the new property and continue using older property to remain
1216 * compatible with the existing firmware.
1217 */
1218 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1219 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1220 }
1221
1222 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1223
1224 g_free(stdout_path);
1225 g_free(bootlist);
1226 }
1227
1228 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1229 {
1230 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1231 * KVM to work under pHyp with some guest co-operation */
1232 int hypervisor;
1233 uint8_t hypercall[16];
1234
1235 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1236 /* indicate KVM hypercall interface */
1237 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1238 if (kvmppc_has_cap_fixup_hcalls()) {
1239 /*
1240 * Older KVM versions with older guest kernels were broken
1241 * with the magic page, don't allow the guest to map it.
1242 */
1243 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1244 sizeof(hypercall))) {
1245 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1246 hypercall, sizeof(hypercall)));
1247 }
1248 }
1249 }
1250
1251 static void *spapr_build_fdt(SpaprMachineState *spapr)
1252 {
1253 MachineState *machine = MACHINE(spapr);
1254 MachineClass *mc = MACHINE_GET_CLASS(machine);
1255 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1256 int ret;
1257 void *fdt;
1258 SpaprPhbState *phb;
1259 char *buf;
1260
1261 fdt = g_malloc0(FDT_MAX_SIZE);
1262 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1263
1264 /* Root node */
1265 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1266 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1267 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1268
1269 /* Guest UUID & Name*/
1270 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1271 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1272 if (qemu_uuid_set) {
1273 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1274 }
1275 g_free(buf);
1276
1277 if (qemu_get_vm_name()) {
1278 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1279 qemu_get_vm_name()));
1280 }
1281
1282 /* Host Model & Serial Number */
1283 if (spapr->host_model) {
1284 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1285 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1286 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1287 g_free(buf);
1288 }
1289
1290 if (spapr->host_serial) {
1291 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1292 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1293 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1294 g_free(buf);
1295 }
1296
1297 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1298 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1299
1300 /* /interrupt controller */
1301 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1302 PHANDLE_INTC);
1303
1304 ret = spapr_populate_memory(spapr, fdt);
1305 if (ret < 0) {
1306 error_report("couldn't setup memory nodes in fdt");
1307 exit(1);
1308 }
1309
1310 /* /vdevice */
1311 spapr_dt_vdevice(spapr->vio_bus, fdt);
1312
1313 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1314 ret = spapr_rng_populate_dt(fdt);
1315 if (ret < 0) {
1316 error_report("could not set up rng device in the fdt");
1317 exit(1);
1318 }
1319 }
1320
1321 QLIST_FOREACH(phb, &spapr->phbs, list) {
1322 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1323 if (ret < 0) {
1324 error_report("couldn't setup PCI devices in fdt");
1325 exit(1);
1326 }
1327 }
1328
1329 /* cpus */
1330 spapr_populate_cpus_dt_node(fdt, spapr);
1331
1332 if (smc->dr_lmb_enabled) {
1333 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1334 }
1335
1336 if (mc->has_hotpluggable_cpus) {
1337 int offset = fdt_path_offset(fdt, "/cpus");
1338 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1339 if (ret < 0) {
1340 error_report("Couldn't set up CPU DR device tree properties");
1341 exit(1);
1342 }
1343 }
1344
1345 /* /event-sources */
1346 spapr_dt_events(spapr, fdt);
1347
1348 /* /rtas */
1349 spapr_dt_rtas(spapr, fdt);
1350
1351 /* /chosen */
1352 spapr_dt_chosen(spapr, fdt);
1353
1354 /* /hypervisor */
1355 if (kvm_enabled()) {
1356 spapr_dt_hypervisor(spapr, fdt);
1357 }
1358
1359 /* Build memory reserve map */
1360 if (spapr->kernel_size) {
1361 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1362 }
1363 if (spapr->initrd_size) {
1364 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1365 }
1366
1367 /* ibm,client-architecture-support updates */
1368 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1369 if (ret < 0) {
1370 error_report("couldn't setup CAS properties fdt");
1371 exit(1);
1372 }
1373
1374 if (smc->dr_phb_enabled) {
1375 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1376 if (ret < 0) {
1377 error_report("Couldn't set up PHB DR device tree properties");
1378 exit(1);
1379 }
1380 }
1381
1382 return fdt;
1383 }
1384
1385 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1386 {
1387 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1388 }
1389
1390 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1391 PowerPCCPU *cpu)
1392 {
1393 CPUPPCState *env = &cpu->env;
1394
1395 /* The TCG path should also be holding the BQL at this point */
1396 g_assert(qemu_mutex_iothread_locked());
1397
1398 if (msr_pr) {
1399 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1400 env->gpr[3] = H_PRIVILEGE;
1401 } else {
1402 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1403 }
1404 }
1405
1406 struct LPCRSyncState {
1407 target_ulong value;
1408 target_ulong mask;
1409 };
1410
1411 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1412 {
1413 struct LPCRSyncState *s = arg.host_ptr;
1414 PowerPCCPU *cpu = POWERPC_CPU(cs);
1415 CPUPPCState *env = &cpu->env;
1416 target_ulong lpcr;
1417
1418 cpu_synchronize_state(cs);
1419 lpcr = env->spr[SPR_LPCR];
1420 lpcr &= ~s->mask;
1421 lpcr |= s->value;
1422 ppc_store_lpcr(cpu, lpcr);
1423 }
1424
1425 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1426 {
1427 CPUState *cs;
1428 struct LPCRSyncState s = {
1429 .value = value,
1430 .mask = mask
1431 };
1432 CPU_FOREACH(cs) {
1433 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1434 }
1435 }
1436
1437 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1438 {
1439 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1440
1441 /* Copy PATE1:GR into PATE0:HR */
1442 entry->dw0 = spapr->patb_entry & PATE0_HR;
1443 entry->dw1 = spapr->patb_entry;
1444 }
1445
1446 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1447 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1448 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1449 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1450 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1451
1452 /*
1453 * Get the fd to access the kernel htab, re-opening it if necessary
1454 */
1455 static int get_htab_fd(SpaprMachineState *spapr)
1456 {
1457 Error *local_err = NULL;
1458
1459 if (spapr->htab_fd >= 0) {
1460 return spapr->htab_fd;
1461 }
1462
1463 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1464 if (spapr->htab_fd < 0) {
1465 error_report_err(local_err);
1466 }
1467
1468 return spapr->htab_fd;
1469 }
1470
1471 void close_htab_fd(SpaprMachineState *spapr)
1472 {
1473 if (spapr->htab_fd >= 0) {
1474 close(spapr->htab_fd);
1475 }
1476 spapr->htab_fd = -1;
1477 }
1478
1479 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1480 {
1481 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1482
1483 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1484 }
1485
1486 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1487 {
1488 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1489
1490 assert(kvm_enabled());
1491
1492 if (!spapr->htab) {
1493 return 0;
1494 }
1495
1496 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1497 }
1498
1499 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1500 hwaddr ptex, int n)
1501 {
1502 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1503 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1504
1505 if (!spapr->htab) {
1506 /*
1507 * HTAB is controlled by KVM. Fetch into temporary buffer
1508 */
1509 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1510 kvmppc_read_hptes(hptes, ptex, n);
1511 return hptes;
1512 }
1513
1514 /*
1515 * HTAB is controlled by QEMU. Just point to the internally
1516 * accessible PTEG.
1517 */
1518 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1519 }
1520
1521 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1522 const ppc_hash_pte64_t *hptes,
1523 hwaddr ptex, int n)
1524 {
1525 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1526
1527 if (!spapr->htab) {
1528 g_free((void *)hptes);
1529 }
1530
1531 /* Nothing to do for qemu managed HPT */
1532 }
1533
1534 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1535 uint64_t pte0, uint64_t pte1)
1536 {
1537 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1538 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1539
1540 if (!spapr->htab) {
1541 kvmppc_write_hpte(ptex, pte0, pte1);
1542 } else {
1543 if (pte0 & HPTE64_V_VALID) {
1544 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1545 /*
1546 * When setting valid, we write PTE1 first. This ensures
1547 * proper synchronization with the reading code in
1548 * ppc_hash64_pteg_search()
1549 */
1550 smp_wmb();
1551 stq_p(spapr->htab + offset, pte0);
1552 } else {
1553 stq_p(spapr->htab + offset, pte0);
1554 /*
1555 * When clearing it we set PTE0 first. This ensures proper
1556 * synchronization with the reading code in
1557 * ppc_hash64_pteg_search()
1558 */
1559 smp_wmb();
1560 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1561 }
1562 }
1563 }
1564
1565 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1566 uint64_t pte1)
1567 {
1568 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1569 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1570
1571 if (!spapr->htab) {
1572 /* There should always be a hash table when this is called */
1573 error_report("spapr_hpte_set_c called with no hash table !");
1574 return;
1575 }
1576
1577 /* The HW performs a non-atomic byte update */
1578 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1579 }
1580
1581 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1582 uint64_t pte1)
1583 {
1584 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1585 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1586
1587 if (!spapr->htab) {
1588 /* There should always be a hash table when this is called */
1589 error_report("spapr_hpte_set_r called with no hash table !");
1590 return;
1591 }
1592
1593 /* The HW performs a non-atomic byte update */
1594 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1595 }
1596
1597 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1598 {
1599 int shift;
1600
1601 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1602 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1603 * that's much more than is needed for Linux guests */
1604 shift = ctz64(pow2ceil(ramsize)) - 7;
1605 shift = MAX(shift, 18); /* Minimum architected size */
1606 shift = MIN(shift, 46); /* Maximum architected size */
1607 return shift;
1608 }
1609
1610 void spapr_free_hpt(SpaprMachineState *spapr)
1611 {
1612 g_free(spapr->htab);
1613 spapr->htab = NULL;
1614 spapr->htab_shift = 0;
1615 close_htab_fd(spapr);
1616 }
1617
1618 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1619 Error **errp)
1620 {
1621 long rc;
1622
1623 /* Clean up any HPT info from a previous boot */
1624 spapr_free_hpt(spapr);
1625
1626 rc = kvmppc_reset_htab(shift);
1627 if (rc < 0) {
1628 /* kernel-side HPT needed, but couldn't allocate one */
1629 error_setg_errno(errp, errno,
1630 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1631 shift);
1632 /* This is almost certainly fatal, but if the caller really
1633 * wants to carry on with shift == 0, it's welcome to try */
1634 } else if (rc > 0) {
1635 /* kernel-side HPT allocated */
1636 if (rc != shift) {
1637 error_setg(errp,
1638 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1639 shift, rc);
1640 }
1641
1642 spapr->htab_shift = shift;
1643 spapr->htab = NULL;
1644 } else {
1645 /* kernel-side HPT not needed, allocate in userspace instead */
1646 size_t size = 1ULL << shift;
1647 int i;
1648
1649 spapr->htab = qemu_memalign(size, size);
1650 if (!spapr->htab) {
1651 error_setg_errno(errp, errno,
1652 "Could not allocate HPT of order %d", shift);
1653 return;
1654 }
1655
1656 memset(spapr->htab, 0, size);
1657 spapr->htab_shift = shift;
1658
1659 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1660 DIRTY_HPTE(HPTE(spapr->htab, i));
1661 }
1662 }
1663 /* We're setting up a hash table, so that means we're not radix */
1664 spapr->patb_entry = 0;
1665 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1666 }
1667
1668 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1669 {
1670 int hpt_shift;
1671
1672 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1673 || (spapr->cas_reboot
1674 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1675 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1676 } else {
1677 uint64_t current_ram_size;
1678
1679 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1680 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1681 }
1682 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1683
1684 if (spapr->vrma_adjust) {
1685 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1686 spapr->htab_shift);
1687 }
1688 }
1689
1690 static int spapr_reset_drcs(Object *child, void *opaque)
1691 {
1692 SpaprDrc *drc =
1693 (SpaprDrc *) object_dynamic_cast(child,
1694 TYPE_SPAPR_DR_CONNECTOR);
1695
1696 if (drc) {
1697 spapr_drc_reset(drc);
1698 }
1699
1700 return 0;
1701 }
1702
1703 static void spapr_machine_reset(MachineState *machine)
1704 {
1705 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1706 PowerPCCPU *first_ppc_cpu;
1707 uint32_t rtas_limit;
1708 hwaddr rtas_addr, fdt_addr;
1709 void *fdt;
1710 int rc;
1711
1712 spapr_caps_apply(spapr);
1713
1714 first_ppc_cpu = POWERPC_CPU(first_cpu);
1715 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1716 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1717 spapr->max_compat_pvr)) {
1718 /*
1719 * If using KVM with radix mode available, VCPUs can be started
1720 * without a HPT because KVM will start them in radix mode.
