]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr_pci.c
spapr: Pass sPAPR machine state down to spapr_pci_switch_vga()
[mirror_qemu.git] / hw / ppc / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include "qemu/osdep.h"
27 #include "qapi/error.h"
28 #include "cpu.h"
29 #include "hw/irq.h"
30 #include "hw/sysbus.h"
31 #include "migration/vmstate.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/msi.h"
34 #include "hw/pci/msix.h"
35 #include "hw/pci/pci_host.h"
36 #include "hw/ppc/spapr.h"
37 #include "hw/pci-host/spapr.h"
38 #include "exec/address-spaces.h"
39 #include "exec/ram_addr.h"
40 #include <libfdt.h>
41 #include "trace.h"
42 #include "qemu/error-report.h"
43 #include "qemu/module.h"
44 #include "qapi/qmp/qerror.h"
45 #include "hw/ppc/fdt.h"
46 #include "hw/pci/pci_bridge.h"
47 #include "hw/pci/pci_bus.h"
48 #include "hw/pci/pci_ids.h"
49 #include "hw/ppc/spapr_drc.h"
50 #include "hw/qdev-properties.h"
51 #include "sysemu/device_tree.h"
52 #include "sysemu/kvm.h"
53 #include "sysemu/hostmem.h"
54 #include "sysemu/numa.h"
55 #include "hw/ppc/spapr_numa.h"
56
57 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
58 #define RTAS_QUERY_FN 0
59 #define RTAS_CHANGE_FN 1
60 #define RTAS_RESET_FN 2
61 #define RTAS_CHANGE_MSI_FN 3
62 #define RTAS_CHANGE_MSIX_FN 4
63
64 /* Interrupt types to return on RTAS_CHANGE_* */
65 #define RTAS_TYPE_MSI 1
66 #define RTAS_TYPE_MSIX 2
67
68 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid)
69 {
70 SpaprPhbState *sphb;
71
72 QLIST_FOREACH(sphb, &spapr->phbs, list) {
73 if (sphb->buid != buid) {
74 continue;
75 }
76 return sphb;
77 }
78
79 return NULL;
80 }
81
82 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid,
83 uint32_t config_addr)
84 {
85 SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid);
86 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
87 int bus_num = (config_addr >> 16) & 0xFF;
88 int devfn = (config_addr >> 8) & 0xFF;
89
90 if (!phb) {
91 return NULL;
92 }
93
94 return pci_find_device(phb->bus, bus_num, devfn);
95 }
96
97 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
98 {
99 /* This handles the encoding of extended config space addresses */
100 return ((arg >> 20) & 0xf00) | (arg & 0xff);
101 }
102
103 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid,
104 uint32_t addr, uint32_t size,
105 target_ulong rets)
106 {
107 PCIDevice *pci_dev;
108 uint32_t val;
109
110 if ((size != 1) && (size != 2) && (size != 4)) {
111 /* access must be 1, 2 or 4 bytes */
112 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
113 return;
114 }
115
116 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
117 addr = rtas_pci_cfgaddr(addr);
118
119 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
120 /* Access must be to a valid device, within bounds and
121 * naturally aligned */
122 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
123 return;
124 }
125
126 val = pci_host_config_read_common(pci_dev, addr,
127 pci_config_size(pci_dev), size);
128
129 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
130 rtas_st(rets, 1, val);
131 }
132
133 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
134 uint32_t token, uint32_t nargs,
135 target_ulong args,
136 uint32_t nret, target_ulong rets)
137 {
138 uint64_t buid;
139 uint32_t size, addr;
140
141 if ((nargs != 4) || (nret != 2)) {
142 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
143 return;
144 }
145
146 buid = rtas_ldq(args, 1);
147 size = rtas_ld(args, 3);
148 addr = rtas_ld(args, 0);
149
150 finish_read_pci_config(spapr, buid, addr, size, rets);
151 }
152
153 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
154 uint32_t token, uint32_t nargs,
155 target_ulong args,
156 uint32_t nret, target_ulong rets)
157 {
158 uint32_t size, addr;
159
160 if ((nargs != 2) || (nret != 2)) {
161 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
162 return;
163 }
164
165 size = rtas_ld(args, 1);
166 addr = rtas_ld(args, 0);
167
168 finish_read_pci_config(spapr, 0, addr, size, rets);
169 }
170
171 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid,
172 uint32_t addr, uint32_t size,
173 uint32_t val, target_ulong rets)
174 {
175 PCIDevice *pci_dev;
176
177 if ((size != 1) && (size != 2) && (size != 4)) {
178 /* access must be 1, 2 or 4 bytes */
179 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
180 return;
181 }
182
183 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
184 addr = rtas_pci_cfgaddr(addr);
185
186 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
187 /* Access must be to a valid device, within bounds and
188 * naturally aligned */
189 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
190 return;
191 }
192
193 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
194 val, size);
195
196 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
197 }
198
199 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
200 uint32_t token, uint32_t nargs,
201 target_ulong args,
202 uint32_t nret, target_ulong rets)
203 {
204 uint64_t buid;
205 uint32_t val, size, addr;
206
207 if ((nargs != 5) || (nret != 1)) {
208 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
209 return;
210 }
211
212 buid = rtas_ldq(args, 1);
213 val = rtas_ld(args, 4);
214 size = rtas_ld(args, 3);
215 addr = rtas_ld(args, 0);
216
217 finish_write_pci_config(spapr, buid, addr, size, val, rets);
218 }
219
220 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
221 uint32_t token, uint32_t nargs,
222 target_ulong args,
223 uint32_t nret, target_ulong rets)
224 {
225 uint32_t val, size, addr;
226
227 if ((nargs != 3) || (nret != 1)) {
228 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
229 return;
230 }
231
232
233 val = rtas_ld(args, 2);
234 size = rtas_ld(args, 1);
235 addr = rtas_ld(args, 0);
236
237 finish_write_pci_config(spapr, 0, addr, size, val, rets);
238 }
239
240 /*
241 * Set MSI/MSIX message data.
242 * This is required for msi_notify()/msix_notify() which
243 * will write at the addresses via spapr_msi_write().
244 *
245 * If hwaddr == 0, all entries will have .data == first_irq i.e.
246 * table will be reset.
247 */
248 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
249 unsigned first_irq, unsigned req_num)
250 {
251 unsigned i;
252 MSIMessage msg = { .address = addr, .data = first_irq };
253
254 if (!msix) {
255 msi_set_message(pdev, msg);
256 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
257 return;
258 }
259
260 for (i = 0; i < req_num; ++i) {
261 msix_set_message(pdev, i, msg);
262 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
263 if (addr) {
264 ++msg.data;
265 }
266 }
267 }
268
269 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr,
270 uint32_t token, uint32_t nargs,
271 target_ulong args, uint32_t nret,
272 target_ulong rets)
273 {
274 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
275 uint32_t config_addr = rtas_ld(args, 0);
276 uint64_t buid = rtas_ldq(args, 1);
277 unsigned int func = rtas_ld(args, 3);
278 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
279 unsigned int seq_num = rtas_ld(args, 5);
280 unsigned int ret_intr_type;
281 unsigned int irq, max_irqs = 0;
282 SpaprPhbState *phb = NULL;
283 PCIDevice *pdev = NULL;
284 SpaprPciMsi *msi;
285 int *config_addr_key;
286 Error *err = NULL;
287 int i;
288
289 /* Fins SpaprPhbState */
290 phb = spapr_pci_find_phb(spapr, buid);
291 if (phb) {
292 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
293 }
294 if (!phb || !pdev) {
295 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
296 return;
297 }
298
299 switch (func) {
300 case RTAS_CHANGE_FN:
301 if (msi_present(pdev)) {
302 ret_intr_type = RTAS_TYPE_MSI;
303 } else if (msix_present(pdev)) {
304 ret_intr_type = RTAS_TYPE_MSIX;
305 } else {
306 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
307 return;
308 }
309 break;
310 case RTAS_CHANGE_MSI_FN:
311 if (msi_present(pdev)) {
312 ret_intr_type = RTAS_TYPE_MSI;
313 } else {
314 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
315 return;
316 }
317 break;
318 case RTAS_CHANGE_MSIX_FN:
319 if (msix_present(pdev)) {
320 ret_intr_type = RTAS_TYPE_MSIX;
321 } else {
322 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
323 return;
324 }
325 break;
326 default:
327 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
328 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
329 return;
330 }
331
332 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr);
333
334 /* Releasing MSIs */
335 if (!req_num) {
336 if (!msi) {
337 trace_spapr_pci_msi("Releasing wrong config", config_addr);
338 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
339 return;
340 }
341
342 if (msi_present(pdev)) {
343 spapr_msi_setmsg(pdev, 0, false, 0, 0);
344 }
345 if (msix_present(pdev)) {
346 spapr_msi_setmsg(pdev, 0, true, 0, 0);
347 }
348 g_hash_table_remove(phb->msi, &config_addr);
349
350 trace_spapr_pci_msi("Released MSIs", config_addr);
351 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
352 rtas_st(rets, 1, 0);
353 return;
354 }
355
356 /* Enabling MSI */
357
358 /* Check if the device supports as many IRQs as requested */
359 if (ret_intr_type == RTAS_TYPE_MSI) {
360 max_irqs = msi_nr_vectors_allocated(pdev);
