]> git.proxmox.com Git - mirror_qemu.git/blob - hw/pxa2xx.c
4ec904ff2093bfe1fbd958315e4e6fb0ac409e1e
[mirror_qemu.git] / hw / pxa2xx.c
1 /*
2 * Intel XScale PXA255/270 processor support.
3 *
4 * Copyright (c) 2006 Openedhand Ltd.
5 * Written by Andrzej Zaborowski <balrog@zabor.org>
6 *
7 * This code is licensed under the GPL.
8 */
9
10 #include "sysbus.h"
11 #include "pxa.h"
12 #include "sysemu.h"
13 #include "serial.h"
14 #include "i2c.h"
15 #include "ssi.h"
16 #include "qemu-char.h"
17 #include "blockdev.h"
18
19 static struct {
20 target_phys_addr_t io_base;
21 int irqn;
22 } pxa255_serial[] = {
23 { 0x40100000, PXA2XX_PIC_FFUART },
24 { 0x40200000, PXA2XX_PIC_BTUART },
25 { 0x40700000, PXA2XX_PIC_STUART },
26 { 0x41600000, PXA25X_PIC_HWUART },
27 { 0, 0 }
28 }, pxa270_serial[] = {
29 { 0x40100000, PXA2XX_PIC_FFUART },
30 { 0x40200000, PXA2XX_PIC_BTUART },
31 { 0x40700000, PXA2XX_PIC_STUART },
32 { 0, 0 }
33 };
34
35 typedef struct PXASSPDef {
36 target_phys_addr_t io_base;
37 int irqn;
38 } PXASSPDef;
39
40 #if 0
41 static PXASSPDef pxa250_ssp[] = {
42 { 0x41000000, PXA2XX_PIC_SSP },
43 { 0, 0 }
44 };
45 #endif
46
47 static PXASSPDef pxa255_ssp[] = {
48 { 0x41000000, PXA2XX_PIC_SSP },
49 { 0x41400000, PXA25X_PIC_NSSP },
50 { 0, 0 }
51 };
52
53 #if 0
54 static PXASSPDef pxa26x_ssp[] = {
55 { 0x41000000, PXA2XX_PIC_SSP },
56 { 0x41400000, PXA25X_PIC_NSSP },
57 { 0x41500000, PXA26X_PIC_ASSP },
58 { 0, 0 }
59 };
60 #endif
61
62 static PXASSPDef pxa27x_ssp[] = {
63 { 0x41000000, PXA2XX_PIC_SSP },
64 { 0x41700000, PXA27X_PIC_SSP2 },
65 { 0x41900000, PXA2XX_PIC_SSP3 },
66 { 0, 0 }
67 };
68
69 #define PMCR 0x00 /* Power Manager Control register */
70 #define PSSR 0x04 /* Power Manager Sleep Status register */
71 #define PSPR 0x08 /* Power Manager Scratch-Pad register */
72 #define PWER 0x0c /* Power Manager Wake-Up Enable register */
73 #define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
74 #define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
75 #define PEDR 0x18 /* Power Manager Edge-Detect Status register */
76 #define PCFR 0x1c /* Power Manager General Configuration register */
77 #define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
78 #define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
79 #define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
80 #define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
81 #define RCSR 0x30 /* Reset Controller Status register */
82 #define PSLR 0x34 /* Power Manager Sleep Configuration register */
83 #define PTSR 0x38 /* Power Manager Standby Configuration register */
84 #define PVCR 0x40 /* Power Manager Voltage Change Control register */
85 #define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
86 #define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
87 #define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
88 #define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
89 #define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
90
91 static uint64_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr,
92 unsigned size)
93 {
94 PXA2xxState *s = (PXA2xxState *) opaque;
95
96 switch (addr) {
97 case PMCR ... PCMD31:
98 if (addr & 3)
99 goto fail;
100
101 return s->pm_regs[addr >> 2];
102 default:
103 fail:
104 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
105 break;
106 }
107 return 0;
108 }
109
110 static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
111 uint64_t value, unsigned size)
112 {
113 PXA2xxState *s = (PXA2xxState *) opaque;
114
115 switch (addr) {
116 case PMCR:
117 /* Clear the write-one-to-clear bits... */
118 s->pm_regs[addr >> 2] &= ~(value & 0x2a);
119 /* ...and set the plain r/w bits */
120 s->pm_regs[addr >> 2] &= ~0x15;
121 s->pm_regs[addr >> 2] |= value & 0x15;
122 break;
123
124 case PSSR: /* Read-clean registers */
125 case RCSR:
126 case PKSR:
127 s->pm_regs[addr >> 2] &= ~value;
128 break;
129
130 default: /* Read-write registers */
131 if (!(addr & 3)) {
132 s->pm_regs[addr >> 2] = value;
133 break;
134 }
135
136 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
137 break;
138 }
139 }
140
141 static const MemoryRegionOps pxa2xx_pm_ops = {
142 .read = pxa2xx_pm_read,
143 .write = pxa2xx_pm_write,
144 .endianness = DEVICE_NATIVE_ENDIAN,
145 };
146
147 static const VMStateDescription vmstate_pxa2xx_pm = {
148 .name = "pxa2xx_pm",
149 .version_id = 0,
150 .minimum_version_id = 0,
151 .minimum_version_id_old = 0,
152 .fields = (VMStateField[]) {
153 VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
154 VMSTATE_END_OF_LIST()
155 }
156 };
157
158 #define CCCR 0x00 /* Core Clock Configuration register */
159 #define CKEN 0x04 /* Clock Enable register */
160 #define OSCC 0x08 /* Oscillator Configuration register */
161 #define CCSR 0x0c /* Core Clock Status register */
162
163 static uint64_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr,
164 unsigned size)
165 {
166 PXA2xxState *s = (PXA2xxState *) opaque;
167
168 switch (addr) {
169 case CCCR:
170 case CKEN:
171 case OSCC:
172 return s->cm_regs[addr >> 2];
173
174 case CCSR:
175 return s->cm_regs[CCCR >> 2] | (3 << 28);
176
177 default:
178 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
179 break;
180 }
181 return 0;
182 }
183
184 static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
185 uint64_t value, unsigned size)
186 {
187 PXA2xxState *s = (PXA2xxState *) opaque;
188
189 switch (addr) {
190 case CCCR:
191 case CKEN:
192 s->cm_regs[addr >> 2] = value;
193 break;
194
195 case OSCC:
196 s->cm_regs[addr >> 2] &= ~0x6c;
197 s->cm_regs[addr >> 2] |= value & 0x6e;
198 if ((value >> 1) & 1) /* OON */
199 s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */
200 break;
201
202 default:
203 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
204 break;
205 }
206 }
207
208 static const MemoryRegionOps pxa2xx_cm_ops = {
209 .read = pxa2xx_cm_read,
210 .write = pxa2xx_cm_write,
211 .endianness = DEVICE_NATIVE_ENDIAN,
212 };
213
214 static const VMStateDescription vmstate_pxa2xx_cm = {
215 .name = "pxa2xx_cm",
216 .version_id = 0,
217 .minimum_version_id = 0,
218 .minimum_version_id_old = 0,
219 .fields = (VMStateField[]) {
220 VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
221 VMSTATE_UINT32(clkcfg, PXA2xxState),
222 VMSTATE_UINT32(pmnc, PXA2xxState),
223 VMSTATE_END_OF_LIST()
224 }
225 };
226
227 static int pxa2xx_clkcfg_read(CPUARMState *env, const ARMCPRegInfo *ri,
228 uint64_t *value)
229 {
230 PXA2xxState *s = (PXA2xxState *)ri->opaque;
231 *value = s->clkcfg;
232 return 0;
233 }
234
235 static int pxa2xx_clkcfg_write(CPUARMState *env, const ARMCPRegInfo *ri,
236 uint64_t value)
237 {
238 PXA2xxState *s = (PXA2xxState *)ri->opaque;
239 s->clkcfg = value & 0xf;
240 if (value & 2) {
241 printf("%s: CPU frequency change attempt\n", __func__);
242 }
243 return 0;
244 }
245
246 static int pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri,
247 uint64_t value)
248 {
249 PXA2xxState *s = (PXA2xxState *)ri->opaque;
250 static const char *pwrmode[8] = {
251 "Normal", "Idle", "Deep-idle", "Standby",
252 "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
253 };
254
255 if (value & 8) {
256 printf("%s: CPU voltage change attempt\n", __func__);
257 }
258 switch (value & 7) {
259 case 0:
260 /* Do nothing */
261 break;
262
263 case 1:
264 /* Idle */
265 if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
266 cpu_interrupt(&s->cpu->env, CPU_INTERRUPT_HALT);
267 break;
268 }
269 /* Fall through. */
270
271 case 2:
272 /* Deep-Idle */
273 cpu_interrupt(&s->cpu->env, CPU_INTERRUPT_HALT);
274 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
275 goto message;
276
277 case 3:
278 s->cpu->env.uncached_cpsr =
279 ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
280 s->cpu->env.cp15.c1_sys = 0;
281 s->cpu->env.cp15.c1_coproc = 0;
282 s->cpu->env.cp15.c2_base0 = 0;
283 s->cpu->env.cp15.c3 = 0;
284 s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
285 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
286
287 /*
288 * The scratch-pad register is almost universally used
289 * for storing the return address on suspend. For the
290 * lack of a resuming bootloader, perform a jump
291 * directly to that address.