1721 * Set the GR bit in PATE so that we know there is no HPT.
1722 */
1723 spapr->patb_entry = PATE1_GR;
1724 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1725 } else {
1726 spapr_setup_hpt_and_vrma(spapr);
1727 }
1728
1729 /*
1730 * If this reset wasn't generated by CAS, we should reset our
1731 * negotiated options and start from scratch
1732 */
1733 if (!spapr->cas_reboot) {
1734 spapr_ovec_cleanup(spapr->ov5_cas);
1735 spapr->ov5_cas = spapr_ovec_new();
1736
1737 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1738 }
1739
1740 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1741 spapr_irq_msi_reset(spapr);
1742 }
1743
1744 /*
1745 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1746 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1747 * called from vPHB reset handler so we initialize the counter here.
1748 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1749 * must be equally distant from any other node.
1750 * The final value of spapr->gpu_numa_id is going to be written to
1751 * max-associativity-domains in spapr_build_fdt().
1752 */
1753 spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1754 qemu_devices_reset();
1755
1756 /*
1757 * This is fixing some of the default configuration of the XIVE
1758 * devices. To be called after the reset of the machine devices.
1759 */
1760 spapr_irq_reset(spapr, &error_fatal);
1761
1762 /*
1763 * There is no CAS under qtest. Simulate one to please the code that
1764 * depends on spapr->ov5_cas. This is especially needed to test device
1765 * unplug, so we do that before resetting the DRCs.
1766 */
1767 if (qtest_enabled()) {
1768 spapr_ovec_cleanup(spapr->ov5_cas);
1769 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1770 }
1771
1772 /* DRC reset may cause a device to be unplugged. This will cause troubles
1773 * if this device is used by another device (eg, a running vhost backend
1774 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1775 * situations, we reset DRCs after all devices have been reset.
1776 */
1777 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1778
1779 spapr_clear_pending_events(spapr);
1780
1781 /*
1782 * We place the device tree and RTAS just below either the top of the RMA,
1783 * or just below 2GB, whichever is lower, so that it can be
1784 * processed with 32-bit real mode code if necessary
1785 */
1786 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1787 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1788 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1789
1790 fdt = spapr_build_fdt(spapr);
1791
1792 spapr_load_rtas(spapr, fdt, rtas_addr);
1793
1794 rc = fdt_pack(fdt);
1795
1796 /* Should only fail if we've built a corrupted tree */
1797 assert(rc == 0);
1798
1799 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1800 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1801 fdt_totalsize(fdt), FDT_MAX_SIZE);
1802 exit(1);
1803 }
1804
1805 /* Load the fdt */
1806 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1807 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1808 g_free(spapr->fdt_blob);
1809 spapr->fdt_size = fdt_totalsize(fdt);
1810 spapr->fdt_initial_size = spapr->fdt_size;
1811 spapr->fdt_blob = fdt;
1812
1813 /* Set up the entry state */
1814 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1815 first_ppc_cpu->env.gpr[5] = 0;
1816
1817 spapr->cas_reboot = false;
1818 }
1819
1820 static void spapr_create_nvram(SpaprMachineState *spapr)
1821 {
1822 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1823 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1824
1825 if (dinfo) {
1826 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1827 &error_fatal);
1828 }
1829
1830 qdev_init_nofail(dev);
1831
1832 spapr->nvram = (struct SpaprNvram *)dev;
1833 }
1834
1835 static void spapr_rtc_create(SpaprMachineState *spapr)
1836 {
1837 object_initialize_child(OBJECT(spapr), "rtc",
1838 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1839 &error_fatal, NULL);
1840 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1841 &error_fatal);
1842 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1843 "date", &error_fatal);
1844 }
1845
1846 /* Returns whether we want to use VGA or not */
1847 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1848 {
1849 switch (vga_interface_type) {
1850 case VGA_NONE:
1851 return false;
1852 case VGA_DEVICE:
1853 return true;
1854 case VGA_STD:
1855 case VGA_VIRTIO:
1856 case VGA_CIRRUS:
1857 return pci_vga_init(pci_bus) != NULL;
1858 default:
1859 error_setg(errp,
1860 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1861 return false;
1862 }
1863 }
1864
1865 static int spapr_pre_load(void *opaque)
1866 {
1867 int rc;
1868
1869 rc = spapr_caps_pre_load(opaque);
1870 if (rc) {
1871 return rc;
1872 }
1873
1874 return 0;
1875 }
1876
1877 static int spapr_post_load(void *opaque, int version_id)
1878 {
1879 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1880 int err = 0;
1881
1882 err = spapr_caps_post_migration(spapr);
1883 if (err) {
1884 return err;
1885 }
1886
1887 /*
1888 * In earlier versions, there was no separate qdev for the PAPR
1889 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1890 * So when migrating from those versions, poke the incoming offset
1891 * value into the RTC device
1892 */
1893 if (version_id < 3) {
1894 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1895 if (err) {
1896 return err;
1897 }
1898 }
1899
1900 if (kvm_enabled() && spapr->patb_entry) {
1901 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1902 bool radix = !!(spapr->patb_entry & PATE1_GR);
1903 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1904
1905 /*
1906 * Update LPCR:HR and UPRT as they may not be set properly in
1907 * the stream
1908 */
1909 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1910 LPCR_HR | LPCR_UPRT);
1911
1912 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1913 if (err) {
1914 error_report("Process table config unsupported by the host");
1915 return -EINVAL;
1916 }
1917 }
1918
1919 err = spapr_irq_post_load(spapr, version_id);
1920 if (err) {
1921 return err;
1922 }
1923
1924 return err;
1925 }
1926
1927 static int spapr_pre_save(void *opaque)
1928 {
1929 int rc;
1930
1931 rc = spapr_caps_pre_save(opaque);
1932 if (rc) {
1933 return rc;
1934 }
1935
1936 return 0;
1937 }
1938
1939 static bool version_before_3(void *opaque, int version_id)
1940 {
1941 return version_id < 3;
1942 }
1943
1944 static bool spapr_pending_events_needed(void *opaque)
1945 {
1946 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1947 return !QTAILQ_EMPTY(&spapr->pending_events);
1948 }
1949
1950 static const VMStateDescription vmstate_spapr_event_entry = {
1951 .name = "spapr_event_log_entry",
1952 .version_id = 1,
1953 .minimum_version_id = 1,
1954 .fields = (VMStateField[]) {
1955 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1956 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1957 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1958 NULL, extended_length),
1959 VMSTATE_END_OF_LIST()
1960 },
1961 };
1962
1963 static const VMStateDescription vmstate_spapr_pending_events = {
1964 .name = "spapr_pending_events",
1965 .version_id = 1,
1966 .minimum_version_id = 1,
1967 .needed = spapr_pending_events_needed,
1968 .fields = (VMStateField[]) {
1969 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1970 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1971 VMSTATE_END_OF_LIST()
1972 },
1973 };
1974
1975 static bool spapr_ov5_cas_needed(void *opaque)
1976 {
1977 SpaprMachineState *spapr = opaque;
1978 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1979 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1980 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1981 bool cas_needed;
1982
1983 /* Prior to the introduction of SpaprOptionVector, we had two option
1984 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1985 * Both of these options encode machine topology into the device-tree
1986 * in such a way that the now-booted OS should still be able to interact
1987 * appropriately with QEMU regardless of what options were actually
1988 * negotiatied on the source side.
1989 *
1990 * As such, we can avoid migrating the CAS-negotiated options if these
1991 * are the only options available on the current machine/platform.
1992 * Since these are the only options available for pseries-2.7 and
1993 * earlier, this allows us to maintain old->new/new->old migration
1994 * compatibility.
1995 *
1996 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1997 * via default pseries-2.8 machines and explicit command-line parameters.
1998 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1999 * of the actual CAS-negotiated values to continue working properly. For
2000 * example, availability of memory unplug depends on knowing whether
2001 * OV5_HP_EVT was negotiated via CAS.
2002 *
2003 * Thus, for any cases where the set of available CAS-negotiatable
2004 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2005 * include the CAS-negotiated options in the migration stream, unless
2006 * if they affect boot time behaviour only.
2007 */
2008 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2009 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2010 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2011
2012 /* spapr_ovec_diff returns true if bits were removed. we avoid using
2013 * the mask itself since in the future it's possible "legacy" bits may be
2014 * removed via machine options, which could generate a false positive
2015 * that breaks migration.
