]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
compat: replace PC_COMPAT_2_7 & HW_COMPAT_2_7 macros
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
48
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
58
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
77
78 #include <libfdt.h>
79
80 /* SLOF memory layout:
81 *
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
84 *
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
87 *
88 * We load our kernel at 4M, leaving space for SLOF initial image
89 */
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
97
98 #define MIN_RMA_SLOF 128UL
99
100 #define PHANDLE_XICP 0x00001111
101
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
105 */
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
107 {
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
111 }
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113 PowerPCCPU *cpu)
114 {
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
117 }
118
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
120 {
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
124 */
125 return false;
126 }
127
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129 .name = "icp/server",
130 .version_id = 1,
131 .minimum_version_id = 1,
132 .needed = pre_2_10_vmstate_dummy_icp_needed,
133 .fields = (VMStateField[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
138 },
139 };
140
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
142 {
143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144 (void *)(uintptr_t) i);
145 }
146
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
148 {
149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150 (void *)(uintptr_t) i);
151 }
152
153 int spapr_max_server_number(sPAPRMachineState *spapr)
154 {
155 assert(spapr->vsmt);
156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
157 }
158
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160 int smt_threads)
161 {
162 int i, ret = 0;
163 uint32_t servers_prop[smt_threads];
164 uint32_t gservers_prop[smt_threads * 2];
165 int index = spapr_get_vcpu_id(cpu);
166
167 if (cpu->compat_pvr) {
168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169 if (ret < 0) {
170 return ret;
171 }
172 }
173
174 /* Build interrupt servers and gservers properties */
175 for (i = 0; i < smt_threads; i++) {
176 servers_prop[i] = cpu_to_be32(index + i);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop[i*2] = cpu_to_be32(index + i);
179 gservers_prop[i*2 + 1] = 0;
180 }
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182 servers_prop, sizeof(servers_prop));
183 if (ret < 0) {
184 return ret;
185 }
186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop, sizeof(gservers_prop));
188
189 return ret;
190 }
191
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
193 {
194 int index = spapr_get_vcpu_id(cpu);
195 uint32_t associativity[] = {cpu_to_be32(0x5),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(0x0),
199 cpu_to_be32(cpu->node_id),
200 cpu_to_be32(index)};
201
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204 sizeof(associativity));
205 }
206
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset,
211 bool legacy_guest)
212 {
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 /* 6: DS207 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 /* 16: Vector */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244 };
245 uint8_t *pa_features = NULL;
246 size_t pa_size;
247
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
251 }
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
255 }
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
259 }
260 if (!pa_features) {
261 return;
262 }
263
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265 /*
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
271 */
272 pa_features[3] |= 0x20;
273 }
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
276 }
277 if (legacy_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282 }
283
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 }
286
287 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
288 {
289 int ret = 0, offset, cpus_offset;
290 CPUState *cs;
291 char cpu_model[32];
292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
293
294 CPU_FOREACH(cs) {
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
296 DeviceClass *dc = DEVICE_GET_CLASS(cs);
297 int index = spapr_get_vcpu_id(cpu);
298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
299
300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301 continue;
302 }
303
304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
305
306 cpus_offset = fdt_path_offset(fdt, "/cpus");
307 if (cpus_offset < 0) {
308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309 if (cpus_offset < 0) {
310 return cpus_offset;
311 }
312 }
313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314 if (offset < 0) {
315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316 if (offset < 0) {
317 return offset;
318 }
319 }
320
321 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322 pft_size_prop, sizeof(pft_size_prop));
323 if (ret < 0) {
324 return ret;
325 }
326
327 if (nb_numa_nodes > 1) {
328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329 if (ret < 0) {
330 return ret;
331 }
332 }
333
334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335 if (ret < 0) {
336 return ret;
337 }
338
339 spapr_populate_pa_features(spapr, cpu, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
341 }
342 return ret;
343 }
344
345 static hwaddr spapr_node0_size(MachineState *machine)
346 {
347 if (nb_numa_nodes) {
348 int i;
349 for (i = 0; i < nb_numa_nodes; ++i) {
350 if (numa_info[i].node_mem) {
351 return MIN(pow2floor(numa_info[i].node_mem),
352 machine->ram_size);
353 }
354 }
355 }
356 return machine->ram_size;
357 }
358
359 static void add_str(GString *s, const gchar *s1)
360 {
361 g_string_append_len(s, s1, strlen(s1) + 1);
362 }
363
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365 hwaddr size)
366 {
367 uint32_t associativity[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid)
371 };
372 char mem_name[32];
373 uint64_t mem_reg_property[2];
374 int off;
375
376 mem_reg_property[0] = cpu_to_be64(start);
377 mem_reg_property[1] = cpu_to_be64(size);
378
379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380 off = fdt_add_subnode(fdt, 0, mem_name);
381 _FDT(off);
382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384 sizeof(mem_reg_property))));
385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386 sizeof(associativity))));
387 return off;
388 }
389
390 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
391 {
392 MachineState *machine = MACHINE(spapr);
393 hwaddr mem_start, node_size;
394 int i, nb_nodes = nb_numa_nodes;
395 NodeInfo *nodes = numa_info;
396 NodeInfo ramnode;
397
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes) {
400 nb_nodes = 1;
401 ramnode.node_mem = machine->ram_size;
402 nodes = &ramnode;
403 }
404
405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406 if (!nodes[i].node_mem) {
407 continue;
408 }
409 if (mem_start >= machine->ram_size) {
410 node_size = 0;
411 } else {
412 node_size = nodes[i].node_mem;
413 if (node_size > machine->ram_size - mem_start) {
414 node_size = machine->ram_size - mem_start;
415 }
416 }
417 if (!mem_start) {
418 /* spapr_machine_init() checks for rma_size <= node0_size
419 * already */
420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
423 }
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
426
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
430 }
431
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
435 }
436 }
437
438 return 0;
439 }
440
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 sPAPRMachineState *spapr)
443 {
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = spapr_get_vcpu_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458 sPAPRDRConnector *drc;
459 int drc_index;
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461 int i;
462
463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464 if (drc) {
465 drc_index = spapr_drc_index(drc);
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
467 }
468
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
471
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
481
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
485 } else {
486 warn_report("Unknown L1 dcache size for cpu");
487 }
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
491 } else {
492 warn_report("Unknown L1 icache size for cpu");
493 }
494
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
501
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
504 }
505
506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508 segs, sizeof(segs))));
509 }
510
511 /* Advertise VSX (vector extensions) if available
512 * 1 == VMX / Altivec available
513 * 2 == VSX available
514 *
515 * Only CPUs for which we create core types in spapr_cpu_core.c
516 * are possible, and all of those have VMX */
517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
519 } else {
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
521 }
522
523 /* Advertise DFP (Decimal Floating Point) if available
524 * 0 / no property == no DFP
525 * 1 == DFP available */
526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
528 }
529
530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
531 sizeof(page_sizes_prop));
532 if (page_sizes_prop_size) {
533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
534 page_sizes_prop, page_sizes_prop_size)));
535 }
536
537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
538
539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
540 cs->cpu_index / vcpus_per_socket)));
541
542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
543 pft_size_prop, sizeof(pft_size_prop))));
544
545 if (nb_numa_nodes > 1) {
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
547 }
548
549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
550
551 if (pcc->radix_page_info) {
552 for (i = 0; i < pcc->radix_page_info->count; i++) {
553 radix_AP_encodings[i] =
554 cpu_to_be32(pcc->radix_page_info->entries[i]);
555 }
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557 radix_AP_encodings,
558 pcc->radix_page_info->count *
559 sizeof(radix_AP_encodings[0]))));
560 }
561 }
562
563 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
564 {
565 CPUState **rev;
566 CPUState *cs;
567 int n_cpus;
568 int cpus_offset;
569 char *nodename;
570 int i;
571
572 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
573 _FDT(cpus_offset);
574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
575 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
576
577 /*
578 * We walk the CPUs in reverse order to ensure that CPU DT nodes
579 * created by fdt_add_subnode() end up in the right order in FDT
580 * for the guest kernel the enumerate the CPUs correctly.
581 *
582 * The CPU list cannot be traversed in reverse order, so we need
583 * to do extra work.
584 */
585 n_cpus = 0;
586 rev = NULL;
587 CPU_FOREACH(cs) {
588 rev = g_renew(CPUState *, rev, n_cpus + 1);
589 rev[n_cpus++] = cs;
590 }
591
592 for (i = n_cpus - 1; i >= 0; i--) {
593 CPUState *cs = rev[i];
594 PowerPCCPU *cpu = POWERPC_CPU(cs);
595 int index = spapr_get_vcpu_id(cpu);
596 DeviceClass *dc = DEVICE_GET_CLASS(cs);
597 int offset;
598
599 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
600 continue;
601 }
602
603 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
604 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
605 g_free(nodename);
606 _FDT(offset);
607 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
608 }
609
610 g_free(rev);
611 }
612
613 static int spapr_rng_populate_dt(void *fdt)
614 {
615 int node;
616 int ret;
617
618 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
619 if (node <= 0) {
620 return -1;
621 }
622 ret = fdt_setprop_string(fdt, node, "device_type",
623 "ibm,platform-facilities");
624 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
625 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
626
627 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
628 if (node <= 0) {
629 return -1;
630 }
631 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
632
633 return ret ? -1 : 0;
634 }
635
636 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
637 {
638 MemoryDeviceInfoList *info;
639
640 for (info = list; info; info = info->next) {
641 MemoryDeviceInfo *value = info->value;
642
643 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
644 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
645
646 if (addr >= pcdimm_info->addr &&
647 addr < (pcdimm_info->addr + pcdimm_info->size)) {
648 return pcdimm_info->node;
649 }
650 }
651 }
652
653 return -1;
654 }
655
656 struct sPAPRDrconfCellV2 {
657 uint32_t seq_lmbs;
658 uint64_t base_addr;
659 uint32_t drc_index;
660 uint32_t aa_index;
661 uint32_t flags;
662 } QEMU_PACKED;
663
664 typedef struct DrconfCellQueue {
665 struct sPAPRDrconfCellV2 cell;
666 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
667 } DrconfCellQueue;
668
669 static DrconfCellQueue *
670 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
671 uint32_t drc_index, uint32_t aa_index,
672 uint32_t flags)
673 {
674 DrconfCellQueue *elem;
675
676 elem = g_malloc0(sizeof(*elem));
677 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
678 elem->cell.base_addr = cpu_to_be64(base_addr);
679 elem->cell.drc_index = cpu_to_be32(drc_index);
680 elem->cell.aa_index = cpu_to_be32(aa_index);
681 elem->cell.flags = cpu_to_be32(flags);
682
683 return elem;
684 }
685
686 /* ibm,dynamic-memory-v2 */
687 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
688 int offset, MemoryDeviceInfoList *dimms)
689 {
690 MachineState *machine = MACHINE(spapr);
691 uint8_t *int_buf, *cur_index, buf_len;
692 int ret;
693 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
694 uint64_t addr, cur_addr, size;
695 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
696 uint64_t mem_end = machine->device_memory->base +
697 memory_region_size(&machine->device_memory->mr);
698 uint32_t node, nr_entries = 0;
699 sPAPRDRConnector *drc;
700 DrconfCellQueue *elem, *next;
701 MemoryDeviceInfoList *info;
702 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
703 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
704
705 /* Entry to cover RAM and the gap area */
706 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
707 SPAPR_LMB_FLAGS_RESERVED |
708 SPAPR_LMB_FLAGS_DRC_INVALID);
709 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
710 nr_entries++;
711
712 cur_addr = machine->device_memory->base;
713 for (info = dimms; info; info = info->next) {
714 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
715
716 addr = di->addr;
717 size = di->size;
718 node = di->node;
719
720 /* Entry for hot-pluggable area */
721 if (cur_addr < addr) {
722 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
723 g_assert(drc);
724 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
725 cur_addr, spapr_drc_index(drc), -1, 0);
726 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
727 nr_entries++;
728 }
729
730 /* Entry for DIMM */
731 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
732 g_assert(drc);
733 elem = spapr_get_drconf_cell(size / lmb_size, addr,
734 spapr_drc_index(drc), node,
735 SPAPR_LMB_FLAGS_ASSIGNED);
736 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
737 nr_entries++;
738 cur_addr = addr + size;
739 }
740
741 /* Entry for remaining hotpluggable area */
742 if (cur_addr < mem_end) {
743 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
744 g_assert(drc);
745 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
746 cur_addr, spapr_drc_index(drc), -1, 0);
747 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
748 nr_entries++;
749 }
750
751 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
752 int_buf = cur_index = g_malloc0(buf_len);
753 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
754 cur_index += sizeof(nr_entries);
755
756 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
757 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
758 cur_index += sizeof(elem->cell);
759 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
760 g_free(elem);
761 }
762
763 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
764 g_free(int_buf);
765 if (ret < 0) {
766 return -1;
767 }
768 return 0;
769 }
770
771 /* ibm,dynamic-memory */
772 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
773 int offset, MemoryDeviceInfoList *dimms)
774 {
775 MachineState *machine = MACHINE(spapr);
776 int i, ret;
777 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
778 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
779 uint32_t nr_lmbs = (machine->device_memory->base +
780 memory_region_size(&machine->device_memory->mr)) /
781 lmb_size;
782 uint32_t *int_buf, *cur_index, buf_len;
783
784 /*
785 * Allocate enough buffer size to fit in ibm,dynamic-memory
786 */
787 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
788 cur_index = int_buf = g_malloc0(buf_len);
789 int_buf[0] = cpu_to_be32(nr_lmbs);
790 cur_index++;
791 for (i = 0; i < nr_lmbs; i++) {
792 uint64_t addr = i * lmb_size;
793 uint32_t *dynamic_memory = cur_index;
794
795 if (i >= device_lmb_start) {
796 sPAPRDRConnector *drc;
797
798 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
799 g_assert(drc);
800
801 dynamic_memory[0] = cpu_to_be32(addr >> 32);
802 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
803 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
804 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
805 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
806 if (memory_region_present(get_system_memory(), addr)) {
807 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
808 } else {
809 dynamic_memory[5] = cpu_to_be32(0);
810 }
811 } else {
812 /*
813 * LMB information for RMA, boot time RAM and gap b/n RAM and
814 * device memory region -- all these are marked as reserved
815 * and as having no valid DRC.