361 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
362 max_irqs = pdev->msix_entries_nr;
363 }
364 if (!max_irqs) {
365 error_report("Requested interrupt type %d is not enabled for device %x",
366 ret_intr_type, config_addr);
367 rtas_st(rets, 0, -1); /* Hardware error */
368 return;
369 }
370 /* Correct the number if the guest asked for too many */
371 if (req_num > max_irqs) {
372 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
373 req_num = max_irqs;
374 irq = 0; /* to avoid misleading trace */
375 goto out;
376 }
377
378 /* Allocate MSIs */
379 if (smc->legacy_irq_allocation) {
380 irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI,
381 &err);
382 } else {
383 irq = spapr_irq_msi_alloc(spapr, req_num,
384 ret_intr_type == RTAS_TYPE_MSI, &err);
385 }
386 if (err) {
387 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
388 config_addr);
389 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
390 return;
391 }
392
393 for (i = 0; i < req_num; i++) {
394 spapr_irq_claim(spapr, irq + i, false, &err);
395 if (err) {
396 if (i) {
397 spapr_irq_free(spapr, irq, i);
398 }
399 if (!smc->legacy_irq_allocation) {
400 spapr_irq_msi_free(spapr, irq, req_num);
401 }
402 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
403 config_addr);
404 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
405 return;
406 }
407 }
408
409 /* Release previous MSIs */
410 if (msi) {
411 g_hash_table_remove(phb->msi, &config_addr);
412 }
413
414 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
415 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
416 irq, req_num);
417
418 /* Add MSI device to cache */
419 msi = g_new(SpaprPciMsi, 1);
420 msi->first_irq = irq;
421 msi->num = req_num;
422 config_addr_key = g_new(int, 1);
423 *config_addr_key = config_addr;
424 g_hash_table_insert(phb->msi, config_addr_key, msi);
425
426 out:
427 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
428 rtas_st(rets, 1, req_num);
429 rtas_st(rets, 2, ++seq_num);
430 if (nret > 3) {
431 rtas_st(rets, 3, ret_intr_type);
432 }
433
434 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
435 }
436
437 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
438 SpaprMachineState *spapr,
439 uint32_t token,
440 uint32_t nargs,
441 target_ulong args,
442 uint32_t nret,
443 target_ulong rets)
444 {
445 uint32_t config_addr = rtas_ld(args, 0);
446 uint64_t buid = rtas_ldq(args, 1);
447 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
448 SpaprPhbState *phb = NULL;
449 PCIDevice *pdev = NULL;
450 SpaprPciMsi *msi;
451
452 /* Find SpaprPhbState */
453 phb = spapr_pci_find_phb(spapr, buid);
454 if (phb) {
455 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
456 }
457 if (!phb || !pdev) {
458 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
459 return;
460 }
461
462 /* Find device descriptor and start IRQ */
463 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr);
464 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
465 trace_spapr_pci_msi("Failed to return vector", config_addr);
466 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
467 return;
468 }
469 intr_src_num = msi->first_irq + ioa_intr_num;
470 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
471 intr_src_num);
472
473 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
474 rtas_st(rets, 1, intr_src_num);
475 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
476 }
477
478 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
479 SpaprMachineState *spapr,
480 uint32_t token, uint32_t nargs,
481 target_ulong args, uint32_t nret,
482 target_ulong rets)
483 {
484 SpaprPhbState *sphb;
485 uint32_t addr, option;
486 uint64_t buid;
487 int ret;
488
489 if ((nargs != 4) || (nret != 1)) {
490 goto param_error_exit;
491 }
492
493 buid = rtas_ldq(args, 1);
494 addr = rtas_ld(args, 0);
495 option = rtas_ld(args, 3);
496
497 sphb = spapr_pci_find_phb(spapr, buid);
498 if (!sphb) {
499 goto param_error_exit;
500 }
501
502 if (!spapr_phb_eeh_available(sphb)) {
503 goto param_error_exit;
504 }
505
506 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
507 rtas_st(rets, 0, ret);
508 return;
509
510 param_error_exit:
511 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
512 }
513
514 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
515 SpaprMachineState *spapr,
516 uint32_t token, uint32_t nargs,
517 target_ulong args, uint32_t nret,
518 target_ulong rets)
519 {
520 SpaprPhbState *sphb;
521 PCIDevice *pdev;
522 uint32_t addr, option;
523 uint64_t buid;
524
525 if ((nargs != 4) || (nret != 2)) {
526 goto param_error_exit;
527 }
528
529 buid = rtas_ldq(args, 1);
530 sphb = spapr_pci_find_phb(spapr, buid);
531 if (!sphb) {
532 goto param_error_exit;
533 }
534
535 if (!spapr_phb_eeh_available(sphb)) {
536 goto param_error_exit;
537 }
538
539 /*
540 * We always have PE address of form "00BB0001". "BB"
541 * represents the bus number of PE's primary bus.
542 */
543 option = rtas_ld(args, 3);
544 switch (option) {
545 case RTAS_GET_PE_ADDR:
546 addr = rtas_ld(args, 0);
547 pdev = spapr_pci_find_dev(spapr, buid, addr);
548 if (!pdev) {
549 goto param_error_exit;
550 }
551
552 rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
553 break;
554 case RTAS_GET_PE_MODE:
555 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
556 break;
557 default:
558 goto param_error_exit;
559 }
560
561 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
562 return;
563
564 param_error_exit:
565 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
566 }
567
568 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
569 SpaprMachineState *spapr,
570 uint32_t token, uint32_t nargs,
571 target_ulong args, uint32_t nret,
572 target_ulong rets)
573 {
574 SpaprPhbState *sphb;
575 uint64_t buid;
576 int state, ret;
577
578 if ((nargs != 3) || (nret != 4 && nret != 5)) {
579 goto param_error_exit;
580 }
581
582 buid = rtas_ldq(args, 1);
583 sphb = spapr_pci_find_phb(spapr, buid);
584 if (!sphb) {
585 goto param_error_exit;
586 }
587
588 if (!spapr_phb_eeh_available(sphb)) {
589 goto param_error_exit;
590 }
591
592 ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
593 rtas_st(rets, 0, ret);
594 if (ret != RTAS_OUT_SUCCESS) {
595 return;
596 }
597
598 rtas_st(rets, 1, state);
599 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
600 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
601 if (nret >= 5) {
602 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
603 }
604 return;
605
606 param_error_exit:
607 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
608 }
609
610 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
611 SpaprMachineState *spapr,
612 uint32_t token, uint32_t nargs,
613 target_ulong args, uint32_t nret,
614 target_ulong rets)
615 {
616 SpaprPhbState *sphb;
617 uint32_t option;
618 uint64_t buid;
619 int ret;
620
621 if ((nargs != 4) || (nret != 1)) {
622 goto param_error_exit;
623 }
624
625 buid = rtas_ldq(args, 1);
626 option = rtas_ld(args, 3);
627 sphb = spapr_pci_find_phb(spapr, buid);
628 if (!sphb) {
629 goto param_error_exit;
630 }
631
632 if (!spapr_phb_eeh_available(sphb)) {
633 goto param_error_exit;
634 }
635
636 ret = spapr_phb_vfio_eeh_reset(sphb, option);
637 rtas_st(rets, 0, ret);
638 return;
639
640 param_error_exit:
641 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
642 }
643
644 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
645 SpaprMachineState *spapr,
646 uint32_t token, uint32_t nargs,
647 target_ulong args, uint32_t nret,
648 target_ulong rets)
649 {
650 SpaprPhbState *sphb;
651 uint64_t buid;
652 int ret;
653
654 if ((nargs != 3) || (nret != 1)) {
655 goto param_error_exit;
656 }
657
658 buid = rtas_ldq(args, 1);
659 sphb = spapr_pci_find_phb(spapr, buid);
660 if (!sphb) {
661 goto param_error_exit;
662 }
663
664 if (!spapr_phb_eeh_available(sphb)) {
665 goto param_error_exit;
666 }
667
668 ret = spapr_phb_vfio_eeh_configure(sphb);
669 rtas_st(rets, 0, ret);
670 return;
671
672 param_error_exit:
673 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
674 }
675
676 /* To support it later */
677 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
678 SpaprMachineState *spapr,
679 uint32_t token, uint32_t nargs,
680 target_ulong args, uint32_t nret,
681 target_ulong rets)
682 {
683 SpaprPhbState *sphb;
684 int option;
685 uint64_t buid;
686
687 if ((nargs != 8) || (nret != 1)) {
688 goto param_error_exit;
689 }
690
691 buid = rtas_ldq(args, 1);
692 sphb = spapr_pci_find_phb(spapr, buid);
693 if (!sphb) {
694 goto param_error_exit;
695 }
696
697 if (!spapr_phb_eeh_available(sphb)) {
698 goto param_error_exit;
699 }
700
701 option = rtas_ld(args, 7);
702 switch (option) {
703 case RTAS_SLOT_TEMP_ERR_LOG:
704 case RTAS_SLOT_PERM_ERR_LOG:
705 break;
706 default:
707 goto param_error_exit;
708 }
709
710 /* We don't have error log yet */
711 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
712 return;
713
714 param_error_exit:
715 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
716 }
717
718 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
719 {
720 /*
721 * Here we use the number returned by pci_swizzle_map_irq_fn to find a
722 * corresponding qemu_irq.
