]> git.proxmox.com Git - mirror_qemu.git/blob - hw/spapr_pci.c
qbus: Make child devices links
[mirror_qemu.git] / hw / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "hw.h"
26 #include "pci.h"
27 #include "pci_host.h"
28 #include "hw/spapr.h"
29 #include "hw/spapr_pci.h"
30 #include "exec-memory.h"
31 #include <libfdt.h>
32
33 #include "hw/pci_internals.h"
34
35 static PCIDevice *find_dev(sPAPREnvironment *spapr,
36 uint64_t buid, uint32_t config_addr)
37 {
38 int devfn = (config_addr >> 8) & 0xFF;
39 sPAPRPHBState *phb;
40
41 QLIST_FOREACH(phb, &spapr->phbs, list) {
42 BusChild *kid;
43
44 if (phb->buid != buid) {
45 continue;
46 }
47
48 QTAILQ_FOREACH(kid, &phb->host_state.bus->qbus.children, sibling) {
49 PCIDevice *dev = (PCIDevice *)kid->child;
50 if (dev->devfn == devfn) {
51 return dev;
52 }
53 }
54 }
55
56 return NULL;
57 }
58
59 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
60 {
61 /* This handles the encoding of extended config space addresses */
62 return ((arg >> 20) & 0xf00) | (arg & 0xff);
63 }
64
65 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
66 uint32_t addr, uint32_t size,
67 target_ulong rets)
68 {
69 PCIDevice *pci_dev;
70 uint32_t val;
71
72 if ((size != 1) && (size != 2) && (size != 4)) {
73 /* access must be 1, 2 or 4 bytes */
74 rtas_st(rets, 0, -1);
75 return;
76 }
77
78 pci_dev = find_dev(spapr, buid, addr);
79 addr = rtas_pci_cfgaddr(addr);
80
81 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
82 /* Access must be to a valid device, within bounds and
83 * naturally aligned */
84 rtas_st(rets, 0, -1);
85 return;
86 }
87
88 val = pci_host_config_read_common(pci_dev, addr,
89 pci_config_size(pci_dev), size);
90
91 rtas_st(rets, 0, 0);
92 rtas_st(rets, 1, val);
93 }
94
95 static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
96 uint32_t token, uint32_t nargs,
97 target_ulong args,
98 uint32_t nret, target_ulong rets)
99 {
100 uint64_t buid;
101 uint32_t size, addr;
102
103 if ((nargs != 4) || (nret != 2)) {
104 rtas_st(rets, 0, -1);
105 return;
106 }
107
108 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
109 size = rtas_ld(args, 3);
110 addr = rtas_ld(args, 0);
111
112 finish_read_pci_config(spapr, buid, addr, size, rets);
113 }
114
115 static void rtas_read_pci_config(sPAPREnvironment *spapr,
116 uint32_t token, uint32_t nargs,
117 target_ulong args,
118 uint32_t nret, target_ulong rets)
119 {
120 uint32_t size, addr;
121
122 if ((nargs != 2) || (nret != 2)) {
123 rtas_st(rets, 0, -1);
124 return;
125 }
126
127 size = rtas_ld(args, 1);
128 addr = rtas_ld(args, 0);
129
130 finish_read_pci_config(spapr, 0, addr, size, rets);
131 }
132
133 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
134 uint32_t addr, uint32_t size,
135 uint32_t val, target_ulong rets)
136 {
137 PCIDevice *pci_dev;
138
139 if ((size != 1) && (size != 2) && (size != 4)) {
140 /* access must be 1, 2 or 4 bytes */
141 rtas_st(rets, 0, -1);
142 return;
143 }
144
145 pci_dev = find_dev(spapr, buid, addr);
146 addr = rtas_pci_cfgaddr(addr);
147
148 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
149 /* Access must be to a valid device, within bounds and
150 * naturally aligned */
151 rtas_st(rets, 0, -1);
152 return;
153 }
154
155 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
156 val, size);
157
158 rtas_st(rets, 0, 0);
159 }
160
161 static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
162 uint32_t token, uint32_t nargs,
163 target_ulong args,
164 uint32_t nret, target_ulong rets)
165 {
166 uint64_t buid;
167 uint32_t val, size, addr;
168
169 if ((nargs != 5) || (nret != 1)) {
170 rtas_st(rets, 0, -1);
171 return;
172 }
173
174 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
175 val = rtas_ld(args, 4);
176 size = rtas_ld(args, 3);
177 addr = rtas_ld(args, 0);
178
179 finish_write_pci_config(spapr, buid, addr, size, val, rets);
180 }
181
182 static void rtas_write_pci_config(sPAPREnvironment *spapr,
183 uint32_t token, uint32_t nargs,
184 target_ulong args,
185 uint32_t nret, target_ulong rets)
186 {
187 uint32_t val, size, addr;
188
189 if ((nargs != 3) || (nret != 1)) {
190 rtas_st(rets, 0, -1);
191 return;
192 }
193
194
195 val = rtas_ld(args, 2);
196 size = rtas_ld(args, 1);
197 addr = rtas_ld(args, 0);
198
199 finish_write_pci_config(spapr, 0, addr, size, val, rets);
200 }
201
202 static int pci_spapr_swizzle(int slot, int pin)
203 {
204 return (slot + pin) % PCI_NUM_PINS;
205 }
206
207 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
208 {
209 /*
210 * Here we need to convert pci_dev + irq_num to some unique value
211 * which is less than number of IRQs on the specific bus (4). We
212 * use standard PCI swizzling, that is (slot number + pin number)
213 * % 4.