816 */
817 dynamic_memory[0] = cpu_to_be32(addr >> 32);
818 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
819 dynamic_memory[2] = cpu_to_be32(0);
820 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
821 dynamic_memory[4] = cpu_to_be32(-1);
822 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
823 SPAPR_LMB_FLAGS_DRC_INVALID);
824 }
825
826 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
827 }
828 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
829 g_free(int_buf);
830 if (ret < 0) {
831 return -1;
832 }
833 return 0;
834 }
835
836 /*
837 * Adds ibm,dynamic-reconfiguration-memory node.
838 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
839 * of this device tree node.
840 */
841 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
842 {
843 MachineState *machine = MACHINE(spapr);
844 int ret, i, offset;
845 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
846 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
847 uint32_t *int_buf, *cur_index, buf_len;
848 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
849 MemoryDeviceInfoList *dimms = NULL;
850
851 /*
852 * Don't create the node if there is no device memory
853 */
854 if (machine->ram_size == machine->maxram_size) {
855 return 0;
856 }
857
858 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
859
860 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
861 sizeof(prop_lmb_size));
862 if (ret < 0) {
863 return ret;
864 }
865
866 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
867 if (ret < 0) {
868 return ret;
869 }
870
871 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
872 if (ret < 0) {
873 return ret;
874 }
875
876 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
877 dimms = qmp_memory_device_list();
878 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
879 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
880 } else {
881 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
882 }
883 qapi_free_MemoryDeviceInfoList(dimms);
884
885 if (ret < 0) {
886 return ret;
887 }
888
889 /* ibm,associativity-lookup-arrays */
890 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
891 cur_index = int_buf = g_malloc0(buf_len);
892 int_buf[0] = cpu_to_be32(nr_nodes);
893 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
894 cur_index += 2;
895 for (i = 0; i < nr_nodes; i++) {
896 uint32_t associativity[] = {
897 cpu_to_be32(0x0),
898 cpu_to_be32(0x0),
899 cpu_to_be32(0x0),
900 cpu_to_be32(i)
901 };
902 memcpy(cur_index, associativity, sizeof(associativity));
903 cur_index += 4;
904 }
905 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
906 (cur_index - int_buf) * sizeof(uint32_t));
907 g_free(int_buf);
908
909 return ret;
910 }
911
912 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
913 sPAPROptionVector *ov5_updates)
914 {
915 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
916 int ret = 0, offset;
917
918 /* Generate ibm,dynamic-reconfiguration-memory node if required */
919 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
920 g_assert(smc->dr_lmb_enabled);
921 ret = spapr_populate_drconf_memory(spapr, fdt);
922 if (ret) {
923 goto out;
924 }
925 }
926
927 offset = fdt_path_offset(fdt, "/chosen");
928 if (offset < 0) {
929 offset = fdt_add_subnode(fdt, 0, "chosen");
930 if (offset < 0) {
931 return offset;
932 }
933 }
934 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
935 "ibm,architecture-vec-5");
936
937 out:
938 return ret;
939 }
940
941 static bool spapr_hotplugged_dev_before_cas(void)
942 {
943 Object *drc_container, *obj;
944 ObjectProperty *prop;
945 ObjectPropertyIterator iter;
946
947 drc_container = container_get(object_get_root(), "/dr-connector");
948 object_property_iter_init(&iter, drc_container);
949 while ((prop = object_property_iter_next(&iter))) {
950 if (!strstart(prop->type, "link<", NULL)) {
951 continue;
952 }
953 obj = object_property_get_link(drc_container, prop->name, NULL);
954 if (spapr_drc_needed(obj)) {
955 return true;
956 }
957 }
958 return false;
959 }
960
961 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
962 target_ulong addr, target_ulong size,
963 sPAPROptionVector *ov5_updates)
964 {
965 void *fdt, *fdt_skel;
966 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
967
968 if (spapr_hotplugged_dev_before_cas()) {
969 return 1;
970 }
971
972 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
973 error_report("SLOF provided an unexpected CAS buffer size "
974 TARGET_FMT_lu " (min: %zu, max: %u)",
975 size, sizeof(hdr), FW_MAX_SIZE);
976 exit(EXIT_FAILURE);
977 }
978
979 size -= sizeof(hdr);
980
981 /* Create skeleton */
982 fdt_skel = g_malloc0(size);
983 _FDT((fdt_create(fdt_skel, size)));
984 _FDT((fdt_finish_reservemap(fdt_skel)));
985 _FDT((fdt_begin_node(fdt_skel, "")));
986 _FDT((fdt_end_node(fdt_skel)));
987 _FDT((fdt_finish(fdt_skel)));
988 fdt = g_malloc0(size);
989 _FDT((fdt_open_into(fdt_skel, fdt, size)));
990 g_free(fdt_skel);
991
992 /* Fixup cpu nodes */
993 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
994
995 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
996 return -1;
997 }
998
999 /* Pack resulting tree */
1000 _FDT((fdt_pack(fdt)));
1001
1002 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1003 trace_spapr_cas_failed(size);
1004 return -1;
1005 }
1006
1007 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1008 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1009 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1010 g_free(fdt);
1011
1012 return 0;
1013 }
1014
1015 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1016 {
1017 int rtas;
1018 GString *hypertas = g_string_sized_new(256);
1019 GString *qemu_hypertas = g_string_sized_new(256);
1020 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1021 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1022 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1023 uint32_t lrdr_capacity[] = {
1024 cpu_to_be32(max_device_addr >> 32),
1025 cpu_to_be32(max_device_addr & 0xffffffff),
1026 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1027 cpu_to_be32(max_cpus / smp_threads),
1028 };
1029 uint32_t maxdomains[] = {
1030 cpu_to_be32(4),
1031 cpu_to_be32(0),
1032 cpu_to_be32(0),
1033 cpu_to_be32(0),
1034 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1035 };
1036
1037 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1038
1039 /* hypertas */
1040 add_str(hypertas, "hcall-pft");
1041 add_str(hypertas, "hcall-term");
1042 add_str(hypertas, "hcall-dabr");
1043 add_str(hypertas, "hcall-interrupt");
1044 add_str(hypertas, "hcall-tce");
1045 add_str(hypertas, "hcall-vio");
1046 add_str(hypertas, "hcall-splpar");
1047 add_str(hypertas, "hcall-bulk");
1048 add_str(hypertas, "hcall-set-mode");
1049 add_str(hypertas, "hcall-sprg0");
1050 add_str(hypertas, "hcall-copy");
1051 add_str(hypertas, "hcall-debug");
1052 add_str(qemu_hypertas, "hcall-memop1");
1053
1054 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1055 add_str(hypertas, "hcall-multi-tce");
1056 }
1057
1058 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1059 add_str(hypertas, "hcall-hpt-resize");
1060 }
1061
1062 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1063 hypertas->str, hypertas->len));
1064 g_string_free(hypertas, TRUE);
1065 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1066 qemu_hypertas->str, qemu_hypertas->len));
1067 g_string_free(qemu_hypertas, TRUE);
1068
1069 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1070 refpoints, sizeof(refpoints)));
1071
1072 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1073 maxdomains, sizeof(maxdomains)));
1074
1075 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1076 RTAS_ERROR_LOG_MAX));
1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1078 RTAS_EVENT_SCAN_RATE));
1079
1080 g_assert(msi_nonbroken);
1081 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1082
1083 /*
1084 * According to PAPR, rtas ibm,os-term does not guarantee a return
1085 * back to the guest cpu.
1086 *
1087 * While an additional ibm,extended-os-term property indicates
1088 * that rtas call return will always occur. Set this property.
1089 */
1090 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1091
1092 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1093 lrdr_capacity, sizeof(lrdr_capacity)));
1094
1095 spapr_dt_rtas_tokens(fdt, rtas);
1096 }
1097
1098 /*
1099 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1100 * and the XIVE features that the guest may request and thus the valid
1101 * values for bytes 23..26 of option vector 5:
1102 */
1103 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt,
1104 int chosen)
1105 {
1106 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1107
1108 char val[2 * 4] = {
1109 23, spapr->irq->ov5, /* Xive mode. */
1110 24, 0x00, /* Hash/Radix, filled in below. */
1111 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1112 26, 0x40, /* Radix options: GTSE == yes. */
1113 };
1114
1115 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1116 first_ppc_cpu->compat_pvr)) {
1117 /*
1118 * If we're in a pre POWER9 compat mode then the guest should
1119 * do hash and use the legacy interrupt mode
1120 */
1121 val[1] = 0x00; /* XICS */
1122 val[3] = 0x00; /* Hash */
1123 } else if (kvm_enabled()) {
1124 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1125 val[3] = 0x80; /* OV5_MMU_BOTH */
1126 } else if (kvmppc_has_cap_mmu_radix()) {
1127 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1128 } else {
1129 val[3] = 0x00; /* Hash */
1130 }
1131 } else {
1132 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1133 val[3] = 0xC0;
1134 }
1135 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1136 val, sizeof(val)));
1137 }
1138
1139 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1140 {
1141 MachineState *machine = MACHINE(spapr);
1142 int chosen;
1143 const char *boot_device = machine->boot_order;
1144 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1145 size_t cb = 0;
1146 char *bootlist = get_boot_devices_list(&cb);
1147
1148 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1149
1150 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1151 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1152 spapr->initrd_base));
1153 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1154 spapr->initrd_base + spapr->initrd_size));
1155
1156 if (spapr->kernel_size) {
1157 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1158 cpu_to_be64(spapr->kernel_size) };
1159
1160 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1161 &kprop, sizeof(kprop)));
1162 if (spapr->kernel_le) {
1163 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1164 }
1165 }
1166 if (boot_menu) {
1167 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1168 }
1169 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1170 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1171 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1172
1173 if (cb && bootlist) {
1174 int i;
1175
1176 for (i = 0; i < cb; i++) {
1177 if (bootlist[i] == '\n') {
1178 bootlist[i] = ' ';
1179 }
1180 }
1181 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1182 }
1183
1184 if (boot_device && strlen(boot_device)) {
1185 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1186 }
1187
1188 if (!spapr->has_graphics && stdout_path) {
1189 /*
1190 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1191 * kernel. New platforms should only use the "stdout-path" property. Set
1192 * the new property and continue using older property to remain
1193 * compatible with the existing firmware.
1194 */
1195 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1196 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1197 }
1198
1199 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1200
1201 g_free(stdout_path);
1202 g_free(bootlist);
1203 }
1204
1205 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1206 {
1207 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1208 * KVM to work under pHyp with some guest co-operation */
1209 int hypervisor;
1210 uint8_t hypercall[16];
1211
1212 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1213 /* indicate KVM hypercall interface */
1214 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1215 if (kvmppc_has_cap_fixup_hcalls()) {
1216 /*
1217 * Older KVM versions with older guest kernels were broken
1218 * with the magic page, don't allow the guest to map it.