723 */
724 SpaprPhbState *phb = opaque;
725 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
726
727 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
728 qemu_set_irq(spapr_qirq(spapr, phb->lsi_table[irq_num].irq), level);
729 }
730
731 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
732 {
733 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
734 PCIINTxRoute route;
735
736 route.mode = PCI_INTX_ENABLED;
737 route.irq = sphb->lsi_table[pin].irq;
738
739 return route;
740 }
741
742 /*
743 * MSI/MSIX memory region implementation.
744 * The handler handles both MSI and MSIX.
745 * The vector number is encoded in least bits in data.
746 */
747 static void spapr_msi_write(void *opaque, hwaddr addr,
748 uint64_t data, unsigned size)
749 {
750 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
751 uint32_t irq = data;
752
753 trace_spapr_pci_msi_write(addr, data, irq);
754
755 qemu_irq_pulse(spapr_qirq(spapr, irq));
756 }
757
758 static const MemoryRegionOps spapr_msi_ops = {
759 /* There is no .read as the read result is undefined by PCI spec */
760 .read = NULL,
761 .write = spapr_msi_write,
762 .endianness = DEVICE_LITTLE_ENDIAN
763 };
764
765 /*
766 * PHB PCI device
767 */
768 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
769 {
770 SpaprPhbState *phb = opaque;
771
772 return &phb->iommu_as;
773 }
774
775 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
776 {
777 char *path = NULL, *buf = NULL, *host = NULL;
778
779 /* Get the PCI VFIO host id */
780 host = object_property_get_str(OBJECT(pdev), "host", NULL);
781 if (!host) {
782 goto err_out;
783 }
784
785 /* Construct the path of the file that will give us the DT location */
786 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
787 g_free(host);
788 if (!g_file_get_contents(path, &buf, NULL, NULL)) {
789 goto err_out;
790 }
791 g_free(path);
792
793 /* Construct and read from host device tree the loc-code */
794 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
795 g_free(buf);
796 if (!g_file_get_contents(path, &buf, NULL, NULL)) {
797 goto err_out;
798 }
799 return buf;
800
801 err_out:
802 g_free(path);
803 return NULL;
804 }
805
806 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
807 {
808 char *buf;
809 const char *devtype = "qemu";
810 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
811
812 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
813 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
814 if (buf) {
815 return buf;
816 }
817 devtype = "vfio";
818 }
819 /*
820 * For emulated devices and VFIO-failure case, make up
821 * the loc-code.
822 */
823 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
824 devtype, pdev->name, sphb->index, busnr,
825 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
826 return buf;
827 }
828
829 /* Macros to operate with address in OF binding to PCI */
830 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
831 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
832 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
833 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
834 #define b_ss(x) b_x((x), 24, 2) /* the space code */
835 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
836 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
837 #define b_fff(x) b_x((x), 8, 3) /* function number */
838 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
839
840 /* for 'reg' OF properties */
841 #define RESOURCE_CELLS_SIZE 2
842 #define RESOURCE_CELLS_ADDRESS 3
843
844 typedef struct ResourceFields {
845 uint32_t phys_hi;
846 uint32_t phys_mid;
847 uint32_t phys_lo;
848 uint32_t size_hi;
849 uint32_t size_lo;
850 } QEMU_PACKED ResourceFields;
851
852 typedef struct ResourceProps {
853 ResourceFields reg[8];
854 uint32_t reg_len;
855 } ResourceProps;
856
857 /* fill in the 'reg' OF properties for
858 * a PCI device. 'reg' describes resource requirements for a
859 * device's IO/MEM regions.
860 *
861 * the property is an array of ('phys-addr', 'size') pairs describing
862 * the addressable regions of the PCI device, where 'phys-addr' is a
863 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
864 * (phys.hi, phys.mid, phys.lo), and 'size' is a
865 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
866 *
867 * phys.hi = 0xYYXXXXZZ, where:
868 * 0xYY = npt000ss
869 * ||| |
870 * ||| +-- space code
871 * ||| |
872 * ||| + 00 if configuration space
873 * ||| + 01 if IO region,
874 * ||| + 10 if 32-bit MEM region
875 * ||| + 11 if 64-bit MEM region
876 * |||
877 * ||+------ for non-relocatable IO: 1 if aliased
878 * || for relocatable IO: 1 if below 64KB
879 * || for MEM: 1 if below 1MB
880 * |+------- 1 if region is prefetchable
881 * +-------- 1 if region is non-relocatable
882 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
883 * bits respectively
884 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
885 * to the region
886 *
887 * phys.mid and phys.lo correspond respectively to the hi/lo portions
888 * of the actual address of the region.
889 *
890 * note also that addresses defined in this property are, at least
891 * for PAPR guests, relative to the PHBs IO/MEM windows, and
892 * correspond directly to the addresses in the BARs.
893 *
894 * in accordance with PCI Bus Binding to Open Firmware,
895 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
896 * Appendix C.
897 */
898 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
899 {
900 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
901 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
902 b_ddddd(PCI_SLOT(d->devfn)) |
903 b_fff(PCI_FUNC(d->devfn)));
904 ResourceFields *reg;
905 int i, reg_idx = 0;
906
907 /* config space region */
908 reg = &rp->reg[reg_idx++];
909 reg->phys_hi = cpu_to_be32(dev_id);
910 reg->phys_mid = 0;
911 reg->phys_lo = 0;
912 reg->size_hi = 0;
913 reg->size_lo = 0;
914
915 for (i = 0; i < PCI_NUM_REGIONS; i++) {
916 if (!d->io_regions[i].size) {
917 continue;
918 }
919
920 reg = &rp->reg[reg_idx++];
921
922 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
923 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
924 reg->phys_hi |= cpu_to_be32(b_ss(1));
925 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
926 reg->phys_hi |= cpu_to_be32(b_ss(3));
927 } else {
928 reg->phys_hi |= cpu_to_be32(b_ss(2));
929 }
930 reg->phys_mid = 0;
931 reg->phys_lo = 0;
932 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
933 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
934 }
935
936 rp->reg_len = reg_idx * sizeof(ResourceFields);
937 }
938
939 typedef struct PCIClass PCIClass;
940 typedef struct PCISubClass PCISubClass;
941 typedef struct PCIIFace PCIIFace;
942
943 struct PCIIFace {
944 int iface;
945 const char *name;
946 };
947
948 struct PCISubClass {
949 int subclass;
950 const char *name;
951 const PCIIFace *iface;
952 };
953
954 struct PCIClass {
955 const char *name;
956 const PCISubClass *subc;
957 };
958
959 static const PCISubClass undef_subclass[] = {
960 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
961 { 0xFF, NULL, NULL },
962 };
963
964 static const PCISubClass mass_subclass[] = {
965 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
966 { PCI_CLASS_STORAGE_IDE, "ide", NULL },
967 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
968 { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
969 { PCI_CLASS_STORAGE_RAID, "raid", NULL },
970 { PCI_CLASS_STORAGE_ATA, "ata", NULL },
971 { PCI_CLASS_STORAGE_SATA, "sata", NULL },
972 { PCI_CLASS_STORAGE_SAS, "sas", NULL },
973 { 0xFF, NULL, NULL },
974 };
975
976 static const PCISubClass net_subclass[] = {
977 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
978 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
979 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
980 { PCI_CLASS_NETWORK_ATM, "atm", NULL },
981 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
982 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
983 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
984 { 0xFF, NULL, NULL },
985 };
986
987 static const PCISubClass displ_subclass[] = {
988 { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
989 { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
990 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
991 { 0xFF, NULL, NULL },
992 };
993
994 static const PCISubClass media_subclass[] = {
995 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
996 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
997 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
998 { 0xFF, NULL, NULL },
999 };
1000
1001 static const PCISubClass mem_subclass[] = {
1002 { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1003 { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1004 { 0xFF, NULL, NULL },
1005 };
1006
1007 static const PCISubClass bridg_subclass[] = {
1008 { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1009 { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1010 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1011 { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1012 { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1013 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1014 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1015 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1016 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1017 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1018 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1019 { 0xFF, NULL, NULL },
1020 };
1021
1022 static const PCISubClass comm_subclass[] = {
1023 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1024 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1025 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1026 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1027 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1028 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1029 { 0xFF, NULL, NULL, },