2016 */
2017 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2018 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2019
2020 spapr_ovec_cleanup(ov5_mask);
2021 spapr_ovec_cleanup(ov5_legacy);
2022 spapr_ovec_cleanup(ov5_removed);
2023
2024 return cas_needed;
2025 }
2026
2027 static const VMStateDescription vmstate_spapr_ov5_cas = {
2028 .name = "spapr_option_vector_ov5_cas",
2029 .version_id = 1,
2030 .minimum_version_id = 1,
2031 .needed = spapr_ov5_cas_needed,
2032 .fields = (VMStateField[]) {
2033 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2034 vmstate_spapr_ovec, SpaprOptionVector),
2035 VMSTATE_END_OF_LIST()
2036 },
2037 };
2038
2039 static bool spapr_patb_entry_needed(void *opaque)
2040 {
2041 SpaprMachineState *spapr = opaque;
2042
2043 return !!spapr->patb_entry;
2044 }
2045
2046 static const VMStateDescription vmstate_spapr_patb_entry = {
2047 .name = "spapr_patb_entry",
2048 .version_id = 1,
2049 .minimum_version_id = 1,
2050 .needed = spapr_patb_entry_needed,
2051 .fields = (VMStateField[]) {
2052 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2053 VMSTATE_END_OF_LIST()
2054 },
2055 };
2056
2057 static bool spapr_irq_map_needed(void *opaque)
2058 {
2059 SpaprMachineState *spapr = opaque;
2060
2061 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2062 }
2063
2064 static const VMStateDescription vmstate_spapr_irq_map = {
2065 .name = "spapr_irq_map",
2066 .version_id = 1,
2067 .minimum_version_id = 1,
2068 .needed = spapr_irq_map_needed,
2069 .fields = (VMStateField[]) {
2070 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2071 VMSTATE_END_OF_LIST()
2072 },
2073 };
2074
2075 static bool spapr_dtb_needed(void *opaque)
2076 {
2077 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2078
2079 return smc->update_dt_enabled;
2080 }
2081
2082 static int spapr_dtb_pre_load(void *opaque)
2083 {
2084 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2085
2086 g_free(spapr->fdt_blob);
2087 spapr->fdt_blob = NULL;
2088 spapr->fdt_size = 0;
2089
2090 return 0;
2091 }
2092
2093 static const VMStateDescription vmstate_spapr_dtb = {
2094 .name = "spapr_dtb",
2095 .version_id = 1,
2096 .minimum_version_id = 1,
2097 .needed = spapr_dtb_needed,
2098 .pre_load = spapr_dtb_pre_load,
2099 .fields = (VMStateField[]) {
2100 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2101 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2102 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2103 fdt_size),
2104 VMSTATE_END_OF_LIST()
2105 },
2106 };
2107
2108 static const VMStateDescription vmstate_spapr = {
2109 .name = "spapr",
2110 .version_id = 3,
2111 .minimum_version_id = 1,
2112 .pre_load = spapr_pre_load,
2113 .post_load = spapr_post_load,
2114 .pre_save = spapr_pre_save,
2115 .fields = (VMStateField[]) {
2116 /* used to be @next_irq */
2117 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2118
2119 /* RTC offset */
2120 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2121
2122 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2123 VMSTATE_END_OF_LIST()
2124 },
2125 .subsections = (const VMStateDescription*[]) {
2126 &vmstate_spapr_ov5_cas,
2127 &vmstate_spapr_patb_entry,
2128 &vmstate_spapr_pending_events,
2129 &vmstate_spapr_cap_htm,
2130 &vmstate_spapr_cap_vsx,
2131 &vmstate_spapr_cap_dfp,
2132 &vmstate_spapr_cap_cfpc,
2133 &vmstate_spapr_cap_sbbc,
2134 &vmstate_spapr_cap_ibs,
2135 &vmstate_spapr_cap_hpt_maxpagesize,
2136 &vmstate_spapr_irq_map,
2137 &vmstate_spapr_cap_nested_kvm_hv,
2138 &vmstate_spapr_dtb,
2139 &vmstate_spapr_cap_large_decr,
2140 &vmstate_spapr_cap_ccf_assist,
2141 NULL
2142 }
2143 };
2144
2145 static int htab_save_setup(QEMUFile *f, void *opaque)
2146 {
2147 SpaprMachineState *spapr = opaque;
2148
2149 /* "Iteration" header */
2150 if (!spapr->htab_shift) {
2151 qemu_put_be32(f, -1);
2152 } else {
2153 qemu_put_be32(f, spapr->htab_shift);
2154 }
2155
2156 if (spapr->htab) {
2157 spapr->htab_save_index = 0;
2158 spapr->htab_first_pass = true;
2159 } else {
2160 if (spapr->htab_shift) {
2161 assert(kvm_enabled());
2162 }
2163 }
2164
2165
2166 return 0;
2167 }
2168
2169 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2170 int chunkstart, int n_valid, int n_invalid)
2171 {
2172 qemu_put_be32(f, chunkstart);
2173 qemu_put_be16(f, n_valid);
2174 qemu_put_be16(f, n_invalid);
2175 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2176 HASH_PTE_SIZE_64 * n_valid);
2177 }
2178
2179 static void htab_save_end_marker(QEMUFile *f)
2180 {
2181 qemu_put_be32(f, 0);
2182 qemu_put_be16(f, 0);
2183 qemu_put_be16(f, 0);
2184 }
2185
2186 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2187 int64_t max_ns)
2188 {
2189 bool has_timeout = max_ns != -1;
2190 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2191 int index = spapr->htab_save_index;
2192 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2193
2194 assert(spapr->htab_first_pass);
2195
2196 do {
2197 int chunkstart;
2198
2199 /* Consume invalid HPTEs */
2200 while ((index < htabslots)
2201 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2202 CLEAN_HPTE(HPTE(spapr->htab, index));
2203 index++;
2204 }
2205
2206 /* Consume valid HPTEs */
2207 chunkstart = index;
2208 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2209 && HPTE_VALID(HPTE(spapr->htab, index))) {
2210 CLEAN_HPTE(HPTE(spapr->htab, index));
2211 index++;
2212 }
2213
2214 if (index > chunkstart) {
2215 int n_valid = index - chunkstart;
2216
2217 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2218
2219 if (has_timeout &&
2220 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2221 break;
2222 }
2223 }
2224 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2225
2226 if (index >= htabslots) {
2227 assert(index == htabslots);
2228 index = 0;
2229 spapr->htab_first_pass = false;
2230 }
2231 spapr->htab_save_index = index;
2232 }
2233
2234 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2235 int64_t max_ns)
2236 {
2237 bool final = max_ns < 0;
2238 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2239 int examined = 0, sent = 0;
2240 int index = spapr->htab_save_index;
2241 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2242
2243 assert(!spapr->htab_first_pass);
2244
2245 do {
2246 int chunkstart, invalidstart;
2247
2248 /* Consume non-dirty HPTEs */
2249 while ((index < htabslots)
2250 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2251 index++;
2252 examined++;
2253 }
2254
2255 chunkstart = index;
2256 /* Consume valid dirty HPTEs */
2257 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2258 && HPTE_DIRTY(HPTE(spapr->htab, index))
2259 && HPTE_VALID(HPTE(spapr->htab, index))) {
2260 CLEAN_HPTE(HPTE(spapr->htab, index));
2261 index++;
2262 examined++;
2263 }
2264
2265 invalidstart = index;
2266 /* Consume invalid dirty HPTEs */
2267 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2268 && HPTE_DIRTY(HPTE(spapr->htab, index))
2269 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2270 CLEAN_HPTE(HPTE(spapr->htab, index));
2271 index++;
2272 examined++;
2273 }
2274
2275 if (index > chunkstart) {
2276 int n_valid = invalidstart - chunkstart;
2277 int n_invalid = index - invalidstart;
2278
2279 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2280 sent += index - chunkstart;
2281
2282 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2283 break;
2284 }
2285 }
2286
2287 if (examined >= htabslots) {
2288 break;
2289 }
2290
2291 if (index >= htabslots) {
2292 assert(index == htabslots);
2293 index = 0;
2294 }
2295 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2296
2297 if (index >= htabslots) {
2298 assert(index == htabslots);
2299 index = 0;
2300 }
2301
2302 spapr->htab_save_index = index;
2303
2304 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2305 }
2306
2307 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2308 #define MAX_KVM_BUF_SIZE 2048
2309
2310 static int htab_save_iterate(QEMUFile *f, void *opaque)
2311 {
2312 SpaprMachineState *spapr = opaque;
2313 int fd;
2314 int rc = 0;
2315
2316 /* Iteration header */
2317 if (!spapr->htab_shift) {
2318 qemu_put_be32(f, -1);
2319 return 1;
2320 } else {
2321 qemu_put_be32(f, 0);
2322 }
2323
2324 if (!spapr->htab) {
2325 assert(kvm_enabled());
2326
2327 fd = get_htab_fd(spapr);
2328 if (fd < 0) {
2329 return fd;
2330 }
2331
2332 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2333 if (rc < 0) {
2334 return rc;
2335 }
2336 } else if (spapr->htab_first_pass) {
2337 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2338 } else {
2339 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2340 }
2341
2342 htab_save_end_marker(f);
2343
2344 return rc;
2345 }
2346
2347 static int htab_save_complete(QEMUFile *f, void *opaque)
2348 {
2349 SpaprMachineState *spapr = opaque;
2350 int fd;
2351
2352 /* Iteration header */
2353 if (!spapr->htab_shift) {
2354 qemu_put_be32(f, -1);
2355 return 0;
2356 } else {
2357 qemu_put_be32(f, 0);
2358 }
2359
2360 if (!spapr->htab) {
2361 int rc;
2362
2363 assert(kvm_enabled());
2364
2365 fd = get_htab_fd(spapr);
2366 if (fd < 0) {
2367 return fd;
2368 }
2369
2370 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2371 if (rc < 0) {
2372 return rc;
2373 }
2374 } else {
2375 if (spapr->htab_first_pass) {
2376 htab_save_first_pass(f, spapr, -1);
2377 }
2378 htab_save_later_pass(f, spapr, -1);
2379 }
2380
2381 /* End marker */
2382 htab_save_end_marker(f);
2383
2384 return 0;
2385 }
2386
2387 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2388 {
2389 SpaprMachineState *spapr = opaque;
2390 uint32_t section_hdr;
2391 int fd = -1;
2392 Error *local_err = NULL;
2393
2394 if (version_id < 1 || version_id > 1) {
2395 error_report("htab_load() bad version");
2396 return -EINVAL;
2397 }
2398
2399 section_hdr = qemu_get_be32(f);
2400
2401 if (section_hdr == -1) {
2402 spapr_free_hpt(spapr);
2403 return 0;
2404 }
2405
2406 if (section_hdr) {
2407 /* First section gives the htab size */
2408 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2409 if (local_err) {
2410 error_report_err(local_err);
2411 return -EINVAL;
2412 }
2413 return 0;
2414 }
2415
2416 if (!spapr->htab) {
2417 assert(kvm_enabled());
2418
2419 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2420 if (fd < 0) {
2421 error_report_err(local_err);
2422 return fd;
2423 }
2424 }
2425
2426 while (true) {
2427 uint32_t index;
2428 uint16_t n_valid, n_invalid;
2429
2430 index = qemu_get_be32(f);
2431 n_valid = qemu_get_be16(f);
2432 n_invalid = qemu_get_be16(f);
2433
2434 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2435 /* End of Stream */
2436 break;
2437 }
2438
2439 if ((index + n_valid + n_invalid) >
2440 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2441 /* Bad index in stream */
2442 error_report(
2443 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2444 index, n_valid, n_invalid, spapr->htab_shift);
2445 return -EINVAL;
2446 }
2447
2448 if (spapr->htab) {
2449 if (n_valid) {
2450 qemu_get_buffer(f, HPTE(spapr->htab, index),
2451 HASH_PTE_SIZE_64 * n_valid);
2452 }
2453 if (n_invalid) {
2454 memset(HPTE(spapr->htab, index + n_valid), 0,
2455 HASH_PTE_SIZE_64 * n_invalid);
2456 }
2457 } else {
2458 int rc;
2459
2460 assert(fd >= 0);
2461
2462 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2463 if (rc < 0) {
2464 return rc;
2465 }
2466 }
2467 }
2468
2469 if (!spapr->htab) {
2470 assert(fd >= 0);
2471 close(fd);
2472 }
2473
2474 return 0;
2475 }
2476
2477 static void htab_save_cleanup(void *opaque)
2478 {
2479 SpaprMachineState *spapr = opaque;
2480
2481 close_htab_fd(spapr);
2482 }
2483
2484 static SaveVMHandlers savevm_htab_handlers = {
2485 .save_setup = htab_save_setup,
2486 .save_live_iterate = htab_save_iterate,
2487 .save_live_complete_precopy = htab_save_complete,
2488 .save_cleanup = htab_save_cleanup,
2489 .load_state = htab_load,
2490 };
2491
2492 static void spapr_boot_set(void *opaque, const char *boot_device,
2493 Error **errp)
2494 {
2495 MachineState *machine = MACHINE(opaque);
2496 machine->boot_order = g_strdup(boot_device);
2497 }
2498
2499 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2500 {
2501 MachineState *machine = MACHINE(spapr);
2502 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2503 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2504 int i;
2505
2506 for (i = 0; i < nr_lmbs; i++) {
2507 uint64_t addr;
2508
2509 addr = i * lmb_size + machine->device_memory->base;
2510 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2511 addr / lmb_size);
2512 }
2513 }
2514
2515 /*
2516 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2517 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2518 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2519 */
2520 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2521 {
2522 int i;
2523
2524 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2525 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2526 " is not aligned to %" PRIu64 " MiB",
2527 machine->ram_size,
2528 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2529 return;
2530 }
2531
2532 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2533 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2534 " is not aligned to %" PRIu64 " MiB",
2535 machine->ram_size,
2536 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2537 return;
2538 }
2539
2540 for (i = 0; i < nb_numa_nodes; i++) {
2541 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2542 error_setg(errp,
2543 "Node %d memory size 0x%" PRIx64
2544 " is not aligned to %" PRIu64 " MiB",
2545 i, numa_info[i].node_mem,
2546 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2547 return;
2548 }
2549 }
2550 }
2551
2552 /* find cpu slot in machine->possible_cpus by core_id */
2553 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2554 {
2555 int index = id / ms->smp.threads;
2556
2557 if (index >= ms->possible_cpus->len) {
2558 return NULL;
2559 }
2560 if (idx) {
2561 *idx = index;
2562 }
2563 return &ms->possible_cpus->cpus[index];
2564 }
2565
2566 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2567 {
2568 MachineState *ms = MACHINE(spapr);
2569 Error *local_err = NULL;
2570 bool vsmt_user = !!spapr->vsmt;
2571 int kvm_smt = kvmppc_smt_threads();
2572 int ret;
2573 unsigned int smp_threads = ms->smp.threads;
2574
2575 if (!kvm_enabled() && (smp_threads > 1)) {
2576 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2577 "on a pseries machine");
2578 goto out;
2579 }
2580 if (!is_power_of_2(smp_threads)) {
2581 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2582 "machine because it must be a power of 2", smp_threads);
2583 goto out;
2584 }
2585
2586 /* Detemine the VSMT mode to use: */
2587 if (vsmt_user) {
2588 if (spapr->vsmt < smp_threads) {
2589 error_setg(&local_err, "Cannot support VSMT mode %d"
2590 " because it must be >= threads/core (%d)",
2591 spapr->vsmt, smp_threads);
2592 goto out;
2593 }
2594 /* In this case, spapr->vsmt has been set by the command line */
2595 } else {
2596 /*
2597 * Default VSMT value is tricky, because we need it to be as
2598 * consistent as possible (for migration), but this requires
2599 * changing it for at least some existing cases. We pick 8 as
2600 * the value that we'd get with KVM on POWER8, the
2601 * overwhelmingly common case in production systems.