1219 */
1220 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1221 sizeof(hypercall))) {
1222 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1223 hypercall, sizeof(hypercall)));
1224 }
1225 }
1226 }
1227
1228 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1229 hwaddr rtas_addr,
1230 hwaddr rtas_size)
1231 {
1232 MachineState *machine = MACHINE(spapr);
1233 MachineClass *mc = MACHINE_GET_CLASS(machine);
1234 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1235 int ret;
1236 void *fdt;
1237 sPAPRPHBState *phb;
1238 char *buf;
1239
1240 fdt = g_malloc0(FDT_MAX_SIZE);
1241 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1242
1243 /* Root node */
1244 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1245 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1246 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1247
1248 /*
1249 * Add info to guest to indentify which host is it being run on
1250 * and what is the uuid of the guest
1251 */
1252 if (kvmppc_get_host_model(&buf)) {
1253 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1254 g_free(buf);
1255 }
1256 if (kvmppc_get_host_serial(&buf)) {
1257 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1258 g_free(buf);
1259 }
1260
1261 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1262
1263 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1264 if (qemu_uuid_set) {
1265 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1266 }
1267 g_free(buf);
1268
1269 if (qemu_get_vm_name()) {
1270 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1271 qemu_get_vm_name()));
1272 }
1273
1274 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1275 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1276
1277 /* /interrupt controller */
1278 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1279 PHANDLE_XICP);
1280
1281 ret = spapr_populate_memory(spapr, fdt);
1282 if (ret < 0) {
1283 error_report("couldn't setup memory nodes in fdt");
1284 exit(1);
1285 }
1286
1287 /* /vdevice */
1288 spapr_dt_vdevice(spapr->vio_bus, fdt);
1289
1290 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1291 ret = spapr_rng_populate_dt(fdt);
1292 if (ret < 0) {
1293 error_report("could not set up rng device in the fdt");
1294 exit(1);
1295 }
1296 }
1297
1298 QLIST_FOREACH(phb, &spapr->phbs, list) {
1299 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt,
1300 spapr->irq->nr_msis);
1301 if (ret < 0) {
1302 error_report("couldn't setup PCI devices in fdt");
1303 exit(1);
1304 }
1305 }
1306
1307 /* cpus */
1308 spapr_populate_cpus_dt_node(fdt, spapr);
1309
1310 if (smc->dr_lmb_enabled) {
1311 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1312 }
1313
1314 if (mc->has_hotpluggable_cpus) {
1315 int offset = fdt_path_offset(fdt, "/cpus");
1316 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1317 SPAPR_DR_CONNECTOR_TYPE_CPU);
1318 if (ret < 0) {
1319 error_report("Couldn't set up CPU DR device tree properties");
1320 exit(1);
1321 }
1322 }
1323
1324 /* /event-sources */
1325 spapr_dt_events(spapr, fdt);
1326
1327 /* /rtas */
1328 spapr_dt_rtas(spapr, fdt);
1329
1330 /* /chosen */
1331 spapr_dt_chosen(spapr, fdt);
1332
1333 /* /hypervisor */
1334 if (kvm_enabled()) {
1335 spapr_dt_hypervisor(spapr, fdt);
1336 }
1337
1338 /* Build memory reserve map */
1339 if (spapr->kernel_size) {
1340 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1341 }
1342 if (spapr->initrd_size) {
1343 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1344 }
1345
1346 /* ibm,client-architecture-support updates */
1347 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1348 if (ret < 0) {
1349 error_report("couldn't setup CAS properties fdt");
1350 exit(1);
1351 }
1352
1353 return fdt;
1354 }
1355
1356 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1357 {
1358 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1359 }
1360
1361 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1362 PowerPCCPU *cpu)
1363 {
1364 CPUPPCState *env = &cpu->env;
1365
1366 /* The TCG path should also be holding the BQL at this point */
1367 g_assert(qemu_mutex_iothread_locked());
1368
1369 if (msr_pr) {
1370 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1371 env->gpr[3] = H_PRIVILEGE;
1372 } else {
1373 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1374 }
1375 }
1376
1377 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1378 {
1379 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1380
1381 return spapr->patb_entry;
1382 }
1383
1384 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1385 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1386 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1387 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1388 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1389
1390 /*
1391 * Get the fd to access the kernel htab, re-opening it if necessary
1392 */
1393 static int get_htab_fd(sPAPRMachineState *spapr)
1394 {
1395 Error *local_err = NULL;
1396
1397 if (spapr->htab_fd >= 0) {
1398 return spapr->htab_fd;
1399 }
1400
1401 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1402 if (spapr->htab_fd < 0) {
1403 error_report_err(local_err);
1404 }
1405
1406 return spapr->htab_fd;
1407 }
1408
1409 void close_htab_fd(sPAPRMachineState *spapr)
1410 {
1411 if (spapr->htab_fd >= 0) {
1412 close(spapr->htab_fd);
1413 }
1414 spapr->htab_fd = -1;
1415 }
1416
1417 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1418 {
1419 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1420
1421 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1422 }
1423
1424 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1425 {
1426 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1427
1428 assert(kvm_enabled());
1429
1430 if (!spapr->htab) {
1431 return 0;
1432 }
1433
1434 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1435 }
1436
1437 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1438 hwaddr ptex, int n)
1439 {
1440 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1441 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1442
1443 if (!spapr->htab) {
1444 /*
1445 * HTAB is controlled by KVM. Fetch into temporary buffer
1446 */
1447 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1448 kvmppc_read_hptes(hptes, ptex, n);
1449 return hptes;
1450 }
1451
1452 /*
1453 * HTAB is controlled by QEMU. Just point to the internally
1454 * accessible PTEG.
1455 */
1456 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1457 }
1458
1459 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1460 const ppc_hash_pte64_t *hptes,
1461 hwaddr ptex, int n)
1462 {
1463 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1464
1465 if (!spapr->htab) {
1466 g_free((void *)hptes);
1467 }
1468
1469 /* Nothing to do for qemu managed HPT */
1470 }
1471
1472 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1473 uint64_t pte0, uint64_t pte1)
1474 {
1475 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1476 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1477
1478 if (!spapr->htab) {
1479 kvmppc_write_hpte(ptex, pte0, pte1);
1480 } else {
1481 stq_p(spapr->htab + offset, pte0);
1482 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1483 }
1484 }
1485
1486 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1487 {
1488 int shift;
1489
1490 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1491 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1492 * that's much more than is needed for Linux guests */
1493 shift = ctz64(pow2ceil(ramsize)) - 7;
1494 shift = MAX(shift, 18); /* Minimum architected size */
1495 shift = MIN(shift, 46); /* Maximum architected size */
1496 return shift;
1497 }
1498
1499 void spapr_free_hpt(sPAPRMachineState *spapr)
1500 {
1501 g_free(spapr->htab);
1502 spapr->htab = NULL;
1503 spapr->htab_shift = 0;
1504 close_htab_fd(spapr);
1505 }
1506
1507 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1508 Error **errp)
1509 {
1510 long rc;
1511
1512 /* Clean up any HPT info from a previous boot */
1513 spapr_free_hpt(spapr);
1514
1515 rc = kvmppc_reset_htab(shift);
1516 if (rc < 0) {
1517 /* kernel-side HPT needed, but couldn't allocate one */
1518 error_setg_errno(errp, errno,
1519 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1520 shift);
1521 /* This is almost certainly fatal, but if the caller really
1522 * wants to carry on with shift == 0, it's welcome to try */
1523 } else if (rc > 0) {
1524 /* kernel-side HPT allocated */
1525 if (rc != shift) {
1526 error_setg(errp,
1527 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1528 shift, rc);
1529 }
1530
1531 spapr->htab_shift = shift;
1532 spapr->htab = NULL;
1533 } else {
1534 /* kernel-side HPT not needed, allocate in userspace instead */
1535 size_t size = 1ULL << shift;
1536 int i;
1537
1538 spapr->htab = qemu_memalign(size, size);
1539 if (!spapr->htab) {
1540 error_setg_errno(errp, errno,
1541 "Could not allocate HPT of order %d", shift);
1542 return;
1543 }
1544
1545 memset(spapr->htab, 0, size);
1546 spapr->htab_shift = shift;
1547
1548 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1549 DIRTY_HPTE(HPTE(spapr->htab, i));
1550 }
1551 }
1552 /* We're setting up a hash table, so that means we're not radix */
1553 spapr->patb_entry = 0;
1554 }
1555
1556 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1557 {
1558 int hpt_shift;
1559
1560 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1561 || (spapr->cas_reboot
1562 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1563 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1564 } else {
1565 uint64_t current_ram_size;
1566
1567 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1568 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1569 }
1570 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1571
1572 if (spapr->vrma_adjust) {
1573 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1574 spapr->htab_shift);
1575 }
1576 }
1577
1578 static int spapr_reset_drcs(Object *child, void *opaque)
1579 {
1580 sPAPRDRConnector *drc =
1581 (sPAPRDRConnector *) object_dynamic_cast(child,
1582 TYPE_SPAPR_DR_CONNECTOR);
1583
1584 if (drc) {
1585 spapr_drc_reset(drc);
1586 }
1587
1588 return 0;
1589 }
1590
1591 static void spapr_machine_reset(void)
1592 {
1593 MachineState *machine = MACHINE(qdev_get_machine());
1594 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1595 PowerPCCPU *first_ppc_cpu;
1596 uint32_t rtas_limit;
1597 hwaddr rtas_addr, fdt_addr;
1598 void *fdt;
1599 int rc;
1600
1601 spapr_caps_apply(spapr);
1602
1603 first_ppc_cpu = POWERPC_CPU(first_cpu);
1604 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1605 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1606 spapr->max_compat_pvr)) {
1607 /* If using KVM with radix mode available, VCPUs can be started
1608 * without a HPT because KVM will start them in radix mode.
1609 * Set the GR bit in PATB so that we know there is no HPT. */
1610 spapr->patb_entry = PATBE1_GR;
1611 } else {
1612 spapr_setup_hpt_and_vrma(spapr);
1613 }
1614
1615 /* if this reset wasn't generated by CAS, we should reset our
1616 * negotiated options and start from scratch */
1617 if (!spapr->cas_reboot) {
1618 spapr_ovec_cleanup(spapr->ov5_cas);
1619 spapr->ov5_cas = spapr_ovec_new();
1620
1621 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1622 }
1623
1624 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1625 spapr_irq_msi_reset(spapr);
1626 }
1627
1628 qemu_devices_reset();
1629
1630 /*
1631 * This is fixing some of the default configuration of the XIVE
1632 * devices. To be called after the reset of the machine devices.
1633 */
1634 spapr_irq_reset(spapr, &error_fatal);
1635
1636 /* DRC reset may cause a device to be unplugged. This will cause troubles
1637 * if this device is used by another device (eg, a running vhost backend
1638 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1639 * situations, we reset DRCs after all devices have been reset.
1640 */
1641 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1642
1643 spapr_clear_pending_events(spapr);
1644
1645 /*
1646 * We place the device tree and RTAS just below either the top of the RMA,
1647 * or just below 2GB, whichever is lowere, so that it can be
1648 * processed with 32-bit real mode code if necessary
1649 */
1650 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1651 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1652 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1653
1654 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1655
1656 spapr_load_rtas(spapr, fdt, rtas_addr);
1657
1658 rc = fdt_pack(fdt);
1659
1660 /* Should only fail if we've built a corrupted tree */
1661 assert(rc == 0);
1662
1663 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1664 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1665 fdt_totalsize(fdt), FDT_MAX_SIZE);
1666 exit(1);
1667 }
1668
1669 /* Load the fdt */
1670 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1671 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1672 g_free(fdt);
1673
1674 /* Set up the entry state */
1675 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1676 first_ppc_cpu->env.gpr[5] = 0;
1677
1678 spapr->cas_reboot = false;
1679 }
1680
1681 static void spapr_create_nvram(sPAPRMachineState *spapr)
1682 {
1683 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1684 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1685
1686 if (dinfo) {
1687 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1688 &error_fatal);
1689 }
1690
1691 qdev_init_nofail(dev);
1692
1693 spapr->nvram = (struct sPAPRNVRAM *)dev;
1694 }
1695
1696 static void spapr_rtc_create(sPAPRMachineState *spapr)
1697 {
1698 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1699 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1700 &error_fatal);
1701 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1702 &error_fatal);
1703 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1704 "date", &error_fatal);
1705 }
1706
1707 /* Returns whether we want to use VGA or not */
1708 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1709 {
1710 switch (vga_interface_type) {
1711 case VGA_NONE:
1712 return false;
1713 case VGA_DEVICE:
1714 return true;
1715 case VGA_STD:
1716 case VGA_VIRTIO:
1717 return pci_vga_init(pci_bus) != NULL;
1718 default:
1719 error_setg(errp,
1720 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1721 return false;
1722 }
1723 }
1724
1725 static int spapr_pre_load(void *opaque)
1726 {
1727 int rc;
1728
1729 rc = spapr_caps_pre_load(opaque);
1730 if (rc) {
1731 return rc;
1732 }
1733
1734 return 0;
1735 }
1736
1737 static int spapr_post_load(void *opaque, int version_id)
1738 {
1739 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1740 int err = 0;
1741
1742 err = spapr_caps_post_migration(spapr);
1743 if (err) {
1744 return err;
1745 }
1746
1747 /* In earlier versions, there was no separate qdev for the PAPR
1748 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1749 * So when migrating from those versions, poke the incoming offset
1750 * value into the RTC device */
1751 if (version_id < 3) {
1752 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1753 }
1754
1755 if (kvm_enabled() && spapr->patb_entry) {
1756 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1757 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1758 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1759
1760 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1761 if (err) {
1762 error_report("Process table config unsupported by the host");
1763 return -EINVAL;
1764 }
1765 }
1766
1767 err = spapr_irq_post_load(spapr, version_id);
1768 if (err) {
1769 return err;
1770 }
1771
1772 return err;
1773 }
1774
1775 static int spapr_pre_save(void *opaque)
1776 {
1777 int rc;
1778
1779 rc = spapr_caps_pre_save(opaque);
1780 if (rc) {
1781 return rc;
1782 }
1783
1784 return 0;
1785 }
1786
1787 static bool version_before_3(void *opaque, int version_id)
1788 {
1789 return version_id < 3;
1790 }
1791
1792 static bool spapr_pending_events_needed(void *opaque)
1793 {
1794 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1795 return !QTAILQ_EMPTY(&spapr->pending_events);
1796 }
1797
1798 static const VMStateDescription vmstate_spapr_event_entry = {
1799 .name = "spapr_event_log_entry",
1800 .version_id = 1,
1801 .minimum_version_id = 1,
1802 .fields = (VMStateField[]) {
1803 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1804 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1805 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1806 NULL, extended_length),
1807 VMSTATE_END_OF_LIST()
1808 },
1809 };
1810
1811 static const VMStateDescription vmstate_spapr_pending_events = {
1812 .name = "spapr_pending_events",
1813 .version_id = 1,
1814 .minimum_version_id = 1,
1815 .needed = spapr_pending_events_needed,
1816 .fields = (VMStateField[]) {
1817 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1818 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1819 VMSTATE_END_OF_LIST()
1820 },
1821 };
1822
1823 static bool spapr_ov5_cas_needed(void *opaque)
1824 {
1825 sPAPRMachineState *spapr = opaque;
1826 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1827 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1828 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1829 bool cas_needed;
1830
1831 /* Prior to the introduction of sPAPROptionVector, we had two option
1832 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1833 * Both of these options encode machine topology into the device-tree
1834 * in such a way that the now-booted OS should still be able to interact
1835 * appropriately with QEMU regardless of what options were actually
1836 * negotiatied on the source side.
1837 *
1838 * As such, we can avoid migrating the CAS-negotiated options if these
1839 * are the only options available on the current machine/platform.
1840 * Since these are the only options available for pseries-2.7 and
1841 * earlier, this allows us to maintain old->new/new->old migration
1842 * compatibility.
1843 *
1844 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1845 * via default pseries-2.8 machines and explicit command-line parameters.