214 */
215 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
216 }
217
218 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
219 {
220 /*
221 * Here we use the number returned by pci_spapr_map_irq to find a
222 * corresponding qemu_irq.
223 */
224 sPAPRPHBState *phb = opaque;
225
226 qemu_set_irq(phb->lsi_table[irq_num].qirq, level);
227 }
228
229 static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
230 unsigned size)
231 {
232 switch (size) {
233 case 1:
234 return cpu_inb(addr);
235 case 2:
236 return cpu_inw(addr);
237 case 4:
238 return cpu_inl(addr);
239 }
240 assert(0);
241 }
242
243 static void spapr_io_write(void *opaque, target_phys_addr_t addr,
244 uint64_t data, unsigned size)
245 {
246 switch (size) {
247 case 1:
248 cpu_outb(addr, data);
249 return;
250 case 2:
251 cpu_outw(addr, data);
252 return;
253 case 4:
254 cpu_outl(addr, data);
255 return;
256 }
257 assert(0);
258 }
259
260 static const MemoryRegionOps spapr_io_ops = {
261 .endianness = DEVICE_LITTLE_ENDIAN,
262 .read = spapr_io_read,
263 .write = spapr_io_write
264 };
265
266 /*
267 * PHB PCI device
268 */
269 static int spapr_phb_init(SysBusDevice *s)
270 {
271 sPAPRPHBState *phb = FROM_SYSBUS(sPAPRPHBState, s);
272 char *namebuf;
273 int i;
274 PCIBus *bus;
275
276 phb->dtbusname = g_strdup_printf("pci@%" PRIx64, phb->buid);
277 namebuf = alloca(strlen(phb->dtbusname) + 32);
278
279 /* Initialize memory regions */
280 sprintf(namebuf, "%s.mmio", phb->dtbusname);
281 memory_region_init(&phb->memspace, namebuf, INT64_MAX);
282
283 sprintf(namebuf, "%s.mmio-alias", phb->dtbusname);
284 memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace,
285 SPAPR_PCI_MEM_WIN_BUS_OFFSET, phb->mem_win_size);
286 memory_region_add_subregion(get_system_memory(), phb->mem_win_addr,
287 &phb->memwindow);
288
289 /* On ppc, we only have MMIO no specific IO space from the CPU
290 * perspective. In theory we ought to be able to embed the PCI IO
291 * memory region direction in the system memory space. However,
292 * if any of the IO BAR subregions use the old_portio mechanism,
293 * that won't be processed properly unless accessed from the
294 * system io address space. This hack to bounce things via
295 * system_io works around the problem until all the users of
296 * old_portion are updated */
297 sprintf(namebuf, "%s.io", phb->dtbusname);
298 memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
299 /* FIXME: fix to support multiple PHBs */
300 memory_region_add_subregion(get_system_io(), 0, &phb->iospace);
301
302 sprintf(namebuf, "%s.io-alias", phb->dtbusname);
303 memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb,
304 namebuf, SPAPR_PCI_IO_WIN_SIZE);
305 memory_region_add_subregion(get_system_memory(), phb->io_win_addr,
306 &phb->iowindow);
307
308 bus = pci_register_bus(&phb->busdev.qdev,
309 phb->busname ? phb->busname : phb->dtbusname,
310 pci_spapr_set_irq, pci_spapr_map_irq, phb,
311 &phb->memspace, &phb->iospace,
312 PCI_DEVFN(0, 0), PCI_NUM_PINS);
313 phb->host_state.bus = bus;
314
315 QLIST_INSERT_HEAD(&spapr->phbs, phb, list);
316
317 /* Initialize the LSI table */
318 for (i = 0; i < PCI_NUM_PINS; i++) {
319 qemu_irq qirq;
320 uint32_t num;
321
322 qirq = spapr_allocate_lsi(0, &num);
323 if (!qirq) {
324 return -1;
325 }
326
327 phb->lsi_table[i].dt_irq = num;
328 phb->lsi_table[i].qirq = qirq;
329 }
330
331 return 0;
332 }
333
334 static Property spapr_phb_properties[] = {
335 DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0),
336 DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
337 DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0),
338 DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000),
339 DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0),
340 DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000),
341 DEFINE_PROP_END_OF_LIST(),
342 };
343
344 static void spapr_phb_class_init(ObjectClass *klass, void *data)
345 {
346 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
347 DeviceClass *dc = DEVICE_CLASS(klass);
348
349 sdc->init = spapr_phb_init;
350 dc->props = spapr_phb_properties;
351
352 spapr_rtas_register("read-pci-config", rtas_read_pci_config);
353 spapr_rtas_register("write-pci-config", rtas_write_pci_config);