2602 */
2603 spapr->vsmt = MAX(8, smp_threads);
2604 }
2605
2606 /* KVM: If necessary, set the SMT mode: */
2607 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2608 ret = kvmppc_set_smt_threads(spapr->vsmt);
2609 if (ret) {
2610 /* Looks like KVM isn't able to change VSMT mode */
2611 error_setg(&local_err,
2612 "Failed to set KVM's VSMT mode to %d (errno %d)",
2613 spapr->vsmt, ret);
2614 /* We can live with that if the default one is big enough
2615 * for the number of threads, and a submultiple of the one
2616 * we want. In this case we'll waste some vcpu ids, but
2617 * behaviour will be correct */
2618 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2619 warn_report_err(local_err);
2620 local_err = NULL;
2621 goto out;
2622 } else {
2623 if (!vsmt_user) {
2624 error_append_hint(&local_err,
2625 "On PPC, a VM with %d threads/core"
2626 " on a host with %d threads/core"
2627 " requires the use of VSMT mode %d.\n",
2628 smp_threads, kvm_smt, spapr->vsmt);
2629 }
2630 kvmppc_hint_smt_possible(&local_err);
2631 goto out;
2632 }
2633 }
2634 }
2635 /* else TCG: nothing to do currently */
2636 out:
2637 error_propagate(errp, local_err);
2638 }
2639
2640 static void spapr_init_cpus(SpaprMachineState *spapr)
2641 {
2642 MachineState *machine = MACHINE(spapr);
2643 MachineClass *mc = MACHINE_GET_CLASS(machine);
2644 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2645 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2646 const CPUArchIdList *possible_cpus;
2647 unsigned int smp_cpus = machine->smp.cpus;
2648 unsigned int smp_threads = machine->smp.threads;
2649 unsigned int max_cpus = machine->smp.max_cpus;
2650 int boot_cores_nr = smp_cpus / smp_threads;
2651 int i;
2652
2653 possible_cpus = mc->possible_cpu_arch_ids(machine);
2654 if (mc->has_hotpluggable_cpus) {
2655 if (smp_cpus % smp_threads) {
2656 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2657 smp_cpus, smp_threads);
2658 exit(1);
2659 }
2660 if (max_cpus % smp_threads) {
2661 error_report("max_cpus (%u) must be multiple of threads (%u)",
2662 max_cpus, smp_threads);
2663 exit(1);
2664 }
2665 } else {
2666 if (max_cpus != smp_cpus) {
2667 error_report("This machine version does not support CPU hotplug");
2668 exit(1);
2669 }
2670 boot_cores_nr = possible_cpus->len;
2671 }
2672
2673 if (smc->pre_2_10_has_unused_icps) {
2674 int i;
2675
2676 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2677 /* Dummy entries get deregistered when real ICPState objects
2678 * are registered during CPU core hotplug.
2679 */
2680 pre_2_10_vmstate_register_dummy_icp(i);
2681 }
2682 }
2683
2684 for (i = 0; i < possible_cpus->len; i++) {
2685 int core_id = i * smp_threads;
2686
2687 if (mc->has_hotpluggable_cpus) {
2688 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2689 spapr_vcpu_id(spapr, core_id));
2690 }
2691
2692 if (i < boot_cores_nr) {
2693 Object *core = object_new(type);
2694 int nr_threads = smp_threads;
2695
2696 /* Handle the partially filled core for older machine types */
2697 if ((i + 1) * smp_threads >= smp_cpus) {
2698 nr_threads = smp_cpus - i * smp_threads;
2699 }
2700
2701 object_property_set_int(core, nr_threads, "nr-threads",
2702 &error_fatal);
2703 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2704 &error_fatal);
2705 object_property_set_bool(core, true, "realized", &error_fatal);
2706
2707 object_unref(core);
2708 }
2709 }
2710 }
2711
2712 static PCIHostState *spapr_create_default_phb(void)
2713 {
2714 DeviceState *dev;
2715
2716 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2717 qdev_prop_set_uint32(dev, "index", 0);
2718 qdev_init_nofail(dev);
2719
2720 return PCI_HOST_BRIDGE(dev);
2721 }
2722
2723 /* pSeries LPAR / sPAPR hardware init */
2724 static void spapr_machine_init(MachineState *machine)
2725 {
2726 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2727 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2728 const char *kernel_filename = machine->kernel_filename;
2729 const char *initrd_filename = machine->initrd_filename;
2730 PCIHostState *phb;
2731 int i;
2732 MemoryRegion *sysmem = get_system_memory();
2733 MemoryRegion *ram = g_new(MemoryRegion, 1);
2734 hwaddr node0_size = spapr_node0_size(machine);
2735 long load_limit, fw_size;
2736 char *filename;
2737 Error *resize_hpt_err = NULL;
2738
2739 msi_nonbroken = true;
2740
2741 QLIST_INIT(&spapr->phbs);
2742 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2743
2744 /* Determine capabilities to run with */
2745 spapr_caps_init(spapr);
2746
2747 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2748 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2749 /*
2750 * If the user explicitly requested a mode we should either
2751 * supply it, or fail completely (which we do below). But if
2752 * it's not set explicitly, we reset our mode to something
2753 * that works
2754 */
2755 if (resize_hpt_err) {
2756 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2757 error_free(resize_hpt_err);
2758 resize_hpt_err = NULL;
2759 } else {
2760 spapr->resize_hpt = smc->resize_hpt_default;
2761 }
2762 }
2763
2764 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2765
2766 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2767 /*
2768 * User requested HPT resize, but this host can't supply it. Bail out
2769 */
2770 error_report_err(resize_hpt_err);
2771 exit(1);
2772 }
2773
2774 spapr->rma_size = node0_size;
2775
2776 /* With KVM, we don't actually know whether KVM supports an
2777 * unbounded RMA (PR KVM) or is limited by the hash table size
2778 * (HV KVM using VRMA), so we always assume the latter
2779 *
2780 * In that case, we also limit the initial allocations for RTAS
2781 * etc... to 256M since we have no way to know what the VRMA size
2782 * is going to be as it depends on the size of the hash table
2783 * which isn't determined yet.
2784 */
2785 if (kvm_enabled()) {
2786 spapr->vrma_adjust = 1;
2787 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2788 }
2789
2790 /* Actually we don't support unbounded RMA anymore since we added
2791 * proper emulation of HV mode. The max we can get is 16G which
2792 * also happens to be what we configure for PAPR mode so make sure
2793 * we don't do anything bigger than that
2794 */
2795 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2796
2797 if (spapr->rma_size > node0_size) {
2798 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2799 spapr->rma_size);
2800 exit(1);
2801 }
2802
2803 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2804 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2805
2806 /*
2807 * VSMT must be set in order to be able to compute VCPU ids, ie to
2808 * call spapr_max_server_number() or spapr_vcpu_id().
2809 */
2810 spapr_set_vsmt_mode(spapr, &error_fatal);
2811
2812 /* Set up Interrupt Controller before we create the VCPUs */
2813 spapr_irq_init(spapr, &error_fatal);
2814
2815 /* Set up containers for ibm,client-architecture-support negotiated options
2816 */
2817 spapr->ov5 = spapr_ovec_new();
2818 spapr->ov5_cas = spapr_ovec_new();
2819
2820 if (smc->dr_lmb_enabled) {
2821 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2822 spapr_validate_node_memory(machine, &error_fatal);
2823 }
2824
2825 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2826
2827 /* advertise support for dedicated HP event source to guests */
2828 if (spapr->use_hotplug_event_source) {
2829 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2830 }
2831
2832 /* advertise support for HPT resizing */
2833 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2834 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2835 }
2836
2837 /* advertise support for ibm,dyamic-memory-v2 */
2838 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2839
2840 /* advertise XIVE on POWER9 machines */
2841 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2842 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2843 }
2844
2845 /* init CPUs */
2846 spapr_init_cpus(spapr);
2847
2848 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2849 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2850 spapr->max_compat_pvr)) {
2851 /* KVM and TCG always allow GTSE with radix... */
2852 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2853 }
2854 /* ... but not with hash (currently). */
2855
2856 if (kvm_enabled()) {
2857 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2858 kvmppc_enable_logical_ci_hcalls();
2859 kvmppc_enable_set_mode_hcall();
2860
2861 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2862 kvmppc_enable_clear_ref_mod_hcalls();
2863
2864 /* Enable H_PAGE_INIT */
2865 kvmppc_enable_h_page_init();
2866 }
2867
2868 /* allocate RAM */
2869 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2870 machine->ram_size);
2871 memory_region_add_subregion(sysmem, 0, ram);
2872
2873 /* always allocate the device memory information */
2874 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2875
2876 /* initialize hotplug memory address space */
2877 if (machine->ram_size < machine->maxram_size) {
2878 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2879 /*
2880 * Limit the number of hotpluggable memory slots to half the number
2881 * slots that KVM supports, leaving the other half for PCI and other
2882 * devices. However ensure that number of slots doesn't drop below 32.
2883 */
2884 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2885 SPAPR_MAX_RAM_SLOTS;
2886
2887 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2888 max_memslots = SPAPR_MAX_RAM_SLOTS;
2889 }
2890 if (machine->ram_slots > max_memslots) {
2891 error_report("Specified number of memory slots %"
2892 PRIu64" exceeds max supported %d",
2893 machine->ram_slots, max_memslots);
2894 exit(1);
2895 }
2896
2897 machine->device_memory->base = ROUND_UP(machine->ram_size,
2898 SPAPR_DEVICE_MEM_ALIGN);
2899 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2900 "device-memory", device_mem_size);
2901 memory_region_add_subregion(sysmem, machine->device_memory->base,
2902 &machine->device_memory->mr);
2903 }
2904
2905 if (smc->dr_lmb_enabled) {
2906 spapr_create_lmb_dr_connectors(spapr);
2907 }
2908
2909 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2910 if (!filename) {
2911 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2912 exit(1);
2913 }
2914 spapr->rtas_size = get_image_size(filename);
2915 if (spapr->rtas_size < 0) {
2916 error_report("Could not get size of LPAR rtas '%s'", filename);
2917 exit(1);
2918 }
2919 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2920 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2921 error_report("Could not load LPAR rtas '%s'", filename);
2922 exit(1);
2923 }
2924 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2925 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2926 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2927 exit(1);
2928 }
2929 g_free(filename);
2930
2931 /* Set up RTAS event infrastructure */
2932 spapr_events_init(spapr);
2933
2934 /* Set up the RTC RTAS interfaces */
2935 spapr_rtc_create(spapr);
2936
2937 /* Set up VIO bus */
2938 spapr->vio_bus = spapr_vio_bus_init();
2939
2940 for (i = 0; i < serial_max_hds(); i++) {
2941 if (serial_hd(i)) {
2942 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2943 }
2944 }
2945
2946 /* We always have at least the nvram device on VIO */
2947 spapr_create_nvram(spapr);
2948
2949 /*
2950 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2951 * connectors (described in root DT node's "ibm,drc-types" property)
2952 * are pre-initialized here. additional child connectors (such as
2953 * connectors for a PHBs PCI slots) are added as needed during their
2954 * parent's realization.
