]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
c0407940818fb5b5b8b0184acb20eb1062291cfa
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "elf.h"
30 #include "net/net.h"
31 #include "sysemu/blockdev.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/kvm.h"
34 #include "kvm_ppc.h"
35
36 #include "hw/boards.h"
37 #include "hw/ppc/ppc.h"
38 #include "hw/loader.h"
39
40 #include "hw/ppc/spapr.h"
41 #include "hw/ppc/spapr_vio.h"
42 #include "hw/pci-host/spapr.h"
43 #include "hw/ppc/xics.h"
44 #include "hw/pci/msi.h"
45
46 #include "hw/pci/pci.h"
47
48 #include "exec/address-spaces.h"
49 #include "hw/usb.h"
50 #include "qemu/config-file.h"
51
52 #include <libfdt.h>
53
54 /* SLOF memory layout:
55 *
56 * SLOF raw image loaded at 0, copies its romfs right below the flat
57 * device-tree, then position SLOF itself 31M below that
58 *
59 * So we set FW_OVERHEAD to 40MB which should account for all of that
60 * and more
61 *
62 * We load our kernel at 4M, leaving space for SLOF initial image
63 */
64 #define FDT_MAX_SIZE 0x10000
65 #define RTAS_MAX_SIZE 0x10000
66 #define FW_MAX_SIZE 0x400000
67 #define FW_FILE_NAME "slof.bin"
68 #define FW_OVERHEAD 0x2800000
69 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
70
71 #define MIN_RMA_SLOF 128UL
72
73 #define TIMEBASE_FREQ 512000000ULL
74
75 #define MAX_CPUS 256
76 #define XICS_IRQS 1024
77
78 #define PHANDLE_XICP 0x00001111
79
80 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
81
82 sPAPREnvironment *spapr;
83
84 int spapr_allocate_irq(int hint, bool lsi)
85 {
86 int irq;
87
88 if (hint) {
89 irq = hint;
90 /* FIXME: we should probably check for collisions somehow */
91 } else {
92 irq = spapr->next_irq++;
93 }
94
95 /* Configure irq type */
96 if (!xics_get_qirq(spapr->icp, irq)) {
97 return 0;
98 }
99
100 xics_set_irq_type(spapr->icp, irq, lsi);
101
102 return irq;
103 }
104
105 /* Allocate block of consequtive IRQs, returns a number of the first */
106 int spapr_allocate_irq_block(int num, bool lsi)
107 {
108 int first = -1;
109 int i;
110
111 for (i = 0; i < num; ++i) {
112 int irq;
113
114 irq = spapr_allocate_irq(0, lsi);
115 if (!irq) {
116 return -1;
117 }
118
119 if (0 == i) {
120 first = irq;
121 }
122
123 /* If the above doesn't create a consecutive block then that's
124 * an internal bug */
125 assert(irq == (first + i));
126 }
127
128 return first;
129 }
130
131 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
132 {
133 int ret = 0, offset;
134 CPUPPCState *env;
135 CPUState *cpu;
136 char cpu_model[32];
137 int smt = kvmppc_smt_threads();
138 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
139
140 assert(spapr->cpu_model);
141
142 for (env = first_cpu; env != NULL; env = env->next_cpu) {
143 cpu = CPU(ppc_env_get_cpu(env));
144 uint32_t associativity[] = {cpu_to_be32(0x5),
145 cpu_to_be32(0x0),
146 cpu_to_be32(0x0),
147 cpu_to_be32(0x0),
148 cpu_to_be32(cpu->numa_node),
149 cpu_to_be32(cpu->cpu_index)};
150
151 if ((cpu->cpu_index % smt) != 0) {
152 continue;
153 }
154
155 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
156 cpu->cpu_index);
157
158 offset = fdt_path_offset(fdt, cpu_model);
159 if (offset < 0) {
160 return offset;
161 }
162
163 if (nb_numa_nodes > 1) {
164 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
165 sizeof(associativity));
166 if (ret < 0) {
167 return ret;
168 }
169 }
170
171 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
172 pft_size_prop, sizeof(pft_size_prop));
173 if (ret < 0) {
174 return ret;
175 }
176 }
177 return ret;
178 }
179
180
181 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
182 size_t maxsize)
183 {
184 size_t maxcells = maxsize / sizeof(uint32_t);
185 int i, j, count;
186 uint32_t *p = prop;
187
188 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
189 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
190
191 if (!sps->page_shift) {
192 break;
193 }
194 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
195 if (sps->enc[count].page_shift == 0) {
196 break;
197 }
198 }
199 if ((p - prop) >= (maxcells - 3 - count * 2)) {
200 break;
201 }
202 *(p++) = cpu_to_be32(sps->page_shift);
203 *(p++) = cpu_to_be32(sps->slb_enc);
204 *(p++) = cpu_to_be32(count);
205 for (j = 0; j < count; j++) {
206 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
207 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
208 }
209 }
210
211 return (p - prop) * sizeof(uint32_t);
212 }
213
214 #define _FDT(exp) \
215 do { \
216 int ret = (exp); \
217 if (ret < 0) { \
218 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
219 #exp, fdt_strerror(ret)); \
220 exit(1); \
221 } \