1030 };
1031
1032 static const PCIIFace pic_iface[] = {
1033 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1034 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1035 { 0xFF, NULL },
1036 };
1037
1038 static const PCISubClass sys_subclass[] = {
1039 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1040 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1041 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1042 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1043 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1044 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1045 { 0xFF, NULL, NULL },
1046 };
1047
1048 static const PCISubClass inp_subclass[] = {
1049 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1050 { PCI_CLASS_INPUT_PEN, "pen", NULL },
1051 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1052 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1053 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1054 { 0xFF, NULL, NULL },
1055 };
1056
1057 static const PCISubClass dock_subclass[] = {
1058 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1059 { 0xFF, NULL, NULL },
1060 };
1061
1062 static const PCISubClass cpu_subclass[] = {
1063 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1064 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1065 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1066 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1067 { 0xFF, NULL, NULL },
1068 };
1069
1070 static const PCIIFace usb_iface[] = {
1071 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1072 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1073 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1074 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1075 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1076 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1077 { 0xFF, NULL },
1078 };
1079
1080 static const PCISubClass ser_subclass[] = {
1081 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1082 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1083 { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1084 { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1085 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1086 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1087 { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1088 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1089 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1090 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1091 { 0xFF, NULL, NULL },
1092 };
1093
1094 static const PCISubClass wrl_subclass[] = {
1095 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1096 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1097 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1098 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1099 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1100 { 0xFF, NULL, NULL },
1101 };
1102
1103 static const PCISubClass sat_subclass[] = {
1104 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1105 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1106 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1107 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1108 { 0xFF, NULL, NULL },
1109 };
1110
1111 static const PCISubClass crypt_subclass[] = {
1112 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1113 { PCI_CLASS_CRYPT_ENTERTAINMENT,
1114 "entertainment-encryption", NULL },
1115 { 0xFF, NULL, NULL },
1116 };
1117
1118 static const PCISubClass spc_subclass[] = {
1119 { PCI_CLASS_SP_DPIO, "dpio", NULL },
1120 { PCI_CLASS_SP_PERF, "counter", NULL },
1121 { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1122 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1123 { 0xFF, NULL, NULL },
1124 };
1125
1126 static const PCIClass pci_classes[] = {
1127 { "legacy-device", undef_subclass },
1128 { "mass-storage", mass_subclass },
1129 { "network", net_subclass },
1130 { "display", displ_subclass, },
1131 { "multimedia-device", media_subclass },
1132 { "memory-controller", mem_subclass },
1133 { "unknown-bridge", bridg_subclass },
1134 { "communication-controller", comm_subclass},
1135 { "system-peripheral", sys_subclass },
1136 { "input-controller", inp_subclass },
1137 { "docking-station", dock_subclass },
1138 { "cpu", cpu_subclass },
1139 { "serial-bus", ser_subclass },
1140 { "wireless-controller", wrl_subclass },
1141 { "intelligent-io", NULL },
1142 { "satellite-device", sat_subclass },
1143 { "encryption", crypt_subclass },
1144 { "data-processing-controller", spc_subclass },
1145 };
1146
1147 static const char *dt_name_from_class(uint8_t class, uint8_t subclass,
1148 uint8_t iface)
1149 {
1150 const PCIClass *pclass;
1151 const PCISubClass *psubclass;
1152 const PCIIFace *piface;
1153 const char *name;
1154
1155 if (class >= ARRAY_SIZE(pci_classes)) {
1156 return "pci";
1157 }
1158
1159 pclass = pci_classes + class;
1160 name = pclass->name;
1161
1162 if (pclass->subc == NULL) {
1163 return name;
1164 }
1165
1166 psubclass = pclass->subc;
1167 while ((psubclass->subclass & 0xff) != 0xff) {
1168 if ((psubclass->subclass & 0xff) == subclass) {
1169 name = psubclass->name;
1170 break;
1171 }
1172 psubclass++;
1173 }
1174
1175 piface = psubclass->iface;
1176 if (piface == NULL) {
1177 return name;
1178 }
1179 while ((piface->iface & 0xff) != 0xff) {
1180 if ((piface->iface & 0xff) == iface) {
1181 name = piface->name;
1182 break;
1183 }
1184 piface++;
1185 }
1186
1187 return name;
1188 }
1189
1190 /*
1191 * DRC helper functions
1192 */
1193
1194 static uint32_t drc_id_from_devfn(SpaprPhbState *phb,
1195 uint8_t chassis, int32_t devfn)
1196 {
1197 return (phb->index << 16) | (chassis << 8) | devfn;
1198 }
1199
1200 static SpaprDrc *drc_from_devfn(SpaprPhbState *phb,
1201 uint8_t chassis, int32_t devfn)
1202 {
1203 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1204 drc_id_from_devfn(phb, chassis, devfn));
1205 }
1206
1207 static uint8_t chassis_from_bus(PCIBus *bus)
1208 {
1209 if (pci_bus_is_root(bus)) {
1210 return 0;
1211 } else {
1212 PCIDevice *bridge = pci_bridge_get_device(bus);
1213
1214 return object_property_get_uint(OBJECT(bridge), "chassis_nr",
1215 &error_abort);
1216 }
1217 }
1218
1219 static SpaprDrc *drc_from_dev(SpaprPhbState *phb, PCIDevice *dev)
1220 {
1221 uint8_t chassis = chassis_from_bus(pci_get_bus(dev));
1222
1223 return drc_from_devfn(phb, chassis, dev->devfn);
1224 }
1225
1226 static void add_drcs(SpaprPhbState *phb, PCIBus *bus)
1227 {
1228 Object *owner;
1229 int i;
1230 uint8_t chassis;
1231
1232 if (!phb->dr_enabled) {
1233 return;
1234 }
1235
1236 chassis = chassis_from_bus(bus);
1237
1238 if (pci_bus_is_root(bus)) {
1239 owner = OBJECT(phb);
1240 } else {
1241 owner = OBJECT(pci_bridge_get_device(bus));
1242 }
1243
1244 for (i = 0; i < PCI_SLOT_MAX * PCI_FUNC_MAX; i++) {
1245 spapr_dr_connector_new(owner, TYPE_SPAPR_DRC_PCI,
1246 drc_id_from_devfn(phb, chassis, i));
1247 }
1248 }
1249
1250 static void remove_drcs(SpaprPhbState *phb, PCIBus *bus)
1251 {
1252 int i;
1253 uint8_t chassis;
1254
1255 if (!phb->dr_enabled) {
1256 return;
1257 }
1258
1259 chassis = chassis_from_bus(bus);
1260
1261 for (i = PCI_SLOT_MAX * PCI_FUNC_MAX - 1; i >= 0; i--) {
1262 SpaprDrc *drc = drc_from_devfn(phb, chassis, i);
1263
1264 if (drc) {
1265 object_unparent(OBJECT(drc));
1266 }
1267 }
1268 }
1269
1270 typedef struct PciWalkFdt {
1271 void *fdt;
1272 int offset;
1273 SpaprPhbState *sphb;
1274 int err;
1275 } PciWalkFdt;
1276
1277 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1278 void *fdt, int parent_offset);
1279
1280 static void spapr_dt_pci_device_cb(PCIBus *bus, PCIDevice *pdev,
1281 void *opaque)
1282 {
1283 PciWalkFdt *p = opaque;
1284 int err;
1285
1286 if (p->err) {
1287 /* Something's already broken, don't keep going */
1288 return;
1289 }
1290
1291 err = spapr_dt_pci_device(p->sphb, pdev, p->fdt, p->offset);
1292 if (err < 0) {
1293 p->err = err;
1294 }
1295 }
1296
1297 /* Augment PCI device node with bridge specific information */
1298 static int spapr_dt_pci_bus(SpaprPhbState *sphb, PCIBus *bus,
1299 void *fdt, int offset)
1300 {
1301 Object *owner;
1302 PciWalkFdt cbinfo = {
1303 .fdt = fdt,
1304 .offset = offset,
1305 .sphb = sphb,
1306 .err = 0,
1307 };
1308 int ret;
1309
1310 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1311 RESOURCE_CELLS_ADDRESS));
1312 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1313 RESOURCE_CELLS_SIZE));
1314
1315 assert(bus);
1316 pci_for_each_device_reverse(bus, pci_bus_num(bus),
1317 spapr_dt_pci_device_cb, &cbinfo);
1318 if (cbinfo.err) {
1319 return cbinfo.err;
1320 }
1321
1322 if (pci_bus_is_root(bus)) {
1323 owner = OBJECT(sphb);
1324 } else {
1325 owner = OBJECT(pci_bridge_get_device(bus));
1326 }
1327
1328 ret = spapr_dt_drc(fdt, offset, owner,
1329 SPAPR_DR_CONNECTOR_TYPE_PCI);
1330 if (ret) {
1331 return ret;
1332 }
1333
1334 return offset;
1335 }
1336
1337 /* create OF node for pci device and required OF DT properties */
1338 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1339 void *fdt, int parent_offset)
1340 {
1341 int offset;
1342 const gchar *basename;
1343 gchar *nodename;
1344 int slot = PCI_SLOT(dev->devfn);
1345 int func = PCI_FUNC(dev->devfn);
1346 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(dev);
1347 ResourceProps rp;
1348 SpaprDrc *drc = drc_from_dev(sphb, dev);
1349 uint32_t vendor_id = pci_default_read_config(dev, PCI_VENDOR_ID, 2);
1350 uint32_t device_id = pci_default_read_config(dev, PCI_DEVICE_ID, 2);
1351 uint32_t revision_id = pci_default_read_config(dev, PCI_REVISION_ID, 1);
1352 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1353 uint32_t irq_pin = pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1);
1354 uint32_t subsystem_id = pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2);
1355 uint32_t subsystem_vendor_id =