292 */
293 memset(s->cpu->env.regs, 0, 4 * 15);
294 s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2];
295
296 #if 0
297 buffer = 0xe59ff000; /* ldr pc, [pc, #0] */
298 cpu_physical_memory_write(0, &buffer, 4);
299 buffer = s->pm_regs[PSPR >> 2];
300 cpu_physical_memory_write(8, &buffer, 4);
301 #endif
302
303 /* Suspend */
304 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
305
306 goto message;
307
308 default:
309 message:
310 printf("%s: machine entered %s mode\n", __func__,
311 pwrmode[value & 7]);
312 }
313
314 return 0;
315 }
316
317 static int pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri,
318 uint64_t *value)
319 {
320 PXA2xxState *s = (PXA2xxState *)ri->opaque;
321 *value = s->pmnc;
322 return 0;
323 }
324
325 static int pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri,
326 uint64_t value)
327 {
328 PXA2xxState *s = (PXA2xxState *)ri->opaque;
329 s->pmnc = value;
330 return 0;
331 }
332
333 static int pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
334 uint64_t *value)
335 {
336 PXA2xxState *s = (PXA2xxState *)ri->opaque;
337 if (s->pmnc & 1) {
338 *value = qemu_get_clock_ns(vm_clock);
339 } else {
340 *value = 0;
341 }
342 return 0;
343 }
344
345 static const ARMCPRegInfo pxa_cp_reginfo[] = {
346 /* cp14 crn==1: perf registers */
347 { .name = "CPPMNC", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
348 .access = PL1_RW,
349 .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write },
350 { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
351 .access = PL1_RW,
352 .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore },
353 { .name = "CPINTEN", .cp = 14, .crn = 1, .crm = 4, .opc1 = 0, .opc2 = 0,
354 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
355 { .name = "CPFLAG", .cp = 14, .crn = 1, .crm = 5, .opc1 = 0, .opc2 = 0,
356 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
357 { .name = "CPEVTSEL", .cp = 14, .crn = 1, .crm = 8, .opc1 = 0, .opc2 = 0,
358 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
359 /* cp14 crn==2: performance count registers */
360 { .name = "CPPMN0", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
361 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
362 { .name = "CPPMN1", .cp = 14, .crn = 2, .crm = 1, .opc1 = 0, .opc2 = 0,
363 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
364 { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0,
365 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
366 { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0,
367 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
368 /* cp14 crn==6: CLKCFG */
369 { .name = "CLKCFG", .cp = 14, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
370 .access = PL1_RW,
371 .readfn = pxa2xx_clkcfg_read, .writefn = pxa2xx_clkcfg_write },
372 /* cp14 crn==7: PWRMODE */
373 { .name = "PWRMODE", .cp = 14, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 0,
374 .access = PL1_RW,
375 .readfn = arm_cp_read_zero, .writefn = pxa2xx_pwrmode_write },
376 REGINFO_SENTINEL
377 };
378
379 static void pxa2xx_setup_cp14(PXA2xxState *s)
380 {
381 define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s);
382 }
383
384 #define MDCNFG 0x00 /* SDRAM Configuration register */
385 #define MDREFR 0x04 /* SDRAM Refresh Control register */
386 #define MSC0 0x08 /* Static Memory Control register 0 */
387 #define MSC1 0x0c /* Static Memory Control register 1 */
388 #define MSC2 0x10 /* Static Memory Control register 2 */
389 #define MECR 0x14 /* Expansion Memory Bus Config register */
390 #define SXCNFG 0x1c /* Synchronous Static Memory Config register */
391 #define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
392 #define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
393 #define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
394 #define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
395 #define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
396 #define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
397 #define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
398 #define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
399 #define ARB_CNTL 0x48 /* Arbiter Control register */
400 #define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
401 #define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
402 #define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
403 #define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
404 #define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
405 #define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
406 #define SA1110 0x64 /* SA-1110 Memory Compatibility register */
407
408 static uint64_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr,
409 unsigned size)
410 {
411 PXA2xxState *s = (PXA2xxState *) opaque;
412
413 switch (addr) {
414 case MDCNFG ... SA1110:
415 if ((addr & 3) == 0)
416 return s->mm_regs[addr >> 2];
417
418 default:
419 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
420 break;
421 }
422 return 0;
423 }
424
425 static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
426 uint64_t value, unsigned size)
427 {
428 PXA2xxState *s = (PXA2xxState *) opaque;
429
430 switch (addr) {
431 case MDCNFG ... SA1110:
432 if ((addr & 3) == 0) {
433 s->mm_regs[addr >> 2] = value;
434 break;
435 }
436
437 default:
438 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
439 break;
440 }
441 }
442
443 static const MemoryRegionOps pxa2xx_mm_ops = {
444 .read = pxa2xx_mm_read,
445 .write = pxa2xx_mm_write,
446 .endianness = DEVICE_NATIVE_ENDIAN,
447 };
448
449 static const VMStateDescription vmstate_pxa2xx_mm = {
450 .name = "pxa2xx_mm",
451 .version_id = 0,
452 .minimum_version_id = 0,
453 .minimum_version_id_old = 0,
454 .fields = (VMStateField[]) {
455 VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
456 VMSTATE_END_OF_LIST()
457 }
458 };
459
460 /* Synchronous Serial Ports */
461 typedef struct {
462 SysBusDevice busdev;
463 MemoryRegion iomem;
464 qemu_irq irq;
465 int enable;
466 SSIBus *bus;
467
468 uint32_t sscr[2];
469 uint32_t sspsp;
470 uint32_t ssto;
471 uint32_t ssitr;
472 uint32_t sssr;
473 uint8_t sstsa;
474 uint8_t ssrsa;
475 uint8_t ssacd;
476
477 uint32_t rx_fifo[16];
478 int rx_level;
479 int rx_start;
480 } PXA2xxSSPState;
481
482 #define SSCR0 0x00 /* SSP Control register 0 */
483 #define SSCR1 0x04 /* SSP Control register 1 */
484 #define SSSR 0x08 /* SSP Status register */
485 #define SSITR 0x0c /* SSP Interrupt Test register */
486 #define SSDR 0x10 /* SSP Data register */
487 #define SSTO 0x28 /* SSP Time-Out register */
488 #define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
489 #define SSTSA 0x30 /* SSP TX Time Slot Active register */
490 #define SSRSA 0x34 /* SSP RX Time Slot Active register */
491 #define SSTSS 0x38 /* SSP Time Slot Status register */
492 #define SSACD 0x3c /* SSP Audio Clock Divider register */
493
494 /* Bitfields for above registers */
495 #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
496 #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
497 #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
498 #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
499 #define SSCR0_SSE (1 << 7)
500 #define SSCR0_RIM (1 << 22)
501 #define SSCR0_TIM (1 << 23)
502 #define SSCR0_MOD (1 << 31)
503 #define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
504 #define SSCR1_RIE (1 << 0)
505 #define SSCR1_TIE (1 << 1)
506 #define SSCR1_LBM (1 << 2)
507 #define SSCR1_MWDS (1 << 5)
508 #define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
509 #define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
510 #define SSCR1_EFWR (1 << 14)
511 #define SSCR1_PINTE (1 << 18)
512 #define SSCR1_TINTE (1 << 19)
513 #define SSCR1_RSRE (1 << 20)
514 #define SSCR1_TSRE (1 << 21)
515 #define SSCR1_EBCEI (1 << 29)
516 #define SSITR_INT (7 << 5)
517 #define SSSR_TNF (1 << 2)
518 #define SSSR_RNE (1 << 3)
519 #define SSSR_TFS (1 << 5)
520 #define SSSR_RFS (1 << 6)
521 #define SSSR_ROR (1 << 7)
522 #define SSSR_PINT (1 << 18)
523 #define SSSR_TINT (1 << 19)
524 #define SSSR_EOC (1 << 20)
525 #define SSSR_TUR (1 << 21)
526 #define SSSR_BCE (1 << 23)
527 #define SSSR_RW 0x00bc0080
528
529 static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
530 {
531 int level = 0;
532
533 level |= s->ssitr & SSITR_INT;
534 level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI);
535 level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM);
536 level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT));
537 level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE);
538 level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE);
539 level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM);