222 } while (0)
223
224
225 static void *spapr_create_fdt_skel(const char *cpu_model,
226 hwaddr initrd_base,
227 hwaddr initrd_size,
228 hwaddr kernel_size,
229 const char *boot_device,
230 const char *kernel_cmdline,
231 uint32_t epow_irq)
232 {
233 void *fdt;
234 CPUPPCState *env;
235 uint32_t start_prop = cpu_to_be32(initrd_base);
236 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
237 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
238 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
239 char qemu_hypertas_prop[] = "hcall-memop1";
240 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
241 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
242 char *modelname;
243 int i, smt = kvmppc_smt_threads();
244 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
245
246 fdt = g_malloc0(FDT_MAX_SIZE);
247 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
248
249 if (kernel_size) {
250 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
251 }
252 if (initrd_size) {
253 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
254 }
255 _FDT((fdt_finish_reservemap(fdt)));
256
257 /* Root node */
258 _FDT((fdt_begin_node(fdt, "")));
259 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
260 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
261 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
262
263 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
264 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
265
266 /* /chosen */
267 _FDT((fdt_begin_node(fdt, "chosen")));
268
269 /* Set Form1_affinity */
270 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
271
272 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
273 _FDT((fdt_property(fdt, "linux,initrd-start",
274 &start_prop, sizeof(start_prop))));
275 _FDT((fdt_property(fdt, "linux,initrd-end",
276 &end_prop, sizeof(end_prop))));
277 if (kernel_size) {
278 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
279 cpu_to_be64(kernel_size) };
280
281 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
282 }
283 if (boot_device) {
284 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
285 }
286 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
287 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
288 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
289
290 _FDT((fdt_end_node(fdt)));
291
292 /* cpus */
293 _FDT((fdt_begin_node(fdt, "cpus")));
294
295 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
296 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
297
298 modelname = g_strdup(cpu_model);
299
300 for (i = 0; i < strlen(modelname); i++) {
301 modelname[i] = toupper(modelname[i]);
302 }
303
304 /* This is needed during FDT finalization */
305 spapr->cpu_model = g_strdup(modelname);
306
307 for (env = first_cpu; env != NULL; env = env->next_cpu) {
308 CPUState *cpu = CPU(ppc_env_get_cpu(env));
309 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
310 int index = cpu->cpu_index;
311 uint32_t servers_prop[smp_threads];
312 uint32_t gservers_prop[smp_threads * 2];
313 char *nodename;
314 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
315 0xffffffff, 0xffffffff};
316 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
317 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
318 uint32_t page_sizes_prop[64];
319 size_t page_sizes_prop_size;
320
321 if ((index % smt) != 0) {
322 continue;
323 }
324
325 nodename = g_strdup_printf("%s@%x", modelname, index);
326
327 _FDT((fdt_begin_node(fdt, nodename)));
328
329 g_free(nodename);
330
331 _FDT((fdt_property_cell(fdt, "reg", index)));
332 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
333
334 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
335 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
336 env->dcache_line_size)));
337 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
338 env->dcache_line_size)));
339 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
340 env->icache_line_size)));
341 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
342 env->icache_line_size)));
343
344 if (pcc->l1_dcache_size) {
345 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
346 } else {
347 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
348 }
349 if (pcc->l1_icache_size) {
350 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
351 } else {
352 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
353 }
354
355 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
356 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
357 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
358 _FDT((fdt_property_string(fdt, "status", "okay")));