2955 */
2956 if (smc->dr_phb_enabled) {
2957 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2958 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2959 }
2960 }
2961
2962 /* Set up PCI */
2963 spapr_pci_rtas_init();
2964
2965 phb = spapr_create_default_phb();
2966
2967 for (i = 0; i < nb_nics; i++) {
2968 NICInfo *nd = &nd_table[i];
2969
2970 if (!nd->model) {
2971 nd->model = g_strdup("spapr-vlan");
2972 }
2973
2974 if (g_str_equal(nd->model, "spapr-vlan") ||
2975 g_str_equal(nd->model, "ibmveth")) {
2976 spapr_vlan_create(spapr->vio_bus, nd);
2977 } else {
2978 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2979 }
2980 }
2981
2982 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2983 spapr_vscsi_create(spapr->vio_bus);
2984 }
2985
2986 /* Graphics */
2987 if (spapr_vga_init(phb->bus, &error_fatal)) {
2988 spapr->has_graphics = true;
2989 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2990 }
2991
2992 if (machine->usb) {
2993 if (smc->use_ohci_by_default) {
2994 pci_create_simple(phb->bus, -1, "pci-ohci");
2995 } else {
2996 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2997 }
2998
2999 if (spapr->has_graphics) {
3000 USBBus *usb_bus = usb_bus_find(-1);
3001
3002 usb_create_simple(usb_bus, "usb-kbd");
3003 usb_create_simple(usb_bus, "usb-mouse");
3004 }
3005 }
3006
3007 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3008 error_report(
3009 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3010 MIN_RMA_SLOF);
3011 exit(1);
3012 }
3013
3014 if (kernel_filename) {
3015 uint64_t lowaddr = 0;
3016
3017 spapr->kernel_size = load_elf(kernel_filename, NULL,
3018 translate_kernel_address, NULL,
3019 NULL, &lowaddr, NULL, 1,
3020 PPC_ELF_MACHINE, 0, 0);
3021 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3022 spapr->kernel_size = load_elf(kernel_filename, NULL,
3023 translate_kernel_address, NULL, NULL,
3024 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3025 0, 0);
3026 spapr->kernel_le = spapr->kernel_size > 0;
3027 }
3028 if (spapr->kernel_size < 0) {
3029 error_report("error loading %s: %s", kernel_filename,
3030 load_elf_strerror(spapr->kernel_size));
3031 exit(1);
3032 }
3033
3034 /* load initrd */
3035 if (initrd_filename) {
3036 /* Try to locate the initrd in the gap between the kernel
3037 * and the firmware. Add a bit of space just in case
3038 */
3039 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3040 + 0x1ffff) & ~0xffff;
3041 spapr->initrd_size = load_image_targphys(initrd_filename,
3042 spapr->initrd_base,
3043 load_limit
3044 - spapr->initrd_base);
3045 if (spapr->initrd_size < 0) {
3046 error_report("could not load initial ram disk '%s'",
3047 initrd_filename);
3048 exit(1);
3049 }
3050 }
3051 }
3052
3053 if (bios_name == NULL) {
3054 bios_name = FW_FILE_NAME;
3055 }
3056 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3057 if (!filename) {
3058 error_report("Could not find LPAR firmware '%s'", bios_name);
3059 exit(1);
3060 }
3061 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3062 if (fw_size <= 0) {
3063 error_report("Could not load LPAR firmware '%s'", filename);
3064 exit(1);
3065 }
3066 g_free(filename);
3067
3068 /* FIXME: Should register things through the MachineState's qdev
3069 * interface, this is a legacy from the sPAPREnvironment structure
3070 * which predated MachineState but had a similar function */
3071 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3072 register_savevm_live(NULL, "spapr/htab", -1, 1,
3073 &savevm_htab_handlers, spapr);
3074
3075 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3076 &error_fatal);
3077
3078 qemu_register_boot_set(spapr_boot_set, spapr);
3079
3080 if (kvm_enabled()) {
3081 /* to stop and start vmclock */
3082 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3083 &spapr->tb);
3084
3085 kvmppc_spapr_enable_inkernel_multitce();
3086 }
3087 }
3088
3089 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3090 {
3091 if (!vm_type) {
3092 return 0;
3093 }
3094
3095 if (!strcmp(vm_type, "HV")) {
3096 return 1;
3097 }
3098
3099 if (!strcmp(vm_type, "PR")) {
3100 return 2;
3101 }
3102
3103 error_report("Unknown kvm-type specified '%s'", vm_type);
3104 exit(1);
3105 }
3106
3107 /*
3108 * Implementation of an interface to adjust firmware path
3109 * for the bootindex property handling.
3110 */
3111 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3112 DeviceState *dev)
3113 {
3114 #define CAST(type, obj, name) \
3115 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3116 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3117 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3118 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3119
3120 if (d) {
3121 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3122 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3123 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3124
3125 if (spapr) {
3126 /*
3127 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3128 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3129 * 0x8000 | (target << 8) | (bus << 5) | lun
3130 * (see the "Logical unit addressing format" table in SAM5)
3131 */
3132 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3133 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3134 (uint64_t)id << 48);
3135 } else if (virtio) {
3136 /*
3137 * We use SRP luns of the form 01000000 | (target << 8) | lun
3138 * in the top 32 bits of the 64-bit LUN
3139 * Note: the quote above is from SLOF and it is wrong,
3140 * the actual binding is:
3141 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3142 */
3143 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3144 if (d->lun >= 256) {
3145 /* Use the LUN "flat space addressing method" */
3146 id |= 0x4000;
3147 }
3148 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3149 (uint64_t)id << 32);
3150 } else if (usb) {
3151 /*
3152 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3153 * in the top 32 bits of the 64-bit LUN
3154 */
3155 unsigned usb_port = atoi(usb->port->path);
3156 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3157 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3158 (uint64_t)id << 32);
3159 }
3160 }
3161
3162 /*
3163 * SLOF probes the USB devices, and if it recognizes that the device is a
3164 * storage device, it changes its name to "storage" instead of "usb-host",
3165 * and additionally adds a child node for the SCSI LUN, so the correct
3166 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3167 */
3168 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3169 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3170 if (usb_host_dev_is_scsi_storage(usbdev)) {
3171 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3172 }
3173 }
3174
3175 if (phb) {
3176 /* Replace "pci" with "pci@800000020000000" */
3177 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3178 }
3179
3180 if (vsc) {
3181 /* Same logic as virtio above */
3182 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3183 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3184 }
3185
3186 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3187 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3188 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3189 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3190 }
3191
3192 return NULL;
3193 }
3194
3195 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3196 {
3197 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3198
3199 return g_strdup(spapr->kvm_type);
3200 }
3201
3202 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3203 {
3204 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3205
3206 g_free(spapr->kvm_type);
3207 spapr->kvm_type = g_strdup(value);
3208 }
3209
3210 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3211 {
3212 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3213
3214 return spapr->use_hotplug_event_source;
3215 }
3216
3217 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3218 Error **errp)
3219 {
3220 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3221
3222 spapr->use_hotplug_event_source = value;
3223 }
3224
3225 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3226 {
3227 return true;
3228 }
3229
3230 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3231 {
3232 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3233
3234 switch (spapr->resize_hpt) {
3235 case SPAPR_RESIZE_HPT_DEFAULT:
3236 return g_strdup("default");
3237 case SPAPR_RESIZE_HPT_DISABLED:
3238 return g_strdup("disabled");
3239 case SPAPR_RESIZE_HPT_ENABLED:
3240 return g_strdup("enabled");
3241 case SPAPR_RESIZE_HPT_REQUIRED:
3242 return g_strdup("required");
3243 }
3244 g_assert_not_reached();
3245 }
3246
3247 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3248 {
3249 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3250
3251 if (strcmp(value, "default") == 0) {
3252 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3253 } else if (strcmp(value, "disabled") == 0) {
3254 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3255 } else if (strcmp(value, "enabled") == 0) {
3256 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3257 } else if (strcmp(value, "required") == 0) {
3258 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3259 } else {
3260 error_setg(errp, "Bad value for \"resize-hpt\" property");
3261 }
3262 }
3263
3264 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3265 void *opaque, Error **errp)
3266 {
3267 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3268 }
3269
3270 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3271 void *opaque, Error **errp)
3272 {
3273 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3274 }
3275
3276 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3277 {
3278 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3279
3280 if (spapr->irq == &spapr_irq_xics_legacy) {
3281 return g_strdup("legacy");
3282 } else if (spapr->irq == &spapr_irq_xics) {
3283 return g_strdup("xics");
3284 } else if (spapr->irq == &spapr_irq_xive) {
3285 return g_strdup("xive");
3286 } else if (spapr->irq == &spapr_irq_dual) {
3287 return g_strdup("dual");
3288 }
3289 g_assert_not_reached();
3290 }
3291
3292 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3293 {
3294 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3295
3296 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3297 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3298 return;
3299 }
3300
3301 /* The legacy IRQ backend can not be set */
3302 if (strcmp(value, "xics") == 0) {
3303 spapr->irq = &spapr_irq_xics;
3304 } else if (strcmp(value, "xive") == 0) {
3305 spapr->irq = &spapr_irq_xive;
3306 } else if (strcmp(value, "dual") == 0) {
3307 spapr->irq = &spapr_irq_dual;
3308 } else {
3309 error_setg(errp, "Bad value for \"ic-mode\" property");
3310 }
3311 }
3312
3313 static char *spapr_get_host_model(Object *obj, Error **errp)
3314 {
3315 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3316
3317 return g_strdup(spapr->host_model);
3318 }
3319
3320 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3321 {
3322 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3323
3324 g_free(spapr->host_model);
3325 spapr->host_model = g_strdup(value);
3326 }
3327
3328 static char *spapr_get_host_serial(Object *obj, Error **errp)
3329 {
3330 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3331
3332 return g_strdup(spapr->host_serial);
3333 }
3334
3335 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3336 {
3337 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3338
3339 g_free(spapr->host_serial);
3340 spapr->host_serial = g_strdup(value);
3341 }
3342
3343 static void spapr_instance_init(Object *obj)
3344 {
3345 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3346 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3347
3348 spapr->htab_fd = -1;
3349 spapr->use_hotplug_event_source = true;
3350 object_property_add_str(obj, "kvm-type",
3351 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3352 object_property_set_description(obj, "kvm-type",
3353 "Specifies the KVM virtualization mode (HV, PR)",
3354 NULL);
3355 object_property_add_bool(obj, "modern-hotplug-events",
3356 spapr_get_modern_hotplug_events,
3357 spapr_set_modern_hotplug_events,
3358 NULL);
3359 object_property_set_description(obj, "modern-hotplug-events",
3360 "Use dedicated hotplug event mechanism in"
3361 " place of standard EPOW events when possible"
3362 " (required for memory hot-unplug support)",
3363 NULL);
3364 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3365 "Maximum permitted CPU compatibility mode",
3366 &error_fatal);
3367
3368 object_property_add_str(obj, "resize-hpt",
3369 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3370 object_property_set_description(obj, "resize-hpt",
3371 "Resizing of the Hash Page Table (enabled, disabled, required)",
3372 NULL);
3373 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3374 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3375 object_property_set_description(obj, "vsmt",
3376 "Virtual SMT: KVM behaves as if this were"
3377 " the host's SMT mode", &error_abort);
3378 object_property_add_bool(obj, "vfio-no-msix-emulation",
3379 spapr_get_msix_emulation, NULL, NULL);
3380
3381 /* The machine class defines the default interrupt controller mode */
3382 spapr->irq = smc->irq;
3383 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3384 spapr_set_ic_mode, NULL);
3385 object_property_set_description(obj, "ic-mode",