1846 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1847 * of the actual CAS-negotiated values to continue working properly. For
1848 * example, availability of memory unplug depends on knowing whether
1849 * OV5_HP_EVT was negotiated via CAS.
1850 *
1851 * Thus, for any cases where the set of available CAS-negotiatable
1852 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1853 * include the CAS-negotiated options in the migration stream, unless
1854 * if they affect boot time behaviour only.
1855 */
1856 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1857 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1858 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1859
1860 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1861 * the mask itself since in the future it's possible "legacy" bits may be
1862 * removed via machine options, which could generate a false positive
1863 * that breaks migration.
1864 */
1865 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1866 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1867
1868 spapr_ovec_cleanup(ov5_mask);
1869 spapr_ovec_cleanup(ov5_legacy);
1870 spapr_ovec_cleanup(ov5_removed);
1871
1872 return cas_needed;
1873 }
1874
1875 static const VMStateDescription vmstate_spapr_ov5_cas = {
1876 .name = "spapr_option_vector_ov5_cas",
1877 .version_id = 1,
1878 .minimum_version_id = 1,
1879 .needed = spapr_ov5_cas_needed,
1880 .fields = (VMStateField[]) {
1881 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1882 vmstate_spapr_ovec, sPAPROptionVector),
1883 VMSTATE_END_OF_LIST()
1884 },
1885 };
1886
1887 static bool spapr_patb_entry_needed(void *opaque)
1888 {
1889 sPAPRMachineState *spapr = opaque;
1890
1891 return !!spapr->patb_entry;
1892 }
1893
1894 static const VMStateDescription vmstate_spapr_patb_entry = {
1895 .name = "spapr_patb_entry",
1896 .version_id = 1,
1897 .minimum_version_id = 1,
1898 .needed = spapr_patb_entry_needed,
1899 .fields = (VMStateField[]) {
1900 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1901 VMSTATE_END_OF_LIST()
1902 },
1903 };
1904
1905 static bool spapr_irq_map_needed(void *opaque)
1906 {
1907 sPAPRMachineState *spapr = opaque;
1908
1909 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1910 }
1911
1912 static const VMStateDescription vmstate_spapr_irq_map = {
1913 .name = "spapr_irq_map",
1914 .version_id = 1,
1915 .minimum_version_id = 1,
1916 .needed = spapr_irq_map_needed,
1917 .fields = (VMStateField[]) {
1918 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1919 VMSTATE_END_OF_LIST()
1920 },
1921 };
1922
1923 static const VMStateDescription vmstate_spapr = {
1924 .name = "spapr",
1925 .version_id = 3,
1926 .minimum_version_id = 1,
1927 .pre_load = spapr_pre_load,
1928 .post_load = spapr_post_load,
1929 .pre_save = spapr_pre_save,
1930 .fields = (VMStateField[]) {
1931 /* used to be @next_irq */
1932 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1933
1934 /* RTC offset */
1935 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1936
1937 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1938 VMSTATE_END_OF_LIST()
1939 },
1940 .subsections = (const VMStateDescription*[]) {
1941 &vmstate_spapr_ov5_cas,
1942 &vmstate_spapr_patb_entry,
1943 &vmstate_spapr_pending_events,
1944 &vmstate_spapr_cap_htm,
1945 &vmstate_spapr_cap_vsx,
1946 &vmstate_spapr_cap_dfp,
1947 &vmstate_spapr_cap_cfpc,
1948 &vmstate_spapr_cap_sbbc,
1949 &vmstate_spapr_cap_ibs,
1950 &vmstate_spapr_irq_map,
1951 &vmstate_spapr_cap_nested_kvm_hv,
1952 NULL
1953 }
1954 };
1955
1956 static int htab_save_setup(QEMUFile *f, void *opaque)
1957 {
1958 sPAPRMachineState *spapr = opaque;
1959
1960 /* "Iteration" header */
1961 if (!spapr->htab_shift) {
1962 qemu_put_be32(f, -1);
1963 } else {
1964 qemu_put_be32(f, spapr->htab_shift);
1965 }
1966
1967 if (spapr->htab) {
1968 spapr->htab_save_index = 0;
1969 spapr->htab_first_pass = true;
1970 } else {
1971 if (spapr->htab_shift) {
1972 assert(kvm_enabled());
1973 }
1974 }
1975
1976
1977 return 0;
1978 }
1979
1980 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1981 int chunkstart, int n_valid, int n_invalid)
1982 {
1983 qemu_put_be32(f, chunkstart);
1984 qemu_put_be16(f, n_valid);
1985 qemu_put_be16(f, n_invalid);
1986 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1987 HASH_PTE_SIZE_64 * n_valid);
1988 }
1989
1990 static void htab_save_end_marker(QEMUFile *f)
1991 {
1992 qemu_put_be32(f, 0);
1993 qemu_put_be16(f, 0);
1994 qemu_put_be16(f, 0);
1995 }
1996
1997 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1998 int64_t max_ns)
1999 {
2000 bool has_timeout = max_ns != -1;
2001 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2002 int index = spapr->htab_save_index;
2003 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2004
2005 assert(spapr->htab_first_pass);
2006
2007 do {
2008 int chunkstart;
2009
2010 /* Consume invalid HPTEs */
2011 while ((index < htabslots)
2012 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2013 CLEAN_HPTE(HPTE(spapr->htab, index));
2014 index++;
2015 }
2016
2017 /* Consume valid HPTEs */
2018 chunkstart = index;
2019 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2020 && HPTE_VALID(HPTE(spapr->htab, index))) {
2021 CLEAN_HPTE(HPTE(spapr->htab, index));
2022 index++;
2023 }
2024
2025 if (index > chunkstart) {
2026 int n_valid = index - chunkstart;
2027
2028 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2029
2030 if (has_timeout &&
2031 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2032 break;
2033 }
2034 }
2035 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2036
2037 if (index >= htabslots) {
2038 assert(index == htabslots);
2039 index = 0;
2040 spapr->htab_first_pass = false;
2041 }
2042 spapr->htab_save_index = index;
2043 }
2044
2045 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2046 int64_t max_ns)
2047 {
2048 bool final = max_ns < 0;
2049 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2050 int examined = 0, sent = 0;
2051 int index = spapr->htab_save_index;
2052 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2053
2054 assert(!spapr->htab_first_pass);
2055
2056 do {
2057 int chunkstart, invalidstart;
2058
2059 /* Consume non-dirty HPTEs */
2060 while ((index < htabslots)
2061 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2062 index++;
2063 examined++;
2064 }
2065
2066 chunkstart = index;
2067 /* Consume valid dirty HPTEs */
2068 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2069 && HPTE_DIRTY(HPTE(spapr->htab, index))
2070 && HPTE_VALID(HPTE(spapr->htab, index))) {
2071 CLEAN_HPTE(HPTE(spapr->htab, index));
2072 index++;
2073 examined++;
2074 }
2075
2076 invalidstart = index;
2077 /* Consume invalid dirty HPTEs */
2078 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2079 && HPTE_DIRTY(HPTE(spapr->htab, index))
2080 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2081 CLEAN_HPTE(HPTE(spapr->htab, index));
2082 index++;
2083 examined++;
2084 }
2085
2086 if (index > chunkstart) {
2087 int n_valid = invalidstart - chunkstart;
2088 int n_invalid = index - invalidstart;
2089
2090 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2091 sent += index - chunkstart;
2092
2093 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2094 break;
2095 }
2096 }
2097
2098 if (examined >= htabslots) {
2099 break;
2100 }
2101
2102 if (index >= htabslots) {
2103 assert(index == htabslots);
2104 index = 0;
2105 }
2106 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2107
2108 if (index >= htabslots) {
2109 assert(index == htabslots);
2110 index = 0;
2111 }
2112
2113 spapr->htab_save_index = index;
2114
2115 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2116 }
2117
2118 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2119 #define MAX_KVM_BUF_SIZE 2048
2120
2121 static int htab_save_iterate(QEMUFile *f, void *opaque)
2122 {
2123 sPAPRMachineState *spapr = opaque;
2124 int fd;
2125 int rc = 0;
2126
2127 /* Iteration header */
2128 if (!spapr->htab_shift) {
2129 qemu_put_be32(f, -1);
2130 return 1;
2131 } else {
2132 qemu_put_be32(f, 0);
2133 }
2134
2135 if (!spapr->htab) {
2136 assert(kvm_enabled());
2137
2138 fd = get_htab_fd(spapr);
2139 if (fd < 0) {
2140 return fd;
2141 }
2142
2143 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2144 if (rc < 0) {
2145 return rc;
2146 }
2147 } else if (spapr->htab_first_pass) {
2148 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2149 } else {
2150 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2151 }
2152
2153 htab_save_end_marker(f);
2154
2155 return rc;
2156 }
2157
2158 static int htab_save_complete(QEMUFile *f, void *opaque)
2159 {
2160 sPAPRMachineState *spapr = opaque;
2161 int fd;
2162
2163 /* Iteration header */
2164 if (!spapr->htab_shift) {
2165 qemu_put_be32(f, -1);
2166 return 0;
2167 } else {
2168 qemu_put_be32(f, 0);
2169 }
2170
2171 if (!spapr->htab) {
2172 int rc;
2173
2174 assert(kvm_enabled());
2175
2176 fd = get_htab_fd(spapr);
2177 if (fd < 0) {
2178 return fd;
2179 }
2180
2181 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2182 if (rc < 0) {
2183 return rc;
2184 }
2185 } else {
2186 if (spapr->htab_first_pass) {
2187 htab_save_first_pass(f, spapr, -1);
2188 }
2189 htab_save_later_pass(f, spapr, -1);
2190 }
2191
2192 /* End marker */
2193 htab_save_end_marker(f);
2194
2195 return 0;
2196 }
2197
2198 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2199 {
2200 sPAPRMachineState *spapr = opaque;
2201 uint32_t section_hdr;
2202 int fd = -1;
2203 Error *local_err = NULL;
2204
2205 if (version_id < 1 || version_id > 1) {
2206 error_report("htab_load() bad version");
2207 return -EINVAL;
2208 }
2209
2210 section_hdr = qemu_get_be32(f);
2211
2212 if (section_hdr == -1) {
2213 spapr_free_hpt(spapr);
2214 return 0;
2215 }
2216
2217 if (section_hdr) {
2218 /* First section gives the htab size */
2219 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2220 if (local_err) {
2221 error_report_err(local_err);
2222 return -EINVAL;
2223 }
2224 return 0;
2225 }
2226
2227 if (!spapr->htab) {
2228 assert(kvm_enabled());
2229
2230 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2231 if (fd < 0) {
2232 error_report_err(local_err);
2233 return fd;
2234 }
2235 }
2236
2237 while (true) {
2238 uint32_t index;
2239 uint16_t n_valid, n_invalid;
2240
2241 index = qemu_get_be32(f);
2242 n_valid = qemu_get_be16(f);
2243 n_invalid = qemu_get_be16(f);
2244
2245 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2246 /* End of Stream */
2247 break;
2248 }
2249
2250 if ((index + n_valid + n_invalid) >
2251 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2252 /* Bad index in stream */
2253 error_report(
2254 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2255 index, n_valid, n_invalid, spapr->htab_shift);
2256 return -EINVAL;
2257 }
2258
2259 if (spapr->htab) {
2260 if (n_valid) {
2261 qemu_get_buffer(f, HPTE(spapr->htab, index),
2262 HASH_PTE_SIZE_64 * n_valid);
2263 }
2264 if (n_invalid) {
2265 memset(HPTE(spapr->htab, index + n_valid), 0,
2266 HASH_PTE_SIZE_64 * n_invalid);
2267 }
2268 } else {
2269 int rc;
2270
2271 assert(fd >= 0);
2272
2273 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2274 if (rc < 0) {
2275 return rc;
2276 }
2277 }
2278 }
2279
2280 if (!spapr->htab) {
2281 assert(fd >= 0);
2282 close(fd);
2283 }
2284
2285 return 0;
2286 }
2287
2288 static void htab_save_cleanup(void *opaque)
2289 {
2290 sPAPRMachineState *spapr = opaque;
2291
2292 close_htab_fd(spapr);
2293 }
2294
2295 static SaveVMHandlers savevm_htab_handlers = {
2296 .save_setup = htab_save_setup,
2297 .save_live_iterate = htab_save_iterate,
2298 .save_live_complete_precopy = htab_save_complete,
2299 .save_cleanup = htab_save_cleanup,
2300 .load_state = htab_load,
2301 };
2302
2303 static void spapr_boot_set(void *opaque, const char *boot_device,
2304 Error **errp)
2305 {
2306 MachineState *machine = MACHINE(opaque);
2307 machine->boot_order = g_strdup(boot_device);
2308 }
2309
2310 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2311 {
2312 MachineState *machine = MACHINE(spapr);
2313 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2314 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2315 int i;
2316
2317 for (i = 0; i < nr_lmbs; i++) {
2318 uint64_t addr;
2319
2320 addr = i * lmb_size + machine->device_memory->base;
2321 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2322 addr / lmb_size);
2323 }
2324 }
2325
2326 /*
2327 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2328 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2329 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2330 */
2331 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2332 {
2333 int i;
2334
2335 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2336 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2337 " is not aligned to %" PRIu64 " MiB",
2338 machine->ram_size,
2339 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2340 return;
2341 }
2342
2343 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2344 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2345 " is not aligned to %" PRIu64 " MiB",
2346 machine->ram_size,
2347 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2348 return;
2349 }
2350
2351 for (i = 0; i < nb_numa_nodes; i++) {
2352 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2353 error_setg(errp,
2354 "Node %d memory size 0x%" PRIx64
2355 " is not aligned to %" PRIu64 " MiB",
2356 i, numa_info[i].node_mem,
2357 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2358 return;
2359 }
2360 }
2361 }
2362
2363 /* find cpu slot in machine->possible_cpus by core_id */
2364 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2365 {
2366 int index = id / smp_threads;
2367
2368 if (index >= ms->possible_cpus->len) {
2369 return NULL;
2370 }
2371 if (idx) {
2372 *idx = index;
2373 }
2374 return &ms->possible_cpus->cpus[index];
2375 }
2376
2377 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2378 {
2379 Error *local_err = NULL;
2380 bool vsmt_user = !!spapr->vsmt;
2381 int kvm_smt = kvmppc_smt_threads();
2382 int ret;
2383
2384 if (!kvm_enabled() && (smp_threads > 1)) {
2385 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2386 "on a pseries machine");
2387 goto out;
2388 }
2389 if (!is_power_of_2(smp_threads)) {
2390 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2391 "machine because it must be a power of 2", smp_threads);
2392 goto out;
2393 }
2394
2395 /* Detemine the VSMT mode to use: */
2396 if (vsmt_user) {
2397 if (spapr->vsmt < smp_threads) {
2398 error_setg(&local_err, "Cannot support VSMT mode %d"
2399 " because it must be >= threads/core (%d)",
2400 spapr->vsmt, smp_threads);
2401 goto out;
2402 }
2403 /* In this case, spapr->vsmt has been set by the command line */
2404 } else {
2405 /*
2406 * Default VSMT value is tricky, because we need it to be as
2407 * consistent as possible (for migration), but this requires
2408 * changing it for at least some existing cases. We pick 8 as
2409 * the value that we'd get with KVM on POWER8, the
2410 * overwhelmingly common case in production systems.
