]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
qom: Drop parameter @errp of object_property_add() & friends
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
54
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
58
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
65
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
70
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84
85 #include "monitor/monitor.h"
86
87 #include <libfdt.h>
88
89 /* SLOF memory layout:
90 *
91 * SLOF raw image loaded at 0, copies its romfs right below the flat
92 * device-tree, then position SLOF itself 31M below that
93 *
94 * So we set FW_OVERHEAD to 40MB which should account for all of that
95 * and more
96 *
97 * We load our kernel at 4M, leaving space for SLOF initial image
98 */
99 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE 0x400000
101 #define FW_FILE_NAME "slof.bin"
102 #define FW_OVERHEAD 0x2800000
103 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
104
105 #define MIN_RMA_SLOF (128 * MiB)
106
107 #define PHANDLE_INTC 0x00001111
108
109 /* These two functions implement the VCPU id numbering: one to compute them
110 * all and one to identify thread 0 of a VCORE. Any change to the first one
111 * is likely to have an impact on the second one, so let's keep them close.
112 */
113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
114 {
115 MachineState *ms = MACHINE(spapr);
116 unsigned int smp_threads = ms->smp.threads;
117
118 assert(spapr->vsmt);
119 return
120 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
121 }
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
123 PowerPCCPU *cpu)
124 {
125 assert(spapr->vsmt);
126 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
127 }
128
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
130 {
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
134 */
135 return false;
136 }
137
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139 .name = "icp/server",
140 .version_id = 1,
141 .minimum_version_id = 1,
142 .needed = pre_2_10_vmstate_dummy_icp_needed,
143 .fields = (VMStateField[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
148 },
149 };
150
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
152 {
153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154 (void *)(uintptr_t) i);
155 }
156
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
158 {
159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160 (void *)(uintptr_t) i);
161 }
162
163 int spapr_max_server_number(SpaprMachineState *spapr)
164 {
165 MachineState *ms = MACHINE(spapr);
166
167 assert(spapr->vsmt);
168 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
169 }
170
171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
172 int smt_threads)
173 {
174 int i, ret = 0;
175 uint32_t servers_prop[smt_threads];
176 uint32_t gservers_prop[smt_threads * 2];
177 int index = spapr_get_vcpu_id(cpu);
178
179 if (cpu->compat_pvr) {
180 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
181 if (ret < 0) {
182 return ret;
183 }
184 }
185
186 /* Build interrupt servers and gservers properties */
187 for (i = 0; i < smt_threads; i++) {
188 servers_prop[i] = cpu_to_be32(index + i);
189 /* Hack, direct the group queues back to cpu 0 */
190 gservers_prop[i*2] = cpu_to_be32(index + i);
191 gservers_prop[i*2 + 1] = 0;
192 }
193 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
194 servers_prop, sizeof(servers_prop));
195 if (ret < 0) {
196 return ret;
197 }
198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
199 gservers_prop, sizeof(gservers_prop));
200
201 return ret;
202 }
203
204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
205 {
206 int index = spapr_get_vcpu_id(cpu);
207 uint32_t associativity[] = {cpu_to_be32(0x5),
208 cpu_to_be32(0x0),
209 cpu_to_be32(0x0),
210 cpu_to_be32(0x0),
211 cpu_to_be32(cpu->node_id),
212 cpu_to_be32(index)};
213
214 /* Advertise NUMA via ibm,associativity */
215 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
216 sizeof(associativity));
217 }
218
219 static void spapr_dt_pa_features(SpaprMachineState *spapr,
220 PowerPCCPU *cpu,
221 void *fdt, int offset)
222 {
223 uint8_t pa_features_206[] = { 6, 0,
224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225 uint8_t pa_features_207[] = { 24, 0,
226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230 uint8_t pa_features_300[] = { 66, 0,
231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
234 /* 6: DS207 */
235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
236 /* 16: Vector */
237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246 /* 42: PM, 44: PC RA, 46: SC vec'd */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248 /* 48: SIMD, 50: QP BFP, 52: String */
249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250 /* 54: DecFP, 56: DecI, 58: SHA */
251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252 /* 60: NM atomic, 62: RNG */
253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
254 };
255 uint8_t *pa_features = NULL;
256 size_t pa_size;
257
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_206;
260 pa_size = sizeof(pa_features_206);
261 }
262 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
263 pa_features = pa_features_207;
264 pa_size = sizeof(pa_features_207);
265 }
266 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
267 pa_features = pa_features_300;
268 pa_size = sizeof(pa_features_300);
269 }
270 if (!pa_features) {
271 return;
272 }
273
274 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
275 /*
276 * Note: we keep CI large pages off by default because a 64K capable
277 * guest provisioned with large pages might otherwise try to map a qemu
278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279 * even if that qemu runs on a 4k host.
280 * We dd this bit back here if we are confident this is not an issue
281 */
282 pa_features[3] |= 0x20;
283 }
284 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
285 pa_features[24] |= 0x80; /* Transactional memory support */
286 }
287 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
288 /* Workaround for broken kernels that attempt (guest) radix
289 * mode when they can't handle it, if they see the radix bit set
290 * in pa-features. So hide it from them. */
291 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
292 }
293
294 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
295 }
296
297 static hwaddr spapr_node0_size(MachineState *machine)
298 {
299 if (machine->numa_state->num_nodes) {
300 int i;
301 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
302 if (machine->numa_state->nodes[i].node_mem) {
303 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
304 machine->ram_size);
305 }
306 }
307 }
308 return machine->ram_size;
309 }
310
311 static void add_str(GString *s, const gchar *s1)
312 {
313 g_string_append_len(s, s1, strlen(s1) + 1);
314 }
315
316 static int spapr_dt_memory_node(void *fdt, int nodeid, hwaddr start,
317 hwaddr size)
318 {
319 uint32_t associativity[] = {
320 cpu_to_be32(0x4), /* length */
321 cpu_to_be32(0x0), cpu_to_be32(0x0),
322 cpu_to_be32(0x0), cpu_to_be32(nodeid)
323 };
324 char mem_name[32];
325 uint64_t mem_reg_property[2];
326 int off;
327
328 mem_reg_property[0] = cpu_to_be64(start);
329 mem_reg_property[1] = cpu_to_be64(size);
330
331 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
332 off = fdt_add_subnode(fdt, 0, mem_name);
333 _FDT(off);
334 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
335 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
336 sizeof(mem_reg_property))));
337 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
338 sizeof(associativity))));
339 return off;
340 }
341
342 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
343 {
344 MemoryDeviceInfoList *info;
345
346 for (info = list; info; info = info->next) {
347 MemoryDeviceInfo *value = info->value;
348
349 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
350 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
351
352 if (addr >= pcdimm_info->addr &&
353 addr < (pcdimm_info->addr + pcdimm_info->size)) {
354 return pcdimm_info->node;
355 }
356 }
357 }
358
359 return -1;
360 }
361
362 struct sPAPRDrconfCellV2 {
363 uint32_t seq_lmbs;
364 uint64_t base_addr;
365 uint32_t drc_index;
366 uint32_t aa_index;
367 uint32_t flags;
368 } QEMU_PACKED;
369
370 typedef struct DrconfCellQueue {
371 struct sPAPRDrconfCellV2 cell;
372 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
373 } DrconfCellQueue;
374
375 static DrconfCellQueue *
376 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
377 uint32_t drc_index, uint32_t aa_index,
378 uint32_t flags)
379 {
380 DrconfCellQueue *elem;
381
382 elem = g_malloc0(sizeof(*elem));
383 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
384 elem->cell.base_addr = cpu_to_be64(base_addr);
385 elem->cell.drc_index = cpu_to_be32(drc_index);
386 elem->cell.aa_index = cpu_to_be32(aa_index);
387 elem->cell.flags = cpu_to_be32(flags);
388
389 return elem;
390 }
391
392 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
393 int offset, MemoryDeviceInfoList *dimms)
394 {
395 MachineState *machine = MACHINE(spapr);
396 uint8_t *int_buf, *cur_index;
397 int ret;
398 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
399 uint64_t addr, cur_addr, size;
400 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
401 uint64_t mem_end = machine->device_memory->base +
402 memory_region_size(&machine->device_memory->mr);
403 uint32_t node, buf_len, nr_entries = 0;
404 SpaprDrc *drc;
405 DrconfCellQueue *elem, *next;
406 MemoryDeviceInfoList *info;
407 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
408 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
409
410 /* Entry to cover RAM and the gap area */
411 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
412 SPAPR_LMB_FLAGS_RESERVED |
413 SPAPR_LMB_FLAGS_DRC_INVALID);
414 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
415 nr_entries++;
416
417 cur_addr = machine->device_memory->base;
418 for (info = dimms; info; info = info->next) {
419 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
420
421 addr = di->addr;
422 size = di->size;
423 node = di->node;
424
425 /*
426 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
427 * area is marked hotpluggable in the next iteration for the bigger
428 * chunk including the NVDIMM occupied area.
429 */
430 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
431 continue;
432
433 /* Entry for hot-pluggable area */
434 if (cur_addr < addr) {
435 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
436 g_assert(drc);
437 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
438 cur_addr, spapr_drc_index(drc), -1, 0);
439 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
440 nr_entries++;
441 }
442
443 /* Entry for DIMM */
444 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
445 g_assert(drc);
446 elem = spapr_get_drconf_cell(size / lmb_size, addr,
447 spapr_drc_index(drc), node,
448 SPAPR_LMB_FLAGS_ASSIGNED);
449 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
450 nr_entries++;
451 cur_addr = addr + size;
452 }
453
454 /* Entry for remaining hotpluggable area */
455 if (cur_addr < mem_end) {
456 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
457 g_assert(drc);
458 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
459 cur_addr, spapr_drc_index(drc), -1, 0);
460 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
461 nr_entries++;
462 }
463
464 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
465 int_buf = cur_index = g_malloc0(buf_len);
466 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
467 cur_index += sizeof(nr_entries);
468
469 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
470 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
471 cur_index += sizeof(elem->cell);
472 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
473 g_free(elem);
474 }
475
476 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
477 g_free(int_buf);
478 if (ret < 0) {
479 return -1;
480 }
481 return 0;
482 }
483
484 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
485 int offset, MemoryDeviceInfoList *dimms)
486 {
487 MachineState *machine = MACHINE(spapr);
488 int i, ret;
489 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
490 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
491 uint32_t nr_lmbs = (machine->device_memory->base +
492 memory_region_size(&machine->device_memory->mr)) /
493 lmb_size;
494 uint32_t *int_buf, *cur_index, buf_len;
495
496 /*
497 * Allocate enough buffer size to fit in ibm,dynamic-memory
498 */
499 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
500 cur_index = int_buf = g_malloc0(buf_len);
501 int_buf[0] = cpu_to_be32(nr_lmbs);
502 cur_index++;
503 for (i = 0; i < nr_lmbs; i++) {
504 uint64_t addr = i * lmb_size;
505 uint32_t *dynamic_memory = cur_index;
506
507 if (i >= device_lmb_start) {
508 SpaprDrc *drc;
509
510 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
511 g_assert(drc);
512
513 dynamic_memory[0] = cpu_to_be32(addr >> 32);
514 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
515 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
516 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
517 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
518 if (memory_region_present(get_system_memory(), addr)) {
519 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
520 } else {
521 dynamic_memory[5] = cpu_to_be32(0);
522 }
523 } else {
524 /*
525 * LMB information for RMA, boot time RAM and gap b/n RAM and
526 * device memory region -- all these are marked as reserved
527 * and as having no valid DRC.
528 */
529 dynamic_memory[0] = cpu_to_be32(addr >> 32);
530 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
531 dynamic_memory[2] = cpu_to_be32(0);
532 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
533 dynamic_memory[4] = cpu_to_be32(-1);
534 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
535 SPAPR_LMB_FLAGS_DRC_INVALID);
536 }
537
538 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
539 }
540 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
541 g_free(int_buf);
542 if (ret < 0) {
543 return -1;
544 }
545 return 0;
546 }
547
548 /*
549 * Adds ibm,dynamic-reconfiguration-memory node.
550 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
551 * of this device tree node.
552 */
553 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
554 void *fdt)
555 {
556 MachineState *machine = MACHINE(spapr);
557 int nb_numa_nodes = machine->numa_state->num_nodes;
558 int ret, i, offset;
559 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
560 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
561 uint32_t *int_buf, *cur_index, buf_len;
562 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
563 MemoryDeviceInfoList *dimms = NULL;
564
565 /*
566 * Don't create the node if there is no device memory
567 */
568 if (machine->ram_size == machine->maxram_size) {
569 return 0;
570 }
571
572 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
573
574 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
575 sizeof(prop_lmb_size));
576 if (ret < 0) {
577 return ret;
578 }
579
580 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
581 if (ret < 0) {
582 return ret;
583 }
584
585 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
586 if (ret < 0) {
587 return ret;
588 }
589
590 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
591 dimms = qmp_memory_device_list();
592 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
593 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
594 } else {
595 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
596 }
597 qapi_free_MemoryDeviceInfoList(dimms);
598
599 if (ret < 0) {
600 return ret;
601 }
602
603 /* ibm,associativity-lookup-arrays */
604 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
605 cur_index = int_buf = g_malloc0(buf_len);
606 int_buf[0] = cpu_to_be32(nr_nodes);
607 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
608 cur_index += 2;
609 for (i = 0; i < nr_nodes; i++) {
610 uint32_t associativity[] = {
611 cpu_to_be32(0x0),
612 cpu_to_be32(0x0),
613 cpu_to_be32(0x0),
614 cpu_to_be32(i)
615 };
616 memcpy(cur_index, associativity, sizeof(associativity));
617 cur_index += 4;
618 }
619 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
620 (cur_index - int_buf) * sizeof(uint32_t));
621 g_free(int_buf);
622
623 return ret;
624 }
625
626 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
627 {
628 MachineState *machine = MACHINE(spapr);
629 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
630 hwaddr mem_start, node_size;
631 int i, nb_nodes = machine->numa_state->num_nodes;
632 NodeInfo *nodes = machine->numa_state->nodes;
633
634 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
635 if (!nodes[i].node_mem) {
636 continue;
637 }
638 if (mem_start >= machine->ram_size) {
639 node_size = 0;
640 } else {
641 node_size = nodes[i].node_mem;
642 if (node_size > machine->ram_size - mem_start) {
643 node_size = machine->ram_size - mem_start;
644 }
645 }
646 if (!mem_start) {
647 /* spapr_machine_init() checks for rma_size <= node0_size
648 * already */
649 spapr_dt_memory_node(fdt, i, 0, spapr->rma_size);
650 mem_start += spapr->rma_size;
651 node_size -= spapr->rma_size;
652 }
653 for ( ; node_size; ) {
654 hwaddr sizetmp = pow2floor(node_size);
655
656 /* mem_start != 0 here */
657 if (ctzl(mem_start) < ctzl(sizetmp)) {
658 sizetmp = 1ULL << ctzl(mem_start);
659 }
660
661 spapr_dt_memory_node(fdt, i, mem_start, sizetmp);
662 node_size -= sizetmp;
663 mem_start += sizetmp;
664 }
665 }
666
667 /* Generate ibm,dynamic-reconfiguration-memory node if required */
668 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
669 int ret;
670
671 g_assert(smc->dr_lmb_enabled);
672 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
673 if (ret) {
674 return ret;
675 }
676 }
677
678 return 0;
679 }
680
681 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
682 SpaprMachineState *spapr)
683 {
684 MachineState *ms = MACHINE(spapr);
685 PowerPCCPU *cpu = POWERPC_CPU(cs);
686 CPUPPCState *env = &cpu->env;
687 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
688 int index = spapr_get_vcpu_id(cpu);
689 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
690 0xffffffff, 0xffffffff};
691 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
692 : SPAPR_TIMEBASE_FREQ;
693 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
694 uint32_t page_sizes_prop[64];
695 size_t page_sizes_prop_size;
696 unsigned int smp_threads = ms->smp.threads;
697 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
698 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
699 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
700 SpaprDrc *drc;
701 int drc_index;
702 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
703 int i;
704
705 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
706 if (drc) {
707 drc_index = spapr_drc_index(drc);
708 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
709 }
710
711 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
712 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
713
714 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
715 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
716 env->dcache_line_size)));
717 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
718 env->dcache_line_size)));
719 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
720 env->icache_line_size)));
721 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
722 env->icache_line_size)));
723
724 if (pcc->l1_dcache_size) {
725 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
726 pcc->l1_dcache_size)));
727 } else {
728 warn_report("Unknown L1 dcache size for cpu");
729 }
730 if (pcc->l1_icache_size) {
731 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
732 pcc->l1_icache_size)));
733 } else {
734 warn_report("Unknown L1 icache size for cpu");
735 }
736
737 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
738 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
739 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
740 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
741 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
742 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
743
744 if (env->spr_cb[SPR_PURR].oea_read) {
745 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
746 }
747 if (env->spr_cb[SPR_SPURR].oea_read) {
748 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
749 }
750
751 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
752 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
753 segs, sizeof(segs))));
754 }
755
756 /* Advertise VSX (vector extensions) if available
757 * 1 == VMX / Altivec available
758 * 2 == VSX available
759 *
760 * Only CPUs for which we create core types in spapr_cpu_core.c
761 * are possible, and all of those have VMX */
762 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
763 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
764 } else {
765 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
766 }
767
768 /* Advertise DFP (Decimal Floating Point) if available
769 * 0 / no property == no DFP
770 * 1 == DFP available */
771 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
772 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
773 }
774
775 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
776 sizeof(page_sizes_prop));
777 if (page_sizes_prop_size) {
778 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
779 page_sizes_prop, page_sizes_prop_size)));
780 }
781
782 spapr_dt_pa_features(spapr, cpu, fdt, offset);
783
784 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
785 cs->cpu_index / vcpus_per_socket)));
786
787 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
788 pft_size_prop, sizeof(pft_size_prop))));
789
790 if (ms->numa_state->num_nodes > 1) {
791 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
792 }
793
794 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
795
796 if (pcc->radix_page_info) {
797 for (i = 0; i < pcc->radix_page_info->count; i++) {
798 radix_AP_encodings[i] =
799 cpu_to_be32(pcc->radix_page_info->entries[i]);
800 }
801 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
802 radix_AP_encodings,
803 pcc->radix_page_info->count *
804 sizeof(radix_AP_encodings[0]))));
805 }
806
807 /*
808 * We set this property to let the guest know that it can use the large
809 * decrementer and its width in bits.