3386 "Specifies the interrupt controller mode (xics, xive, dual)",
3387 NULL);
3388
3389 object_property_add_str(obj, "host-model",
3390 spapr_get_host_model, spapr_set_host_model,
3391 &error_abort);
3392 object_property_set_description(obj, "host-model",
3393 "Host model to advertise in guest device tree", &error_abort);
3394 object_property_add_str(obj, "host-serial",
3395 spapr_get_host_serial, spapr_set_host_serial,
3396 &error_abort);
3397 object_property_set_description(obj, "host-serial",
3398 "Host serial number to advertise in guest device tree", &error_abort);
3399 }
3400
3401 static void spapr_machine_finalizefn(Object *obj)
3402 {
3403 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3404
3405 g_free(spapr->kvm_type);
3406 }
3407
3408 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3409 {
3410 cpu_synchronize_state(cs);
3411 ppc_cpu_do_system_reset(cs);
3412 }
3413
3414 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3415 {
3416 CPUState *cs;
3417
3418 CPU_FOREACH(cs) {
3419 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3420 }
3421 }
3422
3423 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3424 void *fdt, int *fdt_start_offset, Error **errp)
3425 {
3426 uint64_t addr;
3427 uint32_t node;
3428
3429 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3430 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3431 &error_abort);
3432 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3433 SPAPR_MEMORY_BLOCK_SIZE);
3434 return 0;
3435 }
3436
3437 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3438 bool dedicated_hp_event_source, Error **errp)
3439 {
3440 SpaprDrc *drc;
3441 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3442 int i;
3443 uint64_t addr = addr_start;
3444 bool hotplugged = spapr_drc_hotplugged(dev);
3445 Error *local_err = NULL;
3446
3447 for (i = 0; i < nr_lmbs; i++) {
3448 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3449 addr / SPAPR_MEMORY_BLOCK_SIZE);
3450 g_assert(drc);
3451
3452 spapr_drc_attach(drc, dev, &local_err);
3453 if (local_err) {
3454 while (addr > addr_start) {
3455 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3456 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3457 addr / SPAPR_MEMORY_BLOCK_SIZE);
3458 spapr_drc_detach(drc);
3459 }
3460 error_propagate(errp, local_err);
3461 return;
3462 }
3463 if (!hotplugged) {
3464 spapr_drc_reset(drc);
3465 }
3466 addr += SPAPR_MEMORY_BLOCK_SIZE;
3467 }
3468 /* send hotplug notification to the
3469 * guest only in case of hotplugged memory
3470 */
3471 if (hotplugged) {
3472 if (dedicated_hp_event_source) {
3473 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3474 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3475 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3476 nr_lmbs,
3477 spapr_drc_index(drc));
3478 } else {
3479 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3480 nr_lmbs);
3481 }
3482 }
3483 }
3484
3485 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3486 Error **errp)
3487 {
3488 Error *local_err = NULL;
3489 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3490 PCDIMMDevice *dimm = PC_DIMM(dev);
3491 uint64_t size, addr;
3492
3493 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3494
3495 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3496 if (local_err) {
3497 goto out;
3498 }
3499
3500 addr = object_property_get_uint(OBJECT(dimm),
3501 PC_DIMM_ADDR_PROP, &local_err);
3502 if (local_err) {
3503 goto out_unplug;
3504 }
3505
3506 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3507 &local_err);
3508 if (local_err) {
3509 goto out_unplug;
3510 }
3511
3512 return;
3513
3514 out_unplug:
3515 pc_dimm_unplug(dimm, MACHINE(ms));
3516 out:
3517 error_propagate(errp, local_err);
3518 }
3519
3520 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3521 Error **errp)
3522 {
3523 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3524 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3525 PCDIMMDevice *dimm = PC_DIMM(dev);
3526 Error *local_err = NULL;
3527 uint64_t size;
3528 Object *memdev;
3529 hwaddr pagesize;
3530
3531 if (!smc->dr_lmb_enabled) {
3532 error_setg(errp, "Memory hotplug not supported for this machine");
3533 return;
3534 }
3535
3536 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3537 if (local_err) {
3538 error_propagate(errp, local_err);
3539 return;
3540 }
3541
3542 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3543 error_setg(errp, "Hotplugged memory size must be a multiple of "
3544 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3545 return;
3546 }
3547
3548 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3549 &error_abort);
3550 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3551 spapr_check_pagesize(spapr, pagesize, &local_err);
3552 if (local_err) {
3553 error_propagate(errp, local_err);
3554 return;
3555 }
3556
3557 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3558 }
3559
3560 struct SpaprDimmState {
3561 PCDIMMDevice *dimm;
3562 uint32_t nr_lmbs;
3563 QTAILQ_ENTRY(SpaprDimmState) next;
3564 };
3565
3566 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3567 PCDIMMDevice *dimm)
3568 {
3569 SpaprDimmState *dimm_state = NULL;
3570
3571 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3572 if (dimm_state->dimm == dimm) {
3573 break;
3574 }
3575 }
3576 return dimm_state;
3577 }
3578
3579 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3580 uint32_t nr_lmbs,
3581 PCDIMMDevice *dimm)
3582 {
3583 SpaprDimmState *ds = NULL;
3584
3585 /*
3586 * If this request is for a DIMM whose removal had failed earlier
3587 * (due to guest's refusal to remove the LMBs), we would have this
3588 * dimm already in the pending_dimm_unplugs list. In that
3589 * case don't add again.
3590 */
3591 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3592 if (!ds) {
3593 ds = g_malloc0(sizeof(SpaprDimmState));
3594 ds->nr_lmbs = nr_lmbs;
3595 ds->dimm = dimm;
3596 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3597 }
3598 return ds;
3599 }
3600
3601 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3602 SpaprDimmState *dimm_state)
3603 {
3604 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3605 g_free(dimm_state);
3606 }
3607
3608 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3609 PCDIMMDevice *dimm)
3610 {
3611 SpaprDrc *drc;
3612 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3613 &error_abort);
3614 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3615 uint32_t avail_lmbs = 0;
3616 uint64_t addr_start, addr;
3617 int i;
3618
3619 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3620 &error_abort);
3621
3622 addr = addr_start;
3623 for (i = 0; i < nr_lmbs; i++) {
3624 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3625 addr / SPAPR_MEMORY_BLOCK_SIZE);
3626 g_assert(drc);
3627 if (drc->dev) {
3628 avail_lmbs++;
3629 }
3630 addr += SPAPR_MEMORY_BLOCK_SIZE;
3631 }
3632
3633 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3634 }
3635
3636 /* Callback to be called during DRC release. */
3637 void spapr_lmb_release(DeviceState *dev)
3638 {
3639 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3640 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3641 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3642
3643 /* This information will get lost if a migration occurs
3644 * during the unplug process. In this case recover it. */
3645 if (ds == NULL) {
3646 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3647 g_assert(ds);
3648 /* The DRC being examined by the caller at least must be counted */
3649 g_assert(ds->nr_lmbs);
3650 }
3651
3652 if (--ds->nr_lmbs) {
3653 return;
3654 }
3655
3656 /*
3657 * Now that all the LMBs have been removed by the guest, call the
3658 * unplug handler chain. This can never fail.
3659 */
3660 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3661 object_unparent(OBJECT(dev));
3662 }
3663
3664 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3665 {
3666 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3667 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3668
3669 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3670 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3671 spapr_pending_dimm_unplugs_remove(spapr, ds);
3672 }
3673
3674 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3675 DeviceState *dev, Error **errp)
3676 {
3677 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3678 Error *local_err = NULL;
3679 PCDIMMDevice *dimm = PC_DIMM(dev);
3680 uint32_t nr_lmbs;
3681 uint64_t size, addr_start, addr;
3682 int i;
3683 SpaprDrc *drc;
3684
3685 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3686 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3687
3688 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3689 &local_err);
3690 if (local_err) {
3691 goto out;
3692 }
3693
3694 /*
3695 * An existing pending dimm state for this DIMM means that there is an
3696 * unplug operation in progress, waiting for the spapr_lmb_release
3697 * callback to complete the job (BQL can't cover that far). In this case,
3698 * bail out to avoid detaching DRCs that were already released.
3699 */
3700 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3701 error_setg(&local_err,
3702 "Memory unplug already in progress for device %s",
3703 dev->id);
3704 goto out;
3705 }
3706
3707 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3708
3709 addr = addr_start;
3710 for (i = 0; i < nr_lmbs; i++) {
3711 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3712 addr / SPAPR_MEMORY_BLOCK_SIZE);
3713 g_assert(drc);
3714
3715 spapr_drc_detach(drc);
3716 addr += SPAPR_MEMORY_BLOCK_SIZE;
3717 }
3718
3719 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3720 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3721 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3722 nr_lmbs, spapr_drc_index(drc));
3723 out:
3724 error_propagate(errp, local_err);
3725 }
3726
3727 /* Callback to be called during DRC release. */
3728 void spapr_core_release(DeviceState *dev)
3729 {
3730 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3731
3732 /* Call the unplug handler chain. This can never fail. */
3733 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3734 object_unparent(OBJECT(dev));
3735 }
3736
3737 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3738 {
3739 MachineState *ms = MACHINE(hotplug_dev);
3740 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3741 CPUCore *cc = CPU_CORE(dev);
3742 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3743
3744 if (smc->pre_2_10_has_unused_icps) {
3745 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3746 int i;
3747
3748 for (i = 0; i < cc->nr_threads; i++) {
3749 CPUState *cs = CPU(sc->threads[i]);
3750
3751 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3752 }
3753 }
3754
3755 assert(core_slot);
3756 core_slot->cpu = NULL;
3757 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3758 }
3759
3760 static
3761 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3762 Error **errp)
3763 {
3764 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3765 int index;
3766 SpaprDrc *drc;
3767 CPUCore *cc = CPU_CORE(dev);
3768
3769 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3770 error_setg(errp, "Unable to find CPU core with core-id: %d",
3771 cc->core_id);
3772 return;
3773 }
3774 if (index == 0) {
3775 error_setg(errp, "Boot CPU core may not be unplugged");
3776 return;
3777 }
3778
3779 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3780 spapr_vcpu_id(spapr, cc->core_id));
3781 g_assert(drc);
3782
3783 spapr_drc_detach(drc);
3784
3785 spapr_hotplug_req_remove_by_index(drc);
3786 }
3787
3788 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3789 void *fdt, int *fdt_start_offset, Error **errp)
3790 {
3791 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3792 CPUState *cs = CPU(core->threads[0]);
3793 PowerPCCPU *cpu = POWERPC_CPU(cs);
3794 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3795 int id = spapr_get_vcpu_id(cpu);
3796 char *nodename;
3797 int offset;
3798
3799 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3800 offset = fdt_add_subnode(fdt, 0, nodename);
3801 g_free(nodename);
3802
3803 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3804
3805 *fdt_start_offset = offset;
3806 return 0;
3807 }
3808
3809 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3810 Error **errp)
3811 {
3812 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3813 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3814 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3815 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3816 CPUCore *cc = CPU_CORE(dev);
3817 CPUState *cs;
3818 SpaprDrc *drc;
3819 Error *local_err = NULL;
3820 CPUArchId *core_slot;
3821 int index;
3822 bool hotplugged = spapr_drc_hotplugged(dev);
3823
3824 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3825 if (!core_slot) {
3826 error_setg(errp, "Unable to find CPU core with core-id: %d",
3827 cc->core_id);
3828 return;
3829 }
3830 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3831 spapr_vcpu_id(spapr, cc->core_id));
3832
3833 g_assert(drc || !mc->has_hotpluggable_cpus);
3834
3835 if (drc) {
3836 spapr_drc_attach(drc, dev, &local_err);
3837 if (local_err) {
3838 error_propagate(errp, local_err);
3839 return;
3840 }
3841
3842 if (hotplugged) {
3843 /*
3844 * Send hotplug notification interrupt to the guest only
3845 * in case of hotplugged CPUs.