1356 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2);
1357 uint32_t cache_line_size =
1358 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1);
1359 uint32_t pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1360 gchar *loc_code;
1361
1362 basename = dt_name_from_class((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1363 ccode & 0xff);
1364
1365 if (func != 0) {
1366 nodename = g_strdup_printf("%s@%x,%x", basename, slot, func);
1367 } else {
1368 nodename = g_strdup_printf("%s@%x", basename, slot);
1369 }
1370
1371 _FDT(offset = fdt_add_subnode(fdt, parent_offset, nodename));
1372
1373 g_free(nodename);
1374
1375 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1376 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", vendor_id));
1377 _FDT(fdt_setprop_cell(fdt, offset, "device-id", device_id));
1378 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", revision_id));
1379
1380 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1381 if (irq_pin) {
1382 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", irq_pin));
1383 }
1384
1385 if (subsystem_id) {
1386 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", subsystem_id));
1387 }
1388
1389 if (subsystem_vendor_id) {
1390 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1391 subsystem_vendor_id));
1392 }
1393
1394 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", cache_line_size));
1395
1396
1397 /* the following fdt cells are masked off the pci status register */
1398 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1399 PCI_STATUS_DEVSEL_MASK & pci_status));
1400
1401 if (pci_status & PCI_STATUS_FAST_BACK) {
1402 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1403 }
1404 if (pci_status & PCI_STATUS_66MHZ) {
1405 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1406 }
1407 if (pci_status & PCI_STATUS_UDF) {
1408 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1409 }
1410
1411 loc_code = spapr_phb_get_loc_code(sphb, dev);
1412 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", loc_code));
1413 g_free(loc_code);
1414
1415 if (drc) {
1416 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index",
1417 spapr_drc_index(drc)));
1418 }
1419
1420 if (msi_present(dev)) {
1421 uint32_t max_msi = msi_nr_vectors_allocated(dev);
1422 if (max_msi) {
1423 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1424 }
1425 }
1426 if (msix_present(dev)) {
1427 uint32_t max_msix = dev->msix_entries_nr;
1428 if (max_msix) {
1429 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1430 }
1431 }
1432
1433 populate_resource_props(dev, &rp);
1434 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1435
1436 if (sphb->pcie_ecs && pci_is_express(dev)) {
1437 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1438 }
1439
1440 spapr_phb_nvgpu_populate_pcidev_dt(dev, fdt, offset, sphb);
1441
1442 if (!pc->is_bridge) {
1443 /* Properties only for non-bridges */
1444 uint32_t min_grant = pci_default_read_config(dev, PCI_MIN_GNT, 1);
1445 uint32_t max_latency = pci_default_read_config(dev, PCI_MAX_LAT, 1);
1446 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", min_grant));
1447 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", max_latency));
1448 return offset;
1449 } else {
1450 PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(dev));
1451
1452 return spapr_dt_pci_bus(sphb, sec_bus, fdt, offset);
1453 }
1454 }
1455
1456 /* Callback to be called during DRC release. */
1457 void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1458 {
1459 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
1460
1461 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
1462 object_unparent(OBJECT(dev));
1463 }
1464
1465 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
1466 void *fdt, int *fdt_start_offset, Error **errp)
1467 {
1468 HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev);
1469 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler);
1470 PCIDevice *pdev = PCI_DEVICE(drc->dev);
1471
1472 *fdt_start_offset = spapr_dt_pci_device(sphb, pdev, fdt, 0);
1473 return 0;
1474 }
1475
1476 static void spapr_pci_bridge_plug(SpaprPhbState *phb,
1477 PCIBridge *bridge)
1478 {
1479 PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1480
1481 add_drcs(phb, bus);
1482 }
1483
1484 /* Returns non-zero if the value of "chassis_nr" is already in use */
1485 static int check_chassis_nr(Object *obj, void *opaque)
1486 {
1487 int new_chassis_nr =
1488 object_property_get_uint(opaque, "chassis_nr", &error_abort);
1489 int chassis_nr =
1490 object_property_get_uint(obj, "chassis_nr", NULL);
1491
1492 if (!object_dynamic_cast(obj, TYPE_PCI_BRIDGE)) {
1493 return 0;
1494 }
1495
1496 /* Skip unsupported bridge types */
1497 if (!chassis_nr) {
1498 return 0;
1499 }
1500
1501 /* Skip self */
1502 if (obj == opaque) {
1503 return 0;
1504 }
1505
1506 return chassis_nr == new_chassis_nr;
1507 }
1508
1509 static bool bridge_has_valid_chassis_nr(Object *bridge, Error **errp)
1510 {
1511 int chassis_nr =
1512 object_property_get_uint(bridge, "chassis_nr", NULL);
1513
1514 /*
1515 * slotid_cap_init() already ensures that "chassis_nr" isn't null for
1516 * standard PCI bridges, so this really tells if "chassis_nr" is present
1517 * or not.
1518 */
1519 if (!chassis_nr) {
1520 error_setg(errp, "PCI Bridge lacks a \"chassis_nr\" property");
1521 error_append_hint(errp, "Try -device pci-bridge instead.\n");
1522 return false;
1523 }
1524
1525 /* We want unique values for "chassis_nr" */
1526 if (object_child_foreach_recursive(object_get_root(), check_chassis_nr,
1527 bridge)) {
1528 error_setg(errp, "Bridge chassis %d already in use", chassis_nr);
1529 return false;
1530 }
1531
1532 return true;
1533 }
1534
1535 static void spapr_pci_pre_plug(HotplugHandler *plug_handler,
1536 DeviceState *plugged_dev, Error **errp)
1537 {
1538 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1539 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1540 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1541 SpaprDrc *drc = drc_from_dev(phb, pdev);
1542 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1543 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1544
1545 if (!phb->dr_enabled) {
1546 /* if this is a hotplug operation initiated by the user
1547 * we need to let them know it's not enabled
1548 */
1549 if (plugged_dev->hotplugged) {
1550 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1551 object_get_typename(OBJECT(phb)));
1552 return;
1553 }
1554 }
1555
1556 if (pc->is_bridge) {
1557 if (!bridge_has_valid_chassis_nr(OBJECT(plugged_dev), errp)) {
1558 return;
1559 }
1560 }
1561
1562 /* Following the QEMU convention used for PCIe multifunction
1563 * hotplug, we do not allow functions to be hotplugged to a
1564 * slot that already has function 0 present
1565 */
1566 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1567 PCI_FUNC(pdev->devfn) != 0) {
1568 error_setg(errp, "PCI: slot %d function 0 already occupied by %s,"
1569 " additional functions can no longer be exposed to guest.",
1570 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1571 }
1572
1573 if (drc && drc->dev) {
1574 error_setg(errp, "PCI: slot %d already occupied by %s", slotnr,
1575 pci_get_function_0(PCI_DEVICE(drc->dev))->name);
1576 return;
1577 }
1578 }
1579
1580 static void spapr_pci_plug(HotplugHandler *plug_handler,
1581 DeviceState *plugged_dev, Error **errp)
1582 {
1583 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1584 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1585 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1586 SpaprDrc *drc = drc_from_dev(phb, pdev);
1587 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1588
1589 /*
1590 * If DR is disabled we don't need to do anything in the case of
1591 * hotplug or coldplug callbacks.
1592 */
1593 if (!phb->dr_enabled) {
1594 return;
1595 }
1596
1597 g_assert(drc);
1598
1599 if (pc->is_bridge) {
1600 spapr_pci_bridge_plug(phb, PCI_BRIDGE(plugged_dev));
1601 }
1602
1603 /* spapr_pci_pre_plug() already checked the DRC is attachable */
1604 spapr_drc_attach(drc, DEVICE(pdev));
1605
1606 /* If this is function 0, signal hotplug for all the device functions.
1607 * Otherwise defer sending the hotplug event.
1608 */
1609 if (!spapr_drc_hotplugged(plugged_dev)) {
1610 spapr_drc_reset(drc);
1611 } else if (PCI_FUNC(pdev->devfn) == 0) {
1612 int i;
1613 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev));
1614
1615 for (i = 0; i < 8; i++) {
1616 SpaprDrc *func_drc;
1617 SpaprDrcClass *func_drck;
1618 SpaprDREntitySense state;
1619
1620 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1621 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1622 state = func_drck->dr_entity_sense(func_drc);
1623
1624 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1625 spapr_hotplug_req_add_by_index(func_drc);
1626 }
1627 }
1628 }
1629 }
1630
1631 static void spapr_pci_bridge_unplug(SpaprPhbState *phb,
1632 PCIBridge *bridge)
1633 {
1634 PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1635
1636 remove_drcs(phb, bus);
1637 }
1638
1639 static void spapr_pci_unplug(HotplugHandler *plug_handler,
1640 DeviceState *plugged_dev, Error **errp)
1641 {
1642 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1643 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1644
1645 /* some version guests do not wait for completion of a device
1646 * cleanup (generally done asynchronously by the kernel) before
1647 * signaling to QEMU that the device is safe, but instead sleep
1648 * for some 'safe' period of time. unfortunately on a busy host
1649 * this sleep isn't guaranteed to be long enough, resulting in
1650 * bad things like IRQ lines being left asserted during final
1651 * device removal. to deal with this we call reset just prior
1652 * to finalizing the device, which will put the device back into
1653 * an 'idle' state, as the device cleanup code expects.