2411 */
2412 spapr->vsmt = MAX(8, smp_threads);
2413 }
2414
2415 /* KVM: If necessary, set the SMT mode: */
2416 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2417 ret = kvmppc_set_smt_threads(spapr->vsmt);
2418 if (ret) {
2419 /* Looks like KVM isn't able to change VSMT mode */
2420 error_setg(&local_err,
2421 "Failed to set KVM's VSMT mode to %d (errno %d)",
2422 spapr->vsmt, ret);
2423 /* We can live with that if the default one is big enough
2424 * for the number of threads, and a submultiple of the one
2425 * we want. In this case we'll waste some vcpu ids, but
2426 * behaviour will be correct */
2427 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2428 warn_report_err(local_err);
2429 local_err = NULL;
2430 goto out;
2431 } else {
2432 if (!vsmt_user) {
2433 error_append_hint(&local_err,
2434 "On PPC, a VM with %d threads/core"
2435 " on a host with %d threads/core"
2436 " requires the use of VSMT mode %d.\n",
2437 smp_threads, kvm_smt, spapr->vsmt);
2438 }
2439 kvmppc_hint_smt_possible(&local_err);
2440 goto out;
2441 }
2442 }
2443 }
2444 /* else TCG: nothing to do currently */
2445 out:
2446 error_propagate(errp, local_err);
2447 }
2448
2449 static void spapr_init_cpus(sPAPRMachineState *spapr)
2450 {
2451 MachineState *machine = MACHINE(spapr);
2452 MachineClass *mc = MACHINE_GET_CLASS(machine);
2453 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2454 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2455 const CPUArchIdList *possible_cpus;
2456 int boot_cores_nr = smp_cpus / smp_threads;
2457 int i;
2458
2459 possible_cpus = mc->possible_cpu_arch_ids(machine);
2460 if (mc->has_hotpluggable_cpus) {
2461 if (smp_cpus % smp_threads) {
2462 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2463 smp_cpus, smp_threads);
2464 exit(1);
2465 }
2466 if (max_cpus % smp_threads) {
2467 error_report("max_cpus (%u) must be multiple of threads (%u)",
2468 max_cpus, smp_threads);
2469 exit(1);
2470 }
2471 } else {
2472 if (max_cpus != smp_cpus) {
2473 error_report("This machine version does not support CPU hotplug");
2474 exit(1);
2475 }
2476 boot_cores_nr = possible_cpus->len;
2477 }
2478
2479 if (smc->pre_2_10_has_unused_icps) {
2480 int i;
2481
2482 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2483 /* Dummy entries get deregistered when real ICPState objects
2484 * are registered during CPU core hotplug.
2485 */
2486 pre_2_10_vmstate_register_dummy_icp(i);
2487 }
2488 }
2489
2490 for (i = 0; i < possible_cpus->len; i++) {
2491 int core_id = i * smp_threads;
2492
2493 if (mc->has_hotpluggable_cpus) {
2494 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2495 spapr_vcpu_id(spapr, core_id));
2496 }
2497
2498 if (i < boot_cores_nr) {
2499 Object *core = object_new(type);
2500 int nr_threads = smp_threads;
2501
2502 /* Handle the partially filled core for older machine types */
2503 if ((i + 1) * smp_threads >= smp_cpus) {
2504 nr_threads = smp_cpus - i * smp_threads;
2505 }
2506
2507 object_property_set_int(core, nr_threads, "nr-threads",
2508 &error_fatal);
2509 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2510 &error_fatal);
2511 object_property_set_bool(core, true, "realized", &error_fatal);
2512
2513 object_unref(core);
2514 }
2515 }
2516 }
2517
2518 /* pSeries LPAR / sPAPR hardware init */
2519 static void spapr_machine_init(MachineState *machine)
2520 {
2521 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2522 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2523 const char *kernel_filename = machine->kernel_filename;
2524 const char *initrd_filename = machine->initrd_filename;
2525 PCIHostState *phb;
2526 int i;
2527 MemoryRegion *sysmem = get_system_memory();
2528 MemoryRegion *ram = g_new(MemoryRegion, 1);
2529 hwaddr node0_size = spapr_node0_size(machine);
2530 long load_limit, fw_size;
2531 char *filename;
2532 Error *resize_hpt_err = NULL;
2533
2534 msi_nonbroken = true;
2535
2536 QLIST_INIT(&spapr->phbs);
2537 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2538
2539 /* Determine capabilities to run with */
2540 spapr_caps_init(spapr);
2541
2542 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2543 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2544 /*
2545 * If the user explicitly requested a mode we should either
2546 * supply it, or fail completely (which we do below). But if
2547 * it's not set explicitly, we reset our mode to something
2548 * that works
2549 */
2550 if (resize_hpt_err) {
2551 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2552 error_free(resize_hpt_err);
2553 resize_hpt_err = NULL;
2554 } else {
2555 spapr->resize_hpt = smc->resize_hpt_default;
2556 }
2557 }
2558
2559 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2560
2561 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2562 /*
2563 * User requested HPT resize, but this host can't supply it. Bail out
2564 */
2565 error_report_err(resize_hpt_err);
2566 exit(1);
2567 }
2568
2569 spapr->rma_size = node0_size;
2570
2571 /* With KVM, we don't actually know whether KVM supports an
2572 * unbounded RMA (PR KVM) or is limited by the hash table size
2573 * (HV KVM using VRMA), so we always assume the latter
2574 *
2575 * In that case, we also limit the initial allocations for RTAS
2576 * etc... to 256M since we have no way to know what the VRMA size
2577 * is going to be as it depends on the size of the hash table
2578 * which isn't determined yet.
2579 */
2580 if (kvm_enabled()) {
2581 spapr->vrma_adjust = 1;
2582 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2583 }
2584
2585 /* Actually we don't support unbounded RMA anymore since we added
2586 * proper emulation of HV mode. The max we can get is 16G which
2587 * also happens to be what we configure for PAPR mode so make sure
2588 * we don't do anything bigger than that
2589 */
2590 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2591
2592 if (spapr->rma_size > node0_size) {
2593 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2594 spapr->rma_size);
2595 exit(1);
2596 }
2597
2598 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2599 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2600
2601 /*
2602 * VSMT must be set in order to be able to compute VCPU ids, ie to
2603 * call spapr_max_server_number() or spapr_vcpu_id().
2604 */
2605 spapr_set_vsmt_mode(spapr, &error_fatal);
2606
2607 /* Set up Interrupt Controller before we create the VCPUs */
2608 spapr_irq_init(spapr, &error_fatal);
2609
2610 /* Set up containers for ibm,client-architecture-support negotiated options
2611 */
2612 spapr->ov5 = spapr_ovec_new();
2613 spapr->ov5_cas = spapr_ovec_new();
2614
2615 if (smc->dr_lmb_enabled) {
2616 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2617 spapr_validate_node_memory(machine, &error_fatal);
2618 }
2619
2620 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2621
2622 /* advertise support for dedicated HP event source to guests */
2623 if (spapr->use_hotplug_event_source) {
2624 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2625 }
2626
2627 /* advertise support for HPT resizing */
2628 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2629 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2630 }
2631
2632 /* advertise support for ibm,dyamic-memory-v2 */
2633 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2634
2635 /* advertise XIVE on POWER9 machines */
2636 if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) {
2637 if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00,
2638 0, spapr->max_compat_pvr)) {
2639 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2640 } else {
2641 error_report("XIVE-only machines require a POWER9 CPU");
2642 exit(1);
2643 }
2644 }
2645
2646 /* init CPUs */
2647 spapr_init_cpus(spapr);
2648
2649 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2650 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2651 spapr->max_compat_pvr)) {
2652 /* KVM and TCG always allow GTSE with radix... */
2653 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2654 }
2655 /* ... but not with hash (currently). */
2656
2657 if (kvm_enabled()) {
2658 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2659 kvmppc_enable_logical_ci_hcalls();
2660 kvmppc_enable_set_mode_hcall();
2661
2662 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2663 kvmppc_enable_clear_ref_mod_hcalls();
2664 }
2665
2666 /* allocate RAM */
2667 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2668 machine->ram_size);
2669 memory_region_add_subregion(sysmem, 0, ram);
2670
2671 /* always allocate the device memory information */
2672 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2673
2674 /* initialize hotplug memory address space */
2675 if (machine->ram_size < machine->maxram_size) {
2676 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2677 /*
2678 * Limit the number of hotpluggable memory slots to half the number
2679 * slots that KVM supports, leaving the other half for PCI and other
2680 * devices. However ensure that number of slots doesn't drop below 32.
2681 */
2682 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2683 SPAPR_MAX_RAM_SLOTS;
2684
2685 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2686 max_memslots = SPAPR_MAX_RAM_SLOTS;
2687 }
2688 if (machine->ram_slots > max_memslots) {
2689 error_report("Specified number of memory slots %"
2690 PRIu64" exceeds max supported %d",
2691 machine->ram_slots, max_memslots);
2692 exit(1);
2693 }
2694
2695 machine->device_memory->base = ROUND_UP(machine->ram_size,
2696 SPAPR_DEVICE_MEM_ALIGN);
2697 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2698 "device-memory", device_mem_size);
2699 memory_region_add_subregion(sysmem, machine->device_memory->base,
2700 &machine->device_memory->mr);
2701 }
2702
2703 if (smc->dr_lmb_enabled) {
2704 spapr_create_lmb_dr_connectors(spapr);
2705 }
2706
2707 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2708 if (!filename) {
2709 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2710 exit(1);
2711 }
2712 spapr->rtas_size = get_image_size(filename);
2713 if (spapr->rtas_size < 0) {
2714 error_report("Could not get size of LPAR rtas '%s'", filename);
2715 exit(1);
2716 }
2717 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2718 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2719 error_report("Could not load LPAR rtas '%s'", filename);
2720 exit(1);
2721 }
2722 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2723 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2724 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2725 exit(1);
2726 }
2727 g_free(filename);
2728
2729 /* Set up RTAS event infrastructure */
2730 spapr_events_init(spapr);
2731
2732 /* Set up the RTC RTAS interfaces */
2733 spapr_rtc_create(spapr);
2734
2735 /* Set up VIO bus */
2736 spapr->vio_bus = spapr_vio_bus_init();
2737
2738 for (i = 0; i < serial_max_hds(); i++) {
2739 if (serial_hd(i)) {
2740 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2741 }
2742 }
2743
2744 /* We always have at least the nvram device on VIO */
2745 spapr_create_nvram(spapr);
2746
2747 /* Set up PCI */
2748 spapr_pci_rtas_init();
2749
2750 phb = spapr_create_phb(spapr, 0);
2751
2752 for (i = 0; i < nb_nics; i++) {
2753 NICInfo *nd = &nd_table[i];
2754
2755 if (!nd->model) {
2756 nd->model = g_strdup("spapr-vlan");
2757 }
2758
2759 if (g_str_equal(nd->model, "spapr-vlan") ||
2760 g_str_equal(nd->model, "ibmveth")) {
2761 spapr_vlan_create(spapr->vio_bus, nd);
2762 } else {
2763 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2764 }
2765 }
2766
2767 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2768 spapr_vscsi_create(spapr->vio_bus);
2769 }
2770
2771 /* Graphics */
2772 if (spapr_vga_init(phb->bus, &error_fatal)) {
2773 spapr->has_graphics = true;
2774 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2775 }
2776
2777 if (machine->usb) {
2778 if (smc->use_ohci_by_default) {
2779 pci_create_simple(phb->bus, -1, "pci-ohci");
2780 } else {
2781 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2782 }
2783
2784 if (spapr->has_graphics) {
2785 USBBus *usb_bus = usb_bus_find(-1);
2786
2787 usb_create_simple(usb_bus, "usb-kbd");
2788 usb_create_simple(usb_bus, "usb-mouse");
2789 }
2790 }
2791
2792 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2793 error_report(
2794 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2795 MIN_RMA_SLOF);
2796 exit(1);
2797 }
2798
2799 if (kernel_filename) {
2800 uint64_t lowaddr = 0;
2801
2802 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2803 NULL, NULL, &lowaddr, NULL, 1,
2804 PPC_ELF_MACHINE, 0, 0);
2805 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2806 spapr->kernel_size = load_elf(kernel_filename,
2807 translate_kernel_address, NULL, NULL,
2808 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2809 0, 0);
2810 spapr->kernel_le = spapr->kernel_size > 0;
2811 }
2812 if (spapr->kernel_size < 0) {
2813 error_report("error loading %s: %s", kernel_filename,
2814 load_elf_strerror(spapr->kernel_size));
2815 exit(1);
2816 }
2817
2818 /* load initrd */
2819 if (initrd_filename) {
2820 /* Try to locate the initrd in the gap between the kernel
2821 * and the firmware. Add a bit of space just in case
2822 */
2823 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2824 + 0x1ffff) & ~0xffff;
2825 spapr->initrd_size = load_image_targphys(initrd_filename,
2826 spapr->initrd_base,
2827 load_limit
2828 - spapr->initrd_base);
2829 if (spapr->initrd_size < 0) {
2830 error_report("could not load initial ram disk '%s'",
2831 initrd_filename);
2832 exit(1);
2833 }
2834 }
2835 }
2836
2837 if (bios_name == NULL) {
2838 bios_name = FW_FILE_NAME;
2839 }
2840 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2841 if (!filename) {
2842 error_report("Could not find LPAR firmware '%s'", bios_name);
2843 exit(1);
2844 }
2845 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2846 if (fw_size <= 0) {
2847 error_report("Could not load LPAR firmware '%s'", filename);
2848 exit(1);
2849 }
2850 g_free(filename);
2851
2852 /* FIXME: Should register things through the MachineState's qdev
2853 * interface, this is a legacy from the sPAPREnvironment structure
2854 * which predated MachineState but had a similar function */
2855 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2856 register_savevm_live(NULL, "spapr/htab", -1, 1,
2857 &savevm_htab_handlers, spapr);
2858
2859 qemu_register_boot_set(spapr_boot_set, spapr);
2860
2861 if (kvm_enabled()) {
2862 /* to stop and start vmclock */
2863 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2864 &spapr->tb);
2865
2866 kvmppc_spapr_enable_inkernel_multitce();
2867 }
2868 }
2869
2870 static int spapr_kvm_type(const char *vm_type)
2871 {
2872 if (!vm_type) {
2873 return 0;
2874 }
2875
2876 if (!strcmp(vm_type, "HV")) {
2877 return 1;
2878 }
2879
2880 if (!strcmp(vm_type, "PR")) {
2881 return 2;
2882 }
2883
2884 error_report("Unknown kvm-type specified '%s'", vm_type);
2885 exit(1);
2886 }
2887
2888 /*
2889 * Implementation of an interface to adjust firmware path
2890 * for the bootindex property handling.