540 level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
541 level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
542 qemu_set_irq(s->irq, !!level);
543 }
544
545 static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
546 {
547 s->sssr &= ~(0xf << 12); /* Clear RFL */
548 s->sssr &= ~(0xf << 8); /* Clear TFL */
549 s->sssr &= ~SSSR_TFS;
550 s->sssr &= ~SSSR_TNF;
551 if (s->enable) {
552 s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
553 if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
554 s->sssr |= SSSR_RFS;
555 else
556 s->sssr &= ~SSSR_RFS;
557 if (s->rx_level)
558 s->sssr |= SSSR_RNE;
559 else
560 s->sssr &= ~SSSR_RNE;
561 /* TX FIFO is never filled, so it is always in underrun
562 condition if SSP is enabled */
563 s->sssr |= SSSR_TFS;
564 s->sssr |= SSSR_TNF;
565 }
566
567 pxa2xx_ssp_int_update(s);
568 }
569
570 static uint64_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr,
571 unsigned size)
572 {
573 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
574 uint32_t retval;
575
576 switch (addr) {
577 case SSCR0:
578 return s->sscr[0];
579 case SSCR1:
580 return s->sscr[1];
581 case SSPSP:
582 return s->sspsp;
583 case SSTO:
584 return s->ssto;
585 case SSITR:
586 return s->ssitr;
587 case SSSR:
588 return s->sssr | s->ssitr;
589 case SSDR:
590 if (!s->enable)
591 return 0xffffffff;
592 if (s->rx_level < 1) {
593 printf("%s: SSP Rx Underrun\n", __FUNCTION__);
594 return 0xffffffff;
595 }
596 s->rx_level --;
597 retval = s->rx_fifo[s->rx_start ++];
598 s->rx_start &= 0xf;
599 pxa2xx_ssp_fifo_update(s);
600 return retval;
601 case SSTSA:
602 return s->sstsa;
603 case SSRSA:
604 return s->ssrsa;
605 case SSTSS:
606 return 0;
607 case SSACD:
608 return s->ssacd;
609 default:
610 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
611 break;
612 }
613 return 0;
614 }
615
616 static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
617 uint64_t value64, unsigned size)
618 {
619 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
620 uint32_t value = value64;
621
622 switch (addr) {
623 case SSCR0:
624 s->sscr[0] = value & 0xc7ffffff;
625 s->enable = value & SSCR0_SSE;
626 if (value & SSCR0_MOD)
627 printf("%s: Attempt to use network mode\n", __FUNCTION__);
628 if (s->enable && SSCR0_DSS(value) < 4)
629 printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
630 SSCR0_DSS(value));
631 if (!(value & SSCR0_SSE)) {
632 s->sssr = 0;
633 s->ssitr = 0;
634 s->rx_level = 0;
635 }
636 pxa2xx_ssp_fifo_update(s);
637 break;
638
639 case SSCR1:
640 s->sscr[1] = value;
641 if (value & (SSCR1_LBM | SSCR1_EFWR))
642 printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
643 pxa2xx_ssp_fifo_update(s);
644 break;
645
646 case SSPSP:
647 s->sspsp = value;
648 break;
649
650 case SSTO:
651 s->ssto = value;
652 break;
653
654 case SSITR:
655 s->ssitr = value & SSITR_INT;
656 pxa2xx_ssp_int_update(s);
657 break;
658
659 case SSSR:
660 s->sssr &= ~(value & SSSR_RW);
661 pxa2xx_ssp_int_update(s);
662 break;
663
664 case SSDR:
665 if (SSCR0_UWIRE(s->sscr[0])) {
666 if (s->sscr[1] & SSCR1_MWDS)
667 value &= 0xffff;
668 else
669 value &= 0xff;
670 } else
671 /* Note how 32bits overflow does no harm here */
672 value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
673
674 /* Data goes from here to the Tx FIFO and is shifted out from
675 * there directly to the slave, no need to buffer it.
676 */
677 if (s->enable) {
678 uint32_t readval;
679 readval = ssi_transfer(s->bus, value);
680 if (s->rx_level < 0x10) {
681 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
682 } else {
683 s->sssr |= SSSR_ROR;
684 }
685 }
686 pxa2xx_ssp_fifo_update(s);
687 break;
688
689 case SSTSA:
690 s->sstsa = value;
691 break;
692
693 case SSRSA:
694 s->ssrsa = value;
695 break;
696
697 case SSACD:
698 s->ssacd = value;
699 break;
700
701 default:
702 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
703 break;
704 }
705 }
706
707 static const MemoryRegionOps pxa2xx_ssp_ops = {
708 .read = pxa2xx_ssp_read,
709 .write = pxa2xx_ssp_write,
710 .endianness = DEVICE_NATIVE_ENDIAN,
711 };
712
713 static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
714 {
715 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
716 int i;
717
718 qemu_put_be32(f, s->enable);
719
720 qemu_put_be32s(f, &s->sscr[0]);
721 qemu_put_be32s(f, &s->sscr[1]);
722 qemu_put_be32s(f, &s->sspsp);
723 qemu_put_be32s(f, &s->ssto);
724 qemu_put_be32s(f, &s->ssitr);
725 qemu_put_be32s(f, &s->sssr);
726 qemu_put_8s(f, &s->sstsa);
727 qemu_put_8s(f, &s->ssrsa);
728 qemu_put_8s(f, &s->ssacd);
729
730 qemu_put_byte(f, s->rx_level);
731 for (i = 0; i < s->rx_level; i ++)
732 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
733 }
734
735 static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
736 {
737 PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
738 int i;
739
740 s->enable = qemu_get_be32(f);
741
742 qemu_get_be32s(f, &s->sscr[0]);
743 qemu_get_be32s(f, &s->sscr[1]);
744 qemu_get_be32s(f, &s->sspsp);
745 qemu_get_be32s(f, &s->ssto);
746 qemu_get_be32s(f, &s->ssitr);
747 qemu_get_be32s(f, &s->sssr);
748 qemu_get_8s(f, &s->sstsa);
749 qemu_get_8s(f, &s->ssrsa);
750 qemu_get_8s(f, &s->ssacd);
751
752 s->rx_level = qemu_get_byte(f);
753 s->rx_start = 0;
754 for (i = 0; i < s->rx_level; i ++)
755 s->rx_fifo[i] = qemu_get_byte(f);
756
757 return 0;
758 }
759
760 static int pxa2xx_ssp_init(SysBusDevice *dev)
761 {
762 PXA2xxSSPState *s = FROM_SYSBUS(PXA2xxSSPState, dev);
763
764 sysbus_init_irq(dev, &s->irq);
765
766 memory_region_init_io(&s->iomem, &pxa2xx_ssp_ops, s, "pxa2xx-ssp", 0x1000);
767 sysbus_init_mmio(dev, &s->iomem);
768 register_savevm(&dev->qdev, "pxa2xx_ssp", -1, 0,
769 pxa2xx_ssp_save, pxa2xx_ssp_load, s);
770
771 s->bus = ssi_create_bus(&dev->qdev, "ssi");
772 return 0;
773 }
774
775 /* Real-Time Clock */
776 #define RCNR 0x00 /* RTC Counter register */
777 #define RTAR 0x04 /* RTC Alarm register */
778 #define RTSR 0x08 /* RTC Status register */
779 #define RTTR 0x0c /* RTC Timer Trim register */
780 #define RDCR 0x10 /* RTC Day Counter register */
781 #define RYCR 0x14 /* RTC Year Counter register */
782 #define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
783 #define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
784 #define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
785 #define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
786 #define SWCR 0x28 /* RTC Stopwatch Counter register */
787 #define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
788 #define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
789 #define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
790 #define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
791
792 typedef struct {
793 SysBusDevice busdev;
794 MemoryRegion iomem;
795 uint32_t rttr;
796 uint32_t rtsr;
797 uint32_t rtar;
798 uint32_t rdar1;
799 uint32_t rdar2;
800 uint32_t ryar1;
801 uint32_t ryar2;
802 uint32_t swar1;
803 uint32_t swar2;
804 uint32_t piar;
805 uint32_t last_rcnr;
806 uint32_t last_rdcr;
807 uint32_t last_rycr;
808 uint32_t last_swcr;
809 uint32_t last_rtcpicr;
810 int64_t last_hz;
811 int64_t last_sw;
812 int64_t last_pi;
813 QEMUTimer *rtc_hz;
814 QEMUTimer *rtc_rdal1;
815 QEMUTimer *rtc_rdal2;
816 QEMUTimer *rtc_swal1;
817 QEMUTimer *rtc_swal2;
818 QEMUTimer *rtc_pi;
819 qemu_irq rtc_irq;
820 } PXA2xxRTCState;
821
822 static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
823 {
824 qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
825 }
826
827 static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
828 {
829 int64_t rt = qemu_get_clock_ms(rtc_clock);
830 s->last_rcnr += ((rt - s->last_hz) << 15) /
831 (1000 * ((s->rttr & 0xffff) + 1));
832 s->last_rdcr += ((rt - s->last_hz) << 15) /
833 (1000 * ((s->rttr & 0xffff) + 1));
834 s->last_hz = rt;
835 }
836
837 static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
838 {
839 int64_t rt = qemu_get_clock_ms(rtc_clock);
840 if (s->rtsr & (1 << 12))
841 s->last_swcr += (rt - s->last_sw) / 10;
842 s->last_sw = rt;
843 }
844
845 static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
846 {
847 int64_t rt = qemu_get_clock_ms(rtc_clock);
848 if (s->rtsr & (1 << 15))
849 s->last_swcr += rt - s->last_pi;
850 s->last_pi = rt;
851 }
852
853 static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
854 uint32_t rtsr)
855 {
856 if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
857 qemu_mod_timer(s->rtc_hz, s->last_hz +
858 (((s->rtar - s->last_rcnr) * 1000 *
859 ((s->rttr & 0xffff) + 1)) >> 15));
860 else
861 qemu_del_timer(s->rtc_hz);
862
863 if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