810 */
811 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
812 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
813 pcc->lrg_decr_bits)));
814 }
815
816 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
817 {
818 CPUState **rev;
819 CPUState *cs;
820 int n_cpus;
821 int cpus_offset;
822 char *nodename;
823 int i;
824
825 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
826 _FDT(cpus_offset);
827 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
828 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
829
830 /*
831 * We walk the CPUs in reverse order to ensure that CPU DT nodes
832 * created by fdt_add_subnode() end up in the right order in FDT
833 * for the guest kernel the enumerate the CPUs correctly.
834 *
835 * The CPU list cannot be traversed in reverse order, so we need
836 * to do extra work.
837 */
838 n_cpus = 0;
839 rev = NULL;
840 CPU_FOREACH(cs) {
841 rev = g_renew(CPUState *, rev, n_cpus + 1);
842 rev[n_cpus++] = cs;
843 }
844
845 for (i = n_cpus - 1; i >= 0; i--) {
846 CPUState *cs = rev[i];
847 PowerPCCPU *cpu = POWERPC_CPU(cs);
848 int index = spapr_get_vcpu_id(cpu);
849 DeviceClass *dc = DEVICE_GET_CLASS(cs);
850 int offset;
851
852 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
853 continue;
854 }
855
856 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
857 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
858 g_free(nodename);
859 _FDT(offset);
860 spapr_dt_cpu(cs, fdt, offset, spapr);
861 }
862
863 g_free(rev);
864 }
865
866 static int spapr_dt_rng(void *fdt)
867 {
868 int node;
869 int ret;
870
871 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
872 if (node <= 0) {
873 return -1;
874 }
875 ret = fdt_setprop_string(fdt, node, "device_type",
876 "ibm,platform-facilities");
877 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
878 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
879
880 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
881 if (node <= 0) {
882 return -1;
883 }
884 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
885
886 return ret ? -1 : 0;
887 }
888
889 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
890 {
891 MachineState *ms = MACHINE(spapr);
892 int rtas;
893 GString *hypertas = g_string_sized_new(256);
894 GString *qemu_hypertas = g_string_sized_new(256);
895 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
896 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
897 memory_region_size(&MACHINE(spapr)->device_memory->mr);
898 uint32_t lrdr_capacity[] = {
899 cpu_to_be32(max_device_addr >> 32),
900 cpu_to_be32(max_device_addr & 0xffffffff),
901 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
902 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
903 };
904 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
905 uint32_t maxdomains[] = {
906 cpu_to_be32(4),
907 maxdomain,
908 maxdomain,
909 maxdomain,
910 cpu_to_be32(spapr->gpu_numa_id),
911 };
912
913 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
914
915 /* hypertas */
916 add_str(hypertas, "hcall-pft");
917 add_str(hypertas, "hcall-term");
918 add_str(hypertas, "hcall-dabr");
919 add_str(hypertas, "hcall-interrupt");
920 add_str(hypertas, "hcall-tce");
921 add_str(hypertas, "hcall-vio");
922 add_str(hypertas, "hcall-splpar");
923 add_str(hypertas, "hcall-join");
924 add_str(hypertas, "hcall-bulk");
925 add_str(hypertas, "hcall-set-mode");
926 add_str(hypertas, "hcall-sprg0");
927 add_str(hypertas, "hcall-copy");
928 add_str(hypertas, "hcall-debug");
929 add_str(hypertas, "hcall-vphn");
930 add_str(qemu_hypertas, "hcall-memop1");
931
932 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
933 add_str(hypertas, "hcall-multi-tce");
934 }
935
936 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
937 add_str(hypertas, "hcall-hpt-resize");
938 }
939
940 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
941 hypertas->str, hypertas->len));
942 g_string_free(hypertas, TRUE);
943 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
944 qemu_hypertas->str, qemu_hypertas->len));
945 g_string_free(qemu_hypertas, TRUE);
946
947 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
948 refpoints, sizeof(refpoints)));
949
950 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
951 maxdomains, sizeof(maxdomains)));
952
953 /*
954 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
955 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
956 *
957 * The system reset requirements are driven by existing Linux and PowerVM
958 * implementation which (contrary to PAPR) saves r3 in the error log
959 * structure like machine check, so Linux expects to find the saved r3
960 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
961 * does not look at the error value).
962 *
963 * System reset interrupts are not subject to interlock like machine
964 * check, so this memory area could be corrupted if the sreset is
965 * interrupted by a machine check (or vice versa) if it was shared. To
966 * prevent this, system reset uses per-CPU areas for the sreset save
967 * area. A system reset that interrupts a system reset handler could
968 * still overwrite this area, but Linux doesn't try to recover in that
969 * case anyway.
970 *
971 * The extra 8 bytes is required because Linux's FWNMI error log check
972 * is off-by-one.
973 */
974 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
975 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
976 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
977 RTAS_ERROR_LOG_MAX));
978 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
979 RTAS_EVENT_SCAN_RATE));
980
981 g_assert(msi_nonbroken);
982 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
983
984 /*
985 * According to PAPR, rtas ibm,os-term does not guarantee a return
986 * back to the guest cpu.
987 *
988 * While an additional ibm,extended-os-term property indicates
989 * that rtas call return will always occur. Set this property.
990 */
991 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
992
993 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
994 lrdr_capacity, sizeof(lrdr_capacity)));
995
996 spapr_dt_rtas_tokens(fdt, rtas);
997 }
998
999 /*
1000 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1001 * and the XIVE features that the guest may request and thus the valid
1002 * values for bytes 23..26 of option vector 5:
1003 */
1004 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1005 int chosen)
1006 {
1007 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1008
1009 char val[2 * 4] = {
1010 23, 0x00, /* XICS / XIVE mode */
1011 24, 0x00, /* Hash/Radix, filled in below. */
1012 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1013 26, 0x40, /* Radix options: GTSE == yes. */
1014 };
1015
1016 if (spapr->irq->xics && spapr->irq->xive) {
1017 val[1] = SPAPR_OV5_XIVE_BOTH;
1018 } else if (spapr->irq->xive) {
1019 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1020 } else {
1021 assert(spapr->irq->xics);
1022 val[1] = SPAPR_OV5_XIVE_LEGACY;
1023 }
1024
1025 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1026 first_ppc_cpu->compat_pvr)) {
1027 /*
1028 * If we're in a pre POWER9 compat mode then the guest should
1029 * do hash and use the legacy interrupt mode
1030 */
1031 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1032 val[3] = 0x00; /* Hash */
1033 } else if (kvm_enabled()) {
1034 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1035 val[3] = 0x80; /* OV5_MMU_BOTH */
1036 } else if (kvmppc_has_cap_mmu_radix()) {
1037 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1038 } else {
1039 val[3] = 0x00; /* Hash */
1040 }
1041 } else {
1042 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1043 val[3] = 0xC0;
1044 }
1045 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1046 val, sizeof(val)));
1047 }
1048
1049 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1050 {
1051 MachineState *machine = MACHINE(spapr);
1052 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1053 int chosen;
1054
1055 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1056
1057 if (reset) {
1058 const char *boot_device = machine->boot_order;
1059 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1060 size_t cb = 0;
1061 char *bootlist = get_boot_devices_list(&cb);
1062
1063 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1064 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1065 machine->kernel_cmdline));
1066 }
1067
1068 if (spapr->initrd_size) {
1069 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1070 spapr->initrd_base));
1071 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1072 spapr->initrd_base + spapr->initrd_size));
1073 }
1074
1075 if (spapr->kernel_size) {
1076 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1077 cpu_to_be64(spapr->kernel_size) };
1078
1079 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1080 &kprop, sizeof(kprop)));
1081 if (spapr->kernel_le) {
1082 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1083 }
1084 }
1085 if (boot_menu) {
1086 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1087 }
1088 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1089 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1090 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1091
1092 if (cb && bootlist) {
1093 int i;
1094
1095 for (i = 0; i < cb; i++) {
1096 if (bootlist[i] == '\n') {
1097 bootlist[i] = ' ';
1098 }
1099 }
1100 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1101 }
1102
1103 if (boot_device && strlen(boot_device)) {
1104 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1105 }
1106
1107 if (!spapr->has_graphics && stdout_path) {
1108 /*
1109 * "linux,stdout-path" and "stdout" properties are
1110 * deprecated by linux kernel. New platforms should only
1111 * use the "stdout-path" property. Set the new property
1112 * and continue using older property to remain compatible
1113 * with the existing firmware.
1114 */
1115 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1116 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1117 }
1118
1119 /*
1120 * We can deal with BAR reallocation just fine, advertise it
1121 * to the guest
1122 */
1123 if (smc->linux_pci_probe) {
1124 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1125 }
1126
1127 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1128
1129 g_free(stdout_path);
1130 g_free(bootlist);
1131 }
1132
1133 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1134 }
1135
1136 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1137 {
1138 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1139 * KVM to work under pHyp with some guest co-operation */
1140 int hypervisor;
1141 uint8_t hypercall[16];
1142
1143 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1144 /* indicate KVM hypercall interface */
1145 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1146 if (kvmppc_has_cap_fixup_hcalls()) {
1147 /*
1148 * Older KVM versions with older guest kernels were broken
1149 * with the magic page, don't allow the guest to map it.
1150 */
1151 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1152 sizeof(hypercall))) {
1153 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1154 hypercall, sizeof(hypercall)));
1155 }
1156 }
1157 }
1158
1159 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1160 {
1161 MachineState *machine = MACHINE(spapr);
1162 MachineClass *mc = MACHINE_GET_CLASS(machine);
1163 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1164 int ret;
1165 void *fdt;
1166 SpaprPhbState *phb;
1167 char *buf;
1168
1169 fdt = g_malloc0(space);
1170 _FDT((fdt_create_empty_tree(fdt, space)));
1171
1172 /* Root node */
1173 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1174 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1175 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1176
1177 /* Guest UUID & Name*/
1178 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1179 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1180 if (qemu_uuid_set) {
1181 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1182 }
1183 g_free(buf);
1184
1185 if (qemu_get_vm_name()) {
1186 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1187 qemu_get_vm_name()));
1188 }
1189
1190 /* Host Model & Serial Number */
1191 if (spapr->host_model) {
1192 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1193 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1194 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1195 g_free(buf);
1196 }
1197
1198 if (spapr->host_serial) {
1199 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1200 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1201 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1202 g_free(buf);
1203 }
1204
1205 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1206 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1207
1208 /* /interrupt controller */
1209 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1210
1211 ret = spapr_dt_memory(spapr, fdt);
1212 if (ret < 0) {
1213 error_report("couldn't setup memory nodes in fdt");
1214 exit(1);
1215 }
1216
1217 /* /vdevice */
1218 spapr_dt_vdevice(spapr->vio_bus, fdt);
1219
1220 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1221 ret = spapr_dt_rng(fdt);
1222 if (ret < 0) {
1223 error_report("could not set up rng device in the fdt");
1224 exit(1);
1225 }
1226 }
1227
1228 QLIST_FOREACH(phb, &spapr->phbs, list) {
1229 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1230 if (ret < 0) {
1231 error_report("couldn't setup PCI devices in fdt");
1232 exit(1);
1233 }
1234 }
1235
1236 spapr_dt_cpus(fdt, spapr);
1237
1238 if (smc->dr_lmb_enabled) {
1239 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1240 }
1241
1242 if (mc->has_hotpluggable_cpus) {
1243 int offset = fdt_path_offset(fdt, "/cpus");
1244 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1245 if (ret < 0) {
1246 error_report("Couldn't set up CPU DR device tree properties");
1247 exit(1);
1248 }
1249 }
1250
1251 /* /event-sources */
1252 spapr_dt_events(spapr, fdt);
1253
1254 /* /rtas */
1255 spapr_dt_rtas(spapr, fdt);
1256
1257 /* /chosen */
1258 spapr_dt_chosen(spapr, fdt, reset);
1259
1260 /* /hypervisor */
1261 if (kvm_enabled()) {
1262 spapr_dt_hypervisor(spapr, fdt);
1263 }
1264
1265 /* Build memory reserve map */
1266 if (reset) {
1267 if (spapr->kernel_size) {
1268 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1269 spapr->kernel_size)));
1270 }
1271 if (spapr->initrd_size) {
1272 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1273 spapr->initrd_size)));
1274 }
1275 }
1276
1277 if (smc->dr_phb_enabled) {
1278 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1279 if (ret < 0) {
1280 error_report("Couldn't set up PHB DR device tree properties");
1281 exit(1);
1282 }
1283 }
1284
1285 /* NVDIMM devices */
1286 if (mc->nvdimm_supported) {
1287 spapr_dt_persistent_memory(fdt);
1288 }
1289
1290 return fdt;
1291 }
1292
1293 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1294 {
1295 SpaprMachineState *spapr = opaque;
1296
1297 return (addr & 0x0fffffff) + spapr->kernel_addr;
1298 }
1299
1300 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1301 PowerPCCPU *cpu)
1302 {
1303 CPUPPCState *env = &cpu->env;
1304
1305 /* The TCG path should also be holding the BQL at this point */
1306 g_assert(qemu_mutex_iothread_locked());
1307
1308 if (msr_pr) {
1309 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1310 env->gpr[3] = H_PRIVILEGE;
1311 } else {
1312 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1313 }
1314 }
1315
1316 struct LPCRSyncState {
1317 target_ulong value;
1318 target_ulong mask;
1319 };
1320
1321 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1322 {
1323 struct LPCRSyncState *s = arg.host_ptr;
1324 PowerPCCPU *cpu = POWERPC_CPU(cs);
1325 CPUPPCState *env = &cpu->env;
1326 target_ulong lpcr;
1327
1328 cpu_synchronize_state(cs);
1329 lpcr = env->spr[SPR_LPCR];
1330 lpcr &= ~s->mask;
1331 lpcr |= s->value;
1332 ppc_store_lpcr(cpu, lpcr);
1333 }
1334
1335 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1336 {
1337 CPUState *cs;
1338 struct LPCRSyncState s = {
1339 .value = value,
1340 .mask = mask
1341 };
1342 CPU_FOREACH(cs) {
1343 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1344 }
1345 }
1346
1347 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1348 {
1349 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1350
1351 /* Copy PATE1:GR into PATE0:HR */
1352 entry->dw0 = spapr->patb_entry & PATE0_HR;
1353 entry->dw1 = spapr->patb_entry;
1354 }
1355
1356 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1357 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1358 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1359 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1360 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1361
1362 /*
1363 * Get the fd to access the kernel htab, re-opening it if necessary
1364 */
1365 static int get_htab_fd(SpaprMachineState *spapr)
1366 {
1367 Error *local_err = NULL;
1368
1369 if (spapr->htab_fd >= 0) {
1370 return spapr->htab_fd;
1371 }
1372
1373 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1374 if (spapr->htab_fd < 0) {
1375 error_report_err(local_err);
1376 }
1377
1378 return spapr->htab_fd;
1379 }
1380
1381 void close_htab_fd(SpaprMachineState *spapr)
1382 {
1383 if (spapr->htab_fd >= 0) {
1384 close(spapr->htab_fd);
1385 }
1386 spapr->htab_fd = -1;
1387 }
1388
1389 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1390 {
1391 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1392
1393 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1394 }
1395
1396 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1397 {
1398 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1399
1400 assert(kvm_enabled());
1401
1402 if (!spapr->htab) {
1403 return 0;
1404 }
1405
1406 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1407 }
1408
1409 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1410 hwaddr ptex, int n)
1411 {
1412 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1413 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1414
1415 if (!spapr->htab) {
1416 /*
1417 * HTAB is controlled by KVM. Fetch into temporary buffer
1418 */
1419 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1420 kvmppc_read_hptes(hptes, ptex, n);
1421 return hptes;
1422 }
1423
1424 /*
1425 * HTAB is controlled by QEMU. Just point to the internally
1426 * accessible PTEG.