2891 */
2892 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2893 DeviceState *dev)
2894 {
2895 #define CAST(type, obj, name) \
2896 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2897 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2898 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2899 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2900
2901 if (d) {
2902 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2903 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2904 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2905
2906 if (spapr) {
2907 /*
2908 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2909 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2910 * in the top 16 bits of the 64-bit LUN
2911 */
2912 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2913 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2914 (uint64_t)id << 48);
2915 } else if (virtio) {
2916 /*
2917 * We use SRP luns of the form 01000000 | (target << 8) | lun
2918 * in the top 32 bits of the 64-bit LUN
2919 * Note: the quote above is from SLOF and it is wrong,
2920 * the actual binding is:
2921 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2922 */
2923 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2924 if (d->lun >= 256) {
2925 /* Use the LUN "flat space addressing method" */
2926 id |= 0x4000;
2927 }
2928 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2929 (uint64_t)id << 32);
2930 } else if (usb) {
2931 /*
2932 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2933 * in the top 32 bits of the 64-bit LUN
2934 */
2935 unsigned usb_port = atoi(usb->port->path);
2936 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2937 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2938 (uint64_t)id << 32);
2939 }
2940 }
2941
2942 /*
2943 * SLOF probes the USB devices, and if it recognizes that the device is a
2944 * storage device, it changes its name to "storage" instead of "usb-host",
2945 * and additionally adds a child node for the SCSI LUN, so the correct
2946 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2947 */
2948 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2949 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2950 if (usb_host_dev_is_scsi_storage(usbdev)) {
2951 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2952 }
2953 }
2954
2955 if (phb) {
2956 /* Replace "pci" with "pci@800000020000000" */
2957 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2958 }
2959
2960 if (vsc) {
2961 /* Same logic as virtio above */
2962 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2963 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2964 }
2965
2966 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2967 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2968 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2969 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2970 }
2971
2972 return NULL;
2973 }
2974
2975 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2976 {
2977 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2978
2979 return g_strdup(spapr->kvm_type);
2980 }
2981
2982 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2983 {
2984 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2985
2986 g_free(spapr->kvm_type);
2987 spapr->kvm_type = g_strdup(value);
2988 }
2989
2990 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2991 {
2992 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2993
2994 return spapr->use_hotplug_event_source;
2995 }
2996
2997 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2998 Error **errp)
2999 {
3000 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3001
3002 spapr->use_hotplug_event_source = value;
3003 }
3004
3005 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3006 {
3007 return true;
3008 }
3009
3010 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3011 {
3012 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3013
3014 switch (spapr->resize_hpt) {
3015 case SPAPR_RESIZE_HPT_DEFAULT:
3016 return g_strdup("default");
3017 case SPAPR_RESIZE_HPT_DISABLED:
3018 return g_strdup("disabled");
3019 case SPAPR_RESIZE_HPT_ENABLED:
3020 return g_strdup("enabled");
3021 case SPAPR_RESIZE_HPT_REQUIRED:
3022 return g_strdup("required");
3023 }
3024 g_assert_not_reached();
3025 }
3026
3027 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3028 {
3029 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3030
3031 if (strcmp(value, "default") == 0) {
3032 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3033 } else if (strcmp(value, "disabled") == 0) {
3034 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3035 } else if (strcmp(value, "enabled") == 0) {
3036 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3037 } else if (strcmp(value, "required") == 0) {
3038 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3039 } else {
3040 error_setg(errp, "Bad value for \"resize-hpt\" property");
3041 }
3042 }
3043
3044 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3045 void *opaque, Error **errp)
3046 {
3047 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3048 }
3049
3050 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3051 void *opaque, Error **errp)
3052 {
3053 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3054 }
3055
3056 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3057 {
3058 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3059
3060 if (spapr->irq == &spapr_irq_xics_legacy) {
3061 return g_strdup("legacy");
3062 } else if (spapr->irq == &spapr_irq_xics) {
3063 return g_strdup("xics");
3064 } else if (spapr->irq == &spapr_irq_xive) {
3065 return g_strdup("xive");
3066 }
3067 g_assert_not_reached();
3068 }
3069
3070 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3071 {
3072 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3073
3074 /* The legacy IRQ backend can not be set */
3075 if (strcmp(value, "xics") == 0) {
3076 spapr->irq = &spapr_irq_xics;
3077 } else if (strcmp(value, "xive") == 0) {
3078 spapr->irq = &spapr_irq_xive;
3079 } else {
3080 error_setg(errp, "Bad value for \"ic-mode\" property");
3081 }
3082 }
3083
3084 static void spapr_instance_init(Object *obj)
3085 {
3086 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3087 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3088
3089 spapr->htab_fd = -1;
3090 spapr->use_hotplug_event_source = true;
3091 object_property_add_str(obj, "kvm-type",
3092 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3093 object_property_set_description(obj, "kvm-type",
3094 "Specifies the KVM virtualization mode (HV, PR)",
3095 NULL);
3096 object_property_add_bool(obj, "modern-hotplug-events",
3097 spapr_get_modern_hotplug_events,
3098 spapr_set_modern_hotplug_events,
3099 NULL);
3100 object_property_set_description(obj, "modern-hotplug-events",
3101 "Use dedicated hotplug event mechanism in"
3102 " place of standard EPOW events when possible"
3103 " (required for memory hot-unplug support)",
3104 NULL);
3105 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3106 "Maximum permitted CPU compatibility mode",
3107 &error_fatal);
3108
3109 object_property_add_str(obj, "resize-hpt",
3110 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3111 object_property_set_description(obj, "resize-hpt",
3112 "Resizing of the Hash Page Table (enabled, disabled, required)",
3113 NULL);
3114 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3115 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3116 object_property_set_description(obj, "vsmt",
3117 "Virtual SMT: KVM behaves as if this were"
3118 " the host's SMT mode", &error_abort);
3119 object_property_add_bool(obj, "vfio-no-msix-emulation",
3120 spapr_get_msix_emulation, NULL, NULL);
3121
3122 /* The machine class defines the default interrupt controller mode */
3123 spapr->irq = smc->irq;
3124 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3125 spapr_set_ic_mode, NULL);
3126 object_property_set_description(obj, "ic-mode",
3127 "Specifies the interrupt controller mode (xics, xive)",
3128 NULL);
3129 }
3130
3131 static void spapr_machine_finalizefn(Object *obj)
3132 {
3133 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3134
3135 g_free(spapr->kvm_type);
3136 }
3137
3138 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3139 {
3140 cpu_synchronize_state(cs);
3141 ppc_cpu_do_system_reset(cs);
3142 }
3143
3144 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3145 {
3146 CPUState *cs;
3147
3148 CPU_FOREACH(cs) {
3149 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3150 }
3151 }
3152
3153 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3154 uint32_t node, bool dedicated_hp_event_source,
3155 Error **errp)
3156 {
3157 sPAPRDRConnector *drc;
3158 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3159 int i, fdt_offset, fdt_size;
3160 void *fdt;
3161 uint64_t addr = addr_start;
3162 bool hotplugged = spapr_drc_hotplugged(dev);
3163 Error *local_err = NULL;
3164
3165 for (i = 0; i < nr_lmbs; i++) {
3166 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3167 addr / SPAPR_MEMORY_BLOCK_SIZE);
3168 g_assert(drc);
3169
3170 fdt = create_device_tree(&fdt_size);
3171 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3172 SPAPR_MEMORY_BLOCK_SIZE);
3173
3174 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3175 if (local_err) {
3176 while (addr > addr_start) {
3177 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3178 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3179 addr / SPAPR_MEMORY_BLOCK_SIZE);
3180 spapr_drc_detach(drc);
3181 }
3182 g_free(fdt);
3183 error_propagate(errp, local_err);
3184 return;
3185 }
3186 if (!hotplugged) {
3187 spapr_drc_reset(drc);
3188 }
3189 addr += SPAPR_MEMORY_BLOCK_SIZE;
3190 }
3191 /* send hotplug notification to the
3192 * guest only in case of hotplugged memory
3193 */
3194 if (hotplugged) {
3195 if (dedicated_hp_event_source) {
3196 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3197 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3198 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3199 nr_lmbs,
3200 spapr_drc_index(drc));
3201 } else {
3202 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3203 nr_lmbs);
3204 }
3205 }
3206 }
3207
3208 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3209 Error **errp)
3210 {
3211 Error *local_err = NULL;
3212 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3213 PCDIMMDevice *dimm = PC_DIMM(dev);
3214 uint64_t size, addr;
3215 uint32_t node;
3216
3217 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3218
3219 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3220 if (local_err) {
3221 goto out;
3222 }
3223
3224 addr = object_property_get_uint(OBJECT(dimm),
3225 PC_DIMM_ADDR_PROP, &local_err);
3226 if (local_err) {
3227 goto out_unplug;
3228 }
3229
3230 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3231 &error_abort);
3232 spapr_add_lmbs(dev, addr, size, node,
3233 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3234 &local_err);
3235 if (local_err) {
3236 goto out_unplug;
3237 }
3238
3239 return;
3240
3241 out_unplug:
3242 pc_dimm_unplug(dimm, MACHINE(ms));
3243 out:
3244 error_propagate(errp, local_err);
3245 }
3246
3247 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3248 Error **errp)
3249 {
3250 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3251 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3252 PCDIMMDevice *dimm = PC_DIMM(dev);
3253 Error *local_err = NULL;
3254 uint64_t size;
3255 Object *memdev;
3256 hwaddr pagesize;
3257
3258 if (!smc->dr_lmb_enabled) {
3259 error_setg(errp, "Memory hotplug not supported for this machine");
3260 return;
3261 }
3262
3263 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3264 if (local_err) {
3265 error_propagate(errp, local_err);
3266 return;
3267 }
3268
3269 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3270 error_setg(errp, "Hotplugged memory size must be a multiple of "
3271 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3272 return;
3273 }
3274
3275 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3276 &error_abort);
3277 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3278 spapr_check_pagesize(spapr, pagesize, &local_err);
3279 if (local_err) {
3280 error_propagate(errp, local_err);
3281 return;
3282 }
3283
3284 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3285 }
3286
3287 struct sPAPRDIMMState {
3288 PCDIMMDevice *dimm;
3289 uint32_t nr_lmbs;
3290 QTAILQ_ENTRY(sPAPRDIMMState) next;
3291 };
3292
3293 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3294 PCDIMMDevice *dimm)
3295 {
3296 sPAPRDIMMState *dimm_state = NULL;
3297
3298 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3299 if (dimm_state->dimm == dimm) {
3300 break;
3301 }
3302 }
3303 return dimm_state;
3304 }
3305
3306 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3307 uint32_t nr_lmbs,
3308 PCDIMMDevice *dimm)
3309 {
3310 sPAPRDIMMState *ds = NULL;
3311
3312 /*
3313 * If this request is for a DIMM whose removal had failed earlier
3314 * (due to guest's refusal to remove the LMBs), we would have this
3315 * dimm already in the pending_dimm_unplugs list. In that
3316 * case don't add again.
