]> git.proxmox.com Git - mirror_qemu.git/blob - hw/sparc/sun4m.c
99f53e87f74db80123e5d886cdab6e314daeb13f
[mirror_qemu.git] / hw / sparc / sun4m.c
1 /*
2 * QEMU Sun4m & Sun4d & Sun4c System Emulator
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/sysbus.h"
30 #include "qemu/error-report.h"
31 #include "qemu/timer.h"
32 #include "hw/sparc/sun4m_iommu.h"
33 #include "hw/timer/m48t59.h"
34 #include "hw/sparc/sparc32_dma.h"
35 #include "hw/block/fdc.h"
36 #include "sysemu/sysemu.h"
37 #include "net/net.h"
38 #include "hw/boards.h"
39 #include "hw/scsi/esp.h"
40 #include "hw/nvram/sun_nvram.h"
41 #include "hw/nvram/chrp_nvram.h"
42 #include "hw/nvram/fw_cfg.h"
43 #include "hw/char/escc.h"
44 #include "hw/empty_slot.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "trace.h"
48
49 /*
50 * Sun4m architecture was used in the following machines:
51 *
52 * SPARCserver 6xxMP/xx
53 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
54 * SPARCclassic X (4/10)
55 * SPARCstation LX/ZX (4/30)
56 * SPARCstation Voyager
57 * SPARCstation 10/xx, SPARCserver 10/xx
58 * SPARCstation 5, SPARCserver 5
59 * SPARCstation 20/xx, SPARCserver 20
60 * SPARCstation 4
61 *
62 * See for example: http://www.sunhelp.org/faq/sunref1.html
63 */
64
65 #define KERNEL_LOAD_ADDR 0x00004000
66 #define CMDLINE_ADDR 0x007ff000
67 #define INITRD_LOAD_ADDR 0x00800000
68 #define PROM_SIZE_MAX (1 * MiB)
69 #define PROM_VADDR 0xffd00000
70 #define PROM_FILENAME "openbios-sparc32"
71 #define CFG_ADDR 0xd00000510ULL
72 #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
73 #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
74 #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
75
76 #define MAX_CPUS 16
77 #define MAX_PILS 16
78 #define MAX_VSIMMS 4
79
80 #define ESCC_CLOCK 4915200
81
82 struct sun4m_hwdef {
83 hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
84 hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
85 hwaddr serial_base, fd_base;
86 hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
87 hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
88 hwaddr bpp_base, dbri_base, sx_base;
89 struct {
90 hwaddr reg_base, vram_base;
91 } vsimm[MAX_VSIMMS];
92 hwaddr ecc_base;
93 uint64_t max_mem;
94 uint32_t ecc_version;
95 uint32_t iommu_version;
96 uint16_t machine_id;
97 uint8_t nvram_machine_id;
98 };
99
100 const char *fw_cfg_arch_key_name(uint16_t key)
101 {
102 static const struct {
103 uint16_t key;
104 const char *name;
105 } fw_cfg_arch_wellknown_keys[] = {
106 {FW_CFG_SUN4M_DEPTH, "depth"},
107 {FW_CFG_SUN4M_WIDTH, "width"},
108 {FW_CFG_SUN4M_HEIGHT, "height"},
109 };
110
111 for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
112 if (fw_cfg_arch_wellknown_keys[i].key == key) {
113 return fw_cfg_arch_wellknown_keys[i].name;
114 }
115 }
116 return NULL;
117 }
118
119 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
120 Error **errp)
121 {
122 fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
123 }
124
125 static void nvram_init(Nvram *nvram, uint8_t *macaddr,
126 const char *cmdline, const char *boot_devices,
127 ram_addr_t RAM_size, uint32_t kernel_size,
128 int width, int height, int depth,
129 int nvram_machine_id, const char *arch)
130 {
131 unsigned int i;
132 int sysp_end;
133 uint8_t image[0x1ff0];
134 NvramClass *k = NVRAM_GET_CLASS(nvram);
135
136 memset(image, '\0', sizeof(image));
137
138 /* OpenBIOS nvram variables partition */
139 sysp_end = chrp_nvram_create_system_partition(image, 0);
140
141 /* Free space partition */
142 chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
143
144 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
145 nvram_machine_id);
146
147 for (i = 0; i < sizeof(image); i++) {
148 (k->write)(nvram, i, image[i]);
149 }
150 }
151
152 void cpu_check_irqs(CPUSPARCState *env)
153 {
154 CPUState *cs;
155
156 /* We should be holding the BQL before we mess with IRQs */
157 g_assert(qemu_mutex_iothread_locked());
158
159 if (env->pil_in && (env->interrupt_index == 0 ||
160 (env->interrupt_index & ~15) == TT_EXTINT)) {
161 unsigned int i;
162
163 for (i = 15; i > 0; i--) {
164 if (env->pil_in & (1 << i)) {
165 int old_interrupt = env->interrupt_index;
166
167 env->interrupt_index = TT_EXTINT | i;
168 if (old_interrupt != env->interrupt_index) {
169 cs = env_cpu(env);
170 trace_sun4m_cpu_interrupt(i);
171 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
172 }
173 break;
174 }
175 }
176 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
177 cs = env_cpu(env);
178 trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
179 env->interrupt_index = 0;
180 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
181 }
182 }
183
184 static void cpu_kick_irq(SPARCCPU *cpu)
185 {
186 CPUSPARCState *env = &cpu->env;
187 CPUState *cs = CPU(cpu);