1427 */
1428 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1429 }
1430
1431 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1432 const ppc_hash_pte64_t *hptes,
1433 hwaddr ptex, int n)
1434 {
1435 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1436
1437 if (!spapr->htab) {
1438 g_free((void *)hptes);
1439 }
1440
1441 /* Nothing to do for qemu managed HPT */
1442 }
1443
1444 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1445 uint64_t pte0, uint64_t pte1)
1446 {
1447 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1448 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1449
1450 if (!spapr->htab) {
1451 kvmppc_write_hpte(ptex, pte0, pte1);
1452 } else {
1453 if (pte0 & HPTE64_V_VALID) {
1454 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1455 /*
1456 * When setting valid, we write PTE1 first. This ensures
1457 * proper synchronization with the reading code in
1458 * ppc_hash64_pteg_search()
1459 */
1460 smp_wmb();
1461 stq_p(spapr->htab + offset, pte0);
1462 } else {
1463 stq_p(spapr->htab + offset, pte0);
1464 /*
1465 * When clearing it we set PTE0 first. This ensures proper
1466 * synchronization with the reading code in
1467 * ppc_hash64_pteg_search()
1468 */
1469 smp_wmb();
1470 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1471 }
1472 }
1473 }
1474
1475 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1476 uint64_t pte1)
1477 {
1478 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1479 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1480
1481 if (!spapr->htab) {
1482 /* There should always be a hash table when this is called */
1483 error_report("spapr_hpte_set_c called with no hash table !");
1484 return;
1485 }
1486
1487 /* The HW performs a non-atomic byte update */
1488 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1489 }
1490
1491 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1492 uint64_t pte1)
1493 {
1494 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1495 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1496
1497 if (!spapr->htab) {
1498 /* There should always be a hash table when this is called */
1499 error_report("spapr_hpte_set_r called with no hash table !");
1500 return;
1501 }
1502
1503 /* The HW performs a non-atomic byte update */
1504 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1505 }
1506
1507 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1508 {
1509 int shift;
1510
1511 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1512 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1513 * that's much more than is needed for Linux guests */
1514 shift = ctz64(pow2ceil(ramsize)) - 7;
1515 shift = MAX(shift, 18); /* Minimum architected size */
1516 shift = MIN(shift, 46); /* Maximum architected size */
1517 return shift;
1518 }
1519
1520 void spapr_free_hpt(SpaprMachineState *spapr)
1521 {
1522 g_free(spapr->htab);
1523 spapr->htab = NULL;
1524 spapr->htab_shift = 0;
1525 close_htab_fd(spapr);
1526 }
1527
1528 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1529 Error **errp)
1530 {
1531 long rc;
1532
1533 /* Clean up any HPT info from a previous boot */
1534 spapr_free_hpt(spapr);
1535
1536 rc = kvmppc_reset_htab(shift);
1537 if (rc < 0) {
1538 /* kernel-side HPT needed, but couldn't allocate one */
1539 error_setg_errno(errp, errno,
1540 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1541 shift);
1542 /* This is almost certainly fatal, but if the caller really
1543 * wants to carry on with shift == 0, it's welcome to try */
1544 } else if (rc > 0) {
1545 /* kernel-side HPT allocated */
1546 if (rc != shift) {
1547 error_setg(errp,
1548 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1549 shift, rc);
1550 }
1551
1552 spapr->htab_shift = shift;
1553 spapr->htab = NULL;
1554 } else {
1555 /* kernel-side HPT not needed, allocate in userspace instead */
1556 size_t size = 1ULL << shift;
1557 int i;
1558
1559 spapr->htab = qemu_memalign(size, size);
1560 if (!spapr->htab) {
1561 error_setg_errno(errp, errno,
1562 "Could not allocate HPT of order %d", shift);
1563 return;
1564 }
1565
1566 memset(spapr->htab, 0, size);
1567 spapr->htab_shift = shift;
1568
1569 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1570 DIRTY_HPTE(HPTE(spapr->htab, i));
1571 }
1572 }
1573 /* We're setting up a hash table, so that means we're not radix */
1574 spapr->patb_entry = 0;
1575 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1576 }
1577
1578 void spapr_setup_hpt(SpaprMachineState *spapr)
1579 {
1580 int hpt_shift;
1581
1582 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1583 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1584 } else {
1585 uint64_t current_ram_size;
1586
1587 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1588 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1589 }
1590 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1591
1592 if (kvm_enabled()) {
1593 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1594
1595 /* Check our RMA fits in the possible VRMA */
1596 if (vrma_limit < spapr->rma_size) {
1597 error_report("Unable to create %" HWADDR_PRIu
1598 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1599 spapr->rma_size / MiB, vrma_limit / MiB);
1600 exit(EXIT_FAILURE);
1601 }
1602 }
1603 }
1604
1605 static int spapr_reset_drcs(Object *child, void *opaque)
1606 {
1607 SpaprDrc *drc =
1608 (SpaprDrc *) object_dynamic_cast(child,
1609 TYPE_SPAPR_DR_CONNECTOR);
1610
1611 if (drc) {
1612 spapr_drc_reset(drc);
1613 }
1614
1615 return 0;
1616 }
1617
1618 static void spapr_machine_reset(MachineState *machine)
1619 {
1620 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1621 PowerPCCPU *first_ppc_cpu;
1622 hwaddr fdt_addr;
1623 void *fdt;
1624 int rc;
1625
1626 kvmppc_svm_off(&error_fatal);
1627 spapr_caps_apply(spapr);
1628
1629 first_ppc_cpu = POWERPC_CPU(first_cpu);
1630 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1631 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1632 spapr->max_compat_pvr)) {
1633 /*
1634 * If using KVM with radix mode available, VCPUs can be started
1635 * without a HPT because KVM will start them in radix mode.
1636 * Set the GR bit in PATE so that we know there is no HPT.
1637 */
1638 spapr->patb_entry = PATE1_GR;
1639 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1640 } else {
1641 spapr_setup_hpt(spapr);
1642 }
1643
1644 qemu_devices_reset();
1645
1646 spapr_ovec_cleanup(spapr->ov5_cas);
1647 spapr->ov5_cas = spapr_ovec_new();
1648
1649 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1650
1651 /*
1652 * This is fixing some of the default configuration of the XIVE
1653 * devices. To be called after the reset of the machine devices.
1654 */
1655 spapr_irq_reset(spapr, &error_fatal);
1656
1657 /*
1658 * There is no CAS under qtest. Simulate one to please the code that
1659 * depends on spapr->ov5_cas. This is especially needed to test device
1660 * unplug, so we do that before resetting the DRCs.
1661 */
1662 if (qtest_enabled()) {
1663 spapr_ovec_cleanup(spapr->ov5_cas);
1664 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1665 }
1666
1667 /* DRC reset may cause a device to be unplugged. This will cause troubles
1668 * if this device is used by another device (eg, a running vhost backend
1669 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1670 * situations, we reset DRCs after all devices have been reset.
1671 */
1672 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1673
1674 spapr_clear_pending_events(spapr);
1675
1676 /*
1677 * We place the device tree and RTAS just below either the top of the RMA,
1678 * or just below 2GB, whichever is lower, so that it can be
1679 * processed with 32-bit real mode code if necessary
1680 */
1681 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1682
1683 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1684
1685 rc = fdt_pack(fdt);
1686
1687 /* Should only fail if we've built a corrupted tree */
1688 assert(rc == 0);
1689
1690 /* Load the fdt */
1691 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1692 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1693 g_free(spapr->fdt_blob);
1694 spapr->fdt_size = fdt_totalsize(fdt);
1695 spapr->fdt_initial_size = spapr->fdt_size;
1696 spapr->fdt_blob = fdt;
1697
1698 /* Set up the entry state */
1699 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1700 first_ppc_cpu->env.gpr[5] = 0;
1701
1702 spapr->fwnmi_system_reset_addr = -1;
1703 spapr->fwnmi_machine_check_addr = -1;
1704 spapr->fwnmi_machine_check_interlock = -1;
1705
1706 /* Signal all vCPUs waiting on this condition */
1707 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1708
1709 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1710 }
1711
1712 static void spapr_create_nvram(SpaprMachineState *spapr)
1713 {
1714 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1715 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1716
1717 if (dinfo) {
1718 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1719 &error_fatal);
1720 }
1721
1722 qdev_init_nofail(dev);
1723
1724 spapr->nvram = (struct SpaprNvram *)dev;
1725 }
1726
1727 static void spapr_rtc_create(SpaprMachineState *spapr)
1728 {
1729 object_initialize_child(OBJECT(spapr), "rtc",
1730 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1731 &error_fatal, NULL);
1732 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1733 &error_fatal);
1734 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1735 "date");
1736 }
1737
1738 /* Returns whether we want to use VGA or not */
1739 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1740 {
1741 switch (vga_interface_type) {
1742 case VGA_NONE:
1743 return false;
1744 case VGA_DEVICE:
1745 return true;
1746 case VGA_STD:
1747 case VGA_VIRTIO:
1748 case VGA_CIRRUS:
1749 return pci_vga_init(pci_bus) != NULL;
1750 default:
1751 error_setg(errp,
1752 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1753 return false;
1754 }
1755 }
1756
1757 static int spapr_pre_load(void *opaque)
1758 {
1759 int rc;
1760
1761 rc = spapr_caps_pre_load(opaque);
1762 if (rc) {
1763 return rc;
1764 }
1765
1766 return 0;
1767 }
1768
1769 static int spapr_post_load(void *opaque, int version_id)
1770 {
1771 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1772 int err = 0;
1773
1774 err = spapr_caps_post_migration(spapr);
1775 if (err) {
1776 return err;
1777 }
1778
1779 /*
1780 * In earlier versions, there was no separate qdev for the PAPR
1781 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1782 * So when migrating from those versions, poke the incoming offset
1783 * value into the RTC device
1784 */
1785 if (version_id < 3) {
1786 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1787 if (err) {
1788 return err;
1789 }
1790 }
1791
1792 if (kvm_enabled() && spapr->patb_entry) {
1793 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1794 bool radix = !!(spapr->patb_entry & PATE1_GR);
1795 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1796
1797 /*
1798 * Update LPCR:HR and UPRT as they may not be set properly in
1799 * the stream
1800 */
1801 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1802 LPCR_HR | LPCR_UPRT);
1803
1804 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1805 if (err) {
1806 error_report("Process table config unsupported by the host");
1807 return -EINVAL;
1808 }
1809 }
1810
1811 err = spapr_irq_post_load(spapr, version_id);
1812 if (err) {
1813 return err;
1814 }
1815
1816 return err;
1817 }
1818
1819 static int spapr_pre_save(void *opaque)
1820 {
1821 int rc;
1822
1823 rc = spapr_caps_pre_save(opaque);
1824 if (rc) {
1825 return rc;
1826 }
1827
1828 return 0;
1829 }
1830
1831 static bool version_before_3(void *opaque, int version_id)
1832 {
1833 return version_id < 3;
1834 }
1835
1836 static bool spapr_pending_events_needed(void *opaque)
1837 {
1838 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1839 return !QTAILQ_EMPTY(&spapr->pending_events);
1840 }
1841
1842 static const VMStateDescription vmstate_spapr_event_entry = {
1843 .name = "spapr_event_log_entry",
1844 .version_id = 1,
1845 .minimum_version_id = 1,
1846 .fields = (VMStateField[]) {
1847 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1848 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1849 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1850 NULL, extended_length),
1851 VMSTATE_END_OF_LIST()
1852 },
1853 };
1854
1855 static const VMStateDescription vmstate_spapr_pending_events = {
1856 .name = "spapr_pending_events",
1857 .version_id = 1,
1858 .minimum_version_id = 1,
1859 .needed = spapr_pending_events_needed,
1860 .fields = (VMStateField[]) {
1861 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1862 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1863 VMSTATE_END_OF_LIST()
1864 },
1865 };
1866
1867 static bool spapr_ov5_cas_needed(void *opaque)
1868 {
1869 SpaprMachineState *spapr = opaque;
1870 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1871 bool cas_needed;
1872
1873 /* Prior to the introduction of SpaprOptionVector, we had two option
1874 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1875 * Both of these options encode machine topology into the device-tree
1876 * in such a way that the now-booted OS should still be able to interact
1877 * appropriately with QEMU regardless of what options were actually
1878 * negotiatied on the source side.
1879 *
1880 * As such, we can avoid migrating the CAS-negotiated options if these
1881 * are the only options available on the current machine/platform.
1882 * Since these are the only options available for pseries-2.7 and
1883 * earlier, this allows us to maintain old->new/new->old migration
1884 * compatibility.
1885 *
1886 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1887 * via default pseries-2.8 machines and explicit command-line parameters.
1888 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1889 * of the actual CAS-negotiated values to continue working properly. For
1890 * example, availability of memory unplug depends on knowing whether
1891 * OV5_HP_EVT was negotiated via CAS.
1892 *
1893 * Thus, for any cases where the set of available CAS-negotiatable
1894 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1895 * include the CAS-negotiated options in the migration stream, unless
1896 * if they affect boot time behaviour only.
1897 */
1898 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1899 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1900 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1901
1902 /* We need extra information if we have any bits outside the mask
1903 * defined above */
1904 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1905
1906 spapr_ovec_cleanup(ov5_mask);
1907
1908 return cas_needed;
1909 }
1910
1911 static const VMStateDescription vmstate_spapr_ov5_cas = {
1912 .name = "spapr_option_vector_ov5_cas",
1913 .version_id = 1,
1914 .minimum_version_id = 1,
1915 .needed = spapr_ov5_cas_needed,
1916 .fields = (VMStateField[]) {
1917 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1918 vmstate_spapr_ovec, SpaprOptionVector),
1919 VMSTATE_END_OF_LIST()
1920 },
1921 };
1922
1923 static bool spapr_patb_entry_needed(void *opaque)
1924 {
1925 SpaprMachineState *spapr = opaque;
1926
1927 return !!spapr->patb_entry;
1928 }
1929
1930 static const VMStateDescription vmstate_spapr_patb_entry = {
1931 .name = "spapr_patb_entry",
1932 .version_id = 1,
1933 .minimum_version_id = 1,
1934 .needed = spapr_patb_entry_needed,
1935 .fields = (VMStateField[]) {
1936 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1937 VMSTATE_END_OF_LIST()
1938 },
1939 };
1940
1941 static bool spapr_irq_map_needed(void *opaque)
1942 {
1943 SpaprMachineState *spapr = opaque;
1944
1945 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1946 }
1947
1948 static const VMStateDescription vmstate_spapr_irq_map = {
1949 .name = "spapr_irq_map",
1950 .version_id = 1,
1951 .minimum_version_id = 1,
1952 .needed = spapr_irq_map_needed,
1953 .fields = (VMStateField[]) {
1954 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1955 VMSTATE_END_OF_LIST()
1956 },
1957 };
1958
1959 static bool spapr_dtb_needed(void *opaque)
1960 {
1961 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1962
1963 return smc->update_dt_enabled;
1964 }
1965
1966 static int spapr_dtb_pre_load(void *opaque)
1967 {
1968 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1969
1970 g_free(spapr->fdt_blob);
1971 spapr->fdt_blob = NULL;
1972 spapr->fdt_size = 0;
1973
1974 return 0;
1975 }
1976
1977 static const VMStateDescription vmstate_spapr_dtb = {
1978 .name = "spapr_dtb",
1979 .version_id = 1,
1980 .minimum_version_id = 1,
1981 .needed = spapr_dtb_needed,
1982 .pre_load = spapr_dtb_pre_load,
1983 .fields = (VMStateField[]) {
1984 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1985 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1986 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1987 fdt_size),
1988 VMSTATE_END_OF_LIST()
1989 },
1990 };
1991
1992 static bool spapr_fwnmi_needed(void *opaque)
1993 {
1994 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1995
1996 return spapr->fwnmi_machine_check_addr != -1;
1997 }
1998
1999 static int spapr_fwnmi_pre_save(void *opaque)
2000 {
2001 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2002
2003 /*
2004 * Check if machine check handling is in progress and print a
2005 * warning message.