1654 */
1655 pci_device_reset(PCI_DEVICE(plugged_dev));
1656
1657 if (pc->is_bridge) {
1658 spapr_pci_bridge_unplug(phb, PCI_BRIDGE(plugged_dev));
1659 return;
1660 }
1661
1662 qdev_unrealize(plugged_dev);
1663 }
1664
1665 static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1666 DeviceState *plugged_dev, Error **errp)
1667 {
1668 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1669 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1670 SpaprDrc *drc = drc_from_dev(phb, pdev);
1671
1672 if (!phb->dr_enabled) {
1673 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1674 object_get_typename(OBJECT(phb)));
1675 return;
1676 }
1677
1678 g_assert(drc);
1679 g_assert(drc->dev == plugged_dev);
1680
1681 if (!spapr_drc_unplug_requested(drc)) {
1682 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1683 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1684 SpaprDrc *func_drc;
1685 SpaprDrcClass *func_drck;
1686 SpaprDREntitySense state;
1687 int i;
1688 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev));
1689
1690 if (pc->is_bridge) {
1691 error_setg(errp, "PCI: Hot unplug of PCI bridges not supported");
1692 return;
1693 }
1694 if (object_property_get_uint(OBJECT(pdev), "nvlink2-tgt", NULL)) {
1695 error_setg(errp, "PCI: Cannot unplug NVLink2 devices");
1696 return;
1697 }
1698
1699 /* ensure any other present functions are pending unplug */
1700 if (PCI_FUNC(pdev->devfn) == 0) {
1701 for (i = 1; i < 8; i++) {
1702 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1703 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1704 state = func_drck->dr_entity_sense(func_drc);
1705 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1706 && !spapr_drc_unplug_requested(func_drc)) {
1707 /*
1708 * Attempting to remove function 0 of a multifunction
1709 * device will will cascade into removing all child
1710 * functions, even if their unplug weren't requested
1711 * beforehand.
1712 */
1713 spapr_drc_detach(func_drc);
1714 }
1715 }
1716 }
1717
1718 spapr_drc_detach(drc);
1719
1720 /* if this isn't func 0, defer unplug event. otherwise signal removal
1721 * for all present functions
1722 */
1723 if (PCI_FUNC(pdev->devfn) == 0) {
1724 for (i = 7; i >= 0; i--) {
1725 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1726 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1727 state = func_drck->dr_entity_sense(func_drc);
1728 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1729 spapr_hotplug_req_remove_by_index(func_drc);
1730 }
1731 }
1732 }
1733 }
1734 }
1735
1736 static void spapr_phb_finalizefn(Object *obj)
1737 {
1738 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj);
1739
1740 g_free(sphb->dtbusname);
1741 sphb->dtbusname = NULL;
1742 }
1743
1744 static void spapr_phb_unrealize(DeviceState *dev)
1745 {
1746 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1747 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1748 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1749 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb);
1750 SpaprTceTable *tcet;
1751 int i;
1752 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1753
1754 spapr_phb_nvgpu_free(sphb);
1755
1756 if (sphb->msi) {
1757 g_hash_table_unref(sphb->msi);
1758 sphb->msi = NULL;
1759 }
1760
1761 /*
1762 * Remove IO/MMIO subregions and aliases, rest should get cleaned
1763 * via PHB's unrealize->object_finalize
1764 */
1765 for (i = windows_supported - 1; i >= 0; i--) {
1766 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1767 if (tcet) {
1768 memory_region_del_subregion(&sphb->iommu_root,
1769 spapr_tce_get_iommu(tcet));
1770 }
1771 }
1772
1773 remove_drcs(sphb, phb->bus);
1774
1775 for (i = PCI_NUM_PINS - 1; i >= 0; i--) {
1776 if (sphb->lsi_table[i].irq) {
1777 spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1);
1778 sphb->lsi_table[i].irq = 0;
1779 }
1780 }
1781
1782 QLIST_REMOVE(sphb, list);
1783
1784 memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow);
1785
1786 /*
1787 * An attached PCI device may have memory listeners, eg. VFIO PCI. We have
1788 * unmapped all sections. Remove the listeners now, before destroying the
1789 * address space.
1790 */
1791 address_space_remove_listeners(&sphb->iommu_as);
1792 address_space_destroy(&sphb->iommu_as);
1793
1794 qbus_set_hotplug_handler(BUS(phb->bus), NULL);
1795 pci_unregister_root_bus(phb->bus);
1796
1797 memory_region_del_subregion(get_system_memory(), &sphb->iowindow);
1798 if (sphb->mem64_win_pciaddr != (hwaddr)-1) {
1799 memory_region_del_subregion(get_system_memory(), &sphb->mem64window);
1800 }
1801 memory_region_del_subregion(get_system_memory(), &sphb->mem32window);
1802 }
1803
1804 static void spapr_phb_destroy_msi(gpointer opaque)
1805 {
1806 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1807 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1808 SpaprPciMsi *msi = opaque;
1809
1810 if (!smc->legacy_irq_allocation) {
1811 spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
1812 }
1813 spapr_irq_free(spapr, msi->first_irq, msi->num);
1814 g_free(msi);
1815 }
1816
1817 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1818 {
1819 ERRP_GUARD();
1820 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1821 * tries to add a sPAPR PHB to a non-pseries machine.
1822 */
1823 SpaprMachineState *spapr =
1824 (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(),
1825 TYPE_SPAPR_MACHINE);
1826 SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL;
1827 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1828 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1829 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1830 MachineState *ms = MACHINE(spapr);
1831 char *namebuf;
1832 int i;
1833 PCIBus *bus;
1834 uint64_t msi_window_size = 4096;
1835 SpaprTceTable *tcet;
1836 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1837
1838 if (!spapr) {
1839 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1840 return;
1841 }
1842
1843 assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */
1844
1845 if (sphb->mem64_win_size != 0) {
1846 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1847 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1848 " (max 2 GiB)", sphb->mem_win_size);
1849 return;
1850 }
1851
1852 /* 64-bit window defaults to identity mapping */
1853 sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1854 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1855 /*
1856 * For compatibility with old configuration, if no 64-bit MMIO
1857 * window is specified, but the ordinary (32-bit) memory
1858 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1859 * window, with a 64-bit MMIO window following on immediately
1860 * afterwards
1861 */
1862 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1863 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1864 sphb->mem64_win_pciaddr =
1865 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1866 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1867 }
1868
1869 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1870 SpaprPhbState *s;
1871
1872 error_setg(errp, "PCI host bridges must have unique indexes");
1873 error_append_hint(errp, "The following indexes are already in use:");
1874 QLIST_FOREACH(s, &spapr->phbs, list) {
1875 error_append_hint(errp, " %d", s->index);
1876 }
1877 error_append_hint(errp, "\nTry another value for the index property\n");
1878 return;
1879 }
1880
1881 if (sphb->numa_node != -1 &&
1882 (sphb->numa_node >= MAX_NODES ||
1883 !ms->numa_state->nodes[sphb->numa_node].present)) {
1884 error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1885 return;
1886 }
1887
1888 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1889
1890 /* Initialize memory regions */
1891 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1892 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1893 g_free(namebuf);
1894
1895 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1896 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1897 namebuf, &sphb->memspace,
1898 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1899 g_free(namebuf);
1900 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1901 &sphb->mem32window);
1902
1903 if (sphb->mem64_win_size != 0) {
1904 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1905 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1906 namebuf, &sphb->memspace,
1907 sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1908 g_free(namebuf);
1909
1910 memory_region_add_subregion(get_system_memory(),
1911 sphb->mem64_win_addr,
1912 &sphb->mem64window);
1913 }
1914
1915 /* Initialize IO regions */
1916 namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1917 memory_region_init(&sphb->iospace, OBJECT(sphb),
1918 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1919 g_free(namebuf);
1920
1921 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1922 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1923 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1924 g_free(namebuf);
1925 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1926 &sphb->iowindow);
1927
1928 bus = pci_register_root_bus(dev, NULL,
1929 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb,
1930 &sphb->memspace, &sphb->iospace,
1931 PCI_DEVFN(0, 0), PCI_NUM_PINS,
1932 TYPE_PCI_BUS);
1933
1934 /*
1935 * Despite resembling a vanilla PCI bus in most ways, the PAPR
1936 * para-virtualized PCI bus *does* permit PCI-E extended config
1937 * space access
1938 */
1939 if (sphb->pcie_ecs) {
1940 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1941 }
1942 phb->bus = bus;
1943 qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb));
1944
1945 /*
1946 * Initialize PHB address space.