359 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
360
361 /* Build interrupt servers and gservers properties */
362 for (i = 0; i < smp_threads; i++) {
363 servers_prop[i] = cpu_to_be32(index + i);
364 /* Hack, direct the group queues back to cpu 0 */
365 gservers_prop[i*2] = cpu_to_be32(index + i);
366 gservers_prop[i*2 + 1] = 0;
367 }
368 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
369 servers_prop, sizeof(servers_prop))));
370 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
371 gservers_prop, sizeof(gservers_prop))));
372
373 if (env->mmu_model & POWERPC_MMU_1TSEG) {
374 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
375 segs, sizeof(segs))));
376 }
377
378 /* Advertise VMX/VSX (vector extensions) if available
379 * 0 / no property == no vector extensions
380 * 1 == VMX / Altivec available
381 * 2 == VSX available */
382 if (env->insns_flags & PPC_ALTIVEC) {
383 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
384
385 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
386 }
387
388 /* Advertise DFP (Decimal Floating Point) if available
389 * 0 / no property == no DFP
390 * 1 == DFP available */
391 if (env->insns_flags2 & PPC2_DFP) {
392 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
393 }
394
395 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
396 sizeof(page_sizes_prop));
397 if (page_sizes_prop_size) {
398 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
399 page_sizes_prop, page_sizes_prop_size)));
400 }
401
402 _FDT((fdt_end_node(fdt)));
403 }
404
405 g_free(modelname);
406
407 _FDT((fdt_end_node(fdt)));
408
409 /* RTAS */
410 _FDT((fdt_begin_node(fdt, "rtas")));
411
412 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
413 sizeof(hypertas_prop))));
414 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
415 sizeof(qemu_hypertas_prop))));
416
417 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
418 refpoints, sizeof(refpoints))));
419
420 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
421
422 _FDT((fdt_end_node(fdt)));
423
424 /* interrupt controller */
425 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
426
427 _FDT((fdt_property_string(fdt, "device_type",
428 "PowerPC-External-Interrupt-Presentation")));
429 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
430 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
431 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
432 interrupt_server_ranges_prop,
433 sizeof(interrupt_server_ranges_prop))));
434 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
435 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
436 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
437
438 _FDT((fdt_end_node(fdt)));
439
440 /* vdevice */
441 _FDT((fdt_begin_node(fdt, "vdevice")));
442
443 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
444 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
445 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
446 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
447 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
448 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
449
450 _FDT((fdt_end_node(fdt)));
451
452 /* event-sources */
453 spapr_events_fdt_skel(fdt, epow_irq);
454
455 _FDT((fdt_end_node(fdt))); /* close root node */
456 _FDT((fdt_finish(fdt)));
457
458 return fdt;
459 }
460
461 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
462 {
463 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
464 cpu_to_be32(0x0), cpu_to_be32(0x0),
465 cpu_to_be32(0x0)};
466 char mem_name[32];
467 hwaddr node0_size, mem_start;
468 uint64_t mem_reg_property[2];
469 int i, off;
470
471 /* memory node(s) */
472 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
473 if (spapr->rma_size > node0_size) {
474 spapr->rma_size = node0_size;
475 }
476
477 /* RMA */
478 mem_reg_property[0] = 0;
479 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
480 off = fdt_add_subnode(fdt, 0, "memory@0");
481 _FDT(off);
482 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
483 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
484 sizeof(mem_reg_property))));
485 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
486 sizeof(associativity))));
487
488 /* RAM: Node 0 */
489 if (node0_size > spapr->rma_size) {
490 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
491 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
492
493 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
494 off = fdt_add_subnode(fdt, 0, mem_name);
495 _FDT(off);
496 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
497 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