2006 */
2007 if (spapr->fwnmi_machine_check_interlock != -1) {
2008 warn_report("A machine check is being handled during migration. The"
2009 "handler may run and log hardware error on the destination");
2010 }
2011
2012 return 0;
2013 }
2014
2015 static const VMStateDescription vmstate_spapr_fwnmi = {
2016 .name = "spapr_fwnmi",
2017 .version_id = 1,
2018 .minimum_version_id = 1,
2019 .needed = spapr_fwnmi_needed,
2020 .pre_save = spapr_fwnmi_pre_save,
2021 .fields = (VMStateField[]) {
2022 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2023 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2024 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2025 VMSTATE_END_OF_LIST()
2026 },
2027 };
2028
2029 static const VMStateDescription vmstate_spapr = {
2030 .name = "spapr",
2031 .version_id = 3,
2032 .minimum_version_id = 1,
2033 .pre_load = spapr_pre_load,
2034 .post_load = spapr_post_load,
2035 .pre_save = spapr_pre_save,
2036 .fields = (VMStateField[]) {
2037 /* used to be @next_irq */
2038 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2039
2040 /* RTC offset */
2041 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2042
2043 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2044 VMSTATE_END_OF_LIST()
2045 },
2046 .subsections = (const VMStateDescription*[]) {
2047 &vmstate_spapr_ov5_cas,
2048 &vmstate_spapr_patb_entry,
2049 &vmstate_spapr_pending_events,
2050 &vmstate_spapr_cap_htm,
2051 &vmstate_spapr_cap_vsx,
2052 &vmstate_spapr_cap_dfp,
2053 &vmstate_spapr_cap_cfpc,
2054 &vmstate_spapr_cap_sbbc,
2055 &vmstate_spapr_cap_ibs,
2056 &vmstate_spapr_cap_hpt_maxpagesize,
2057 &vmstate_spapr_irq_map,
2058 &vmstate_spapr_cap_nested_kvm_hv,
2059 &vmstate_spapr_dtb,
2060 &vmstate_spapr_cap_large_decr,
2061 &vmstate_spapr_cap_ccf_assist,
2062 &vmstate_spapr_cap_fwnmi,
2063 &vmstate_spapr_fwnmi,
2064 NULL
2065 }
2066 };
2067
2068 static int htab_save_setup(QEMUFile *f, void *opaque)
2069 {
2070 SpaprMachineState *spapr = opaque;
2071
2072 /* "Iteration" header */
2073 if (!spapr->htab_shift) {
2074 qemu_put_be32(f, -1);
2075 } else {
2076 qemu_put_be32(f, spapr->htab_shift);
2077 }
2078
2079 if (spapr->htab) {
2080 spapr->htab_save_index = 0;
2081 spapr->htab_first_pass = true;
2082 } else {
2083 if (spapr->htab_shift) {
2084 assert(kvm_enabled());
2085 }
2086 }
2087
2088
2089 return 0;
2090 }
2091
2092 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2093 int chunkstart, int n_valid, int n_invalid)
2094 {
2095 qemu_put_be32(f, chunkstart);
2096 qemu_put_be16(f, n_valid);
2097 qemu_put_be16(f, n_invalid);
2098 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2099 HASH_PTE_SIZE_64 * n_valid);
2100 }
2101
2102 static void htab_save_end_marker(QEMUFile *f)
2103 {
2104 qemu_put_be32(f, 0);
2105 qemu_put_be16(f, 0);
2106 qemu_put_be16(f, 0);
2107 }
2108
2109 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2110 int64_t max_ns)
2111 {
2112 bool has_timeout = max_ns != -1;
2113 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2114 int index = spapr->htab_save_index;
2115 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2116
2117 assert(spapr->htab_first_pass);
2118
2119 do {
2120 int chunkstart;
2121
2122 /* Consume invalid HPTEs */
2123 while ((index < htabslots)
2124 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2125 CLEAN_HPTE(HPTE(spapr->htab, index));
2126 index++;
2127 }
2128
2129 /* Consume valid HPTEs */
2130 chunkstart = index;
2131 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2132 && HPTE_VALID(HPTE(spapr->htab, index))) {
2133 CLEAN_HPTE(HPTE(spapr->htab, index));
2134 index++;
2135 }
2136
2137 if (index > chunkstart) {
2138 int n_valid = index - chunkstart;
2139
2140 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2141
2142 if (has_timeout &&
2143 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2144 break;
2145 }
2146 }
2147 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2148
2149 if (index >= htabslots) {
2150 assert(index == htabslots);
2151 index = 0;
2152 spapr->htab_first_pass = false;
2153 }
2154 spapr->htab_save_index = index;
2155 }
2156
2157 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2158 int64_t max_ns)
2159 {
2160 bool final = max_ns < 0;
2161 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2162 int examined = 0, sent = 0;
2163 int index = spapr->htab_save_index;
2164 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2165
2166 assert(!spapr->htab_first_pass);
2167
2168 do {
2169 int chunkstart, invalidstart;
2170
2171 /* Consume non-dirty HPTEs */
2172 while ((index < htabslots)
2173 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2174 index++;
2175 examined++;
2176 }
2177
2178 chunkstart = index;
2179 /* Consume valid dirty HPTEs */
2180 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2181 && HPTE_DIRTY(HPTE(spapr->htab, index))
2182 && HPTE_VALID(HPTE(spapr->htab, index))) {
2183 CLEAN_HPTE(HPTE(spapr->htab, index));
2184 index++;
2185 examined++;
2186 }
2187
2188 invalidstart = index;
2189 /* Consume invalid dirty HPTEs */
2190 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2191 && HPTE_DIRTY(HPTE(spapr->htab, index))
2192 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2193 CLEAN_HPTE(HPTE(spapr->htab, index));
2194 index++;
2195 examined++;
2196 }
2197
2198 if (index > chunkstart) {
2199 int n_valid = invalidstart - chunkstart;
2200 int n_invalid = index - invalidstart;
2201
2202 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2203 sent += index - chunkstart;
2204
2205 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2206 break;
2207 }
2208 }
2209
2210 if (examined >= htabslots) {
2211 break;
2212 }
2213
2214 if (index >= htabslots) {
2215 assert(index == htabslots);
2216 index = 0;
2217 }
2218 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2219
2220 if (index >= htabslots) {
2221 assert(index == htabslots);
2222 index = 0;
2223 }
2224
2225 spapr->htab_save_index = index;
2226
2227 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2228 }
2229
2230 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2231 #define MAX_KVM_BUF_SIZE 2048
2232
2233 static int htab_save_iterate(QEMUFile *f, void *opaque)
2234 {
2235 SpaprMachineState *spapr = opaque;
2236 int fd;
2237 int rc = 0;
2238
2239 /* Iteration header */
2240 if (!spapr->htab_shift) {
2241 qemu_put_be32(f, -1);
2242 return 1;
2243 } else {
2244 qemu_put_be32(f, 0);
2245 }
2246
2247 if (!spapr->htab) {
2248 assert(kvm_enabled());
2249
2250 fd = get_htab_fd(spapr);
2251 if (fd < 0) {
2252 return fd;
2253 }
2254
2255 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2256 if (rc < 0) {
2257 return rc;
2258 }
2259 } else if (spapr->htab_first_pass) {
2260 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2261 } else {
2262 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2263 }
2264
2265 htab_save_end_marker(f);
2266
2267 return rc;
2268 }
2269
2270 static int htab_save_complete(QEMUFile *f, void *opaque)
2271 {
2272 SpaprMachineState *spapr = opaque;
2273 int fd;
2274
2275 /* Iteration header */
2276 if (!spapr->htab_shift) {
2277 qemu_put_be32(f, -1);
2278 return 0;
2279 } else {
2280 qemu_put_be32(f, 0);
2281 }
2282
2283 if (!spapr->htab) {
2284 int rc;
2285
2286 assert(kvm_enabled());
2287
2288 fd = get_htab_fd(spapr);
2289 if (fd < 0) {
2290 return fd;
2291 }
2292
2293 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2294 if (rc < 0) {
2295 return rc;
2296 }
2297 } else {
2298 if (spapr->htab_first_pass) {
2299 htab_save_first_pass(f, spapr, -1);
2300 }
2301 htab_save_later_pass(f, spapr, -1);
2302 }
2303
2304 /* End marker */
2305 htab_save_end_marker(f);
2306
2307 return 0;
2308 }
2309
2310 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2311 {
2312 SpaprMachineState *spapr = opaque;
2313 uint32_t section_hdr;
2314 int fd = -1;
2315 Error *local_err = NULL;
2316
2317 if (version_id < 1 || version_id > 1) {
2318 error_report("htab_load() bad version");
2319 return -EINVAL;
2320 }
2321
2322 section_hdr = qemu_get_be32(f);
2323
2324 if (section_hdr == -1) {
2325 spapr_free_hpt(spapr);
2326 return 0;
2327 }
2328
2329 if (section_hdr) {
2330 /* First section gives the htab size */
2331 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2332 if (local_err) {
2333 error_report_err(local_err);
2334 return -EINVAL;
2335 }
2336 return 0;
2337 }
2338
2339 if (!spapr->htab) {
2340 assert(kvm_enabled());
2341
2342 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2343 if (fd < 0) {
2344 error_report_err(local_err);
2345 return fd;
2346 }
2347 }
2348
2349 while (true) {
2350 uint32_t index;
2351 uint16_t n_valid, n_invalid;
2352
2353 index = qemu_get_be32(f);
2354 n_valid = qemu_get_be16(f);
2355 n_invalid = qemu_get_be16(f);
2356
2357 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2358 /* End of Stream */
2359 break;
2360 }
2361
2362 if ((index + n_valid + n_invalid) >
2363 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2364 /* Bad index in stream */
2365 error_report(
2366 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2367 index, n_valid, n_invalid, spapr->htab_shift);
2368 return -EINVAL;
2369 }
2370
2371 if (spapr->htab) {
2372 if (n_valid) {
2373 qemu_get_buffer(f, HPTE(spapr->htab, index),
2374 HASH_PTE_SIZE_64 * n_valid);
2375 }
2376 if (n_invalid) {
2377 memset(HPTE(spapr->htab, index + n_valid), 0,
2378 HASH_PTE_SIZE_64 * n_invalid);
2379 }
2380 } else {
2381 int rc;
2382
2383 assert(fd >= 0);
2384
2385 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2386 if (rc < 0) {
2387 return rc;
2388 }
2389 }
2390 }
2391
2392 if (!spapr->htab) {
2393 assert(fd >= 0);
2394 close(fd);
2395 }
2396
2397 return 0;
2398 }
2399
2400 static void htab_save_cleanup(void *opaque)
2401 {
2402 SpaprMachineState *spapr = opaque;
2403
2404 close_htab_fd(spapr);
2405 }
2406
2407 static SaveVMHandlers savevm_htab_handlers = {
2408 .save_setup = htab_save_setup,
2409 .save_live_iterate = htab_save_iterate,
2410 .save_live_complete_precopy = htab_save_complete,
2411 .save_cleanup = htab_save_cleanup,
2412 .load_state = htab_load,
2413 };
2414
2415 static void spapr_boot_set(void *opaque, const char *boot_device,
2416 Error **errp)
2417 {
2418 MachineState *machine = MACHINE(opaque);
2419 machine->boot_order = g_strdup(boot_device);
2420 }
2421
2422 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2423 {
2424 MachineState *machine = MACHINE(spapr);
2425 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2426 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2427 int i;
2428
2429 for (i = 0; i < nr_lmbs; i++) {
2430 uint64_t addr;
2431
2432 addr = i * lmb_size + machine->device_memory->base;
2433 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2434 addr / lmb_size);
2435 }
2436 }
2437
2438 /*
2439 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2440 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2441 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2442 */
2443 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2444 {
2445 int i;
2446
2447 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2448 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2449 " is not aligned to %" PRIu64 " MiB",
2450 machine->ram_size,
2451 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2452 return;
2453 }
2454
2455 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2456 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2457 " is not aligned to %" PRIu64 " MiB",
2458 machine->ram_size,
2459 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2460 return;
2461 }
2462
2463 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2464 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2465 error_setg(errp,
2466 "Node %d memory size 0x%" PRIx64
2467 " is not aligned to %" PRIu64 " MiB",
2468 i, machine->numa_state->nodes[i].node_mem,
2469 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2470 return;
2471 }
2472 }
2473 }
2474
2475 /* find cpu slot in machine->possible_cpus by core_id */
2476 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2477 {
2478 int index = id / ms->smp.threads;
2479
2480 if (index >= ms->possible_cpus->len) {
2481 return NULL;
2482 }
2483 if (idx) {
2484 *idx = index;
2485 }
2486 return &ms->possible_cpus->cpus[index];
2487 }
2488
2489 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2490 {
2491 MachineState *ms = MACHINE(spapr);
2492 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2493 Error *local_err = NULL;
2494 bool vsmt_user = !!spapr->vsmt;
2495 int kvm_smt = kvmppc_smt_threads();
2496 int ret;
2497 unsigned int smp_threads = ms->smp.threads;
2498
2499 if (!kvm_enabled() && (smp_threads > 1)) {
2500 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2501 "on a pseries machine");
2502 goto out;
2503 }
2504 if (!is_power_of_2(smp_threads)) {
2505 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2506 "machine because it must be a power of 2", smp_threads);
2507 goto out;
2508 }
2509
2510 /* Detemine the VSMT mode to use: */
2511 if (vsmt_user) {
2512 if (spapr->vsmt < smp_threads) {
2513 error_setg(&local_err, "Cannot support VSMT mode %d"
2514 " because it must be >= threads/core (%d)",
2515 spapr->vsmt, smp_threads);
2516 goto out;
2517 }
2518 /* In this case, spapr->vsmt has been set by the command line */
2519 } else if (!smc->smp_threads_vsmt) {
2520 /*
2521 * Default VSMT value is tricky, because we need it to be as
2522 * consistent as possible (for migration), but this requires
2523 * changing it for at least some existing cases. We pick 8 as
2524 * the value that we'd get with KVM on POWER8, the
2525 * overwhelmingly common case in production systems.