864 qemu_mod_timer(s->rtc_rdal1, s->last_hz +
865 (((s->rdar1 - s->last_rdcr) * 1000 *
866 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
867 else
868 qemu_del_timer(s->rtc_rdal1);
869
870 if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
871 qemu_mod_timer(s->rtc_rdal2, s->last_hz +
872 (((s->rdar2 - s->last_rdcr) * 1000 *
873 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
874 else
875 qemu_del_timer(s->rtc_rdal2);
876
877 if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
878 qemu_mod_timer(s->rtc_swal1, s->last_sw +
879 (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
880 else
881 qemu_del_timer(s->rtc_swal1);
882
883 if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
884 qemu_mod_timer(s->rtc_swal2, s->last_sw +
885 (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
886 else
887 qemu_del_timer(s->rtc_swal2);
888
889 if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
890 qemu_mod_timer(s->rtc_pi, s->last_pi +
891 (s->piar & 0xffff) - s->last_rtcpicr);
892 else
893 qemu_del_timer(s->rtc_pi);
894 }
895
896 static inline void pxa2xx_rtc_hz_tick(void *opaque)
897 {
898 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
899 s->rtsr |= (1 << 0);
900 pxa2xx_rtc_alarm_update(s, s->rtsr);
901 pxa2xx_rtc_int_update(s);
902 }
903
904 static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
905 {
906 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
907 s->rtsr |= (1 << 4);
908 pxa2xx_rtc_alarm_update(s, s->rtsr);
909 pxa2xx_rtc_int_update(s);
910 }
911
912 static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
913 {
914 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
915 s->rtsr |= (1 << 6);
916 pxa2xx_rtc_alarm_update(s, s->rtsr);
917 pxa2xx_rtc_int_update(s);
918 }
919
920 static inline void pxa2xx_rtc_swal1_tick(void *opaque)
921 {
922 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
923 s->rtsr |= (1 << 8);
924 pxa2xx_rtc_alarm_update(s, s->rtsr);
925 pxa2xx_rtc_int_update(s);
926 }
927
928 static inline void pxa2xx_rtc_swal2_tick(void *opaque)
929 {
930 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
931 s->rtsr |= (1 << 10);
932 pxa2xx_rtc_alarm_update(s, s->rtsr);
933 pxa2xx_rtc_int_update(s);
934 }
935
936 static inline void pxa2xx_rtc_pi_tick(void *opaque)
937 {
938 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
939 s->rtsr |= (1 << 13);
940 pxa2xx_rtc_piupdate(s);
941 s->last_rtcpicr = 0;
942 pxa2xx_rtc_alarm_update(s, s->rtsr);
943 pxa2xx_rtc_int_update(s);
944 }
945
946 static uint64_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr,
947 unsigned size)
948 {
949 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
950
951 switch (addr) {
952 case RTTR:
953 return s->rttr;
954 case RTSR:
955 return s->rtsr;
956 case RTAR:
957 return s->rtar;
958 case RDAR1:
959 return s->rdar1;
960 case RDAR2:
961 return s->rdar2;
962 case RYAR1:
963 return s->ryar1;
964 case RYAR2:
965 return s->ryar2;
966 case SWAR1:
967 return s->swar1;
968 case SWAR2:
969 return s->swar2;
970 case PIAR:
971 return s->piar;
972 case RCNR:
973 return s->last_rcnr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
974 (1000 * ((s->rttr & 0xffff) + 1));
975 case RDCR:
976 return s->last_rdcr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
977 (1000 * ((s->rttr & 0xffff) + 1));
978 case RYCR:
979 return s->last_rycr;
980 case SWCR:
981 if (s->rtsr & (1 << 12))
982 return s->last_swcr + (qemu_get_clock_ms(rtc_clock) - s->last_sw) / 10;
983 else
984 return s->last_swcr;
985 default:
986 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
987 break;
988 }
989 return 0;
990 }
991
992 static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
993 uint64_t value64, unsigned size)
994 {
995 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
996 uint32_t value = value64;
997
998 switch (addr) {
999 case RTTR:
1000 if (!(s->rttr & (1 << 31))) {
1001 pxa2xx_rtc_hzupdate(s);
1002 s->rttr = value;
1003 pxa2xx_rtc_alarm_update(s, s->rtsr);
1004 }
1005 break;
1006
1007 case RTSR:
1008 if ((s->rtsr ^ value) & (1 << 15))
1009 pxa2xx_rtc_piupdate(s);
1010
1011 if ((s->rtsr ^ value) & (1 << 12))
1012 pxa2xx_rtc_swupdate(s);
1013
1014 if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1015 pxa2xx_rtc_alarm_update(s, value);
1016
1017 s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1018 pxa2xx_rtc_int_update(s);
1019 break;
1020
1021 case RTAR:
1022 s->rtar = value;
1023 pxa2xx_rtc_alarm_update(s, s->rtsr);
1024 break;
1025
1026 case RDAR1:
1027 s->rdar1 = value;
1028 pxa2xx_rtc_alarm_update(s, s->rtsr);
1029 break;
1030
1031 case RDAR2:
1032 s->rdar2 = value;
1033 pxa2xx_rtc_alarm_update(s, s->rtsr);
1034 break;
1035
1036 case RYAR1:
1037 s->ryar1 = value;
1038 pxa2xx_rtc_alarm_update(s, s->rtsr);
1039 break;
1040
1041 case RYAR2:
1042 s->ryar2 = value;
1043 pxa2xx_rtc_alarm_update(s, s->rtsr);
1044 break;
1045
1046 case SWAR1:
1047 pxa2xx_rtc_swupdate(s);
1048 s->swar1 = value;
1049 s->last_swcr = 0;
1050 pxa2xx_rtc_alarm_update(s, s->rtsr);
1051 break;
1052
1053 case SWAR2:
1054 s->swar2 = value;
1055 pxa2xx_rtc_alarm_update(s, s->rtsr);
1056 break;
1057
1058 case PIAR:
1059 s->piar = value;
1060 pxa2xx_rtc_alarm_update(s, s->rtsr);
1061 break;
1062
1063 case RCNR:
1064 pxa2xx_rtc_hzupdate(s);
1065 s->last_rcnr = value;
1066 pxa2xx_rtc_alarm_update(s, s->rtsr);
1067 break;
1068
1069 case RDCR:
1070 pxa2xx_rtc_hzupdate(s);
1071 s->last_rdcr = value;
1072 pxa2xx_rtc_alarm_update(s, s->rtsr);
1073 break;
1074
1075 case RYCR:
1076 s->last_rycr = value;
1077 break;
1078
1079 case SWCR:
1080 pxa2xx_rtc_swupdate(s);
1081 s->last_swcr = value;
1082 pxa2xx_rtc_alarm_update(s, s->rtsr);
1083 break;
1084
1085 case RTCPICR:
1086 pxa2xx_rtc_piupdate(s);
1087 s->last_rtcpicr = value & 0xffff;
1088 pxa2xx_rtc_alarm_update(s, s->rtsr);
1089 break;
1090
1091 default:
1092 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1093 }
1094 }
1095
1096 static const MemoryRegionOps pxa2xx_rtc_ops = {
1097 .read = pxa2xx_rtc_read,
1098 .write = pxa2xx_rtc_write,
1099 .endianness = DEVICE_NATIVE_ENDIAN,
1100 };
1101
1102 static int pxa2xx_rtc_init(SysBusDevice *dev)
1103 {
1104 PXA2xxRTCState *s = FROM_SYSBUS(PXA2xxRTCState, dev);
1105 struct tm tm;
1106 int wom;
1107
1108 s->rttr = 0x7fff;
1109 s->rtsr = 0;
1110
1111 qemu_get_timedate(&tm, 0);
1112 wom = ((tm.tm_mday - 1) / 7) + 1;
1113
1114 s->last_rcnr = (uint32_t) mktimegm(&tm);
1115 s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1116 (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1117 s->last_rycr = ((tm.tm_year + 1900) << 9) |
1118 ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1119 s->last_swcr = (tm.tm_hour << 19) |
1120 (tm.tm_min << 13) | (tm.tm_sec << 7);
1121 s->last_rtcpicr = 0;
1122 s->last_hz = s->last_sw = s->last_pi = qemu_get_clock_ms(rtc_clock);
1123
1124 s->rtc_hz = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_hz_tick, s);
1125 s->rtc_rdal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s);
1126 s->rtc_rdal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s);
1127 s->rtc_swal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s);
1128 s->rtc_swal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s);
1129 s->rtc_pi = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_pi_tick, s);
1130
1131 sysbus_init_irq(dev, &s->rtc_irq);
1132
1133 memory_region_init_io(&s->iomem, &pxa2xx_rtc_ops, s, "pxa2xx-rtc", 0x10000);
1134 sysbus_init_mmio(dev, &s->iomem);
1135
1136 return 0;
1137 }
1138
1139 static void pxa2xx_rtc_pre_save(void *opaque)
1140 {
1141 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1142
1143 pxa2xx_rtc_hzupdate(s);
1144 pxa2xx_rtc_piupdate(s);
1145 pxa2xx_rtc_swupdate(s);
1146 }
1147
1148 static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1149 {
1150 PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1151
1152 pxa2xx_rtc_alarm_update(s, s->rtsr);
1153
1154 return 0;
1155 }
1156
1157 static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1158 .name = "pxa2xx_rtc",
1159 .version_id = 0,
1160 .minimum_version_id = 0,
1161 .minimum_version_id_old = 0,
1162 .pre_save = pxa2xx_rtc_pre_save,
1163 .post_load = pxa2xx_rtc_post_load,
1164 .fields = (VMStateField[]) {
1165 VMSTATE_UINT32(rttr, PXA2xxRTCState),
1166 VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1167 VMSTATE_UINT32(rtar, PXA2xxRTCState),
1168 VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1169 VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1170 VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1171 VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1172 VMSTATE_UINT32(swar1, PXA2xxRTCState),
1173 VMSTATE_UINT32(swar2, PXA2xxRTCState),
1174 VMSTATE_UINT32(piar, PXA2xxRTCState),