354 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
355 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
356 }
357
358 static TypeInfo spapr_phb_info = {
359 .name = "spapr-pci-host-bridge",
360 .parent = TYPE_SYS_BUS_DEVICE,
361 .instance_size = sizeof(sPAPRPHBState),
362 .class_init = spapr_phb_class_init,
363 };
364
365 void spapr_create_phb(sPAPREnvironment *spapr,
366 const char *busname, uint64_t buid,
367 uint64_t mem_win_addr, uint64_t mem_win_size,
368 uint64_t io_win_addr)
369 {
370 DeviceState *dev;
371
372 dev = qdev_create(NULL, spapr_phb_info.name);
373
374 if (busname) {
375 qdev_prop_set_string(dev, "busname", g_strdup(busname));
376 }
377 qdev_prop_set_uint64(dev, "buid", buid);
378 qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr);
379 qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size);
380 qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr);
381
382 qdev_init_nofail(dev);
383 }
384
385 /* Macros to operate with address in OF binding to PCI */
386 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
387 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
388 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
389 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
390 #define b_ss(x) b_x((x), 24, 2) /* the space code */
391 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
392 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
393 #define b_fff(x) b_x((x), 8, 3) /* function number */
394 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
395
396 int spapr_populate_pci_devices(sPAPRPHBState *phb,
397 uint32_t xics_phandle,
398 void *fdt)
399 {
400 int bus_off, i, j;
401 char nodename[256];
402 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
403 struct {
404 uint32_t hi;
405 uint64_t child;
406 uint64_t parent;
407 uint64_t size;
408 } __attribute__((packed)) ranges[] = {
409 {
410 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
411 cpu_to_be64(phb->io_win_addr),
412 cpu_to_be64(memory_region_size(&phb->iospace)),
413 },
414 {
415 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
416 cpu_to_be64(phb->mem_win_addr),
417 cpu_to_be64(memory_region_size(&phb->memwindow)),
418 },
419 };
420 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
421 uint32_t interrupt_map_mask[] = {
422 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
423 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
424
425 /* Start populating the FDT */
426 sprintf(nodename, "pci@%" PRIx64, phb->buid);
427 bus_off = fdt_add_subnode(fdt, 0, nodename);
428 if (bus_off < 0) {
429 return bus_off;
430 }
431
432 #define _FDT(exp) \
433 do { \
434 int ret = (exp); \
435 if (ret < 0) { \
436 return ret; \
437 } \
438 } while (0)
439
440 /* Write PHB properties */
441 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
442 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
443 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
444 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
445 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
446 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
447 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
448 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
449 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
450 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
451
452 /* Build the interrupt-map, this must matches what is done
453 * in pci_spapr_map_irq
454 */
455 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
456 &interrupt_map_mask, sizeof(interrupt_map_mask)));
457 for (i = 0; i < PCI_SLOT_MAX; i++) {
458 for (j = 0; j < PCI_NUM_PINS; j++) {
459 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
460 int lsi_num = pci_spapr_swizzle(i, j);
461
462 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
463 irqmap[1] = 0;
464 irqmap[2] = 0;
465 irqmap[3] = cpu_to_be32(j+1);
466 irqmap[4] = cpu_to_be32(xics_phandle);
467 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].dt_irq);
468 irqmap[6] = cpu_to_be32(0x8);
469 }
470 }
471 /* Write interrupt map */
472 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
473 sizeof(interrupt_map)));
474
475 return 0;
476 }
477
478 static void register_types(void)
479 {
480 type_register_static(&spapr_phb_info);
481 }
482 type_init(register_types)