2526 */
2527 spapr->vsmt = MAX(8, smp_threads);
2528 } else {
2529 spapr->vsmt = smp_threads;
2530 }
2531
2532 /* KVM: If necessary, set the SMT mode: */
2533 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2534 ret = kvmppc_set_smt_threads(spapr->vsmt);
2535 if (ret) {
2536 /* Looks like KVM isn't able to change VSMT mode */
2537 error_setg(&local_err,
2538 "Failed to set KVM's VSMT mode to %d (errno %d)",
2539 spapr->vsmt, ret);
2540 /* We can live with that if the default one is big enough
2541 * for the number of threads, and a submultiple of the one
2542 * we want. In this case we'll waste some vcpu ids, but
2543 * behaviour will be correct */
2544 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2545 warn_report_err(local_err);
2546 local_err = NULL;
2547 goto out;
2548 } else {
2549 if (!vsmt_user) {
2550 error_append_hint(&local_err,
2551 "On PPC, a VM with %d threads/core"
2552 " on a host with %d threads/core"
2553 " requires the use of VSMT mode %d.\n",
2554 smp_threads, kvm_smt, spapr->vsmt);
2555 }
2556 kvmppc_error_append_smt_possible_hint(&local_err);
2557 goto out;
2558 }
2559 }
2560 }
2561 /* else TCG: nothing to do currently */
2562 out:
2563 error_propagate(errp, local_err);
2564 }
2565
2566 static void spapr_init_cpus(SpaprMachineState *spapr)
2567 {
2568 MachineState *machine = MACHINE(spapr);
2569 MachineClass *mc = MACHINE_GET_CLASS(machine);
2570 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2571 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2572 const CPUArchIdList *possible_cpus;
2573 unsigned int smp_cpus = machine->smp.cpus;
2574 unsigned int smp_threads = machine->smp.threads;
2575 unsigned int max_cpus = machine->smp.max_cpus;
2576 int boot_cores_nr = smp_cpus / smp_threads;
2577 int i;
2578
2579 possible_cpus = mc->possible_cpu_arch_ids(machine);
2580 if (mc->has_hotpluggable_cpus) {
2581 if (smp_cpus % smp_threads) {
2582 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2583 smp_cpus, smp_threads);
2584 exit(1);
2585 }
2586 if (max_cpus % smp_threads) {
2587 error_report("max_cpus (%u) must be multiple of threads (%u)",
2588 max_cpus, smp_threads);
2589 exit(1);
2590 }
2591 } else {
2592 if (max_cpus != smp_cpus) {
2593 error_report("This machine version does not support CPU hotplug");
2594 exit(1);
2595 }
2596 boot_cores_nr = possible_cpus->len;
2597 }
2598
2599 if (smc->pre_2_10_has_unused_icps) {
2600 int i;
2601
2602 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2603 /* Dummy entries get deregistered when real ICPState objects
2604 * are registered during CPU core hotplug.
2605 */
2606 pre_2_10_vmstate_register_dummy_icp(i);
2607 }
2608 }
2609
2610 for (i = 0; i < possible_cpus->len; i++) {
2611 int core_id = i * smp_threads;
2612
2613 if (mc->has_hotpluggable_cpus) {
2614 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2615 spapr_vcpu_id(spapr, core_id));
2616 }
2617
2618 if (i < boot_cores_nr) {
2619 Object *core = object_new(type);
2620 int nr_threads = smp_threads;
2621
2622 /* Handle the partially filled core for older machine types */
2623 if ((i + 1) * smp_threads >= smp_cpus) {
2624 nr_threads = smp_cpus - i * smp_threads;
2625 }
2626
2627 object_property_set_int(core, nr_threads, "nr-threads",
2628 &error_fatal);
2629 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2630 &error_fatal);
2631 object_property_set_bool(core, true, "realized", &error_fatal);
2632
2633 object_unref(core);
2634 }
2635 }
2636 }
2637
2638 static PCIHostState *spapr_create_default_phb(void)
2639 {
2640 DeviceState *dev;
2641
2642 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2643 qdev_prop_set_uint32(dev, "index", 0);
2644 qdev_init_nofail(dev);
2645
2646 return PCI_HOST_BRIDGE(dev);
2647 }
2648
2649 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2650 {
2651 MachineState *machine = MACHINE(spapr);
2652 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2653 hwaddr rma_size = machine->ram_size;
2654 hwaddr node0_size = spapr_node0_size(machine);
2655
2656 /* RMA has to fit in the first NUMA node */
2657 rma_size = MIN(rma_size, node0_size);
2658
2659 /*
2660 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2661 * never exceed that
2662 */
2663 rma_size = MIN(rma_size, 1 * TiB);
2664
2665 /*
2666 * Clamp the RMA size based on machine type. This is for
2667 * migration compatibility with older qemu versions, which limited
2668 * the RMA size for complicated and mostly bad reasons.
2669 */
2670 if (smc->rma_limit) {
2671 rma_size = MIN(rma_size, smc->rma_limit);
2672 }
2673
2674 if (rma_size < MIN_RMA_SLOF) {
2675 error_setg(errp,
2676 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2677 "ldMiB guest RMA (Real Mode Area memory)",
2678 MIN_RMA_SLOF / MiB);
2679 return 0;
2680 }
2681
2682 return rma_size;
2683 }
2684
2685 /* pSeries LPAR / sPAPR hardware init */
2686 static void spapr_machine_init(MachineState *machine)
2687 {
2688 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2689 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2690 MachineClass *mc = MACHINE_GET_CLASS(machine);
2691 const char *kernel_filename = machine->kernel_filename;
2692 const char *initrd_filename = machine->initrd_filename;
2693 PCIHostState *phb;
2694 int i;
2695 MemoryRegion *sysmem = get_system_memory();
2696 long load_limit, fw_size;
2697 char *filename;
2698 Error *resize_hpt_err = NULL;
2699
2700 msi_nonbroken = true;
2701
2702 QLIST_INIT(&spapr->phbs);
2703 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2704
2705 /* Determine capabilities to run with */
2706 spapr_caps_init(spapr);
2707
2708 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2709 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2710 /*
2711 * If the user explicitly requested a mode we should either
2712 * supply it, or fail completely (which we do below). But if
2713 * it's not set explicitly, we reset our mode to something
2714 * that works
2715 */
2716 if (resize_hpt_err) {
2717 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2718 error_free(resize_hpt_err);
2719 resize_hpt_err = NULL;
2720 } else {
2721 spapr->resize_hpt = smc->resize_hpt_default;
2722 }
2723 }
2724
2725 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2726
2727 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2728 /*
2729 * User requested HPT resize, but this host can't supply it. Bail out
2730 */
2731 error_report_err(resize_hpt_err);
2732 exit(1);
2733 }
2734
2735 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2736
2737 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2738 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2739
2740 /*
2741 * VSMT must be set in order to be able to compute VCPU ids, ie to
2742 * call spapr_max_server_number() or spapr_vcpu_id().
2743 */
2744 spapr_set_vsmt_mode(spapr, &error_fatal);
2745
2746 /* Set up Interrupt Controller before we create the VCPUs */
2747 spapr_irq_init(spapr, &error_fatal);
2748
2749 /* Set up containers for ibm,client-architecture-support negotiated options
2750 */
2751 spapr->ov5 = spapr_ovec_new();
2752 spapr->ov5_cas = spapr_ovec_new();
2753
2754 if (smc->dr_lmb_enabled) {
2755 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2756 spapr_validate_node_memory(machine, &error_fatal);
2757 }
2758
2759 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2760
2761 /* advertise support for dedicated HP event source to guests */
2762 if (spapr->use_hotplug_event_source) {
2763 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2764 }
2765
2766 /* advertise support for HPT resizing */
2767 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2768 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2769 }
2770
2771 /* advertise support for ibm,dyamic-memory-v2 */
2772 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2773
2774 /* advertise XIVE on POWER9 machines */
2775 if (spapr->irq->xive) {
2776 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2777 }
2778
2779 /* init CPUs */
2780 spapr_init_cpus(spapr);
2781
2782 /*
2783 * check we don't have a memory-less/cpu-less NUMA node
2784 * Firmware relies on the existing memory/cpu topology to provide the
2785 * NUMA topology to the kernel.
2786 * And the linux kernel needs to know the NUMA topology at start
2787 * to be able to hotplug CPUs later.
2788 */
2789 if (machine->numa_state->num_nodes) {
2790 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2791 /* check for memory-less node */
2792 if (machine->numa_state->nodes[i].node_mem == 0) {
2793 CPUState *cs;
2794 int found = 0;
2795 /* check for cpu-less node */
2796 CPU_FOREACH(cs) {
2797 PowerPCCPU *cpu = POWERPC_CPU(cs);
2798 if (cpu->node_id == i) {
2799 found = 1;
2800 break;
2801 }
2802 }
2803 /* memory-less and cpu-less node */
2804 if (!found) {
2805 error_report(
2806 "Memory-less/cpu-less nodes are not supported (node %d)",
2807 i);
2808 exit(1);
2809 }
2810 }
2811 }
2812
2813 }
2814
2815 /*
2816 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2817 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2818 * called from vPHB reset handler so we initialize the counter here.
2819 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2820 * must be equally distant from any other node.
2821 * The final value of spapr->gpu_numa_id is going to be written to
2822 * max-associativity-domains in spapr_build_fdt().
2823 */
2824 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2825
2826 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2827 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2828 spapr->max_compat_pvr)) {
2829 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2830 /* KVM and TCG always allow GTSE with radix... */
2831 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2832 }
2833 /* ... but not with hash (currently). */
2834
2835 if (kvm_enabled()) {
2836 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2837 kvmppc_enable_logical_ci_hcalls();
2838 kvmppc_enable_set_mode_hcall();
2839
2840 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2841 kvmppc_enable_clear_ref_mod_hcalls();
2842
2843 /* Enable H_PAGE_INIT */
2844 kvmppc_enable_h_page_init();
2845 }
2846
2847 /* map RAM */
2848 memory_region_add_subregion(sysmem, 0, machine->ram);
2849
2850 /* always allocate the device memory information */
2851 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2852
2853 /* initialize hotplug memory address space */
2854 if (machine->ram_size < machine->maxram_size) {
2855 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2856 /*
2857 * Limit the number of hotpluggable memory slots to half the number
2858 * slots that KVM supports, leaving the other half for PCI and other
2859 * devices. However ensure that number of slots doesn't drop below 32.
2860 */
2861 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2862 SPAPR_MAX_RAM_SLOTS;
2863
2864 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2865 max_memslots = SPAPR_MAX_RAM_SLOTS;
2866 }
2867 if (machine->ram_slots > max_memslots) {
2868 error_report("Specified number of memory slots %"
2869 PRIu64" exceeds max supported %d",
2870 machine->ram_slots, max_memslots);
2871 exit(1);
2872 }
2873
2874 machine->device_memory->base = ROUND_UP(machine->ram_size,
2875 SPAPR_DEVICE_MEM_ALIGN);
2876 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2877 "device-memory", device_mem_size);
2878 memory_region_add_subregion(sysmem, machine->device_memory->base,
2879 &machine->device_memory->mr);
2880 }
2881
2882 if (smc->dr_lmb_enabled) {
2883 spapr_create_lmb_dr_connectors(spapr);
2884 }
2885
2886 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2887 /* Create the error string for live migration blocker */
2888 error_setg(&spapr->fwnmi_migration_blocker,
2889 "A machine check is being handled during migration. The handler"
2890 "may run and log hardware error on the destination");
2891 }
2892
2893 if (mc->nvdimm_supported) {
2894 spapr_create_nvdimm_dr_connectors(spapr);
2895 }
2896
2897 /* Set up RTAS event infrastructure */
2898 spapr_events_init(spapr);
2899
2900 /* Set up the RTC RTAS interfaces */
2901 spapr_rtc_create(spapr);
2902
2903 /* Set up VIO bus */
2904 spapr->vio_bus = spapr_vio_bus_init();
2905
2906 for (i = 0; i < serial_max_hds(); i++) {
2907 if (serial_hd(i)) {
2908 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2909 }
2910 }
2911
2912 /* We always have at least the nvram device on VIO */
2913 spapr_create_nvram(spapr);
2914
2915 /*
2916 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2917 * connectors (described in root DT node's "ibm,drc-types" property)
2918 * are pre-initialized here. additional child connectors (such as
2919 * connectors for a PHBs PCI slots) are added as needed during their
2920 * parent's realization.
2921 */
2922 if (smc->dr_phb_enabled) {
2923 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2924 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2925 }
2926 }
2927
2928 /* Set up PCI */
2929 spapr_pci_rtas_init();
2930
2931 phb = spapr_create_default_phb();
2932
2933 for (i = 0; i < nb_nics; i++) {
2934 NICInfo *nd = &nd_table[i];
2935
2936 if (!nd->model) {
2937 nd->model = g_strdup("spapr-vlan");
2938 }
2939
2940 if (g_str_equal(nd->model, "spapr-vlan") ||
2941 g_str_equal(nd->model, "ibmveth")) {
2942 spapr_vlan_create(spapr->vio_bus, nd);
2943 } else {
2944 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2945 }
2946 }
2947
2948 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2949 spapr_vscsi_create(spapr->vio_bus);
2950 }
2951
2952 /* Graphics */
2953 if (spapr_vga_init(phb->bus, &error_fatal)) {
2954 spapr->has_graphics = true;
2955 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2956 }
2957
2958 if (machine->usb) {
2959 if (smc->use_ohci_by_default) {
2960 pci_create_simple(phb->bus, -1, "pci-ohci");
2961 } else {
2962 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2963 }
2964
2965 if (spapr->has_graphics) {
2966 USBBus *usb_bus = usb_bus_find(-1);
2967
2968 usb_create_simple(usb_bus, "usb-kbd");
2969 usb_create_simple(usb_bus, "usb-mouse");
2970 }
2971 }
2972
2973 if (kernel_filename) {
2974 uint64_t lowaddr = 0;
2975
2976 spapr->kernel_size = load_elf(kernel_filename, NULL,
2977 translate_kernel_address, spapr,
2978 NULL, &lowaddr, NULL, NULL, 1,
2979 PPC_ELF_MACHINE, 0, 0);
2980 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2981 spapr->kernel_size = load_elf(kernel_filename, NULL,
2982 translate_kernel_address, spapr, NULL,
2983 &lowaddr, NULL, NULL, 0,
2984 PPC_ELF_MACHINE,
2985 0, 0);
2986 spapr->kernel_le = spapr->kernel_size > 0;
2987 }
2988 if (spapr->kernel_size < 0) {
2989 error_report("error loading %s: %s", kernel_filename,
2990 load_elf_strerror(spapr->kernel_size));
2991 exit(1);
2992 }
2993
2994 /* load initrd */
2995 if (initrd_filename) {
2996 /* Try to locate the initrd in the gap between the kernel
2997 * and the firmware. Add a bit of space just in case
2998 */
2999 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3000 + 0x1ffff) & ~0xffff;
3001 spapr->initrd_size = load_image_targphys(initrd_filename,
3002 spapr->initrd_base,
3003 load_limit
3004 - spapr->initrd_base);
3005 if (spapr->initrd_size < 0) {
3006 error_report("could not load initial ram disk '%s'",
3007 initrd_filename);
3008 exit(1);
3009 }
3010 }
3011 }
3012
3013 if (bios_name == NULL) {
3014 bios_name = FW_FILE_NAME;
3015 }
3016 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3017 if (!filename) {
3018 error_report("Could not find LPAR firmware '%s'", bios_name);
3019 exit(1);
3020 }
3021 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3022 if (fw_size <= 0) {
3023 error_report("Could not load LPAR firmware '%s'", filename);
3024 exit(1);
3025 }
3026 g_free(filename);
3027
3028 /* FIXME: Should register things through the MachineState's qdev
3029 * interface, this is a legacy from the sPAPREnvironment structure
3030 * which predated MachineState but had a similar function */
3031 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3032 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3033 &savevm_htab_handlers, spapr);
3034
3035 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3036 &error_fatal);
3037
3038 qemu_register_boot_set(spapr_boot_set, spapr);
3039
3040 /*
3041 * Nothing needs to be done to resume a suspended guest because
3042 * suspending does not change the machine state, so no need for
3043 * a ->wakeup method.
3044 */
3045 qemu_register_wakeup_support();
3046
3047 if (kvm_enabled()) {
3048 /* to stop and start vmclock */
3049 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3050 &spapr->tb);
3051
3052 kvmppc_spapr_enable_inkernel_multitce();
3053 }
3054
3055 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3056 }
3057
3058 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3059 {
3060 if (!vm_type) {
3061 return 0;
3062 }
3063
3064 if (!strcmp(vm_type, "HV")) {
3065 return 1;
3066 }
3067
3068 if (!strcmp(vm_type, "PR")) {
3069 return 2;
3070 }
3071
3072 error_report("Unknown kvm-type specified '%s'", vm_type);
3073 exit(1);
3074 }
3075
3076 /*
3077 * Implementation of an interface to adjust firmware path
3078 * for the bootindex property handling.