3846 */
3847 spapr_hotplug_req_add_by_index(drc);
3848 } else {
3849 spapr_drc_reset(drc);
3850 }
3851 }
3852
3853 core_slot->cpu = OBJECT(dev);
3854
3855 if (smc->pre_2_10_has_unused_icps) {
3856 int i;
3857
3858 for (i = 0; i < cc->nr_threads; i++) {
3859 cs = CPU(core->threads[i]);
3860 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3861 }
3862 }
3863 }
3864
3865 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3866 Error **errp)
3867 {
3868 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3869 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3870 Error *local_err = NULL;
3871 CPUCore *cc = CPU_CORE(dev);
3872 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3873 const char *type = object_get_typename(OBJECT(dev));
3874 CPUArchId *core_slot;
3875 int index;
3876 unsigned int smp_threads = machine->smp.threads;
3877
3878 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3879 error_setg(&local_err, "CPU hotplug not supported for this machine");
3880 goto out;
3881 }
3882
3883 if (strcmp(base_core_type, type)) {
3884 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3885 goto out;
3886 }
3887
3888 if (cc->core_id % smp_threads) {
3889 error_setg(&local_err, "invalid core id %d", cc->core_id);
3890 goto out;
3891 }
3892
3893 /*
3894 * In general we should have homogeneous threads-per-core, but old
3895 * (pre hotplug support) machine types allow the last core to have
3896 * reduced threads as a compatibility hack for when we allowed
3897 * total vcpus not a multiple of threads-per-core.
3898 */
3899 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3900 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3901 cc->nr_threads, smp_threads);
3902 goto out;
3903 }
3904
3905 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3906 if (!core_slot) {
3907 error_setg(&local_err, "core id %d out of range", cc->core_id);
3908 goto out;
3909 }
3910
3911 if (core_slot->cpu) {
3912 error_setg(&local_err, "core %d already populated", cc->core_id);
3913 goto out;
3914 }
3915
3916 numa_cpu_pre_plug(core_slot, dev, &local_err);
3917
3918 out:
3919 error_propagate(errp, local_err);
3920 }
3921
3922 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3923 void *fdt, int *fdt_start_offset, Error **errp)
3924 {
3925 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3926 int intc_phandle;
3927
3928 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3929 if (intc_phandle <= 0) {
3930 return -1;
3931 }
3932
3933 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3934 fdt_start_offset)) {
3935 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3936 return -1;
3937 }
3938
3939 /* generally SLOF creates these, for hotplug it's up to QEMU */
3940 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3941
3942 return 0;
3943 }
3944
3945 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3946 Error **errp)
3947 {
3948 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3949 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3950 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3951 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3952
3953 if (dev->hotplugged && !smc->dr_phb_enabled) {
3954 error_setg(errp, "PHB hotplug not supported for this machine");
3955 return;
3956 }
3957
3958 if (sphb->index == (uint32_t)-1) {
3959 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3960 return;
3961 }
3962
3963 /*
3964 * This will check that sphb->index doesn't exceed the maximum number of
3965 * PHBs for the current machine type.
3966 */
3967 smc->phb_placement(spapr, sphb->index,
3968 &sphb->buid, &sphb->io_win_addr,
3969 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3970 windows_supported, sphb->dma_liobn,
3971 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3972 errp);
3973 }
3974
3975 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3976 Error **errp)
3977 {
3978 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3979 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3980 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3981 SpaprDrc *drc;
3982 bool hotplugged = spapr_drc_hotplugged(dev);
3983 Error *local_err = NULL;
3984
3985 if (!smc->dr_phb_enabled) {
3986 return;
3987 }
3988
3989 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3990 /* hotplug hooks should check it's enabled before getting this far */
3991 assert(drc);
3992
3993 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3994 if (local_err) {
3995 error_propagate(errp, local_err);
3996 return;
3997 }
3998
3999 if (hotplugged) {
4000 spapr_hotplug_req_add_by_index(drc);
4001 } else {
4002 spapr_drc_reset(drc);
4003 }
4004 }
4005
4006 void spapr_phb_release(DeviceState *dev)
4007 {
4008 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4009
4010 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4011 object_unparent(OBJECT(dev));
4012 }
4013
4014 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4015 {
4016 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4017 }
4018
4019 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4020 DeviceState *dev, Error **errp)
4021 {
4022 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4023 SpaprDrc *drc;
4024
4025 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4026 assert(drc);
4027
4028 if (!spapr_drc_unplug_requested(drc)) {
4029 spapr_drc_detach(drc);
4030 spapr_hotplug_req_remove_by_index(drc);
4031 }
4032 }
4033
4034 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4035 DeviceState *dev, Error **errp)
4036 {
4037 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4038 spapr_memory_plug(hotplug_dev, dev, errp);
4039 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4040 spapr_core_plug(hotplug_dev, dev, errp);
4041 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4042 spapr_phb_plug(hotplug_dev, dev, errp);
4043 }
4044 }
4045
4046 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4047 DeviceState *dev, Error **errp)
4048 {
4049 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4050 spapr_memory_unplug(hotplug_dev, dev);
4051 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4052 spapr_core_unplug(hotplug_dev, dev);
4053 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4054 spapr_phb_unplug(hotplug_dev, dev);
4055 }
4056 }
4057
4058 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4059 DeviceState *dev, Error **errp)
4060 {
4061 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4062 MachineClass *mc = MACHINE_GET_CLASS(sms);
4063 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4064
4065 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4066 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4067 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4068 } else {
4069 /* NOTE: this means there is a window after guest reset, prior to
4070 * CAS negotiation, where unplug requests will fail due to the
4071 * capability not being detected yet. This is a bit different than
4072 * the case with PCI unplug, where the events will be queued and
4073 * eventually handled by the guest after boot
4074 */
4075 error_setg(errp, "Memory hot unplug not supported for this guest");
4076 }
4077 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4078 if (!mc->has_hotpluggable_cpus) {
4079 error_setg(errp, "CPU hot unplug not supported on this machine");
4080 return;
4081 }
4082 spapr_core_unplug_request(hotplug_dev, dev, errp);
4083 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4084 if (!smc->dr_phb_enabled) {
4085 error_setg(errp, "PHB hot unplug not supported on this machine");
4086 return;
4087 }
4088 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4089 }
4090 }
4091
4092 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4093 DeviceState *dev, Error **errp)
4094 {
4095 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4096 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4097 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4098 spapr_core_pre_plug(hotplug_dev, dev, errp);
4099 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4100 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4101 }
4102 }
4103
4104 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4105 DeviceState *dev)
4106 {
4107 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4108 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4109 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4110 return HOTPLUG_HANDLER(machine);
4111 }
4112 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4113 PCIDevice *pcidev = PCI_DEVICE(dev);
4114 PCIBus *root = pci_device_root_bus(pcidev);
4115 SpaprPhbState *phb =
4116 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4117 TYPE_SPAPR_PCI_HOST_BRIDGE);
4118
4119 if (phb) {
4120 return HOTPLUG_HANDLER(phb);
4121 }
4122 }
4123 return NULL;
4124 }
4125
4126 static CpuInstanceProperties
4127 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4128 {
4129 CPUArchId *core_slot;
4130 MachineClass *mc = MACHINE_GET_CLASS(machine);
4131
4132 /* make sure possible_cpu are intialized */
4133 mc->possible_cpu_arch_ids(machine);
4134 /* get CPU core slot containing thread that matches cpu_index */
4135 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4136 assert(core_slot);
4137 return core_slot->props;
4138 }
4139
4140 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4141 {
4142 return idx / ms->smp.cores % nb_numa_nodes;
4143 }
4144
4145 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4146 {
4147 int i;
4148 unsigned int smp_threads = machine->smp.threads;
4149 unsigned int smp_cpus = machine->smp.cpus;
4150 const char *core_type;
4151 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4152 MachineClass *mc = MACHINE_GET_CLASS(machine);
4153
4154 if (!mc->has_hotpluggable_cpus) {
4155 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4156 }
4157 if (machine->possible_cpus) {
4158 assert(machine->possible_cpus->len == spapr_max_cores);
4159 return machine->possible_cpus;
4160 }
4161
4162 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4163 if (!core_type) {
4164 error_report("Unable to find sPAPR CPU Core definition");
4165 exit(1);
4166 }
4167
4168 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4169 sizeof(CPUArchId) * spapr_max_cores);
4170 machine->possible_cpus->len = spapr_max_cores;
4171 for (i = 0; i < machine->possible_cpus->len; i++) {
4172 int core_id = i * smp_threads;
4173
4174 machine->possible_cpus->cpus[i].type = core_type;
4175 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4176 machine->possible_cpus->cpus[i].arch_id = core_id;
4177 machine->possible_cpus->cpus[i].props.has_core_id = true;
4178 machine->possible_cpus->cpus[i].props.core_id = core_id;
4179 }
4180 return machine->possible_cpus;
4181 }
4182
4183 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4184 uint64_t *buid, hwaddr *pio,
4185 hwaddr *mmio32, hwaddr *mmio64,
4186 unsigned n_dma, uint32_t *liobns,
4187 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4188 {
4189 /*
4190 * New-style PHB window placement.
4191 *
4192 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4193 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4194 * windows.
4195 *
4196 * Some guest kernels can't work with MMIO windows above 1<<46
4197 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4198 *
4199 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4200 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4201 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4202 * 1TiB 64-bit MMIO windows for each PHB.