1175 VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1176 VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1177 VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1178 VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1179 VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1180 VMSTATE_INT64(last_hz, PXA2xxRTCState),
1181 VMSTATE_INT64(last_sw, PXA2xxRTCState),
1182 VMSTATE_INT64(last_pi, PXA2xxRTCState),
1183 VMSTATE_END_OF_LIST(),
1184 },
1185 };
1186
1187 static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data)
1188 {
1189 DeviceClass *dc = DEVICE_CLASS(klass);
1190 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1191
1192 k->init = pxa2xx_rtc_init;
1193 dc->desc = "PXA2xx RTC Controller";
1194 dc->vmsd = &vmstate_pxa2xx_rtc_regs;
1195 }
1196
1197 static TypeInfo pxa2xx_rtc_sysbus_info = {
1198 .name = "pxa2xx_rtc",
1199 .parent = TYPE_SYS_BUS_DEVICE,
1200 .instance_size = sizeof(PXA2xxRTCState),
1201 .class_init = pxa2xx_rtc_sysbus_class_init,
1202 };
1203
1204 /* I2C Interface */
1205 typedef struct {
1206 I2CSlave i2c;
1207 PXA2xxI2CState *host;
1208 } PXA2xxI2CSlaveState;
1209
1210 struct PXA2xxI2CState {
1211 SysBusDevice busdev;
1212 MemoryRegion iomem;
1213 PXA2xxI2CSlaveState *slave;
1214 i2c_bus *bus;
1215 qemu_irq irq;
1216 uint32_t offset;
1217 uint32_t region_size;
1218
1219 uint16_t control;
1220 uint16_t status;
1221 uint8_t ibmr;
1222 uint8_t data;
1223 };
1224
1225 #define IBMR 0x80 /* I2C Bus Monitor register */
1226 #define IDBR 0x88 /* I2C Data Buffer register */
1227 #define ICR 0x90 /* I2C Control register */
1228 #define ISR 0x98 /* I2C Status register */
1229 #define ISAR 0xa0 /* I2C Slave Address register */
1230
1231 static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1232 {
1233 uint16_t level = 0;
1234 level |= s->status & s->control & (1 << 10); /* BED */
1235 level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */
1236 level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */
1237 level |= s->status & (1 << 9); /* SAD */
1238 qemu_set_irq(s->irq, !!level);
1239 }
1240
1241 /* These are only stubs now. */
1242 static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event)
1243 {
1244 PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1245 PXA2xxI2CState *s = slave->host;
1246
1247 switch (event) {
1248 case I2C_START_SEND:
1249 s->status |= (1 << 9); /* set SAD */
1250 s->status &= ~(1 << 0); /* clear RWM */
1251 break;
1252 case I2C_START_RECV:
1253 s->status |= (1 << 9); /* set SAD */
1254 s->status |= 1 << 0; /* set RWM */
1255 break;
1256 case I2C_FINISH:
1257 s->status |= (1 << 4); /* set SSD */
1258 break;
1259 case I2C_NACK:
1260 s->status |= 1 << 1; /* set ACKNAK */
1261 break;
1262 }
1263 pxa2xx_i2c_update(s);
1264 }
1265
1266 static int pxa2xx_i2c_rx(I2CSlave *i2c)
1267 {
1268 PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1269 PXA2xxI2CState *s = slave->host;
1270 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1271 return 0;
1272
1273 if (s->status & (1 << 0)) { /* RWM */
1274 s->status |= 1 << 6; /* set ITE */
1275 }
1276 pxa2xx_i2c_update(s);
1277
1278 return s->data;
1279 }
1280
1281 static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data)
1282 {
1283 PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1284 PXA2xxI2CState *s = slave->host;
1285 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1286 return 1;
1287
1288 if (!(s->status & (1 << 0))) { /* RWM */
1289 s->status |= 1 << 7; /* set IRF */
1290 s->data = data;
1291 }
1292 pxa2xx_i2c_update(s);
1293
1294 return 1;
1295 }
1296
1297 static uint64_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr,
1298 unsigned size)
1299 {
1300 PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1301
1302 addr -= s->offset;
1303 switch (addr) {
1304 case ICR:
1305 return s->control;
1306 case ISR:
1307 return s->status | (i2c_bus_busy(s->bus) << 2);
1308 case ISAR:
1309 return s->slave->i2c.address;
1310 case IDBR:
1311 return s->data;
1312 case IBMR:
1313 if (s->status & (1 << 2))
1314 s->ibmr ^= 3; /* Fake SCL and SDA pin changes */
1315 else
1316 s->ibmr = 0;
1317 return s->ibmr;
1318 default:
1319 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1320 break;
1321 }
1322 return 0;
1323 }
1324
1325 static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
1326 uint64_t value64, unsigned size)
1327 {
1328 PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1329 uint32_t value = value64;
1330 int ack;
1331
1332 addr -= s->offset;
1333 switch (addr) {
1334 case ICR:
1335 s->control = value & 0xfff7;
1336 if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */
1337 /* TODO: slave mode */
1338 if (value & (1 << 0)) { /* START condition */
1339 if (s->data & 1)
1340 s->status |= 1 << 0; /* set RWM */
1341 else
1342 s->status &= ~(1 << 0); /* clear RWM */
1343 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1344 } else {
1345 if (s->status & (1 << 0)) { /* RWM */
1346 s->data = i2c_recv(s->bus);
1347 if (value & (1 << 2)) /* ACKNAK */
1348 i2c_nack(s->bus);
1349 ack = 1;
1350 } else
1351 ack = !i2c_send(s->bus, s->data);
1352 }
1353
1354 if (value & (1 << 1)) /* STOP condition */
1355 i2c_end_transfer(s->bus);
1356
1357 if (ack) {
1358 if (value & (1 << 0)) /* START condition */
1359 s->status |= 1 << 6; /* set ITE */
1360 else
1361 if (s->status & (1 << 0)) /* RWM */
1362 s->status |= 1 << 7; /* set IRF */
1363 else
1364 s->status |= 1 << 6; /* set ITE */
1365 s->status &= ~(1 << 1); /* clear ACKNAK */
1366 } else {
1367 s->status |= 1 << 6; /* set ITE */
1368 s->status |= 1 << 10; /* set BED */
1369 s->status |= 1 << 1; /* set ACKNAK */
1370 }
1371 }
1372 if (!(value & (1 << 3)) && (value & (1 << 6))) /* !TB and IUE */
1373 if (value & (1 << 4)) /* MA */
1374 i2c_end_transfer(s->bus);
1375 pxa2xx_i2c_update(s);
1376 break;
1377
1378 case ISR:
1379 s->status &= ~(value & 0x07f0);
1380 pxa2xx_i2c_update(s);
1381 break;
1382
1383 case ISAR:
1384 i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1385 break;
1386
1387 case IDBR:
1388 s->data = value & 0xff;
1389 break;
1390
1391 default:
1392 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1393 }
1394 }
1395
1396 static const MemoryRegionOps pxa2xx_i2c_ops = {
1397 .read = pxa2xx_i2c_read,
1398 .write = pxa2xx_i2c_write,
1399 .endianness = DEVICE_NATIVE_ENDIAN,
1400 };
1401
1402 static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1403 .name = "pxa2xx_i2c_slave",
1404 .version_id = 1,
1405 .minimum_version_id = 1,
1406 .minimum_version_id_old = 1,
1407 .fields = (VMStateField []) {
1408 VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1409 VMSTATE_END_OF_LIST()
1410 }
1411 };
1412
1413 static const VMStateDescription vmstate_pxa2xx_i2c = {
1414 .name = "pxa2xx_i2c",
1415 .version_id = 1,
1416 .minimum_version_id = 1,
1417 .minimum_version_id_old = 1,
1418 .fields = (VMStateField []) {
1419 VMSTATE_UINT16(control, PXA2xxI2CState),
1420 VMSTATE_UINT16(status, PXA2xxI2CState),
1421 VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1422 VMSTATE_UINT8(data, PXA2xxI2CState),
1423 VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1424 vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1425 VMSTATE_END_OF_LIST()
1426 }
1427 };
1428
1429 static int pxa2xx_i2c_slave_init(I2CSlave *i2c)
1430 {
1431 /* Nothing to do. */
1432 return 0;
1433 }
1434
1435 static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data)
1436 {
1437 I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
1438
1439 k->init = pxa2xx_i2c_slave_init;
1440 k->event = pxa2xx_i2c_event;
1441 k->recv = pxa2xx_i2c_rx;
1442 k->send = pxa2xx_i2c_tx;
1443 }
1444
1445 static TypeInfo pxa2xx_i2c_slave_info = {
1446 .name = "pxa2xx-i2c-slave",
1447 .parent = TYPE_I2C_SLAVE,
1448 .instance_size = sizeof(PXA2xxI2CSlaveState),
1449 .class_init = pxa2xx_i2c_slave_class_init,
1450 };
1451
1452 PXA2xxI2CState *pxa2xx_i2c_init(target_phys_addr_t base,
1453 qemu_irq irq, uint32_t region_size)
1454 {
1455 DeviceState *dev;
1456 SysBusDevice *i2c_dev;
1457 PXA2xxI2CState *s;
1458
1459 i2c_dev = sysbus_from_qdev(qdev_create(NULL, "pxa2xx_i2c"));
1460 qdev_prop_set_uint32(&i2c_dev->qdev, "size", region_size + 1);
1461 qdev_prop_set_uint32(&i2c_dev->qdev, "offset", base & region_size);
1462
1463 qdev_init_nofail(&i2c_dev->qdev);
1464
1465 sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1466 sysbus_connect_irq(i2c_dev, 0, irq);
1467
1468 s = FROM_SYSBUS(PXA2xxI2CState, i2c_dev);
1469 /* FIXME: Should the slave device really be on a separate bus? */
1470 dev = i2c_create_slave(i2c_init_bus(NULL, "dummy"), "pxa2xx-i2c-slave", 0);
1471 s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE_FROM_QDEV(dev));