3079 */
3080 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3081 DeviceState *dev)
3082 {
3083 #define CAST(type, obj, name) \
3084 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3085 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3086 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3087 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3088
3089 if (d) {
3090 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3091 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3092 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3093
3094 if (spapr) {
3095 /*
3096 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3097 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3098 * 0x8000 | (target << 8) | (bus << 5) | lun
3099 * (see the "Logical unit addressing format" table in SAM5)
3100 */
3101 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3102 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3103 (uint64_t)id << 48);
3104 } else if (virtio) {
3105 /*
3106 * We use SRP luns of the form 01000000 | (target << 8) | lun
3107 * in the top 32 bits of the 64-bit LUN
3108 * Note: the quote above is from SLOF and it is wrong,
3109 * the actual binding is:
3110 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3111 */
3112 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3113 if (d->lun >= 256) {
3114 /* Use the LUN "flat space addressing method" */
3115 id |= 0x4000;
3116 }
3117 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3118 (uint64_t)id << 32);
3119 } else if (usb) {
3120 /*
3121 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3122 * in the top 32 bits of the 64-bit LUN
3123 */
3124 unsigned usb_port = atoi(usb->port->path);
3125 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3126 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3127 (uint64_t)id << 32);
3128 }
3129 }
3130
3131 /*
3132 * SLOF probes the USB devices, and if it recognizes that the device is a
3133 * storage device, it changes its name to "storage" instead of "usb-host",
3134 * and additionally adds a child node for the SCSI LUN, so the correct
3135 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3136 */
3137 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3138 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3139 if (usb_host_dev_is_scsi_storage(usbdev)) {
3140 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3141 }
3142 }
3143
3144 if (phb) {
3145 /* Replace "pci" with "pci@800000020000000" */
3146 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3147 }
3148
3149 if (vsc) {
3150 /* Same logic as virtio above */
3151 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3152 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3153 }
3154
3155 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3156 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3157 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3158 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3159 }
3160
3161 return NULL;
3162 }
3163
3164 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3165 {
3166 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3167
3168 return g_strdup(spapr->kvm_type);
3169 }
3170
3171 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3172 {
3173 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3174
3175 g_free(spapr->kvm_type);
3176 spapr->kvm_type = g_strdup(value);
3177 }
3178
3179 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3180 {
3181 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3182
3183 return spapr->use_hotplug_event_source;
3184 }
3185
3186 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3187 Error **errp)
3188 {
3189 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3190
3191 spapr->use_hotplug_event_source = value;
3192 }
3193
3194 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3195 {
3196 return true;
3197 }
3198
3199 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3200 {
3201 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3202
3203 switch (spapr->resize_hpt) {
3204 case SPAPR_RESIZE_HPT_DEFAULT:
3205 return g_strdup("default");
3206 case SPAPR_RESIZE_HPT_DISABLED:
3207 return g_strdup("disabled");
3208 case SPAPR_RESIZE_HPT_ENABLED:
3209 return g_strdup("enabled");
3210 case SPAPR_RESIZE_HPT_REQUIRED:
3211 return g_strdup("required");
3212 }
3213 g_assert_not_reached();
3214 }
3215
3216 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3217 {
3218 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3219
3220 if (strcmp(value, "default") == 0) {
3221 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3222 } else if (strcmp(value, "disabled") == 0) {
3223 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3224 } else if (strcmp(value, "enabled") == 0) {
3225 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3226 } else if (strcmp(value, "required") == 0) {
3227 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3228 } else {
3229 error_setg(errp, "Bad value for \"resize-hpt\" property");
3230 }
3231 }
3232
3233 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3234 {
3235 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3236
3237 if (spapr->irq == &spapr_irq_xics_legacy) {
3238 return g_strdup("legacy");
3239 } else if (spapr->irq == &spapr_irq_xics) {
3240 return g_strdup("xics");
3241 } else if (spapr->irq == &spapr_irq_xive) {
3242 return g_strdup("xive");
3243 } else if (spapr->irq == &spapr_irq_dual) {
3244 return g_strdup("dual");
3245 }
3246 g_assert_not_reached();
3247 }
3248
3249 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3250 {
3251 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3252
3253 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3254 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3255 return;
3256 }
3257
3258 /* The legacy IRQ backend can not be set */
3259 if (strcmp(value, "xics") == 0) {
3260 spapr->irq = &spapr_irq_xics;
3261 } else if (strcmp(value, "xive") == 0) {
3262 spapr->irq = &spapr_irq_xive;
3263 } else if (strcmp(value, "dual") == 0) {
3264 spapr->irq = &spapr_irq_dual;
3265 } else {
3266 error_setg(errp, "Bad value for \"ic-mode\" property");
3267 }
3268 }
3269
3270 static char *spapr_get_host_model(Object *obj, Error **errp)
3271 {
3272 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3273
3274 return g_strdup(spapr->host_model);
3275 }
3276
3277 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3278 {
3279 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3280
3281 g_free(spapr->host_model);
3282 spapr->host_model = g_strdup(value);
3283 }
3284
3285 static char *spapr_get_host_serial(Object *obj, Error **errp)
3286 {
3287 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3288
3289 return g_strdup(spapr->host_serial);
3290 }
3291
3292 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3293 {
3294 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3295
3296 g_free(spapr->host_serial);
3297 spapr->host_serial = g_strdup(value);
3298 }
3299
3300 static void spapr_instance_init(Object *obj)
3301 {
3302 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3303 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3304
3305 spapr->htab_fd = -1;
3306 spapr->use_hotplug_event_source = true;
3307 object_property_add_str(obj, "kvm-type",
3308 spapr_get_kvm_type, spapr_set_kvm_type);
3309 object_property_set_description(obj, "kvm-type",
3310 "Specifies the KVM virtualization mode (HV, PR)");
3311 object_property_add_bool(obj, "modern-hotplug-events",
3312 spapr_get_modern_hotplug_events,
3313 spapr_set_modern_hotplug_events);
3314 object_property_set_description(obj, "modern-hotplug-events",
3315 "Use dedicated hotplug event mechanism in"
3316 " place of standard EPOW events when possible"
3317 " (required for memory hot-unplug support)");
3318 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3319 "Maximum permitted CPU compatibility mode",
3320 &error_fatal);
3321
3322 object_property_add_str(obj, "resize-hpt",
3323 spapr_get_resize_hpt, spapr_set_resize_hpt);
3324 object_property_set_description(obj, "resize-hpt",
3325 "Resizing of the Hash Page Table (enabled, disabled, required)");
3326 object_property_add_uint32_ptr(obj, "vsmt",
3327 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3328 object_property_set_description(obj, "vsmt",
3329 "Virtual SMT: KVM behaves as if this were"
3330 " the host's SMT mode");
3331
3332 object_property_add_bool(obj, "vfio-no-msix-emulation",
3333 spapr_get_msix_emulation, NULL);
3334
3335 object_property_add_uint64_ptr(obj, "kernel-addr",
3336 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3337 object_property_set_description(obj, "kernel-addr",
3338 stringify(KERNEL_LOAD_ADDR)
3339 " for -kernel is the default");
3340 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3341 /* The machine class defines the default interrupt controller mode */
3342 spapr->irq = smc->irq;
3343 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3344 spapr_set_ic_mode);
3345 object_property_set_description(obj, "ic-mode",
3346 "Specifies the interrupt controller mode (xics, xive, dual)");
3347
3348 object_property_add_str(obj, "host-model",
3349 spapr_get_host_model, spapr_set_host_model);
3350 object_property_set_description(obj, "host-model",
3351 "Host model to advertise in guest device tree");
3352 object_property_add_str(obj, "host-serial",
3353 spapr_get_host_serial, spapr_set_host_serial);
3354 object_property_set_description(obj, "host-serial",
3355 "Host serial number to advertise in guest device tree");
3356 }
3357
3358 static void spapr_machine_finalizefn(Object *obj)
3359 {
3360 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3361
3362 g_free(spapr->kvm_type);
3363 }
3364
3365 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3366 {
3367 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3368 PowerPCCPU *cpu = POWERPC_CPU(cs);
3369 CPUPPCState *env = &cpu->env;
3370
3371 cpu_synchronize_state(cs);
3372 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3373 if (spapr->fwnmi_system_reset_addr != -1) {
3374 uint64_t rtas_addr, addr;
3375
3376 /* get rtas addr from fdt */
3377 rtas_addr = spapr_get_rtas_addr();
3378 if (!rtas_addr) {
3379 qemu_system_guest_panicked(NULL);
3380 return;
3381 }
3382
3383 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3384 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3385 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3386 env->gpr[3] = addr;
3387 }
3388 ppc_cpu_do_system_reset(cs);
3389 if (spapr->fwnmi_system_reset_addr != -1) {
3390 env->nip = spapr->fwnmi_system_reset_addr;
3391 }
3392 }
3393
3394 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3395 {
3396 CPUState *cs;
3397
3398 CPU_FOREACH(cs) {
3399 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3400 }
3401 }
3402
3403 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3404 void *fdt, int *fdt_start_offset, Error **errp)
3405 {
3406 uint64_t addr;
3407 uint32_t node;
3408
3409 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3410 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3411 &error_abort);
3412 *fdt_start_offset = spapr_dt_memory_node(fdt, node, addr,
3413 SPAPR_MEMORY_BLOCK_SIZE);
3414 return 0;
3415 }
3416
3417 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3418 bool dedicated_hp_event_source, Error **errp)
3419 {
3420 SpaprDrc *drc;
3421 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3422 int i;
3423 uint64_t addr = addr_start;
3424 bool hotplugged = spapr_drc_hotplugged(dev);
3425 Error *local_err = NULL;
3426
3427 for (i = 0; i < nr_lmbs; i++) {
3428 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3429 addr / SPAPR_MEMORY_BLOCK_SIZE);
3430 g_assert(drc);
3431
3432 spapr_drc_attach(drc, dev, &local_err);
3433 if (local_err) {
3434 while (addr > addr_start) {
3435 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3436 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3437 addr / SPAPR_MEMORY_BLOCK_SIZE);
3438 spapr_drc_detach(drc);
3439 }
3440 error_propagate(errp, local_err);
3441 return;
3442 }
3443 if (!hotplugged) {
3444 spapr_drc_reset(drc);
3445 }
3446 addr += SPAPR_MEMORY_BLOCK_SIZE;
3447 }
3448 /* send hotplug notification to the
3449 * guest only in case of hotplugged memory
3450 */
3451 if (hotplugged) {
3452 if (dedicated_hp_event_source) {
3453 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3454 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3455 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3456 nr_lmbs,
3457 spapr_drc_index(drc));
3458 } else {
3459 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3460 nr_lmbs);
3461 }
3462 }
3463 }
3464
3465 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3466 Error **errp)
3467 {
3468 Error *local_err = NULL;
3469 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3470 PCDIMMDevice *dimm = PC_DIMM(dev);
3471 uint64_t size, addr, slot;
3472 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3473
3474 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3475
3476 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3477 if (local_err) {
3478 goto out;
3479 }
3480
3481 if (!is_nvdimm) {
3482 addr = object_property_get_uint(OBJECT(dimm),
3483 PC_DIMM_ADDR_PROP, &local_err);
3484 if (local_err) {
3485 goto out_unplug;
3486 }
3487 spapr_add_lmbs(dev, addr, size,
3488 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3489 &local_err);
3490 } else {
3491 slot = object_property_get_uint(OBJECT(dimm),
3492 PC_DIMM_SLOT_PROP, &local_err);
3493 if (local_err) {
3494 goto out_unplug;
3495 }
3496 spapr_add_nvdimm(dev, slot, &local_err);
3497 }
3498
3499 if (local_err) {
3500 goto out_unplug;
3501 }
3502
3503 return;
3504
3505 out_unplug:
3506 pc_dimm_unplug(dimm, MACHINE(ms));
3507 out:
3508 error_propagate(errp, local_err);
3509 }
3510
3511 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3512 Error **errp)
3513 {
3514 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3515 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3516 const MachineClass *mc = MACHINE_CLASS(smc);
3517 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3518 PCDIMMDevice *dimm = PC_DIMM(dev);
3519 Error *local_err = NULL;
3520 uint64_t size;
3521 Object *memdev;
3522 hwaddr pagesize;
3523
3524 if (!smc->dr_lmb_enabled) {
3525 error_setg(errp, "Memory hotplug not supported for this machine");
3526 return;
3527 }
3528
3529 if (is_nvdimm && !mc->nvdimm_supported) {
3530 error_setg(errp, "NVDIMM hotplug not supported for this machine");
3531 return;
3532 }
3533
3534 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3535 if (local_err) {
3536 error_propagate(errp, local_err);
3537 return;
3538 }
3539
3540 if (!is_nvdimm && size % SPAPR_MEMORY_BLOCK_SIZE) {
3541 error_setg(errp, "Hotplugged memory size must be a multiple of "
3542 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3543 return;
3544 } else if (is_nvdimm) {
3545 spapr_nvdimm_validate_opts(NVDIMM(dev), size, &local_err);
3546 if (local_err) {
3547 error_propagate(errp, local_err);
3548 return;
3549 }
3550 }
3551
3552 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3553 &error_abort);
3554 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3555 spapr_check_pagesize(spapr, pagesize, &local_err);
3556 if (local_err) {
3557 error_propagate(errp, local_err);
3558 return;
3559 }
3560
3561 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3562 }
3563
3564 struct SpaprDimmState {
3565 PCDIMMDevice *dimm;
3566 uint32_t nr_lmbs;
3567 QTAILQ_ENTRY(SpaprDimmState) next;
3568 };
3569
3570 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3571 PCDIMMDevice *dimm)
3572 {
3573 SpaprDimmState *dimm_state = NULL;
3574
3575 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3576 if (dimm_state->dimm == dimm) {
3577 break;
3578 }
3579 }
3580 return dimm_state;
3581 }
3582
3583 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3584 uint32_t nr_lmbs,
3585 PCDIMMDevice *dimm)
3586 {
3587 SpaprDimmState *ds = NULL;
3588
3589 /*
3590 * If this request is for a DIMM whose removal had failed earlier
3591 * (due to guest's refusal to remove the LMBs), we would have this
3592 * dimm already in the pending_dimm_unplugs list. In that
3593 * case don't add again.
3594 */
3595 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3596 if (!ds) {
3597 ds = g_malloc0(sizeof(SpaprDimmState));
3598 ds->nr_lmbs = nr_lmbs;
3599 ds->dimm = dimm;
3600 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3601 }
3602 return ds;
3603 }
3604
3605 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3606 SpaprDimmState *dimm_state)
3607 {
3608 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3609 g_free(dimm_state);
3610 }
3611
3612 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3613 PCDIMMDevice *dimm)
3614 {
3615 SpaprDrc *drc;
3616 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3617 &error_abort);
3618 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3619 uint32_t avail_lmbs = 0;
3620 uint64_t addr_start, addr;
3621 int i;
3622
3623 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3624 &error_abort);
3625
3626 addr = addr_start;
3627 for (i = 0; i < nr_lmbs; i++) {
3628 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3629 addr / SPAPR_MEMORY_BLOCK_SIZE);
3630 g_assert(drc);
3631 if (drc->dev) {
3632 avail_lmbs++;
3633 }
3634 addr += SPAPR_MEMORY_BLOCK_SIZE;
3635 }
3636
3637 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3638 }
3639
3640 /* Callback to be called during DRC release. */
3641 void spapr_lmb_release(DeviceState *dev)
3642 {
3643 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3644 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3645 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3646
3647 /* This information will get lost if a migration occurs
3648 * during the unplug process. In this case recover it. */
3649 if (ds == NULL) {
3650 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3651 g_assert(ds);
3652 /* The DRC being examined by the caller at least must be counted */
3653 g_assert(ds->nr_lmbs);
3654 }
3655
3656 if (--ds->nr_lmbs) {
3657 return;
3658 }
3659
3660 /*
3661 * Now that all the LMBs have been removed by the guest, call the
3662 * unplug handler chain. This can never fail.
3663 */
3664 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3665 object_unparent(OBJECT(dev));
3666 }
3667
3668 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3669 {
3670 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3671 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3672
3673 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3674 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3675 spapr_pending_dimm_unplugs_remove(spapr, ds);
3676 }
3677
3678 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3679 DeviceState *dev, Error **errp)
3680 {
3681 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3682 Error *local_err = NULL;
3683 PCDIMMDevice *dimm = PC_DIMM(dev);
3684 uint32_t nr_lmbs;
3685 uint64_t size, addr_start, addr;
3686 int i;
3687 SpaprDrc *drc;
3688
3689 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3690 error_setg(&local_err,
3691 "nvdimm device hot unplug is not supported yet.");
3692 goto out;
3693 }
3694
3695 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3696 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3697
3698 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3699 &local_err);
3700 if (local_err) {
3701 goto out;
3702 }
3703
3704 /*
3705 * An existing pending dimm state for this DIMM means that there is an
3706 * unplug operation in progress, waiting for the spapr_lmb_release
3707 * callback to complete the job (BQL can't cover that far). In this case,
3708 * bail out to avoid detaching DRCs that were already released.