498 sizeof(mem_reg_property))));
499 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
500 sizeof(associativity))));
501 }
502
503 /* RAM: Node 1 and beyond */
504 mem_start = node0_size;
505 for (i = 1; i < nb_numa_nodes; i++) {
506 mem_reg_property[0] = cpu_to_be64(mem_start);
507 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
508 associativity[3] = associativity[4] = cpu_to_be32(i);
509 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
510 off = fdt_add_subnode(fdt, 0, mem_name);
511 _FDT(off);
512 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
513 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
514 sizeof(mem_reg_property))));
515 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
516 sizeof(associativity))));
517 mem_start += node_mem[i];
518 }
519
520 return 0;
521 }
522
523 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
524 hwaddr fdt_addr,
525 hwaddr rtas_addr,
526 hwaddr rtas_size)
527 {
528 int ret;
529 void *fdt;
530 sPAPRPHBState *phb;
531
532 fdt = g_malloc(FDT_MAX_SIZE);
533
534 /* open out the base tree into a temp buffer for the final tweaks */
535 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
536
537 ret = spapr_populate_memory(spapr, fdt);
538 if (ret < 0) {
539 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
540 exit(1);
541 }
542
543 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
544 if (ret < 0) {
545 fprintf(stderr, "couldn't setup vio devices in fdt\n");
546 exit(1);
547 }
548
549 QLIST_FOREACH(phb, &spapr->phbs, list) {
550 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
551 }
552
553 if (ret < 0) {
554 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
555 exit(1);
556 }
557
558 /* RTAS */
559 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
560 if (ret < 0) {
561 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
562 }
563
564 /* Advertise NUMA via ibm,associativity */
565 ret = spapr_fixup_cpu_dt(fdt, spapr);
566 if (ret < 0) {
567 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
568 }
569
570 if (!spapr->has_graphics) {
571 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
572 }
573
574 _FDT((fdt_pack(fdt)));
575
576 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
577 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
578 fdt_totalsize(fdt), FDT_MAX_SIZE);
579 exit(1);
580 }
581
582 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
583
584 g_free(fdt);
585 }
586
587 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
588 {
589 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
590 }
591
592 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
593 {
594 CPUPPCState *env = &cpu->env;
595
596 if (msr_pr) {
597 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
598 env->gpr[3] = H_PRIVILEGE;
599 } else {
600 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
601 }
602 }
603
604 static void spapr_reset_htab(sPAPREnvironment *spapr)
605 {
606 long shift;
607
608 /* allocate hash page table. For now we always make this 16mb,
609 * later we should probably make it scale to the size of guest
610 * RAM */
611
612 shift = kvmppc_reset_htab(spapr->htab_shift);
613
614 if (shift > 0) {
615 /* Kernel handles htab, we don't need to allocate one */
616 spapr->htab_shift = shift;
617 } else {
618 if (!spapr->htab) {
619 /* Allocate an htab if we don't yet have one */
620 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
621 }
622
623 /* And clear it */
624 memset(spapr->htab, 0, HTAB_SIZE(spapr));
625 }
626
627 /* Update the RMA size if necessary */
628 if (spapr->vrma_adjust) {
629 spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
630 }
631 }
632
633 static void ppc_spapr_reset(void)
634 {
635 CPUState *first_cpu_cpu;
636
637 /* Reset the hash table & recalc the RMA */
638 spapr_reset_htab(spapr);
639
640 qemu_devices_reset();
641
642 /* Load the fdt */
643 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
644 spapr->rtas_size);
645
646 /* Set up the entry state */
647 first_cpu_cpu = ENV_GET_CPU(first_cpu);
648 first_cpu->gpr[3] = spapr->fdt_addr;
649 first_cpu->gpr[5] = 0;
650 first_cpu_cpu->halted = 0;
651 first_cpu->nip = spapr->entry_point;
652
653 }
654
655 static void spapr_cpu_reset(void *opaque)
656 {
657 PowerPCCPU *cpu = opaque;
658 CPUState *cs = CPU(cpu);
659 CPUPPCState *env = &cpu->env;
660
661 cpu_reset(cs);
662
663 /* All CPUs start halted. CPU0 is unhalted from the machine level
664 * reset code and the rest are explicitly started up by the guest
665 * using an RTAS call */
666 cs->halted = 1;
667
668 env->spr[SPR_HIOR] = 0;
669
670 env->external_htab = spapr->htab;