1472 s->slave->host = s;
1473
1474 return s;
1475 }
1476
1477 static int pxa2xx_i2c_initfn(SysBusDevice *dev)
1478 {
1479 PXA2xxI2CState *s = FROM_SYSBUS(PXA2xxI2CState, dev);
1480
1481 s->bus = i2c_init_bus(&dev->qdev, "i2c");
1482
1483 memory_region_init_io(&s->iomem, &pxa2xx_i2c_ops, s,
1484 "pxa2xx-i2x", s->region_size);
1485 sysbus_init_mmio(dev, &s->iomem);
1486 sysbus_init_irq(dev, &s->irq);
1487
1488 return 0;
1489 }
1490
1491 i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1492 {
1493 return s->bus;
1494 }
1495
1496 static Property pxa2xx_i2c_properties[] = {
1497 DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1498 DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1499 DEFINE_PROP_END_OF_LIST(),
1500 };
1501
1502 static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data)
1503 {
1504 DeviceClass *dc = DEVICE_CLASS(klass);
1505 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1506
1507 k->init = pxa2xx_i2c_initfn;
1508 dc->desc = "PXA2xx I2C Bus Controller";
1509 dc->vmsd = &vmstate_pxa2xx_i2c;
1510 dc->props = pxa2xx_i2c_properties;
1511 }
1512
1513 static TypeInfo pxa2xx_i2c_info = {
1514 .name = "pxa2xx_i2c",
1515 .parent = TYPE_SYS_BUS_DEVICE,
1516 .instance_size = sizeof(PXA2xxI2CState),
1517 .class_init = pxa2xx_i2c_class_init,
1518 };
1519
1520 /* PXA Inter-IC Sound Controller */
1521 static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1522 {
1523 i2s->rx_len = 0;
1524 i2s->tx_len = 0;
1525 i2s->fifo_len = 0;
1526 i2s->clk = 0x1a;
1527 i2s->control[0] = 0x00;
1528 i2s->control[1] = 0x00;
1529 i2s->status = 0x00;
1530 i2s->mask = 0x00;
1531 }
1532
1533 #define SACR_TFTH(val) ((val >> 8) & 0xf)
1534 #define SACR_RFTH(val) ((val >> 12) & 0xf)
1535 #define SACR_DREC(val) (val & (1 << 3))
1536 #define SACR_DPRL(val) (val & (1 << 4))
1537
1538 static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1539 {
1540 int rfs, tfs;
1541 rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1542 !SACR_DREC(i2s->control[1]);
1543 tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1544 i2s->enable && !SACR_DPRL(i2s->control[1]);
1545
1546 qemu_set_irq(i2s->rx_dma, rfs);
1547 qemu_set_irq(i2s->tx_dma, tfs);
1548
1549 i2s->status &= 0xe0;
1550 if (i2s->fifo_len < 16 || !i2s->enable)
1551 i2s->status |= 1 << 0; /* TNF */
1552 if (i2s->rx_len)
1553 i2s->status |= 1 << 1; /* RNE */
1554 if (i2s->enable)
1555 i2s->status |= 1 << 2; /* BSY */
1556 if (tfs)
1557 i2s->status |= 1 << 3; /* TFS */
1558 if (rfs)
1559 i2s->status |= 1 << 4; /* RFS */
1560 if (!(i2s->tx_len && i2s->enable))
1561 i2s->status |= i2s->fifo_len << 8; /* TFL */
1562 i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
1563
1564 qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1565 }
1566
1567 #define SACR0 0x00 /* Serial Audio Global Control register */
1568 #define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
1569 #define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
1570 #define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
1571 #define SAICR 0x18 /* Serial Audio Interrupt Clear register */
1572 #define SADIV 0x60 /* Serial Audio Clock Divider register */
1573 #define SADR 0x80 /* Serial Audio Data register */
1574
1575 static uint64_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr,
1576 unsigned size)
1577 {
1578 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1579
1580 switch (addr) {
1581 case SACR0:
1582 return s->control[0];
1583 case SACR1:
1584 return s->control[1];
1585 case SASR0:
1586 return s->status;
1587 case SAIMR:
1588 return s->mask;
1589 case SAICR:
1590 return 0;
1591 case SADIV:
1592 return s->clk;
1593 case SADR:
1594 if (s->rx_len > 0) {
1595 s->rx_len --;
1596 pxa2xx_i2s_update(s);
1597 return s->codec_in(s->opaque);
1598 }
1599 return 0;
1600 default:
1601 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1602 break;
1603 }
1604 return 0;
1605 }
1606
1607 static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
1608 uint64_t value, unsigned size)
1609 {
1610 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1611 uint32_t *sample;
1612
1613 switch (addr) {
1614 case SACR0:
1615 if (value & (1 << 3)) /* RST */
1616 pxa2xx_i2s_reset(s);
1617 s->control[0] = value & 0xff3d;
1618 if (!s->enable && (value & 1) && s->tx_len) { /* ENB */
1619 for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1620 s->codec_out(s->opaque, *sample);
1621 s->status &= ~(1 << 7); /* I2SOFF */
1622 }
1623 if (value & (1 << 4)) /* EFWR */
1624 printf("%s: Attempt to use special function\n", __FUNCTION__);
1625 s->enable = (value & 9) == 1; /* ENB && !RST*/
1626 pxa2xx_i2s_update(s);
1627 break;
1628 case SACR1:
1629 s->control[1] = value & 0x0039;
1630 if (value & (1 << 5)) /* ENLBF */
1631 printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1632 if (value & (1 << 4)) /* DPRL */
1633 s->fifo_len = 0;
1634 pxa2xx_i2s_update(s);
1635 break;
1636 case SAIMR:
1637 s->mask = value & 0x0078;
1638 pxa2xx_i2s_update(s);
1639 break;
1640 case SAICR:
1641 s->status &= ~(value & (3 << 5));
1642 pxa2xx_i2s_update(s);
1643 break;
1644 case SADIV:
1645 s->clk = value & 0x007f;
1646 break;
1647 case SADR:
1648 if (s->tx_len && s->enable) {
1649 s->tx_len --;
1650 pxa2xx_i2s_update(s);
1651 s->codec_out(s->opaque, value);
1652 } else if (s->fifo_len < 16) {
1653 s->fifo[s->fifo_len ++] = value;
1654 pxa2xx_i2s_update(s);
1655 }
1656 break;
1657 default:
1658 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1659 }
1660 }
1661
1662 static const MemoryRegionOps pxa2xx_i2s_ops = {
1663 .read = pxa2xx_i2s_read,
1664 .write = pxa2xx_i2s_write,
1665 .endianness = DEVICE_NATIVE_ENDIAN,
1666 };
1667
1668 static const VMStateDescription vmstate_pxa2xx_i2s = {
1669 .name = "pxa2xx_i2s",
1670 .version_id = 0,
1671 .minimum_version_id = 0,
1672 .minimum_version_id_old = 0,
1673 .fields = (VMStateField[]) {
1674 VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1675 VMSTATE_UINT32(status, PXA2xxI2SState),
1676 VMSTATE_UINT32(mask, PXA2xxI2SState),
1677 VMSTATE_UINT32(clk, PXA2xxI2SState),
1678 VMSTATE_INT32(enable, PXA2xxI2SState),
1679 VMSTATE_INT32(rx_len, PXA2xxI2SState),
1680 VMSTATE_INT32(tx_len, PXA2xxI2SState),
1681 VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1682 VMSTATE_END_OF_LIST()
1683 }
1684 };
1685
1686 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1687 {
1688 PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1689 uint32_t *sample;
1690
1691 /* Signal FIFO errors */
1692 if (s->enable && s->tx_len)
1693 s->status |= 1 << 5; /* TUR */
1694 if (s->enable && s->rx_len)
1695 s->status |= 1 << 6; /* ROR */
1696
1697 /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1698 * handle the cases where it makes a difference. */
1699 s->tx_len = tx - s->fifo_len;
1700 s->rx_len = rx;
1701 /* Note that is s->codec_out wasn't set, we wouldn't get called. */
1702 if (s->enable)
1703 for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1704 s->codec_out(s->opaque, *sample);
1705 pxa2xx_i2s_update(s);
1706 }
1707
1708 static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1709 target_phys_addr_t base,
1710 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1711 {
1712 PXA2xxI2SState *s = (PXA2xxI2SState *)
1713 g_malloc0(sizeof(PXA2xxI2SState));
1714
1715 s->irq = irq;
1716 s->rx_dma = rx_dma;
1717 s->tx_dma = tx_dma;
1718 s->data_req = pxa2xx_i2s_data_req;
1719
1720 pxa2xx_i2s_reset(s);
1721
1722 memory_region_init_io(&s->iomem, &pxa2xx_i2s_ops, s,
1723 "pxa2xx-i2s", 0x100000);
1724 memory_region_add_subregion(sysmem, base, &s->iomem);
1725
1726 vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1727
1728 return s;
1729 }
1730
1731 /* PXA Fast Infra-red Communications Port */
1732 struct PXA2xxFIrState {
1733 MemoryRegion iomem;
1734 qemu_irq irq;
1735 qemu_irq rx_dma;
1736 qemu_irq tx_dma;
1737 int enable;
1738 CharDriverState *chr;
1739
1740 uint8_t control[3];
1741 uint8_t status[2];
1742
1743 int rx_len;
1744 int rx_start;
1745 uint8_t rx_fifo[64];
1746 };
1747
1748 static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1749 {
1750 s->control[0] = 0x00;
1751 s->control[1] = 0x00;
1752 s->control[2] = 0x00;
1753 s->status[0] = 0x00;
1754 s->status[1] = 0x00;
1755 s->enable = 0;
1756 }
1757
1758 static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1759 {
1760 static const int tresh[4] = { 8, 16, 32, 0 };
1761 int intr = 0;
1762 if ((s->control[0] & (1 << 4)) && /* RXE */
1763 s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */
1764 s->status[0] |= 1 << 4; /* RFS */
1765 else
1766 s->status[0] &= ~(1 << 4); /* RFS */
1767 if (s->control[0] & (1 << 3)) /* TXE */
1768 s->status[0] |= 1 << 3; /* TFS */
1769 else
1770 s->status[0] &= ~(1 << 3); /* TFS */