3709 */
3710 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3711 error_setg(&local_err,
3712 "Memory unplug already in progress for device %s",
3713 dev->id);
3714 goto out;
3715 }
3716
3717 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3718
3719 addr = addr_start;
3720 for (i = 0; i < nr_lmbs; i++) {
3721 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3722 addr / SPAPR_MEMORY_BLOCK_SIZE);
3723 g_assert(drc);
3724
3725 spapr_drc_detach(drc);
3726 addr += SPAPR_MEMORY_BLOCK_SIZE;
3727 }
3728
3729 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3730 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3731 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3732 nr_lmbs, spapr_drc_index(drc));
3733 out:
3734 error_propagate(errp, local_err);
3735 }
3736
3737 /* Callback to be called during DRC release. */
3738 void spapr_core_release(DeviceState *dev)
3739 {
3740 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3741
3742 /* Call the unplug handler chain. This can never fail. */
3743 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3744 object_unparent(OBJECT(dev));
3745 }
3746
3747 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3748 {
3749 MachineState *ms = MACHINE(hotplug_dev);
3750 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3751 CPUCore *cc = CPU_CORE(dev);
3752 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3753
3754 if (smc->pre_2_10_has_unused_icps) {
3755 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3756 int i;
3757
3758 for (i = 0; i < cc->nr_threads; i++) {
3759 CPUState *cs = CPU(sc->threads[i]);
3760
3761 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3762 }
3763 }
3764
3765 assert(core_slot);
3766 core_slot->cpu = NULL;
3767 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3768 }
3769
3770 static
3771 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3772 Error **errp)
3773 {
3774 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3775 int index;
3776 SpaprDrc *drc;
3777 CPUCore *cc = CPU_CORE(dev);
3778
3779 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3780 error_setg(errp, "Unable to find CPU core with core-id: %d",
3781 cc->core_id);
3782 return;
3783 }
3784 if (index == 0) {
3785 error_setg(errp, "Boot CPU core may not be unplugged");
3786 return;
3787 }
3788
3789 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3790 spapr_vcpu_id(spapr, cc->core_id));
3791 g_assert(drc);
3792
3793 if (!spapr_drc_unplug_requested(drc)) {
3794 spapr_drc_detach(drc);
3795 spapr_hotplug_req_remove_by_index(drc);
3796 }
3797 }
3798
3799 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3800 void *fdt, int *fdt_start_offset, Error **errp)
3801 {
3802 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3803 CPUState *cs = CPU(core->threads[0]);
3804 PowerPCCPU *cpu = POWERPC_CPU(cs);
3805 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3806 int id = spapr_get_vcpu_id(cpu);
3807 char *nodename;
3808 int offset;
3809
3810 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3811 offset = fdt_add_subnode(fdt, 0, nodename);
3812 g_free(nodename);
3813
3814 spapr_dt_cpu(cs, fdt, offset, spapr);
3815
3816 *fdt_start_offset = offset;
3817 return 0;
3818 }
3819
3820 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3821 Error **errp)
3822 {
3823 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3824 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3825 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3826 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3827 CPUCore *cc = CPU_CORE(dev);
3828 CPUState *cs;
3829 SpaprDrc *drc;
3830 Error *local_err = NULL;
3831 CPUArchId *core_slot;
3832 int index;
3833 bool hotplugged = spapr_drc_hotplugged(dev);
3834 int i;
3835
3836 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3837 if (!core_slot) {
3838 error_setg(errp, "Unable to find CPU core with core-id: %d",
3839 cc->core_id);
3840 return;
3841 }
3842 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3843 spapr_vcpu_id(spapr, cc->core_id));
3844
3845 g_assert(drc || !mc->has_hotpluggable_cpus);
3846
3847 if (drc) {
3848 spapr_drc_attach(drc, dev, &local_err);
3849 if (local_err) {
3850 error_propagate(errp, local_err);
3851 return;
3852 }
3853
3854 if (hotplugged) {
3855 /*
3856 * Send hotplug notification interrupt to the guest only
3857 * in case of hotplugged CPUs.
3858 */
3859 spapr_hotplug_req_add_by_index(drc);
3860 } else {
3861 spapr_drc_reset(drc);
3862 }
3863 }
3864
3865 core_slot->cpu = OBJECT(dev);
3866
3867 if (smc->pre_2_10_has_unused_icps) {
3868 for (i = 0; i < cc->nr_threads; i++) {
3869 cs = CPU(core->threads[i]);
3870 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3871 }
3872 }
3873
3874 /*
3875 * Set compatibility mode to match the boot CPU, which was either set
3876 * by the machine reset code or by CAS.
3877 */
3878 if (hotplugged) {
3879 for (i = 0; i < cc->nr_threads; i++) {
3880 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3881 &local_err);
3882 if (local_err) {
3883 error_propagate(errp, local_err);
3884 return;
3885 }
3886 }
3887 }
3888 }
3889
3890 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3891 Error **errp)
3892 {
3893 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3894 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3895 Error *local_err = NULL;
3896 CPUCore *cc = CPU_CORE(dev);
3897 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3898 const char *type = object_get_typename(OBJECT(dev));
3899 CPUArchId *core_slot;
3900 int index;
3901 unsigned int smp_threads = machine->smp.threads;
3902
3903 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3904 error_setg(&local_err, "CPU hotplug not supported for this machine");
3905 goto out;
3906 }
3907
3908 if (strcmp(base_core_type, type)) {
3909 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3910 goto out;
3911 }
3912
3913 if (cc->core_id % smp_threads) {
3914 error_setg(&local_err, "invalid core id %d", cc->core_id);
3915 goto out;
3916 }
3917
3918 /*
3919 * In general we should have homogeneous threads-per-core, but old
3920 * (pre hotplug support) machine types allow the last core to have
3921 * reduced threads as a compatibility hack for when we allowed
3922 * total vcpus not a multiple of threads-per-core.
3923 */
3924 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3925 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3926 cc->nr_threads, smp_threads);
3927 goto out;
3928 }
3929
3930 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3931 if (!core_slot) {
3932 error_setg(&local_err, "core id %d out of range", cc->core_id);
3933 goto out;
3934 }
3935
3936 if (core_slot->cpu) {
3937 error_setg(&local_err, "core %d already populated", cc->core_id);
3938 goto out;
3939 }
3940
3941 numa_cpu_pre_plug(core_slot, dev, &local_err);
3942
3943 out:
3944 error_propagate(errp, local_err);
3945 }
3946
3947 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3948 void *fdt, int *fdt_start_offset, Error **errp)
3949 {
3950 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3951 int intc_phandle;
3952
3953 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3954 if (intc_phandle <= 0) {
3955 return -1;
3956 }
3957
3958 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3959 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3960 return -1;
3961 }
3962
3963 /* generally SLOF creates these, for hotplug it's up to QEMU */
3964 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3965
3966 return 0;
3967 }
3968
3969 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3970 Error **errp)
3971 {
3972 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3973 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3974 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3975 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3976
3977 if (dev->hotplugged && !smc->dr_phb_enabled) {
3978 error_setg(errp, "PHB hotplug not supported for this machine");
3979 return;
3980 }
3981
3982 if (sphb->index == (uint32_t)-1) {
3983 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3984 return;
3985 }
3986
3987 /*
3988 * This will check that sphb->index doesn't exceed the maximum number of
3989 * PHBs for the current machine type.
3990 */
3991 smc->phb_placement(spapr, sphb->index,
3992 &sphb->buid, &sphb->io_win_addr,
3993 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3994 windows_supported, sphb->dma_liobn,
3995 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3996 errp);
3997 }
3998
3999 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4000 Error **errp)
4001 {
4002 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4003 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4004 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4005 SpaprDrc *drc;
4006 bool hotplugged = spapr_drc_hotplugged(dev);
4007 Error *local_err = NULL;
4008
4009 if (!smc->dr_phb_enabled) {
4010 return;
4011 }
4012
4013 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4014 /* hotplug hooks should check it's enabled before getting this far */
4015 assert(drc);
4016
4017 spapr_drc_attach(drc, DEVICE(dev), &local_err);
4018 if (local_err) {
4019 error_propagate(errp, local_err);
4020 return;
4021 }
4022
4023 if (hotplugged) {
4024 spapr_hotplug_req_add_by_index(drc);
4025 } else {
4026 spapr_drc_reset(drc);
4027 }
4028 }
4029
4030 void spapr_phb_release(DeviceState *dev)
4031 {
4032 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4033
4034 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4035 object_unparent(OBJECT(dev));
4036 }
4037
4038 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4039 {
4040 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4041 }
4042
4043 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4044 DeviceState *dev, Error **errp)
4045 {
4046 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4047 SpaprDrc *drc;
4048
4049 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4050 assert(drc);
4051
4052 if (!spapr_drc_unplug_requested(drc)) {
4053 spapr_drc_detach(drc);
4054 spapr_hotplug_req_remove_by_index(drc);
4055 }
4056 }
4057
4058 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4059 Error **errp)
4060 {
4061 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4062 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4063
4064 if (spapr->tpm_proxy != NULL) {
4065 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4066 return;
4067 }
4068
4069 spapr->tpm_proxy = tpm_proxy;
4070 }
4071
4072 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4073 {
4074 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4075
4076 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4077 object_unparent(OBJECT(dev));
4078 spapr->tpm_proxy = NULL;
4079 }
4080
4081 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4082 DeviceState *dev, Error **errp)
4083 {
4084 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4085 spapr_memory_plug(hotplug_dev, dev, errp);
4086 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4087 spapr_core_plug(hotplug_dev, dev, errp);
4088 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4089 spapr_phb_plug(hotplug_dev, dev, errp);
4090 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4091 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4092 }
4093 }
4094
4095 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4096 DeviceState *dev, Error **errp)
4097 {
4098 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4099 spapr_memory_unplug(hotplug_dev, dev);
4100 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4101 spapr_core_unplug(hotplug_dev, dev);
4102 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4103 spapr_phb_unplug(hotplug_dev, dev);
4104 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4105 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4106 }
4107 }
4108
4109 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4110 DeviceState *dev, Error **errp)
4111 {
4112 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4113 MachineClass *mc = MACHINE_GET_CLASS(sms);
4114 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4115
4116 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4117 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4118 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4119 } else {
4120 /* NOTE: this means there is a window after guest reset, prior to
4121 * CAS negotiation, where unplug requests will fail due to the
4122 * capability not being detected yet. This is a bit different than
4123 * the case with PCI unplug, where the events will be queued and
4124 * eventually handled by the guest after boot
4125 */
4126 error_setg(errp, "Memory hot unplug not supported for this guest");
4127 }
4128 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4129 if (!mc->has_hotpluggable_cpus) {
4130 error_setg(errp, "CPU hot unplug not supported on this machine");
4131 return;
4132 }
4133 spapr_core_unplug_request(hotplug_dev, dev, errp);
4134 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4135 if (!smc->dr_phb_enabled) {
4136 error_setg(errp, "PHB hot unplug not supported on this machine");
4137 return;
4138 }
4139 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4140 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4141 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4142 }
4143 }
4144
4145 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4146 DeviceState *dev, Error **errp)
4147 {
4148 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4149 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4150 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4151 spapr_core_pre_plug(hotplug_dev, dev, errp);
4152 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4153 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4154 }
4155 }
4156
4157 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4158 DeviceState *dev)
4159 {
4160 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4161 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4162 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4163 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4164 return HOTPLUG_HANDLER(machine);
4165 }
4166 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4167 PCIDevice *pcidev = PCI_DEVICE(dev);
4168 PCIBus *root = pci_device_root_bus(pcidev);
4169 SpaprPhbState *phb =
4170 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4171 TYPE_SPAPR_PCI_HOST_BRIDGE);
4172
4173 if (phb) {
4174 return HOTPLUG_HANDLER(phb);
4175 }
4176 }
4177 return NULL;
4178 }
4179
4180 static CpuInstanceProperties
4181 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4182 {
4183 CPUArchId *core_slot;
4184 MachineClass *mc = MACHINE_GET_CLASS(machine);
4185
4186 /* make sure possible_cpu are intialized */
4187 mc->possible_cpu_arch_ids(machine);
4188 /* get CPU core slot containing thread that matches cpu_index */
4189 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4190 assert(core_slot);
4191 return core_slot->props;
4192 }
4193
4194 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4195 {
4196 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4197 }
4198
4199 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4200 {
4201 int i;
4202 unsigned int smp_threads = machine->smp.threads;
4203 unsigned int smp_cpus = machine->smp.cpus;
4204 const char *core_type;
4205 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4206 MachineClass *mc = MACHINE_GET_CLASS(machine);
4207
4208 if (!mc->has_hotpluggable_cpus) {
4209 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4210 }
4211 if (machine->possible_cpus) {
4212 assert(machine->possible_cpus->len == spapr_max_cores);
4213 return machine->possible_cpus;
4214 }
4215
4216 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4217 if (!core_type) {
4218 error_report("Unable to find sPAPR CPU Core definition");
4219 exit(1);
4220 }
4221
4222 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4223 sizeof(CPUArchId) * spapr_max_cores);
4224 machine->possible_cpus->len = spapr_max_cores;
4225 for (i = 0; i < machine->possible_cpus->len; i++) {
4226 int core_id = i * smp_threads;
4227
4228 machine->possible_cpus->cpus[i].type = core_type;
4229 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4230 machine->possible_cpus->cpus[i].arch_id = core_id;
4231 machine->possible_cpus->cpus[i].props.has_core_id = true;
4232 machine->possible_cpus->cpus[i].props.core_id = core_id;
4233 }
4234 return machine->possible_cpus;
4235 }
4236
4237 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4238 uint64_t *buid, hwaddr *pio,
4239 hwaddr *mmio32, hwaddr *mmio64,
4240 unsigned n_dma, uint32_t *liobns,
4241 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4242 {
4243 /*
4244 * New-style PHB window placement.
4245 *
4246 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4247 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4248 * windows.
4249 *
4250 * Some guest kernels can't work with MMIO windows above 1<<46
4251 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4252 *
4253 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4254 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4255 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4256 * 1TiB 64-bit MMIO windows for each PHB.
4257 */
4258 const uint64_t base_buid = 0x800000020000000ULL;
4259 int i;
4260
4261 /* Sanity check natural alignments */
4262 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4263 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4264 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4265 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4266 /* Sanity check bounds */
4267 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4268 SPAPR_PCI_MEM32_WIN_SIZE);
4269 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4270 SPAPR_PCI_MEM64_WIN_SIZE);
4271
4272 if (index >= SPAPR_MAX_PHBS) {
4273 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4274 SPAPR_MAX_PHBS - 1);
4275 return;
4276 }
4277
4278 *buid = base_buid + index;
4279 for (i = 0; i < n_dma; ++i) {
4280 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4281 }
4282
4283 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4284 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4285 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4286
4287 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4288 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4289 }
4290
4291 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4292 {
4293 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4294
4295 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4296 }
4297
4298 static void spapr_ics_resend(XICSFabric *dev)
4299 {
4300 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4301
4302 ics_resend(spapr->ics);
4303 }
4304
4305 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4306 {
4307 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4308
4309 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4310 }
4311
4312 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4313 Monitor *mon)
4314 {
4315 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4316
4317 spapr_irq_print_info(spapr, mon);
4318 monitor_printf(mon, "irqchip: %s\n",
4319 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4320 }
4321
4322 /*
4323 * This is a XIVE only operation
4324 */
4325 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4326 uint8_t nvt_blk, uint32_t nvt_idx,
4327 bool cam_ignore, uint8_t priority,
4328 uint32_t logic_serv, XiveTCTXMatch *match)
4329 {
4330 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4331 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4332 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4333 int count;
4334
4335 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4336 priority, logic_serv, match);
4337 if (count < 0) {
4338 return count;
4339 }
4340
4341 /*
4342 * When we implement the save and restore of the thread interrupt
4343 * contexts in the enter/exit CPU handlers of the machine and the
4344 * escalations in QEMU, we should be able to handle non dispatched
4345 * vCPUs.
4346 *
4347 * Until this is done, the sPAPR machine should find at least one
4348 * matching context always.