671 env->htab_base = -1;
672 env->htab_mask = HTAB_SIZE(spapr) - 1;
673 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
674 (spapr->htab_shift - 18);
675 }
676
677 static void spapr_create_nvram(sPAPREnvironment *spapr)
678 {
679 QemuOpts *machine_opts;
680 DeviceState *dev;
681
682 dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
683
684 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
685 if (machine_opts) {
686 const char *drivename;
687
688 drivename = qemu_opt_get(machine_opts, "nvram");
689 if (drivename) {
690 BlockDriverState *bs;
691
692 bs = bdrv_find(drivename);
693 if (!bs) {
694 fprintf(stderr, "No such block device \"%s\" for nvram\n",
695 drivename);
696 exit(1);
697 }
698 qdev_prop_set_drive_nofail(dev, "drive", bs);
699 }
700 }
701
702 qdev_init_nofail(dev);
703
704 spapr->nvram = (struct sPAPRNVRAM *)dev;
705 }
706
707 /* Returns whether we want to use VGA or not */
708 static int spapr_vga_init(PCIBus *pci_bus)
709 {
710 switch (vga_interface_type) {
711 case VGA_NONE:
712 case VGA_STD:
713 return pci_vga_init(pci_bus) != NULL;
714 default:
715 fprintf(stderr, "This vga model is not supported,"
716 "currently it only supports -vga std\n");
717 exit(0);
718 break;
719 }
720 }
721
722 /* pSeries LPAR / sPAPR hardware init */
723 static void ppc_spapr_init(QEMUMachineInitArgs *args)
724 {
725 ram_addr_t ram_size = args->ram_size;
726 const char *cpu_model = args->cpu_model;
727 const char *kernel_filename = args->kernel_filename;
728 const char *kernel_cmdline = args->kernel_cmdline;
729 const char *initrd_filename = args->initrd_filename;
730 const char *boot_device = args->boot_device;
731 PowerPCCPU *cpu;
732 CPUPPCState *env;
733 PCIHostState *phb;
734 int i;
735 MemoryRegion *sysmem = get_system_memory();
736 MemoryRegion *ram = g_new(MemoryRegion, 1);
737 hwaddr rma_alloc_size;
738 uint32_t initrd_base = 0;
739 long kernel_size = 0, initrd_size = 0;
740 long load_limit, rtas_limit, fw_size;
741 char *filename;
742
743 msi_supported = true;
744
745 spapr = g_malloc0(sizeof(*spapr));
746 QLIST_INIT(&spapr->phbs);
747
748 cpu_ppc_hypercall = emulate_spapr_hypercall;
749
750 /* Allocate RMA if necessary */
751 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
752
753 if (rma_alloc_size == -1) {
754 hw_error("qemu: Unable to create RMA\n");
755 exit(1);
756 }
757
758 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
759 spapr->rma_size = rma_alloc_size;
760 } else {
761 spapr->rma_size = ram_size;
762
763 /* With KVM, we don't actually know whether KVM supports an
764 * unbounded RMA (PR KVM) or is limited by the hash table size
765 * (HV KVM using VRMA), so we always assume the latter
766 *
767 * In that case, we also limit the initial allocations for RTAS
768 * etc... to 256M since we have no way to know what the VRMA size
769 * is going to be as it depends on the size of the hash table
770 * isn't determined yet.
771 */
772 if (kvm_enabled()) {
773 spapr->vrma_adjust = 1;
774 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
775 }
776 }
777
778 /* We place the device tree and RTAS just below either the top of the RMA,
779 * or just below 2GB, whichever is lowere, so that it can be
780 * processed with 32-bit real mode code if necessary */
781 rtas_limit = MIN(spapr->rma_size, 0x80000000);
782 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
783 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
784 load_limit = spapr->fdt_addr - FW_OVERHEAD;
785
786 /* We aim for a hash table of size 1/128 the size of RAM. The
787 * normal rule of thumb is 1/64 the size of RAM, but that's much
788 * more than needed for the Linux guests we support. */
789 spapr->htab_shift = 18; /* Minimum architected size */
790 while (spapr->htab_shift <= 46) {
791 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
792 break;
793 }
794 spapr->htab_shift++;
795 }
796
797 /* Set up Interrupt Controller before we create the VCPUs */
798 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
799 XICS_IRQS);
800 spapr->next_irq = XICS_IRQ_BASE;
801
802 /* init CPUs */
803 if (cpu_model == NULL) {
804 cpu_model = kvm_enabled() ? "host" : "POWER7";
805 }
806 for (i = 0; i < smp_cpus; i++) {
807 cpu = cpu_ppc_init(cpu_model);
808 if (cpu == NULL) {
809 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
810 exit(1);
811 }
812 env = &cpu->env;
813
814 xics_cpu_setup(spapr->icp, cpu);
815
816 /* Set time-base frequency to 512 MHz */
817 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
818
819 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
820 * MSR[IP] should never be set.