3317 */
3318 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3319 if (!ds) {
3320 ds = g_malloc0(sizeof(sPAPRDIMMState));
3321 ds->nr_lmbs = nr_lmbs;
3322 ds->dimm = dimm;
3323 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3324 }
3325 return ds;
3326 }
3327
3328 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3329 sPAPRDIMMState *dimm_state)
3330 {
3331 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3332 g_free(dimm_state);
3333 }
3334
3335 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3336 PCDIMMDevice *dimm)
3337 {
3338 sPAPRDRConnector *drc;
3339 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3340 &error_abort);
3341 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3342 uint32_t avail_lmbs = 0;
3343 uint64_t addr_start, addr;
3344 int i;
3345
3346 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3347 &error_abort);
3348
3349 addr = addr_start;
3350 for (i = 0; i < nr_lmbs; i++) {
3351 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3352 addr / SPAPR_MEMORY_BLOCK_SIZE);
3353 g_assert(drc);
3354 if (drc->dev) {
3355 avail_lmbs++;
3356 }
3357 addr += SPAPR_MEMORY_BLOCK_SIZE;
3358 }
3359
3360 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3361 }
3362
3363 /* Callback to be called during DRC release. */
3364 void spapr_lmb_release(DeviceState *dev)
3365 {
3366 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3367 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3368 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3369
3370 /* This information will get lost if a migration occurs
3371 * during the unplug process. In this case recover it. */
3372 if (ds == NULL) {
3373 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3374 g_assert(ds);
3375 /* The DRC being examined by the caller at least must be counted */
3376 g_assert(ds->nr_lmbs);
3377 }
3378
3379 if (--ds->nr_lmbs) {
3380 return;
3381 }
3382
3383 /*
3384 * Now that all the LMBs have been removed by the guest, call the
3385 * unplug handler chain. This can never fail.
3386 */
3387 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3388 }
3389
3390 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3391 {
3392 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3393 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3394
3395 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3396 object_unparent(OBJECT(dev));
3397 spapr_pending_dimm_unplugs_remove(spapr, ds);
3398 }
3399
3400 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3401 DeviceState *dev, Error **errp)
3402 {
3403 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3404 Error *local_err = NULL;
3405 PCDIMMDevice *dimm = PC_DIMM(dev);
3406 uint32_t nr_lmbs;
3407 uint64_t size, addr_start, addr;
3408 int i;
3409 sPAPRDRConnector *drc;
3410
3411 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3412 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3413
3414 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3415 &local_err);
3416 if (local_err) {
3417 goto out;
3418 }
3419
3420 /*
3421 * An existing pending dimm state for this DIMM means that there is an
3422 * unplug operation in progress, waiting for the spapr_lmb_release
3423 * callback to complete the job (BQL can't cover that far). In this case,
3424 * bail out to avoid detaching DRCs that were already released.
3425 */
3426 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3427 error_setg(&local_err,
3428 "Memory unplug already in progress for device %s",
3429 dev->id);
3430 goto out;
3431 }
3432
3433 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3434
3435 addr = addr_start;
3436 for (i = 0; i < nr_lmbs; i++) {
3437 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3438 addr / SPAPR_MEMORY_BLOCK_SIZE);
3439 g_assert(drc);
3440
3441 spapr_drc_detach(drc);
3442 addr += SPAPR_MEMORY_BLOCK_SIZE;
3443 }
3444
3445 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3446 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3447 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3448 nr_lmbs, spapr_drc_index(drc));
3449 out:
3450 error_propagate(errp, local_err);
3451 }
3452
3453 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3454 sPAPRMachineState *spapr)
3455 {
3456 PowerPCCPU *cpu = POWERPC_CPU(cs);
3457 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3458 int id = spapr_get_vcpu_id(cpu);
3459 void *fdt;
3460 int offset, fdt_size;
3461 char *nodename;
3462
3463 fdt = create_device_tree(&fdt_size);
3464 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3465 offset = fdt_add_subnode(fdt, 0, nodename);
3466
3467 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3468 g_free(nodename);
3469
3470 *fdt_offset = offset;
3471 return fdt;
3472 }
3473
3474 /* Callback to be called during DRC release. */
3475 void spapr_core_release(DeviceState *dev)
3476 {
3477 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3478
3479 /* Call the unplug handler chain. This can never fail. */
3480 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3481 }
3482
3483 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3484 {
3485 MachineState *ms = MACHINE(hotplug_dev);
3486 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3487 CPUCore *cc = CPU_CORE(dev);
3488 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3489
3490 if (smc->pre_2_10_has_unused_icps) {
3491 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3492 int i;
3493
3494 for (i = 0; i < cc->nr_threads; i++) {
3495 CPUState *cs = CPU(sc->threads[i]);
3496
3497 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3498 }
3499 }
3500
3501 assert(core_slot);
3502 core_slot->cpu = NULL;
3503 object_unparent(OBJECT(dev));
3504 }
3505
3506 static
3507 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3508 Error **errp)
3509 {
3510 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3511 int index;
3512 sPAPRDRConnector *drc;
3513 CPUCore *cc = CPU_CORE(dev);
3514
3515 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3516 error_setg(errp, "Unable to find CPU core with core-id: %d",
3517 cc->core_id);
3518 return;
3519 }
3520 if (index == 0) {
3521 error_setg(errp, "Boot CPU core may not be unplugged");
3522 return;
3523 }
3524
3525 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3526 spapr_vcpu_id(spapr, cc->core_id));
3527 g_assert(drc);
3528
3529 spapr_drc_detach(drc);
3530
3531 spapr_hotplug_req_remove_by_index(drc);
3532 }
3533
3534 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3535 Error **errp)
3536 {
3537 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3538 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3539 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3540 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3541 CPUCore *cc = CPU_CORE(dev);
3542 CPUState *cs = CPU(core->threads[0]);
3543 sPAPRDRConnector *drc;
3544 Error *local_err = NULL;
3545 CPUArchId *core_slot;
3546 int index;
3547 bool hotplugged = spapr_drc_hotplugged(dev);
3548
3549 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3550 if (!core_slot) {
3551 error_setg(errp, "Unable to find CPU core with core-id: %d",
3552 cc->core_id);
3553 return;
3554 }
3555 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3556 spapr_vcpu_id(spapr, cc->core_id));
3557
3558 g_assert(drc || !mc->has_hotpluggable_cpus);
3559
3560 if (drc) {
3561 void *fdt;
3562 int fdt_offset;
3563
3564 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3565
3566 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3567 if (local_err) {
3568 g_free(fdt);
3569 error_propagate(errp, local_err);
3570 return;
3571 }
3572
3573 if (hotplugged) {
3574 /*
3575 * Send hotplug notification interrupt to the guest only
3576 * in case of hotplugged CPUs.
3577 */
3578 spapr_hotplug_req_add_by_index(drc);
3579 } else {
3580 spapr_drc_reset(drc);
3581 }
3582 }
3583
3584 core_slot->cpu = OBJECT(dev);
3585
3586 if (smc->pre_2_10_has_unused_icps) {
3587 int i;
3588
3589 for (i = 0; i < cc->nr_threads; i++) {
3590 cs = CPU(core->threads[i]);
3591 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3592 }
3593 }
3594 }
3595
3596 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3597 Error **errp)
3598 {
3599 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3600 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3601 Error *local_err = NULL;
3602 CPUCore *cc = CPU_CORE(dev);
3603 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3604 const char *type = object_get_typename(OBJECT(dev));
3605 CPUArchId *core_slot;
3606 int index;
3607
3608 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3609 error_setg(&local_err, "CPU hotplug not supported for this machine");
3610 goto out;
3611 }
3612
3613 if (strcmp(base_core_type, type)) {
3614 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3615 goto out;
3616 }
3617
3618 if (cc->core_id % smp_threads) {
3619 error_setg(&local_err, "invalid core id %d", cc->core_id);
3620 goto out;
3621 }
3622
3623 /*
3624 * In general we should have homogeneous threads-per-core, but old
3625 * (pre hotplug support) machine types allow the last core to have
3626 * reduced threads as a compatibility hack for when we allowed
3627 * total vcpus not a multiple of threads-per-core.
3628 */
3629 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3630 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3631 cc->nr_threads, smp_threads);
3632 goto out;
3633 }
3634
3635 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3636 if (!core_slot) {
3637 error_setg(&local_err, "core id %d out of range", cc->core_id);
3638 goto out;
3639 }
3640
3641 if (core_slot->cpu) {
3642 error_setg(&local_err, "core %d already populated", cc->core_id);
3643 goto out;
3644 }
3645
3646 numa_cpu_pre_plug(core_slot, dev, &local_err);
3647
3648 out:
3649 error_propagate(errp, local_err);
3650 }
3651
3652 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3653 DeviceState *dev, Error **errp)
3654 {
3655 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3656 spapr_memory_plug(hotplug_dev, dev, errp);
3657 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3658 spapr_core_plug(hotplug_dev, dev, errp);
3659 }
3660 }
3661
3662 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3663 DeviceState *dev, Error **errp)
3664 {
3665 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3666 spapr_memory_unplug(hotplug_dev, dev);
3667 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3668 spapr_core_unplug(hotplug_dev, dev);
3669 }
3670 }
3671
3672 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3673 DeviceState *dev, Error **errp)
3674 {
3675 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3676 MachineClass *mc = MACHINE_GET_CLASS(sms);
3677
3678 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3679 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3680 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3681 } else {
3682 /* NOTE: this means there is a window after guest reset, prior to
3683 * CAS negotiation, where unplug requests will fail due to the
3684 * capability not being detected yet. This is a bit different than
3685 * the case with PCI unplug, where the events will be queued and
3686 * eventually handled by the guest after boot
3687 */
3688 error_setg(errp, "Memory hot unplug not supported for this guest");
3689 }
3690 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3691 if (!mc->has_hotpluggable_cpus) {
3692 error_setg(errp, "CPU hot unplug not supported on this machine");
3693 return;
3694 }
3695 spapr_core_unplug_request(hotplug_dev, dev, errp);
3696 }
3697 }
3698
3699 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3700 DeviceState *dev, Error **errp)
3701 {
3702 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3703 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3704 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3705 spapr_core_pre_plug(hotplug_dev, dev, errp);
3706 }
3707 }
3708
3709 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3710 DeviceState *dev)
3711 {
3712 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3713 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3714 return HOTPLUG_HANDLER(machine);
3715 }
3716 return NULL;
3717 }
3718
3719 static CpuInstanceProperties
3720 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3721 {
3722 CPUArchId *core_slot;
3723 MachineClass *mc = MACHINE_GET_CLASS(machine);
3724
3725 /* make sure possible_cpu are intialized */
3726 mc->possible_cpu_arch_ids(machine);
3727 /* get CPU core slot containing thread that matches cpu_index */
3728 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3729 assert(core_slot);
3730 return core_slot->props;
3731 }
3732
3733 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3734 {
3735 return idx / smp_cores % nb_numa_nodes;
3736 }
3737
3738 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3739 {
3740 int i;
3741 const char *core_type;
3742 int spapr_max_cores = max_cpus / smp_threads;
3743 MachineClass *mc = MACHINE_GET_CLASS(machine);
3744
3745 if (!mc->has_hotpluggable_cpus) {
3746 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3747 }
3748 if (machine->possible_cpus) {
3749 assert(machine->possible_cpus->len == spapr_max_cores);
3750 return machine->possible_cpus;
3751 }
3752
3753 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3754 if (!core_type) {
3755 error_report("Unable to find sPAPR CPU Core definition");
3756 exit(1);
3757 }
3758
3759 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3760 sizeof(CPUArchId) * spapr_max_cores);
3761 machine->possible_cpus->len = spapr_max_cores;
3762 for (i = 0; i < machine->possible_cpus->len; i++) {
3763 int core_id = i * smp_threads;
3764
3765 machine->possible_cpus->cpus[i].type = core_type;
3766 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3767 machine->possible_cpus->cpus[i].arch_id = core_id;
3768 machine->possible_cpus->cpus[i].props.has_core_id = true;
3769 machine->possible_cpus->cpus[i].props.core_id = core_id;
3770 }
3771 return machine->possible_cpus;
3772 }
3773
3774 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3775 uint64_t *buid, hwaddr *pio,
3776 hwaddr *mmio32, hwaddr *mmio64,
3777 unsigned n_dma, uint32_t *liobns, Error **errp)
3778 {
3779 /*
3780 * New-style PHB window placement.
3781 *
3782 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3783 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3784 * windows.
3785 *
3786 * Some guest kernels can't work with MMIO windows above 1<<46
3787 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3788 *
3789 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3790 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3791 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3792 * 1TiB 64-bit MMIO windows for each PHB.