4349 */
4350 if (count == 0) {
4351 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4352 nvt_blk, nvt_idx);
4353 }
4354
4355 return count;
4356 }
4357
4358 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4359 {
4360 return cpu->vcpu_id;
4361 }
4362
4363 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4364 {
4365 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4366 MachineState *ms = MACHINE(spapr);
4367 int vcpu_id;
4368
4369 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4370
4371 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4372 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4373 error_append_hint(errp, "Adjust the number of cpus to %d "
4374 "or try to raise the number of threads per core\n",
4375 vcpu_id * ms->smp.threads / spapr->vsmt);
4376 return;
4377 }
4378
4379 cpu->vcpu_id = vcpu_id;
4380 }
4381
4382 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4383 {
4384 CPUState *cs;
4385
4386 CPU_FOREACH(cs) {
4387 PowerPCCPU *cpu = POWERPC_CPU(cs);
4388
4389 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4390 return cpu;
4391 }
4392 }
4393
4394 return NULL;
4395 }
4396
4397 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4398 {
4399 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4400
4401 /* These are only called by TCG, KVM maintains dispatch state */
4402
4403 spapr_cpu->prod = false;
4404 if (spapr_cpu->vpa_addr) {
4405 CPUState *cs = CPU(cpu);
4406 uint32_t dispatch;
4407
4408 dispatch = ldl_be_phys(cs->as,
4409 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4410 dispatch++;
4411 if ((dispatch & 1) != 0) {
4412 qemu_log_mask(LOG_GUEST_ERROR,
4413 "VPA: incorrect dispatch counter value for "
4414 "dispatched partition %u, correcting.\n", dispatch);
4415 dispatch++;
4416 }
4417 stl_be_phys(cs->as,
4418 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4419 }
4420 }
4421
4422 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4423 {
4424 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4425
4426 if (spapr_cpu->vpa_addr) {
4427 CPUState *cs = CPU(cpu);
4428 uint32_t dispatch;
4429
4430 dispatch = ldl_be_phys(cs->as,
4431 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4432 dispatch++;
4433 if ((dispatch & 1) != 1) {
4434 qemu_log_mask(LOG_GUEST_ERROR,
4435 "VPA: incorrect dispatch counter value for "
4436 "preempted partition %u, correcting.\n", dispatch);
4437 dispatch++;
4438 }
4439 stl_be_phys(cs->as,
4440 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4441 }
4442 }
4443
4444 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4445 {
4446 MachineClass *mc = MACHINE_CLASS(oc);
4447 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4448 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4449 NMIClass *nc = NMI_CLASS(oc);
4450 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4451 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4452 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4453 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4454 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4455
4456 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4457 mc->ignore_boot_device_suffixes = true;
4458
4459 /*
4460 * We set up the default / latest behaviour here. The class_init
4461 * functions for the specific versioned machine types can override
4462 * these details for backwards compatibility
4463 */
4464 mc->init = spapr_machine_init;
4465 mc->reset = spapr_machine_reset;
4466 mc->block_default_type = IF_SCSI;
4467 mc->max_cpus = 1024;
4468 mc->no_parallel = 1;
4469 mc->default_boot_order = "";
4470 mc->default_ram_size = 512 * MiB;
4471 mc->default_ram_id = "ppc_spapr.ram";
4472 mc->default_display = "std";
4473 mc->kvm_type = spapr_kvm_type;
4474 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4475 mc->pci_allow_0_address = true;
4476 assert(!mc->get_hotplug_handler);
4477 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4478 hc->pre_plug = spapr_machine_device_pre_plug;
4479 hc->plug = spapr_machine_device_plug;
4480 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4481 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4482 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4483 hc->unplug_request = spapr_machine_device_unplug_request;
4484 hc->unplug = spapr_machine_device_unplug;
4485
4486 smc->dr_lmb_enabled = true;
4487 smc->update_dt_enabled = true;
4488 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4489 mc->has_hotpluggable_cpus = true;
4490 mc->nvdimm_supported = true;
4491 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4492 fwc->get_dev_path = spapr_get_fw_dev_path;
4493 nc->nmi_monitor_handler = spapr_nmi;
4494 smc->phb_placement = spapr_phb_placement;
4495 vhc->hypercall = emulate_spapr_hypercall;
4496 vhc->hpt_mask = spapr_hpt_mask;
4497 vhc->map_hptes = spapr_map_hptes;
4498 vhc->unmap_hptes = spapr_unmap_hptes;
4499 vhc->hpte_set_c = spapr_hpte_set_c;
4500 vhc->hpte_set_r = spapr_hpte_set_r;
4501 vhc->get_pate = spapr_get_pate;
4502 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4503 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4504 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4505 xic->ics_get = spapr_ics_get;
4506 xic->ics_resend = spapr_ics_resend;
4507 xic->icp_get = spapr_icp_get;
4508 ispc->print_info = spapr_pic_print_info;
4509 /* Force NUMA node memory size to be a multiple of
4510 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4511 * in which LMBs are represented and hot-added
4512 */
4513 mc->numa_mem_align_shift = 28;
4514 mc->numa_mem_supported = true;
4515 mc->auto_enable_numa = true;
4516
4517 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4518 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4519 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4520 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4521 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4522 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4523 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4524 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4525 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4526 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4527 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4528 spapr_caps_add_properties(smc, &error_abort);
4529 smc->irq = &spapr_irq_dual;
4530 smc->dr_phb_enabled = true;
4531 smc->linux_pci_probe = true;
4532 smc->smp_threads_vsmt = true;
4533 smc->nr_xirqs = SPAPR_NR_XIRQS;
4534 xfc->match_nvt = spapr_match_nvt;
4535 }
4536
4537 static const TypeInfo spapr_machine_info = {
4538 .name = TYPE_SPAPR_MACHINE,
4539 .parent = TYPE_MACHINE,
4540 .abstract = true,
4541 .instance_size = sizeof(SpaprMachineState),
4542 .instance_init = spapr_instance_init,
4543 .instance_finalize = spapr_machine_finalizefn,
4544 .class_size = sizeof(SpaprMachineClass),
4545 .class_init = spapr_machine_class_init,
4546 .interfaces = (InterfaceInfo[]) {
4547 { TYPE_FW_PATH_PROVIDER },
4548 { TYPE_NMI },
4549 { TYPE_HOTPLUG_HANDLER },
4550 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4551 { TYPE_XICS_FABRIC },
4552 { TYPE_INTERRUPT_STATS_PROVIDER },
4553 { TYPE_XIVE_FABRIC },
4554 { }
4555 },
4556 };
4557
4558 static void spapr_machine_latest_class_options(MachineClass *mc)
4559 {
4560 mc->alias = "pseries";
4561 mc->is_default = true;
4562 }
4563
4564 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4565 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4566 void *data) \
4567 { \
4568 MachineClass *mc = MACHINE_CLASS(oc); \
4569 spapr_machine_##suffix##_class_options(mc); \
4570 if (latest) { \
4571 spapr_machine_latest_class_options(mc); \
4572 } \
4573 } \
4574 static const TypeInfo spapr_machine_##suffix##_info = { \
4575 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4576 .parent = TYPE_SPAPR_MACHINE, \
4577 .class_init = spapr_machine_##suffix##_class_init, \
4578 }; \
4579 static void spapr_machine_register_##suffix(void) \
4580 { \
4581 type_register(&spapr_machine_##suffix##_info); \
4582 } \
4583 type_init(spapr_machine_register_##suffix)
4584
4585 /*
4586 * pseries-5.1
4587 */
4588 static void spapr_machine_5_1_class_options(MachineClass *mc)
4589 {
4590 /* Defaults for the latest behaviour inherited from the base class */
4591 }
4592
4593 DEFINE_SPAPR_MACHINE(5_1, "5.1", true);
4594
4595 /*
4596 * pseries-5.0
4597 */
4598 static void spapr_machine_5_0_class_options(MachineClass *mc)
4599 {
4600 spapr_machine_5_1_class_options(mc);
4601 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4602 }
4603
4604 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4605
4606 /*
4607 * pseries-4.2
4608 */
4609 static void spapr_machine_4_2_class_options(MachineClass *mc)
4610 {
4611 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4612
4613 spapr_machine_5_0_class_options(mc);
4614 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4615 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4616 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4617 smc->rma_limit = 16 * GiB;
4618 mc->nvdimm_supported = false;
4619 }
4620
4621 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4622
4623 /*
4624 * pseries-4.1
4625 */
4626 static void spapr_machine_4_1_class_options(MachineClass *mc)
4627 {
4628 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4629 static GlobalProperty compat[] = {
4630 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4631 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4632 };
4633
4634 spapr_machine_4_2_class_options(mc);
4635 smc->linux_pci_probe = false;
4636 smc->smp_threads_vsmt = false;
4637 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4638 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4639 }
4640
4641 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4642
4643 /*
4644 * pseries-4.0
4645 */
4646 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4647 uint64_t *buid, hwaddr *pio,
4648 hwaddr *mmio32, hwaddr *mmio64,
4649 unsigned n_dma, uint32_t *liobns,
4650 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4651 {
4652 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4653 nv2gpa, nv2atsd, errp);
4654 *nv2gpa = 0;
4655 *nv2atsd = 0;
4656 }
4657
4658 static void spapr_machine_4_0_class_options(MachineClass *mc)
4659 {
4660 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4661
4662 spapr_machine_4_1_class_options(mc);
4663 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4664 smc->phb_placement = phb_placement_4_0;
4665 smc->irq = &spapr_irq_xics;
4666 smc->pre_4_1_migration = true;
4667 }
4668
4669 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4670
4671 /*
4672 * pseries-3.1
4673 */
4674 static void spapr_machine_3_1_class_options(MachineClass *mc)
4675 {
4676 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4677
4678 spapr_machine_4_0_class_options(mc);
4679 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4680
4681 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4682 smc->update_dt_enabled = false;
4683 smc->dr_phb_enabled = false;
4684 smc->broken_host_serial_model = true;
4685 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4686 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4687 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4688 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4689 }
4690
4691 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4692
4693 /*
4694 * pseries-3.0
4695 */
4696
4697 static void spapr_machine_3_0_class_options(MachineClass *mc)
4698 {
4699 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4700
4701 spapr_machine_3_1_class_options(mc);
4702 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4703
4704 smc->legacy_irq_allocation = true;
4705 smc->nr_xirqs = 0x400;
4706 smc->irq = &spapr_irq_xics_legacy;
4707 }
4708
4709 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4710
4711 /*
4712 * pseries-2.12
4713 */
4714 static void spapr_machine_2_12_class_options(MachineClass *mc)
4715 {
4716 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4717 static GlobalProperty compat[] = {
4718 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4719 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4720 };
4721
4722 spapr_machine_3_0_class_options(mc);
4723 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4724 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4725
4726 /* We depend on kvm_enabled() to choose a default value for the
4727 * hpt-max-page-size capability. Of course we can't do it here
4728 * because this is too early and the HW accelerator isn't initialzed
4729 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4730 */
4731 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4732 }
4733
4734 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4735
4736 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4737 {
4738 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4739
4740 spapr_machine_2_12_class_options(mc);
4741 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4742 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4743 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4744 }
4745
4746 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4747
4748 /*
4749 * pseries-2.11
4750 */
4751
4752 static void spapr_machine_2_11_class_options(MachineClass *mc)
4753 {
4754 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4755
4756 spapr_machine_2_12_class_options(mc);
4757 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4758 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4759 }
4760
4761 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4762
4763 /*
4764 * pseries-2.10
4765 */
4766
4767 static void spapr_machine_2_10_class_options(MachineClass *mc)
4768 {
4769 spapr_machine_2_11_class_options(mc);
4770 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4771 }
4772
4773 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4774
4775 /*
4776 * pseries-2.9
4777 */
4778
4779 static void spapr_machine_2_9_class_options(MachineClass *mc)
4780 {
4781 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4782 static GlobalProperty compat[] = {
4783 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4784 };
4785
4786 spapr_machine_2_10_class_options(mc);
4787 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4788 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4789 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4790 smc->pre_2_10_has_unused_icps = true;
4791 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4792 }
4793
4794 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4795
4796 /*
4797 * pseries-2.8
4798 */
4799
4800 static void spapr_machine_2_8_class_options(MachineClass *mc)
4801 {
4802 static GlobalProperty compat[] = {
4803 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4804 };
4805
4806 spapr_machine_2_9_class_options(mc);
4807 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4808 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4809 mc->numa_mem_align_shift = 23;
4810 }
4811
4812 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4813
4814 /*
4815 * pseries-2.7
4816 */
4817
4818 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4819 uint64_t *buid, hwaddr *pio,
4820 hwaddr *mmio32, hwaddr *mmio64,
4821 unsigned n_dma, uint32_t *liobns,
4822 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4823 {
4824 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4825 const uint64_t base_buid = 0x800000020000000ULL;
4826 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4827 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4828 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4829 const uint32_t max_index = 255;
4830 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4831
4832 uint64_t ram_top = MACHINE(spapr)->ram_size;
4833 hwaddr phb0_base, phb_base;
4834 int i;
4835
4836 /* Do we have device memory? */
4837 if (MACHINE(spapr)->maxram_size > ram_top) {
4838 /* Can't just use maxram_size, because there may be an
4839 * alignment gap between normal and device memory regions
4840 */
4841 ram_top = MACHINE(spapr)->device_memory->base +
4842 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4843 }
4844
4845 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4846
4847 if (index > max_index) {
4848 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4849 max_index);
4850 return;
4851 }
4852
4853 *buid = base_buid + index;
4854 for (i = 0; i < n_dma; ++i) {
4855 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4856 }
4857
4858 phb_base = phb0_base + index * phb_spacing;
4859 *pio = phb_base + pio_offset;
4860 *mmio32 = phb_base + mmio_offset;
4861 /*
4862 * We don't set the 64-bit MMIO window, relying on the PHB's
4863 * fallback behaviour of automatically splitting a large "32-bit"
4864 * window into contiguous 32-bit and 64-bit windows
4865 */
4866
4867 *nv2gpa = 0;
4868 *nv2atsd = 0;
4869 }
4870
4871 static void spapr_machine_2_7_class_options(MachineClass *mc)
4872 {
4873 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4874 static GlobalProperty compat[] = {
4875 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4876 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4877 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4878 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4879 };
4880
4881 spapr_machine_2_8_class_options(mc);
4882 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4883 mc->default_machine_opts = "modern-hotplug-events=off";
4884 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4885 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4886 smc->phb_placement = phb_placement_2_7;
4887 }
4888
4889 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4890
4891 /*
4892 * pseries-2.6
4893 */
4894
4895 static void spapr_machine_2_6_class_options(MachineClass *mc)
4896 {
4897 static GlobalProperty compat[] = {
4898 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4899 };
4900
4901 spapr_machine_2_7_class_options(mc);
4902 mc->has_hotpluggable_cpus = false;
4903 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4904 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4905 }
4906
4907 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4908
4909 /*
4910 * pseries-2.5
4911 */
4912
4913 static void spapr_machine_2_5_class_options(MachineClass *mc)
4914 {
4915 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4916 static GlobalProperty compat[] = {
4917 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4918 };
4919
4920 spapr_machine_2_6_class_options(mc);
4921 smc->use_ohci_by_default = true;
4922 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4923 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4924 }
4925
4926 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4927
4928 /*
4929 * pseries-2.4
4930 */
4931
4932 static void spapr_machine_2_4_class_options(MachineClass *mc)
4933 {
4934 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4935
4936 spapr_machine_2_5_class_options(mc);
4937 smc->dr_lmb_enabled = false;
4938 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4939 }
4940
4941 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4942
4943 /*
4944 * pseries-2.3
4945 */
4946
4947 static void spapr_machine_2_3_class_options(MachineClass *mc)
4948 {
4949 static GlobalProperty compat[] = {
4950 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4951 };
4952 spapr_machine_2_4_class_options(mc);
4953 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4954 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4955 }
4956 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4957
4958 /*
4959 * pseries-2.2
4960 */
4961
4962 static void spapr_machine_2_2_class_options(MachineClass *mc)
4963 {
4964 static GlobalProperty compat[] = {
4965 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4966 };
4967
4968 spapr_machine_2_3_class_options(mc);
4969 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4970 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4971 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4972 }
4973 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4974
4975 /*
4976 * pseries-2.1
4977 */
4978
4979 static void spapr_machine_2_1_class_options(MachineClass *mc)
4980 {
4981 spapr_machine_2_2_class_options(mc);
4982 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4983 }
4984 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4985
4986 static void spapr_machine_register_types(void)
4987 {
4988 type_register_static(&spapr_machine_info);
4989 }
4990
4991 type_init(spapr_machine_register_types)