821 */
822 env->msr_mask &= ~(1 << 6);
823
824 /* Tell KVM that we're in PAPR mode */
825 if (kvm_enabled()) {
826 kvmppc_set_papr(cpu);
827 }
828
829 qemu_register_reset(spapr_cpu_reset, cpu);
830 }
831
832 /* allocate RAM */
833 spapr->ram_limit = ram_size;
834 if (spapr->ram_limit > rma_alloc_size) {
835 ram_addr_t nonrma_base = rma_alloc_size;
836 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
837
838 memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
839 vmstate_register_ram_global(ram);
840 memory_region_add_subregion(sysmem, nonrma_base, ram);
841 }
842
843 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
844 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
845 rtas_limit - spapr->rtas_addr);
846 if (spapr->rtas_size < 0) {
847 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
848 exit(1);
849 }
850 if (spapr->rtas_size > RTAS_MAX_SIZE) {
851 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
852 spapr->rtas_size, RTAS_MAX_SIZE);
853 exit(1);
854 }
855 g_free(filename);
856
857 /* Set up EPOW events infrastructure */
858 spapr_events_init(spapr);
859
860 /* Set up IOMMU */
861 spapr_iommu_init();
862
863 /* Set up VIO bus */
864 spapr->vio_bus = spapr_vio_bus_init();
865
866 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
867 if (serial_hds[i]) {
868 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
869 }
870 }
871
872 /* We always have at least the nvram device on VIO */
873 spapr_create_nvram(spapr);
874
875 /* Set up PCI */
876 spapr_pci_rtas_init();
877
878 phb = spapr_create_phb(spapr, 0);
879
880 for (i = 0; i < nb_nics; i++) {
881 NICInfo *nd = &nd_table[i];
882
883 if (!nd->model) {
884 nd->model = g_strdup("ibmveth");
885 }
886
887 if (strcmp(nd->model, "ibmveth") == 0) {
888 spapr_vlan_create(spapr->vio_bus, nd);
889 } else {
890 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
891 }
892 }
893
894 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
895 spapr_vscsi_create(spapr->vio_bus);
896 }
897
898 /* Graphics */
899 if (spapr_vga_init(phb->bus)) {
900 spapr->has_graphics = true;
901 }
902
903 if (usb_enabled(spapr->has_graphics)) {
904 pci_create_simple(phb->bus, -1, "pci-ohci");
905 if (spapr->has_graphics) {
906 usbdevice_create("keyboard");
907 usbdevice_create("mouse");
908 }
909 }
910
911 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
912 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
913 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
914 exit(1);
915 }
916
917 if (kernel_filename) {
918 uint64_t lowaddr = 0;
919
920 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
921 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
922 if (kernel_size < 0) {
923 kernel_size = load_image_targphys(kernel_filename,
924 KERNEL_LOAD_ADDR,
925 load_limit - KERNEL_LOAD_ADDR);
926 }
927 if (kernel_size < 0) {
928 fprintf(stderr, "qemu: could not load kernel '%s'\n",
929 kernel_filename);
930 exit(1);
931 }
932
933 /* load initrd */
934 if (initrd_filename) {
935 /* Try to locate the initrd in the gap between the kernel
936 * and the firmware. Add a bit of space just in case
937 */
938 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
939 initrd_size = load_image_targphys(initrd_filename, initrd_base,
940 load_limit - initrd_base);
941 if (initrd_size < 0) {
942 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
943 initrd_filename);
944 exit(1);
945 }
946 } else {
947 initrd_base = 0;
948 initrd_size = 0;
949 }
950 }
951
952 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
953 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
954 if (fw_size < 0) {
955 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
956 exit(1);
957 }
958 g_free(filename);
959
960 spapr->entry_point = 0x100;
961
962 /* Prepare the device tree */
963 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
964 initrd_base, initrd_size,
965 kernel_size,
966 boot_device, kernel_cmdline,
967 spapr->epow_irq);
968 assert(spapr->fdt_skel != NULL);
969 }
970
971 static QEMUMachine spapr_machine = {
972 .name = "pseries",
973 .desc = "pSeries Logical Partition (PAPR compliant)",
974 .is_default = 1,
975 .init = ppc_spapr_init,
976 .reset = ppc_spapr_reset,
977 .block_default_type = IF_SCSI,
978 .max_cpus = MAX_CPUS,
979 .no_parallel = 1,
980 .boot_order = NULL,
981 };
982
983 static void spapr_machine_init(void)
984 {
985 qemu_register_machine(&spapr_machine);
986 }
987
988 machine_init(spapr_machine_init);