1771 if (s->rx_len)
1772 s->status[1] |= 1 << 2; /* RNE */
1773 else
1774 s->status[1] &= ~(1 << 2); /* RNE */
1775 if (s->control[0] & (1 << 4)) /* RXE */
1776 s->status[1] |= 1 << 0; /* RSY */
1777 else
1778 s->status[1] &= ~(1 << 0); /* RSY */
1779
1780 intr |= (s->control[0] & (1 << 5)) && /* RIE */
1781 (s->status[0] & (1 << 4)); /* RFS */
1782 intr |= (s->control[0] & (1 << 6)) && /* TIE */
1783 (s->status[0] & (1 << 3)); /* TFS */
1784 intr |= (s->control[2] & (1 << 4)) && /* TRAIL */
1785 (s->status[0] & (1 << 6)); /* EOC */
1786 intr |= (s->control[0] & (1 << 2)) && /* TUS */
1787 (s->status[0] & (1 << 1)); /* TUR */
1788 intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */
1789
1790 qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1791 qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1792
1793 qemu_set_irq(s->irq, intr && s->enable);
1794 }
1795
1796 #define ICCR0 0x00 /* FICP Control register 0 */
1797 #define ICCR1 0x04 /* FICP Control register 1 */
1798 #define ICCR2 0x08 /* FICP Control register 2 */
1799 #define ICDR 0x0c /* FICP Data register */
1800 #define ICSR0 0x14 /* FICP Status register 0 */
1801 #define ICSR1 0x18 /* FICP Status register 1 */
1802 #define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
1803
1804 static uint64_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr,
1805 unsigned size)
1806 {
1807 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1808 uint8_t ret;
1809
1810 switch (addr) {
1811 case ICCR0:
1812 return s->control[0];
1813 case ICCR1:
1814 return s->control[1];
1815 case ICCR2:
1816 return s->control[2];
1817 case ICDR:
1818 s->status[0] &= ~0x01;
1819 s->status[1] &= ~0x72;
1820 if (s->rx_len) {
1821 s->rx_len --;
1822 ret = s->rx_fifo[s->rx_start ++];
1823 s->rx_start &= 63;
1824 pxa2xx_fir_update(s);
1825 return ret;
1826 }
1827 printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1828 break;
1829 case ICSR0:
1830 return s->status[0];
1831 case ICSR1:
1832 return s->status[1] | (1 << 3); /* TNF */
1833 case ICFOR:
1834 return s->rx_len;
1835 default:
1836 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1837 break;
1838 }
1839 return 0;
1840 }
1841
1842 static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
1843 uint64_t value64, unsigned size)
1844 {
1845 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1846 uint32_t value = value64;
1847 uint8_t ch;
1848
1849 switch (addr) {
1850 case ICCR0:
1851 s->control[0] = value;
1852 if (!(value & (1 << 4))) /* RXE */
1853 s->rx_len = s->rx_start = 0;
1854 if (!(value & (1 << 3))) { /* TXE */
1855 /* Nop */
1856 }
1857 s->enable = value & 1; /* ITR */
1858 if (!s->enable)
1859 s->status[0] = 0;
1860 pxa2xx_fir_update(s);
1861 break;
1862 case ICCR1:
1863 s->control[1] = value;
1864 break;
1865 case ICCR2:
1866 s->control[2] = value & 0x3f;
1867 pxa2xx_fir_update(s);
1868 break;
1869 case ICDR:
1870 if (s->control[2] & (1 << 2)) /* TXP */
1871 ch = value;
1872 else
1873 ch = ~value;
1874 if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */
1875 qemu_chr_fe_write(s->chr, &ch, 1);
1876 break;
1877 case ICSR0:
1878 s->status[0] &= ~(value & 0x66);
1879 pxa2xx_fir_update(s);
1880 break;
1881 case ICFOR:
1882 break;
1883 default:
1884 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1885 }
1886 }
1887
1888 static const MemoryRegionOps pxa2xx_fir_ops = {
1889 .read = pxa2xx_fir_read,
1890 .write = pxa2xx_fir_write,
1891 .endianness = DEVICE_NATIVE_ENDIAN,
1892 };
1893
1894 static int pxa2xx_fir_is_empty(void *opaque)
1895 {
1896 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1897 return (s->rx_len < 64);
1898 }
1899
1900 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1901 {
1902 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1903 if (!(s->control[0] & (1 << 4))) /* RXE */
1904 return;
1905
1906 while (size --) {
1907 s->status[1] |= 1 << 4; /* EOF */
1908 if (s->rx_len >= 64) {
1909 s->status[1] |= 1 << 6; /* ROR */
1910 break;
1911 }
1912
1913 if (s->control[2] & (1 << 3)) /* RXP */
1914 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1915 else
1916 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1917 }
1918
1919 pxa2xx_fir_update(s);
1920 }
1921
1922 static void pxa2xx_fir_event(void *opaque, int event)
1923 {
1924 }
1925
1926 static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1927 {
1928 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1929 int i;
1930
1931 qemu_put_be32(f, s->enable);
1932
1933 qemu_put_8s(f, &s->control[0]);
1934 qemu_put_8s(f, &s->control[1]);
1935 qemu_put_8s(f, &s->control[2]);
1936 qemu_put_8s(f, &s->status[0]);
1937 qemu_put_8s(f, &s->status[1]);
1938
1939 qemu_put_byte(f, s->rx_len);
1940 for (i = 0; i < s->rx_len; i ++)
1941 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1942 }
1943
1944 static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1945 {
1946 PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1947 int i;
1948
1949 s->enable = qemu_get_be32(f);
1950
1951 qemu_get_8s(f, &s->control[0]);
1952 qemu_get_8s(f, &s->control[1]);
1953 qemu_get_8s(f, &s->control[2]);
1954 qemu_get_8s(f, &s->status[0]);
1955 qemu_get_8s(f, &s->status[1]);
1956
1957 s->rx_len = qemu_get_byte(f);
1958 s->rx_start = 0;
1959 for (i = 0; i < s->rx_len; i ++)
1960 s->rx_fifo[i] = qemu_get_byte(f);
1961
1962 return 0;
1963 }
1964
1965 static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
1966 target_phys_addr_t base,
1967 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
1968 CharDriverState *chr)
1969 {
1970 PXA2xxFIrState *s = (PXA2xxFIrState *)
1971 g_malloc0(sizeof(PXA2xxFIrState));
1972
1973 s->irq = irq;
1974 s->rx_dma = rx_dma;
1975 s->tx_dma = tx_dma;
1976 s->chr = chr;
1977
1978 pxa2xx_fir_reset(s);
1979
1980 memory_region_init_io(&s->iomem, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000);
1981 memory_region_add_subregion(sysmem, base, &s->iomem);
1982
1983 if (chr)
1984 qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
1985 pxa2xx_fir_rx, pxa2xx_fir_event, s);
1986
1987 register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
1988 pxa2xx_fir_load, s);
1989
1990 return s;
1991 }
1992
1993 static void pxa2xx_reset(void *opaque, int line, int level)
1994 {
1995 PXA2xxState *s = (PXA2xxState *) opaque;
1996
1997 if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */
1998 cpu_reset(CPU(s->cpu));
1999 /* TODO: reset peripherals */
2000 }
2001 }
2002
2003 /* Initialise a PXA270 integrated chip (ARM based core). */
2004 PXA2xxState *pxa270_init(MemoryRegion *address_space,
2005 unsigned int sdram_size, const char *revision)
2006 {
2007 PXA2xxState *s;
2008 int i;
2009 DriveInfo *dinfo;
2010 s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2011
2012 if (revision && strncmp(revision, "pxa27", 5)) {
2013 fprintf(stderr, "Machine requires a PXA27x processor.\n");
2014 exit(1);
2015 }
2016 if (!revision)
2017 revision = "pxa270";
2018
2019 s->cpu = cpu_arm_init(revision);
2020 if (s->cpu == NULL) {
2021 fprintf(stderr, "Unable to find CPU definition\n");
2022 exit(1);
2023 }
2024 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2025
2026 /* SDRAM & Internal Memory Storage */
2027 memory_region_init_ram(&s->sdram, "pxa270.sdram", sdram_size);
2028 vmstate_register_ram_global(&s->sdram);
2029 memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2030 memory_region_init_ram(&s->internal, "pxa270.internal", 0x40000);
2031 vmstate_register_ram_global(&s->internal);
2032 memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2033 &s->internal);
2034
2035 s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2036
2037 s->dma = pxa27x_dma_init(0x40000000,
2038 qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2039
2040 sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2041 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2042 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2043 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2044 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2045 qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2046 NULL);
2047
2048 s->gpio = pxa2xx_gpio_init(0x40e00000, &s->cpu->env, s->pic, 121);
2049
2050 dinfo = drive_get(IF_SD, 0, 0);
2051 if (!dinfo) {
2052 fprintf(stderr, "qemu: missing SecureDigital device\n");
2053 exit(1);
2054 }
2055 s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2056 qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2057 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2058 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2059
2060 for (i = 0; pxa270_serial[i].io_base; i++) {
2061 if (serial_hds[i]) {