1947 * By default there will be at least one subregion for default
1948 * 32bit DMA window.
1949 * Later the guest might want to create another DMA window
1950 * which will become another memory subregion.
1951 */
1952 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1953 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1954 namebuf, UINT64_MAX);
1955 g_free(namebuf);
1956 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1957 sphb->dtbusname);
1958
1959 /*
1960 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1961 * we need to allocate some memory to catch those writes coming
1962 * from msi_notify()/msix_notify().
1963 * As MSIMessage:addr is going to be the same and MSIMessage:data
1964 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1965 * be used.
1966 *
1967 * For KVM we want to ensure that this memory is a full page so that
1968 * our memory slot is of page size granularity.
1969 */
1970 if (kvm_enabled()) {
1971 msi_window_size = qemu_real_host_page_size;
1972 }
1973
1974 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1975 "msi", msi_window_size);
1976 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1977 &sphb->msiwindow);
1978
1979 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1980
1981 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1982
1983 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1984
1985 /* Initialize the LSI table */
1986 for (i = 0; i < PCI_NUM_PINS; i++) {
1987 int irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i;
1988
1989 if (smc->legacy_irq_allocation) {
1990 irq = spapr_irq_findone(spapr, errp);
1991 if (irq < 0) {
1992 error_prepend(errp, "can't allocate LSIs: ");
1993 /*
1994 * Older machines will never support PHB hotplug, ie, this is an
1995 * init only path and QEMU will terminate. No need to rollback.
1996 */
1997 return;
1998 }
1999 }
2000
2001 if (spapr_irq_claim(spapr, irq, true, errp) < 0) {
2002 error_prepend(errp, "can't allocate LSIs: ");
2003 goto unrealize;
2004 }
2005
2006 sphb->lsi_table[i].irq = irq;
2007 }
2008
2009 /* allocate connectors for child PCI devices */
2010 add_drcs(sphb, phb->bus);
2011
2012 /* DMA setup */
2013 for (i = 0; i < windows_supported; ++i) {
2014 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
2015 if (!tcet) {
2016 error_setg(errp, "Creating window#%d failed for %s",
2017 i, sphb->dtbusname);
2018 goto unrealize;
2019 }
2020 memory_region_add_subregion(&sphb->iommu_root, 0,
2021 spapr_tce_get_iommu(tcet));
2022 }
2023
2024 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free,
2025 spapr_phb_destroy_msi);
2026 return;
2027
2028 unrealize:
2029 spapr_phb_unrealize(dev);
2030 }
2031
2032 static int spapr_phb_children_reset(Object *child, void *opaque)
2033 {
2034 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
2035
2036 if (dev) {
2037 device_legacy_reset(dev);
2038 }
2039
2040 return 0;
2041 }
2042
2043 void spapr_phb_dma_reset(SpaprPhbState *sphb)
2044 {
2045 int i;
2046 SpaprTceTable *tcet;
2047
2048 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
2049 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
2050
2051 if (tcet && tcet->nb_table) {
2052 spapr_tce_table_disable(tcet);
2053 }
2054 }
2055
2056 /* Register default 32bit DMA window */
2057 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
2058 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
2059 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
2060 }
2061
2062 static void spapr_phb_reset(DeviceState *qdev)
2063 {
2064 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
2065 Error *err = NULL;
2066
2067 spapr_phb_dma_reset(sphb);
2068 spapr_phb_nvgpu_free(sphb);
2069 spapr_phb_nvgpu_setup(sphb, &err);
2070 if (err) {
2071 error_report_err(err);
2072 }
2073
2074 /* Reset the IOMMU state */
2075 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
2076
2077 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
2078 spapr_phb_vfio_reset(qdev);
2079 }
2080
2081 g_hash_table_remove_all(sphb->msi);
2082 }
2083
2084 static Property spapr_phb_properties[] = {
2085 DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1),
2086 DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size,
2087 SPAPR_PCI_MEM32_WIN_SIZE),
2088 DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size,
2089 SPAPR_PCI_MEM64_WIN_SIZE),
2090 DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size,
2091 SPAPR_PCI_IO_WIN_SIZE),
2092 DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled,
2093 true),
2094 /* Default DMA window is 0..1GB */
2095 DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0),
2096 DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000),
2097 DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr,
2098 0x800000000000000ULL),
2099 DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true),
2100 DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask,
2101 (1ULL << 12) | (1ULL << 16)
2102 | (1ULL << 21) | (1ULL << 24)),
2103 DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1),
2104 DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState,
2105 pre_2_8_migration, false),
2106 DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState,
2107 pcie_ecs, true),
2108 DEFINE_PROP_UINT64("gpa", SpaprPhbState, nv2_gpa_win_addr, 0),
2109 DEFINE_PROP_UINT64("atsd", SpaprPhbState, nv2_atsd_win_addr, 0),
2110 DEFINE_PROP_BOOL("pre-5.1-associativity", SpaprPhbState,
2111 pre_5_1_assoc, false),
2112 DEFINE_PROP_END_OF_LIST(),
2113 };
2114
2115 static const VMStateDescription vmstate_spapr_pci_lsi = {
2116 .name = "spapr_pci/lsi",
2117 .version_id = 1,
2118 .minimum_version_id = 1,
2119 .fields = (VMStateField[]) {
2120 VMSTATE_UINT32_EQUAL(irq, SpaprPciLsi, NULL),
2121
2122 VMSTATE_END_OF_LIST()
2123 },
2124 };
2125
2126 static const VMStateDescription vmstate_spapr_pci_msi = {
2127 .name = "spapr_pci/msi",
2128 .version_id = 1,
2129 .minimum_version_id = 1,
2130 .fields = (VMStateField []) {
2131 VMSTATE_UINT32(key, SpaprPciMsiMig),
2132 VMSTATE_UINT32(value.first_irq, SpaprPciMsiMig),
2133 VMSTATE_UINT32(value.num, SpaprPciMsiMig),
2134 VMSTATE_END_OF_LIST()
2135 },
2136 };
2137
2138 static int spapr_pci_pre_save(void *opaque)
2139 {
2140 SpaprPhbState *sphb = opaque;
2141 GHashTableIter iter;
2142 gpointer key, value;
2143 int i;
2144
2145 if (sphb->pre_2_8_migration) {
2146 sphb->mig_liobn = sphb->dma_liobn[0];
2147 sphb->mig_mem_win_addr = sphb->mem_win_addr;
2148 sphb->mig_mem_win_size = sphb->mem_win_size;
2149 sphb->mig_io_win_addr = sphb->io_win_addr;
2150 sphb->mig_io_win_size = sphb->io_win_size;
2151
2152 if ((sphb->mem64_win_size != 0)
2153 && (sphb->mem64_win_addr
2154 == (sphb->mem_win_addr + sphb->mem_win_size))) {
2155 sphb->mig_mem_win_size += sphb->mem64_win_size;
2156 }
2157 }
2158
2159 g_free(sphb->msi_devs);
2160 sphb->msi_devs = NULL;
2161 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
2162 if (!sphb->msi_devs_num) {
2163 return 0;
2164 }
2165 sphb->msi_devs = g_new(SpaprPciMsiMig, sphb->msi_devs_num);
2166
2167 g_hash_table_iter_init(&iter, sphb->msi);
2168 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
2169 sphb->msi_devs[i].key = *(uint32_t *) key;
2170 sphb->msi_devs[i].value = *(SpaprPciMsi *) value;
2171 }
2172
2173 return 0;
2174 }
2175
2176 static int spapr_pci_post_load(void *opaque, int version_id)
2177 {
2178 SpaprPhbState *sphb = opaque;
2179 gpointer key, value;
2180 int i;
2181
2182 for (i = 0; i < sphb->msi_devs_num; ++i) {
2183 key = g_memdup(&sphb->msi_devs[i].key,
2184 sizeof(sphb->msi_devs[i].key));
2185 value = g_memdup(&sphb->msi_devs[i].value,
2186 sizeof(sphb->msi_devs[i].value));
2187 g_hash_table_insert(sphb->msi, key, value);
2188 }
2189 g_free(sphb->msi_devs);
2190 sphb->msi_devs = NULL;
2191 sphb->msi_devs_num = 0;
2192
2193 return 0;
2194 }
2195
2196 static bool pre_2_8_migration(void *opaque, int version_id)
2197 {
2198 SpaprPhbState *sphb = opaque;
2199
2200 return sphb->pre_2_8_migration;
2201 }
2202
2203 static const VMStateDescription vmstate_spapr_pci = {
2204 .name = "spapr_pci",
2205 .version_id = 2,
2206 .minimum_version_id = 2,
2207 .pre_save = spapr_pci_pre_save,
2208 .post_load = spapr_pci_post_load,
2209 .fields = (VMStateField[]) {
2210 VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL),
2211 VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration),
2212 VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration),
2213 VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration),
2214 VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration),
2215 VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration),
2216 VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0,
2217 vmstate_spapr_pci_lsi, SpaprPciLsi),
2218 VMSTATE_INT32(msi_devs_num, SpaprPhbState),
2219 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0,
2220 vmstate_spapr_pci_msi, SpaprPciMsiMig),
2221 VMSTATE_END_OF_LIST()
2222 },
2223 };
2224
2225 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
2226 PCIBus *rootbus)
2227 {
2228 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
2229
2230 return sphb->dtbusname;
2231 }
2232
2233 static void spapr_phb_class_init(ObjectClass *klass, void *data)