4203 */
4204 const uint64_t base_buid = 0x800000020000000ULL;
4205 int i;
4206
4207 /* Sanity check natural alignments */
4208 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4209 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4210 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4211 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4212 /* Sanity check bounds */
4213 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4214 SPAPR_PCI_MEM32_WIN_SIZE);
4215 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4216 SPAPR_PCI_MEM64_WIN_SIZE);
4217
4218 if (index >= SPAPR_MAX_PHBS) {
4219 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4220 SPAPR_MAX_PHBS - 1);
4221 return;
4222 }
4223
4224 *buid = base_buid + index;
4225 for (i = 0; i < n_dma; ++i) {
4226 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4227 }
4228
4229 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4230 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4231 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4232
4233 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4234 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4235 }
4236
4237 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4238 {
4239 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4240
4241 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4242 }
4243
4244 static void spapr_ics_resend(XICSFabric *dev)
4245 {
4246 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4247
4248 ics_resend(spapr->ics);
4249 }
4250
4251 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4252 {
4253 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4254
4255 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4256 }
4257
4258 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4259 Monitor *mon)
4260 {
4261 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4262
4263 spapr->irq->print_info(spapr, mon);
4264 }
4265
4266 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4267 {
4268 return cpu->vcpu_id;
4269 }
4270
4271 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4272 {
4273 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4274 MachineState *ms = MACHINE(spapr);
4275 int vcpu_id;
4276
4277 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4278
4279 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4280 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4281 error_append_hint(errp, "Adjust the number of cpus to %d "
4282 "or try to raise the number of threads per core\n",
4283 vcpu_id * ms->smp.threads / spapr->vsmt);
4284 return;
4285 }
4286
4287 cpu->vcpu_id = vcpu_id;
4288 }
4289
4290 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4291 {
4292 CPUState *cs;
4293
4294 CPU_FOREACH(cs) {
4295 PowerPCCPU *cpu = POWERPC_CPU(cs);
4296
4297 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4298 return cpu;
4299 }
4300 }
4301
4302 return NULL;
4303 }
4304
4305 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4306 {
4307 MachineClass *mc = MACHINE_CLASS(oc);
4308 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4309 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4310 NMIClass *nc = NMI_CLASS(oc);
4311 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4312 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4313 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4314 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4315
4316 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4317 mc->ignore_boot_device_suffixes = true;
4318
4319 /*
4320 * We set up the default / latest behaviour here. The class_init
4321 * functions for the specific versioned machine types can override
4322 * these details for backwards compatibility
4323 */
4324 mc->init = spapr_machine_init;
4325 mc->reset = spapr_machine_reset;
4326 mc->block_default_type = IF_SCSI;
4327 mc->max_cpus = 1024;
4328 mc->no_parallel = 1;
4329 mc->default_boot_order = "";
4330 mc->default_ram_size = 512 * MiB;
4331 mc->default_display = "std";
4332 mc->kvm_type = spapr_kvm_type;
4333 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4334 mc->pci_allow_0_address = true;
4335 assert(!mc->get_hotplug_handler);
4336 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4337 hc->pre_plug = spapr_machine_device_pre_plug;
4338 hc->plug = spapr_machine_device_plug;
4339 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4340 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4341 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4342 hc->unplug_request = spapr_machine_device_unplug_request;
4343 hc->unplug = spapr_machine_device_unplug;
4344
4345 smc->dr_lmb_enabled = true;
4346 smc->update_dt_enabled = true;
4347 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4348 mc->has_hotpluggable_cpus = true;
4349 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4350 fwc->get_dev_path = spapr_get_fw_dev_path;
4351 nc->nmi_monitor_handler = spapr_nmi;
4352 smc->phb_placement = spapr_phb_placement;
4353 vhc->hypercall = emulate_spapr_hypercall;
4354 vhc->hpt_mask = spapr_hpt_mask;
4355 vhc->map_hptes = spapr_map_hptes;
4356 vhc->unmap_hptes = spapr_unmap_hptes;
4357 vhc->hpte_set_c = spapr_hpte_set_c;
4358 vhc->hpte_set_r = spapr_hpte_set_r;
4359 vhc->get_pate = spapr_get_pate;
4360 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4361 xic->ics_get = spapr_ics_get;
4362 xic->ics_resend = spapr_ics_resend;
4363 xic->icp_get = spapr_icp_get;
4364 ispc->print_info = spapr_pic_print_info;
4365 /* Force NUMA node memory size to be a multiple of
4366 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4367 * in which LMBs are represented and hot-added
4368 */
4369 mc->numa_mem_align_shift = 28;
4370
4371 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4372 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4373 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4374 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4375 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4376 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4377 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4378 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4379 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4380 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4381 spapr_caps_add_properties(smc, &error_abort);
4382 smc->irq = &spapr_irq_dual;
4383 smc->dr_phb_enabled = true;
4384 }
4385
4386 static const TypeInfo spapr_machine_info = {
4387 .name = TYPE_SPAPR_MACHINE,
4388 .parent = TYPE_MACHINE,
4389 .abstract = true,
4390 .instance_size = sizeof(SpaprMachineState),
4391 .instance_init = spapr_instance_init,
4392 .instance_finalize = spapr_machine_finalizefn,
4393 .class_size = sizeof(SpaprMachineClass),
4394 .class_init = spapr_machine_class_init,
4395 .interfaces = (InterfaceInfo[]) {
4396 { TYPE_FW_PATH_PROVIDER },
4397 { TYPE_NMI },
4398 { TYPE_HOTPLUG_HANDLER },
4399 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4400 { TYPE_XICS_FABRIC },
4401 { TYPE_INTERRUPT_STATS_PROVIDER },
4402 { }
4403 },
4404 };
4405
4406 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4407 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4408 void *data) \
4409 { \
4410 MachineClass *mc = MACHINE_CLASS(oc); \
4411 spapr_machine_##suffix##_class_options(mc); \
4412 if (latest) { \
4413 mc->alias = "pseries"; \
4414 mc->is_default = 1; \
4415 } \
4416 } \
4417 static const TypeInfo spapr_machine_##suffix##_info = { \
4418 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4419 .parent = TYPE_SPAPR_MACHINE, \
4420 .class_init = spapr_machine_##suffix##_class_init, \
4421 }; \
4422 static void spapr_machine_register_##suffix(void) \
4423 { \
4424 type_register(&spapr_machine_##suffix##_info); \
4425 } \
4426 type_init(spapr_machine_register_##suffix)
4427
4428 /*
4429 * pseries-4.1
4430 */
4431 static void spapr_machine_4_1_class_options(MachineClass *mc)
4432 {
4433 /* Defaults for the latest behaviour inherited from the base class */
4434 }
4435
4436 DEFINE_SPAPR_MACHINE(4_1, "4.1", true);
4437
4438 /*
4439 * pseries-4.0
4440 */
4441 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4442 uint64_t *buid, hwaddr *pio,
4443 hwaddr *mmio32, hwaddr *mmio64,
4444 unsigned n_dma, uint32_t *liobns,
4445 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4446 {
4447 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4448 nv2gpa, nv2atsd, errp);
4449 *nv2gpa = 0;
4450 *nv2atsd = 0;
4451 }
4452
4453 static void spapr_machine_4_0_class_options(MachineClass *mc)
4454 {
4455 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4456
4457 spapr_machine_4_1_class_options(mc);
4458 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4459 smc->phb_placement = phb_placement_4_0;
4460 smc->irq = &spapr_irq_xics;
4461 smc->pre_4_1_migration = true;
4462 }
4463
4464 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4465
4466 /*
4467 * pseries-3.1
4468 */
4469 static void spapr_machine_3_1_class_options(MachineClass *mc)
4470 {
4471 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4472
4473 spapr_machine_4_0_class_options(mc);
4474 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4475
4476 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4477 smc->update_dt_enabled = false;
4478 smc->dr_phb_enabled = false;
4479 smc->broken_host_serial_model = true;
4480 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4481 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4482 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4483 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4484 }
4485
4486 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4487
4488 /*
4489 * pseries-3.0
4490 */
4491
4492 static void spapr_machine_3_0_class_options(MachineClass *mc)
4493 {
4494 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4495
4496 spapr_machine_3_1_class_options(mc);
4497 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4498
4499 smc->legacy_irq_allocation = true;
4500 smc->irq = &spapr_irq_xics_legacy;
4501 }
4502
4503 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4504
4505 /*
4506 * pseries-2.12
4507 */
4508 static void spapr_machine_2_12_class_options(MachineClass *mc)
4509 {
4510 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4511 static GlobalProperty compat[] = {
4512 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4513 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4514 };
4515
4516 spapr_machine_3_0_class_options(mc);
4517 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4518 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4519
4520 /* We depend on kvm_enabled() to choose a default value for the
4521 * hpt-max-page-size capability. Of course we can't do it here
4522 * because this is too early and the HW accelerator isn't initialzed
4523 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4524 */
4525 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4526 }
4527
4528 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4529
4530 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4531 {
4532 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4533
4534 spapr_machine_2_12_class_options(mc);
4535 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4536 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4537 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4538 }
4539
4540 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4541
4542 /*
4543 * pseries-2.11
4544 */
4545
4546 static void spapr_machine_2_11_class_options(MachineClass *mc)
4547 {
4548 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4549
4550 spapr_machine_2_12_class_options(mc);
4551 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4552 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4553 }
4554
4555 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4556
4557 /*
4558 * pseries-2.10
4559 */
4560
4561 static void spapr_machine_2_10_class_options(MachineClass *mc)
4562 {
4563 spapr_machine_2_11_class_options(mc);
4564 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4565 }
4566
4567 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4568
4569 /*
4570 * pseries-2.9
4571 */
4572
4573 static void spapr_machine_2_9_class_options(MachineClass *mc)
4574 {
4575 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4576 static GlobalProperty compat[] = {
4577 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4578 };
4579
4580 spapr_machine_2_10_class_options(mc);
4581 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4582 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4583 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4584 smc->pre_2_10_has_unused_icps = true;
4585 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4586 }
4587
4588 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4589
4590 /*
4591 * pseries-2.8
4592 */
4593
4594 static void spapr_machine_2_8_class_options(MachineClass *mc)
4595 {
4596 static GlobalProperty compat[] = {
4597 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4598 };
4599
4600 spapr_machine_2_9_class_options(mc);
4601 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4602 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4603 mc->numa_mem_align_shift = 23;
4604 }
4605
4606 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4607
4608 /*
4609 * pseries-2.7
4610 */
4611
4612 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4613 uint64_t *buid, hwaddr *pio,
4614 hwaddr *mmio32, hwaddr *mmio64,
4615 unsigned n_dma, uint32_t *liobns,
4616 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4617 {
4618 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4619 const uint64_t base_buid = 0x800000020000000ULL;
4620 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4621 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4622 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4623 const uint32_t max_index = 255;
4624 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4625
4626 uint64_t ram_top = MACHINE(spapr)->ram_size;
4627 hwaddr phb0_base, phb_base;
4628 int i;
4629
4630 /* Do we have device memory? */
4631 if (MACHINE(spapr)->maxram_size > ram_top) {
4632 /* Can't just use maxram_size, because there may be an
4633 * alignment gap between normal and device memory regions
4634 */
4635 ram_top = MACHINE(spapr)->device_memory->base +
4636 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4637 }
4638
4639 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4640
4641 if (index > max_index) {
4642 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4643 max_index);
4644 return;
4645 }
4646
4647 *buid = base_buid + index;
4648 for (i = 0; i < n_dma; ++i) {
4649 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4650 }
4651
4652 phb_base = phb0_base + index * phb_spacing;
4653 *pio = phb_base + pio_offset;
4654 *mmio32 = phb_base + mmio_offset;
4655 /*
4656 * We don't set the 64-bit MMIO window, relying on the PHB's
4657 * fallback behaviour of automatically splitting a large "32-bit"
4658 * window into contiguous 32-bit and 64-bit windows
4659 */
4660
4661 *nv2gpa = 0;
4662 *nv2atsd = 0;
4663 }
4664
4665 static void spapr_machine_2_7_class_options(MachineClass *mc)
4666 {
4667 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4668 static GlobalProperty compat[] = {
4669 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4670 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4671 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4672 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4673 };
4674
4675 spapr_machine_2_8_class_options(mc);
4676 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4677 mc->default_machine_opts = "modern-hotplug-events=off";
4678 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4679 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4680 smc->phb_placement = phb_placement_2_7;
4681 }
4682
4683 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4684
4685 /*
4686 * pseries-2.6
4687 */
4688
4689 static void spapr_machine_2_6_class_options(MachineClass *mc)
4690 {
4691 static GlobalProperty compat[] = {
4692 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4693 };
4694
4695 spapr_machine_2_7_class_options(mc);
4696 mc->has_hotpluggable_cpus = false;
4697 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4698 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4699 }
4700
4701 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4702
4703 /*
4704 * pseries-2.5
4705 */
4706
4707 static void spapr_machine_2_5_class_options(MachineClass *mc)
4708 {
4709 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4710 static GlobalProperty compat[] = {
4711 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4712 };
4713
4714 spapr_machine_2_6_class_options(mc);
4715 smc->use_ohci_by_default = true;
4716 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4717 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4718 }
4719
4720 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4721
4722 /*
4723 * pseries-2.4
4724 */
4725
4726 static void spapr_machine_2_4_class_options(MachineClass *mc)
4727 {
4728 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4729
4730 spapr_machine_2_5_class_options(mc);
4731 smc->dr_lmb_enabled = false;
4732 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4733 }
4734
4735 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4736
4737 /*
4738 * pseries-2.3
4739 */
4740
4741 static void spapr_machine_2_3_class_options(MachineClass *mc)
4742 {
4743 static GlobalProperty compat[] = {
4744 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4745 };
4746 spapr_machine_2_4_class_options(mc);
4747 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4748 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4749 }
4750 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4751
4752 /*
4753 * pseries-2.2
4754 */
4755
4756 static void spapr_machine_2_2_class_options(MachineClass *mc)
4757 {
4758 static GlobalProperty compat[] = {
4759 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4760 };
4761
4762 spapr_machine_2_3_class_options(mc);
4763 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4764 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4765 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4766 }
4767 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4768
4769 /*
4770 * pseries-2.1
4771 */
4772
4773 static void spapr_machine_2_1_class_options(MachineClass *mc)
4774 {
4775 spapr_machine_2_2_class_options(mc);
4776 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4777 }
4778 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4779
4780 static void spapr_machine_register_types(void)
4781 {
4782 type_register_static(&spapr_machine_info);
4783 }
4784
4785 type_init(spapr_machine_register_types)