2062 serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2063 qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2064 14857000 / 16, serial_hds[i],
2065 DEVICE_NATIVE_ENDIAN);
2066 } else {
2067 break;
2068 }
2069 }
2070 if (serial_hds[i])
2071 s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2072 qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2073 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2074 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2075 serial_hds[i]);
2076
2077 s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2078 qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2079
2080 s->cm_base = 0x41300000;
2081 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2082 s->clkcfg = 0x00000009; /* Turbo mode active */
2083 memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2084 memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2085 vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2086
2087 pxa2xx_setup_cp14(s);
2088
2089 s->mm_base = 0x48000000;
2090 s->mm_regs[MDMRS >> 2] = 0x00020002;
2091 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2092 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2093 memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2094 memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2095 vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2096
2097 s->pm_base = 0x40f00000;
2098 memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2099 memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2100 vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2101
2102 for (i = 0; pxa27x_ssp[i].io_base; i ++);
2103 s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2104 for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2105 DeviceState *dev;
2106 dev = sysbus_create_simple("pxa2xx-ssp", pxa27x_ssp[i].io_base,
2107 qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2108 s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2109 }
2110
2111 if (usb_enabled) {
2112 sysbus_create_simple("sysbus-ohci", 0x4c000000,
2113 qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2114 }
2115
2116 s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2117 s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2118
2119 sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2120 qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2121
2122 s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2123 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2124 s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2125 qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2126
2127 s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2128 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2129 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2130 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2131
2132 s->kp = pxa27x_keypad_init(address_space, 0x41500000,
2133 qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2134
2135 /* GPIO1 resets the processor */
2136 /* The handler can be overridden by board-specific code */
2137 qdev_connect_gpio_out(s->gpio, 1, s->reset);
2138 return s;
2139 }
2140
2141 /* Initialise a PXA255 integrated chip (ARM based core). */
2142 PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2143 {
2144 PXA2xxState *s;
2145 int i;
2146 DriveInfo *dinfo;
2147
2148 s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2149
2150 s->cpu = cpu_arm_init("pxa255");
2151 if (s->cpu == NULL) {
2152 fprintf(stderr, "Unable to find CPU definition\n");
2153 exit(1);
2154 }
2155 s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2156
2157 /* SDRAM & Internal Memory Storage */
2158 memory_region_init_ram(&s->sdram, "pxa255.sdram", sdram_size);
2159 vmstate_register_ram_global(&s->sdram);
2160 memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2161 memory_region_init_ram(&s->internal, "pxa255.internal",
2162 PXA2XX_INTERNAL_SIZE);
2163 vmstate_register_ram_global(&s->internal);
2164 memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2165 &s->internal);
2166
2167 s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2168
2169 s->dma = pxa255_dma_init(0x40000000,
2170 qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2171
2172 sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2173 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2174 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2175 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2176 qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2177 NULL);
2178
2179 s->gpio = pxa2xx_gpio_init(0x40e00000, &s->cpu->env, s->pic, 85);
2180
2181 dinfo = drive_get(IF_SD, 0, 0);
2182 if (!dinfo) {
2183 fprintf(stderr, "qemu: missing SecureDigital device\n");
2184 exit(1);
2185 }
2186 s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2187 qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2188 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2189 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2190
2191 for (i = 0; pxa255_serial[i].io_base; i++) {
2192 if (serial_hds[i]) {
2193 serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2194 qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2195 14745600 / 16, serial_hds[i],
2196 DEVICE_NATIVE_ENDIAN);
2197 } else {
2198 break;
2199 }
2200 }
2201 if (serial_hds[i])
2202 s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2203 qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2204 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2205 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2206 serial_hds[i]);
2207
2208 s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2209 qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2210
2211 s->cm_base = 0x41300000;
2212 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2213 s->clkcfg = 0x00000009; /* Turbo mode active */
2214 memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2215 memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2216 vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2217
2218 pxa2xx_setup_cp14(s);
2219
2220 s->mm_base = 0x48000000;
2221 s->mm_regs[MDMRS >> 2] = 0x00020002;
2222 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2223 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2224 memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2225 memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2226 vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2227
2228 s->pm_base = 0x40f00000;
2229 memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2230 memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2231 vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2232
2233 for (i = 0; pxa255_ssp[i].io_base; i ++);
2234 s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2235 for (i = 0; pxa255_ssp[i].io_base; i ++) {
2236 DeviceState *dev;
2237 dev = sysbus_create_simple("pxa2xx-ssp", pxa255_ssp[i].io_base,
2238 qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2239 s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2240 }
2241
2242 if (usb_enabled) {
2243 sysbus_create_simple("sysbus-ohci", 0x4c000000,
2244 qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2245 }
2246
2247 s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2248 s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2249
2250 sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2251 qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2252
2253 s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2254 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2255 s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2256 qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2257
2258 s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2259 qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2260 qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2261 qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2262
2263 /* GPIO1 resets the processor */
2264 /* The handler can be overridden by board-specific code */
2265 qdev_connect_gpio_out(s->gpio, 1, s->reset);
2266 return s;
2267 }
2268
2269 static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data)
2270 {
2271 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
2272
2273 sdc->init = pxa2xx_ssp_init;
2274 }
2275
2276 static TypeInfo pxa2xx_ssp_info = {
2277 .name = "pxa2xx-ssp",
2278 .parent = TYPE_SYS_BUS_DEVICE,
2279 .instance_size = sizeof(PXA2xxSSPState),
2280 .class_init = pxa2xx_ssp_class_init,
2281 };
2282
2283 static void pxa2xx_register_types(void)
2284 {
2285 type_register_static(&pxa2xx_i2c_slave_info);
2286 type_register_static(&pxa2xx_ssp_info);
2287 type_register_static(&pxa2xx_i2c_info);
2288 type_register_static(&pxa2xx_rtc_sysbus_info);
2289 }
2290
2291 type_init(pxa2xx_register_types)