3793 */
3794 const uint64_t base_buid = 0x800000020000000ULL;
3795 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3796 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3797 int i;
3798
3799 /* Sanity check natural alignments */
3800 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3801 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3802 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3803 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3804 /* Sanity check bounds */
3805 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3806 SPAPR_PCI_MEM32_WIN_SIZE);
3807 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3808 SPAPR_PCI_MEM64_WIN_SIZE);
3809
3810 if (index >= SPAPR_MAX_PHBS) {
3811 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3812 SPAPR_MAX_PHBS - 1);
3813 return;
3814 }
3815
3816 *buid = base_buid + index;
3817 for (i = 0; i < n_dma; ++i) {
3818 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3819 }
3820
3821 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3822 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3823 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3824 }
3825
3826 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3827 {
3828 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3829
3830 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3831 }
3832
3833 static void spapr_ics_resend(XICSFabric *dev)
3834 {
3835 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3836
3837 ics_resend(spapr->ics);
3838 }
3839
3840 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3841 {
3842 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3843
3844 return cpu ? ICP(cpu->intc) : NULL;
3845 }
3846
3847 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3848 Monitor *mon)
3849 {
3850 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3851
3852 spapr->irq->print_info(spapr, mon);
3853 }
3854
3855 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3856 {
3857 return cpu->vcpu_id;
3858 }
3859
3860 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3861 {
3862 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3863 int vcpu_id;
3864
3865 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3866
3867 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3868 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3869 error_append_hint(errp, "Adjust the number of cpus to %d "
3870 "or try to raise the number of threads per core\n",
3871 vcpu_id * smp_threads / spapr->vsmt);
3872 return;
3873 }
3874
3875 cpu->vcpu_id = vcpu_id;
3876 }
3877
3878 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3879 {
3880 CPUState *cs;
3881
3882 CPU_FOREACH(cs) {
3883 PowerPCCPU *cpu = POWERPC_CPU(cs);
3884
3885 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3886 return cpu;
3887 }
3888 }
3889
3890 return NULL;
3891 }
3892
3893 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3894 {
3895 MachineClass *mc = MACHINE_CLASS(oc);
3896 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3897 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3898 NMIClass *nc = NMI_CLASS(oc);
3899 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3900 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3901 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3902 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3903
3904 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3905 mc->ignore_boot_device_suffixes = true;
3906
3907 /*
3908 * We set up the default / latest behaviour here. The class_init
3909 * functions for the specific versioned machine types can override
3910 * these details for backwards compatibility
3911 */
3912 mc->init = spapr_machine_init;
3913 mc->reset = spapr_machine_reset;
3914 mc->block_default_type = IF_SCSI;
3915 mc->max_cpus = 1024;
3916 mc->no_parallel = 1;
3917 mc->default_boot_order = "";
3918 mc->default_ram_size = 512 * MiB;
3919 mc->default_display = "std";
3920 mc->kvm_type = spapr_kvm_type;
3921 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3922 mc->pci_allow_0_address = true;
3923 assert(!mc->get_hotplug_handler);
3924 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3925 hc->pre_plug = spapr_machine_device_pre_plug;
3926 hc->plug = spapr_machine_device_plug;
3927 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3928 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3929 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3930 hc->unplug_request = spapr_machine_device_unplug_request;
3931 hc->unplug = spapr_machine_device_unplug;
3932
3933 smc->dr_lmb_enabled = true;
3934 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
3935 mc->has_hotpluggable_cpus = true;
3936 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3937 fwc->get_dev_path = spapr_get_fw_dev_path;
3938 nc->nmi_monitor_handler = spapr_nmi;
3939 smc->phb_placement = spapr_phb_placement;
3940 vhc->hypercall = emulate_spapr_hypercall;
3941 vhc->hpt_mask = spapr_hpt_mask;
3942 vhc->map_hptes = spapr_map_hptes;
3943 vhc->unmap_hptes = spapr_unmap_hptes;
3944 vhc->store_hpte = spapr_store_hpte;
3945 vhc->get_patbe = spapr_get_patbe;
3946 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3947 xic->ics_get = spapr_ics_get;
3948 xic->ics_resend = spapr_ics_resend;
3949 xic->icp_get = spapr_icp_get;
3950 ispc->print_info = spapr_pic_print_info;
3951 /* Force NUMA node memory size to be a multiple of
3952 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3953 * in which LMBs are represented and hot-added
3954 */
3955 mc->numa_mem_align_shift = 28;
3956
3957 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3958 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3959 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3960 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3961 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3962 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3963 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
3964 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
3965 spapr_caps_add_properties(smc, &error_abort);
3966 smc->irq = &spapr_irq_xics;
3967 }
3968
3969 static const TypeInfo spapr_machine_info = {
3970 .name = TYPE_SPAPR_MACHINE,
3971 .parent = TYPE_MACHINE,
3972 .abstract = true,
3973 .instance_size = sizeof(sPAPRMachineState),
3974 .instance_init = spapr_instance_init,
3975 .instance_finalize = spapr_machine_finalizefn,
3976 .class_size = sizeof(sPAPRMachineClass),
3977 .class_init = spapr_machine_class_init,
3978 .interfaces = (InterfaceInfo[]) {
3979 { TYPE_FW_PATH_PROVIDER },
3980 { TYPE_NMI },
3981 { TYPE_HOTPLUG_HANDLER },
3982 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3983 { TYPE_XICS_FABRIC },
3984 { TYPE_INTERRUPT_STATS_PROVIDER },
3985 { }
3986 },
3987 };
3988
3989 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3990 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3991 void *data) \
3992 { \
3993 MachineClass *mc = MACHINE_CLASS(oc); \
3994 spapr_machine_##suffix##_class_options(mc); \
3995 if (latest) { \
3996 mc->alias = "pseries"; \
3997 mc->is_default = 1; \
3998 } \
3999 } \
4000 static const TypeInfo spapr_machine_##suffix##_info = { \
4001 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4002 .parent = TYPE_SPAPR_MACHINE, \
4003 .class_init = spapr_machine_##suffix##_class_init, \
4004 }; \
4005 static void spapr_machine_register_##suffix(void) \
4006 { \
4007 type_register(&spapr_machine_##suffix##_info); \
4008 } \
4009 type_init(spapr_machine_register_##suffix)
4010
4011 /*
4012 * pseries-4.0
4013 */
4014 static void spapr_machine_4_0_class_options(MachineClass *mc)
4015 {
4016 /* Defaults for the latest behaviour inherited from the base class */
4017 }
4018
4019 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4020
4021 /*
4022 * pseries-3.1
4023 */
4024 static void spapr_machine_3_1_class_options(MachineClass *mc)
4025 {
4026 spapr_machine_4_0_class_options(mc);
4027 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4028 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4029 }
4030
4031 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4032
4033 /*
4034 * pseries-3.0
4035 */
4036
4037 static void spapr_machine_3_0_class_options(MachineClass *mc)
4038 {
4039 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4040
4041 spapr_machine_3_1_class_options(mc);
4042 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4043
4044 smc->legacy_irq_allocation = true;
4045 smc->irq = &spapr_irq_xics_legacy;
4046 }
4047
4048 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4049
4050 /*
4051 * pseries-2.12
4052 */
4053 static void spapr_machine_2_12_class_options(MachineClass *mc)
4054 {
4055 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4056 static GlobalProperty compat[] = {
4057 {
4058 .driver = TYPE_POWERPC_CPU,
4059 .property = "pre-3.0-migration",
4060 .value = "on",
4061 },
4062 {
4063 .driver = TYPE_SPAPR_CPU_CORE,
4064 .property = "pre-3.0-migration",
4065 .value = "on",
4066 },
4067 };
4068
4069 spapr_machine_3_0_class_options(mc);
4070 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4071 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4072
4073 /* We depend on kvm_enabled() to choose a default value for the
4074 * hpt-max-page-size capability. Of course we can't do it here
4075 * because this is too early and the HW accelerator isn't initialzed
4076 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4077 */
4078 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4079 }
4080
4081 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4082
4083 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4084 {
4085 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4086
4087 spapr_machine_2_12_class_options(mc);
4088 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4089 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4090 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4091 }
4092
4093 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4094
4095 /*
4096 * pseries-2.11
4097 */
4098
4099 static void spapr_machine_2_11_class_options(MachineClass *mc)
4100 {
4101 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4102
4103 spapr_machine_2_12_class_options(mc);
4104 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4105 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4106 }
4107
4108 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4109
4110 /*
4111 * pseries-2.10
4112 */
4113
4114 static void spapr_machine_2_10_class_options(MachineClass *mc)
4115 {
4116 spapr_machine_2_11_class_options(mc);
4117 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4118 }
4119
4120 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4121
4122 /*
4123 * pseries-2.9
4124 */
4125
4126 static void spapr_machine_2_9_class_options(MachineClass *mc)
4127 {
4128 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4129 static GlobalProperty compat[] = {
4130 {
4131 .driver = TYPE_POWERPC_CPU,
4132 .property = "pre-2.10-migration",
4133 .value = "on",
4134 },
4135 };
4136
4137 spapr_machine_2_10_class_options(mc);
4138 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4139 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4140 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4141 smc->pre_2_10_has_unused_icps = true;
4142 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4143 }
4144
4145 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4146
4147 /*
4148 * pseries-2.8
4149 */
4150
4151 static void spapr_machine_2_8_class_options(MachineClass *mc)
4152 {
4153 static GlobalProperty compat[] = {
4154 {
4155 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,
4156 .property = "pcie-extended-configuration-space",
4157 .value = "off",
4158 },
4159 };
4160
4161 spapr_machine_2_9_class_options(mc);
4162 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4163 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4164 mc->numa_mem_align_shift = 23;
4165 }
4166
4167 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4168
4169 /*
4170 * pseries-2.7
4171 */
4172
4173 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4174 uint64_t *buid, hwaddr *pio,
4175 hwaddr *mmio32, hwaddr *mmio64,
4176 unsigned n_dma, uint32_t *liobns, Error **errp)
4177 {
4178 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4179 const uint64_t base_buid = 0x800000020000000ULL;
4180 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4181 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4182 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4183 const uint32_t max_index = 255;
4184 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4185
4186 uint64_t ram_top = MACHINE(spapr)->ram_size;
4187 hwaddr phb0_base, phb_base;
4188 int i;
4189
4190 /* Do we have device memory? */
4191 if (MACHINE(spapr)->maxram_size > ram_top) {
4192 /* Can't just use maxram_size, because there may be an
4193 * alignment gap between normal and device memory regions
4194 */
4195 ram_top = MACHINE(spapr)->device_memory->base +
4196 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4197 }
4198
4199 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4200
4201 if (index > max_index) {
4202 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4203 max_index);
4204 return;
4205 }
4206
4207 *buid = base_buid + index;
4208 for (i = 0; i < n_dma; ++i) {
4209 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4210 }
4211
4212 phb_base = phb0_base + index * phb_spacing;
4213 *pio = phb_base + pio_offset;
4214 *mmio32 = phb_base + mmio_offset;
4215 /*
4216 * We don't set the 64-bit MMIO window, relying on the PHB's
4217 * fallback behaviour of automatically splitting a large "32-bit"
4218 * window into contiguous 32-bit and 64-bit windows
4219 */
4220 }
4221
4222 static void spapr_machine_2_7_class_options(MachineClass *mc)
4223 {
4224 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4225 static GlobalProperty compat[] = {
4226 {
4227 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,
4228 .property = "mem_win_size",
4229 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),
4230 },
4231 {
4232 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,
4233 .property = "mem64_win_size",
4234 .value = "0",
4235 },
4236 {
4237 .driver = TYPE_POWERPC_CPU,
4238 .property = "pre-2.8-migration",
4239 .value = "on",
4240 },
4241 {
4242 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,
4243 .property = "pre-2.8-migration",
4244 .value = "on",
4245 },
4246 };
4247
4248 spapr_machine_2_8_class_options(mc);
4249 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4250 mc->default_machine_opts = "modern-hotplug-events=off";
4251 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4252 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4253 smc->phb_placement = phb_placement_2_7;
4254 }
4255
4256 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4257
4258 /*
4259 * pseries-2.6
4260 */
4261
4262 static void spapr_machine_2_6_class_options(MachineClass *mc)
4263 {
4264 static GlobalProperty compat[] = {
4265 HW_COMPAT_2_6
4266 {
4267 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,
4268 .property = "ddw",
4269 .value = stringify(off),
4270 },
4271 };
4272
4273 spapr_machine_2_7_class_options(mc);
4274 mc->has_hotpluggable_cpus = false;
4275 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4276 }
4277
4278 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4279
4280 /*
4281 * pseries-2.5
4282 */
4283
4284 static void spapr_machine_2_5_class_options(MachineClass *mc)
4285 {
4286 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4287 static GlobalProperty compat[] = {
4288 HW_COMPAT_2_5
4289 {
4290 .driver = "spapr-vlan",
4291 .property = "use-rx-buffer-pools",
4292 .value = "off",
4293 },
4294 };
4295
4296 spapr_machine_2_6_class_options(mc);
4297 smc->use_ohci_by_default = true;
4298 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4299 }
4300
4301 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4302
4303 /*
4304 * pseries-2.4
4305 */
4306
4307 static void spapr_machine_2_4_class_options(MachineClass *mc)
4308 {
4309 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4310 static GlobalProperty compat[] = {
4311 HW_COMPAT_2_4
4312 };
4313
4314 spapr_machine_2_5_class_options(mc);
4315 smc->dr_lmb_enabled = false;
4316 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4317 }
4318
4319 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4320
4321 /*
4322 * pseries-2.3
4323 */
4324
4325 static void spapr_machine_2_3_class_options(MachineClass *mc)
4326 {
4327 static GlobalProperty compat[] = {
4328 HW_COMPAT_2_3
4329 {
4330 .driver = "spapr-pci-host-bridge",
4331 .property = "dynamic-reconfiguration",
4332 .value = "off",
4333 },
4334 };
4335 spapr_machine_2_4_class_options(mc);
4336 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4337 }
4338 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4339
4340 /*
4341 * pseries-2.2
4342 */
4343
4344 static void spapr_machine_2_2_class_options(MachineClass *mc)
4345 {
4346 static GlobalProperty compat[] = {
4347 HW_COMPAT_2_2
4348 {
4349 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,
4350 .property = "mem_win_size",
4351 .value = "0x20000000",
4352 },
4353 };
4354
4355 spapr_machine_2_3_class_options(mc);
4356 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4357 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4358 }
4359 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4360
4361 /*
4362 * pseries-2.1
4363 */
4364
4365 static void spapr_machine_2_1_class_options(MachineClass *mc)
4366 {
4367 static GlobalProperty compat[] = {
4368 HW_COMPAT_2_1
4369 };
4370
4371 spapr_machine_2_2_class_options(mc);
4372 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4373 }
4374 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4375
4376 static void spapr_machine_register_types(void)
4377 {
4378 type_register_static(&spapr_machine_info);
4379 }
4380
4381 type_init(spapr_machine_register_types)