2234 {
2235 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
2236 DeviceClass *dc = DEVICE_CLASS(klass);
2237 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
2238
2239 hc->root_bus_path = spapr_phb_root_bus_path;
2240 dc->realize = spapr_phb_realize;
2241 dc->unrealize = spapr_phb_unrealize;
2242 device_class_set_props(dc, spapr_phb_properties);
2243 dc->reset = spapr_phb_reset;
2244 dc->vmsd = &vmstate_spapr_pci;
2245 /* Supported by TYPE_SPAPR_MACHINE */
2246 dc->user_creatable = true;
2247 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
2248 hp->pre_plug = spapr_pci_pre_plug;
2249 hp->plug = spapr_pci_plug;
2250 hp->unplug = spapr_pci_unplug;
2251 hp->unplug_request = spapr_pci_unplug_request;
2252 }
2253
2254 static const TypeInfo spapr_phb_info = {
2255 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
2256 .parent = TYPE_PCI_HOST_BRIDGE,
2257 .instance_size = sizeof(SpaprPhbState),
2258 .instance_finalize = spapr_phb_finalizefn,
2259 .class_init = spapr_phb_class_init,
2260 .interfaces = (InterfaceInfo[]) {
2261 { TYPE_HOTPLUG_HANDLER },
2262 { }
2263 }
2264 };
2265
2266 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2267 void *opaque)
2268 {
2269 unsigned int *bus_no = opaque;
2270 PCIBus *sec_bus = NULL;
2271
2272 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2273 PCI_HEADER_TYPE_BRIDGE)) {
2274 return;
2275 }
2276
2277 (*bus_no)++;
2278 pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1);
2279 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2280 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2281
2282 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2283 if (!sec_bus) {
2284 return;
2285 }
2286
2287 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2288 spapr_phb_pci_enumerate_bridge, bus_no);
2289 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2290 }
2291
2292 static void spapr_phb_pci_enumerate(SpaprPhbState *phb)
2293 {
2294 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2295 unsigned int bus_no = 0;
2296
2297 pci_for_each_device(bus, pci_bus_num(bus),
2298 spapr_phb_pci_enumerate_bridge,
2299 &bus_no);
2300
2301 }
2302
2303 int spapr_dt_phb(SpaprMachineState *spapr, SpaprPhbState *phb,
2304 uint32_t intc_phandle, void *fdt, int *node_offset)
2305 {
2306 int bus_off, i, j, ret;
2307 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2308 struct {
2309 uint32_t hi;
2310 uint64_t child;
2311 uint64_t parent;
2312 uint64_t size;
2313 } QEMU_PACKED ranges[] = {
2314 {
2315 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2316 cpu_to_be64(phb->io_win_addr),
2317 cpu_to_be64(memory_region_size(&phb->iospace)),
2318 },
2319 {
2320 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2321 cpu_to_be64(phb->mem_win_addr),
2322 cpu_to_be64(phb->mem_win_size),
2323 },
2324 {
2325 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2326 cpu_to_be64(phb->mem64_win_addr),
2327 cpu_to_be64(phb->mem64_win_size),
2328 },
2329 };
2330 const unsigned sizeof_ranges =
2331 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2332 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2333 uint32_t interrupt_map_mask[] = {
2334 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2335 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2336 uint32_t ddw_applicable[] = {
2337 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2338 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2339 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2340 };
2341 uint32_t ddw_extensions[] = {
2342 cpu_to_be32(1),
2343 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2344 };
2345 SpaprTceTable *tcet;
2346 SpaprDrc *drc;
2347 Error *err = NULL;
2348
2349 /* Start populating the FDT */
2350 _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname));
2351 if (node_offset) {
2352 *node_offset = bus_off;
2353 }
2354
2355 /* Write PHB properties */
2356 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2357 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2358 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2359 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2360 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2361 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2362 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2363 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2364 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi",
2365 spapr_irq_nr_msis(spapr)));
2366
2367 /* Dynamic DMA window */
2368 if (phb->ddw_enabled) {
2369 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2370 sizeof(ddw_applicable)));
2371 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2372 &ddw_extensions, sizeof(ddw_extensions)));
2373 }
2374
2375 /* Advertise NUMA via ibm,associativity */
2376 if (phb->numa_node != -1) {
2377 spapr_numa_write_associativity_dt(spapr, fdt, bus_off, phb->numa_node);
2378 }
2379
2380 /* Build the interrupt-map, this must matches what is done
2381 * in pci_swizzle_map_irq_fn
2382 */
2383 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2384 &interrupt_map_mask, sizeof(interrupt_map_mask)));
2385 for (i = 0; i < PCI_SLOT_MAX; i++) {
2386 for (j = 0; j < PCI_NUM_PINS; j++) {
2387 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2388 int lsi_num = pci_swizzle(i, j);
2389
2390 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2391 irqmap[1] = 0;
2392 irqmap[2] = 0;
2393 irqmap[3] = cpu_to_be32(j+1);
2394 irqmap[4] = cpu_to_be32(intc_phandle);
2395 spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2396 }
2397 }
2398 /* Write interrupt map */
2399 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2400 sizeof(interrupt_map)));
2401
2402 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2403 if (!tcet) {
2404 return -1;
2405 }
2406 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2407 tcet->liobn, tcet->bus_offset,
2408 tcet->nb_table << tcet->page_shift);
2409
2410 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index);
2411 if (drc) {
2412 uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc));
2413
2414 _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index,
2415 sizeof(drc_index)));
2416 }
2417
2418 /* Walk the bridges and program the bus numbers*/
2419 spapr_phb_pci_enumerate(phb);
2420 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2421
2422 /* Walk the bridge and subordinate buses */
2423 ret = spapr_dt_pci_bus(phb, PCI_HOST_BRIDGE(phb)->bus, fdt, bus_off);
2424 if (ret < 0) {
2425 return ret;
2426 }
2427
2428 spapr_phb_nvgpu_populate_dt(phb, fdt, bus_off, &err);
2429 if (err) {
2430 error_report_err(err);
2431 }
2432 spapr_phb_nvgpu_ram_populate_dt(phb, fdt);
2433
2434 return 0;
2435 }
2436
2437 void spapr_pci_rtas_init(void)
2438 {
2439 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2440 rtas_read_pci_config);
2441 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2442 rtas_write_pci_config);
2443 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2444 rtas_ibm_read_pci_config);
2445 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2446 rtas_ibm_write_pci_config);
2447 if (msi_nonbroken) {
2448 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2449 "ibm,query-interrupt-source-number",
2450 rtas_ibm_query_interrupt_source_number);
2451 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2452 rtas_ibm_change_msi);
2453 }
2454
2455 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2456 "ibm,set-eeh-option",
2457 rtas_ibm_set_eeh_option);
2458 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2459 "ibm,get-config-addr-info2",
2460 rtas_ibm_get_config_addr_info2);
2461 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2462 "ibm,read-slot-reset-state2",
2463 rtas_ibm_read_slot_reset_state2);
2464 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2465 "ibm,set-slot-reset",
2466 rtas_ibm_set_slot_reset);
2467 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2468 "ibm,configure-pe",
2469 rtas_ibm_configure_pe);
2470 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2471 "ibm,slot-error-detail",
2472 rtas_ibm_slot_error_detail);
2473 }
2474
2475 static void spapr_pci_register_types(void)
2476 {
2477 type_register_static(&spapr_phb_info);
2478 }
2479
2480 type_init(spapr_pci_register_types)
2481
2482 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2483 {
2484 bool be = *(bool *)opaque;
2485
2486 if (object_dynamic_cast(OBJECT(dev), "VGA")
2487 || object_dynamic_cast(OBJECT(dev), "secondary-vga")
2488 || object_dynamic_cast(OBJECT(dev), "bochs-display")
2489 || object_dynamic_cast(OBJECT(dev), "virtio-vga")) {
2490 object_property_set_bool(OBJECT(dev), "big-endian-framebuffer", be,
2491 &error_abort);
2492 }
2493 return 0;
2494 }
2495
2496 void spapr_pci_switch_vga(SpaprMachineState *spapr, bool big_endian)
2497 {
2498 SpaprPhbState *sphb;
2499
2500 /*
2501 * For backward compatibility with existing guests, we switch
2502 * the endianness of the VGA controller when changing the guest
2503 * interrupt mode
2504 */
2505 QLIST_FOREACH(sphb, &spapr->phbs, list) {
2506 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2507 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2508 &big_endian);
2509 }
2510 }