188
189 cs->halted = 0;
190 cpu_check_irqs(env);
191 qemu_cpu_kick(cs);
192 }
193
194 static void cpu_set_irq(void *opaque, int irq, int level)
195 {
196 SPARCCPU *cpu = opaque;
197 CPUSPARCState *env = &cpu->env;
198
199 if (level) {
200 trace_sun4m_cpu_set_irq_raise(irq);
201 env->pil_in |= 1 << irq;
202 cpu_kick_irq(cpu);
203 } else {
204 trace_sun4m_cpu_set_irq_lower(irq);
205 env->pil_in &= ~(1 << irq);
206 cpu_check_irqs(env);
207 }
208 }
209
210 static void dummy_cpu_set_irq(void *opaque, int irq, int level)
211 {
212 }
213
214 static void main_cpu_reset(void *opaque)
215 {
216 SPARCCPU *cpu = opaque;
217 CPUState *cs = CPU(cpu);
218
219 cpu_reset(cs);
220 cs->halted = 0;
221 }
222
223 static void secondary_cpu_reset(void *opaque)
224 {
225 SPARCCPU *cpu = opaque;
226 CPUState *cs = CPU(cpu);
227
228 cpu_reset(cs);
229 cs->halted = 1;
230 }
231
232 static void cpu_halt_signal(void *opaque, int irq, int level)
233 {
234 if (level && current_cpu) {
235 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
236 }
237 }
238
239 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
240 {
241 return addr - 0xf0000000ULL;
242 }
243
244 static unsigned long sun4m_load_kernel(const char *kernel_filename,
245 const char *initrd_filename,
246 ram_addr_t RAM_size,
247 uint32_t *initrd_size)
248 {
249 int linux_boot;
250 unsigned int i;
251 long kernel_size;
252 uint8_t *ptr;
253
254 linux_boot = (kernel_filename != NULL);
255
256 kernel_size = 0;
257 if (linux_boot) {
258 int bswap_needed;
259
260 #ifdef BSWAP_NEEDED
261 bswap_needed = 1;
262 #else
263 bswap_needed = 0;
264 #endif
265 kernel_size = load_elf(kernel_filename, NULL,
266 translate_kernel_address, NULL,
267 NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
268 if (kernel_size < 0)
269 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
270 RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
271 TARGET_PAGE_SIZE);
272 if (kernel_size < 0)
273 kernel_size = load_image_targphys(kernel_filename,
274 KERNEL_LOAD_ADDR,
275 RAM_size - KERNEL_LOAD_ADDR);
276 if (kernel_size < 0) {
277 error_report("could not load kernel '%s'", kernel_filename);
278 exit(1);
279 }
280
281 /* load initrd */
282 *initrd_size = 0;
283 if (initrd_filename) {
284 *initrd_size = load_image_targphys(initrd_filename,
285 INITRD_LOAD_ADDR,
286 RAM_size - INITRD_LOAD_ADDR);
287 if ((int)*initrd_size < 0) {
288 error_report("could not load initial ram disk '%s'",
289 initrd_filename);
290 exit(1);
291 }
292 }
293 if (*initrd_size > 0) {
294 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
295 ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
296 if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
297 stl_p(ptr + 16, INITRD_LOAD_ADDR);
298 stl_p(ptr + 20, *initrd_size);
299 break;
300 }
301 }
302 }
303 }
304 return kernel_size;
305 }
306
307 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
308 {
309 DeviceState *dev;
310 SysBusDevice *s;
311
312 dev = qdev_create(NULL, TYPE_SUN4M_IOMMU);
313 qdev_prop_set_uint32(dev, "version", version);
314 qdev_init_nofail(dev);
315 s = SYS_BUS_DEVICE(dev);
316 sysbus_connect_irq(s, 0, irq);
317 sysbus_mmio_map(s, 0, addr);
318
319 return s;
320 }
321
322 static void *sparc32_dma_init(hwaddr dma_base,
323 hwaddr esp_base, qemu_irq espdma_irq,
324 hwaddr le_base, qemu_irq ledma_irq)
325 {
326 DeviceState *dma;
327 ESPDMADeviceState *espdma;
328 LEDMADeviceState *ledma;
329 SysBusESPState *esp;
330 SysBusPCNetState *lance;
331
332 dma = qdev_create(NULL, TYPE_SPARC32_DMA);
333 qdev_init_nofail(dma);
334 sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
335
336 espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
337 OBJECT(dma), "espdma"));
338 sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
339
340 esp = ESP_STATE(object_resolve_path_component(OBJECT(espdma), "esp"));
341 sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
342 scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
343
344 ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
345 OBJECT(dma), "ledma"));
346 sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
347
348 lance = SYSBUS_PCNET(object_resolve_path_component(
349 OBJECT(ledma), "lance"));
350 sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
351
352 return dma;
353 }
354
355 static DeviceState *slavio_intctl_init(hwaddr addr,
356 hwaddr addrg,
357 qemu_irq **parent_irq)
358 {
359 DeviceState *dev;
360 SysBusDevice *s;
361 unsigned int i, j;
362
363 dev = qdev_create(NULL, "slavio_intctl");
364 qdev_init_nofail(dev);
365
366 s = SYS_BUS_DEVICE(dev);
367
368 for (i = 0; i < MAX_CPUS; i++) {
369 for (j = 0; j < MAX_PILS; j++) {
370 sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
371 }
372 }
373 sysbus_mmio_map(s, 0, addrg);
374 for (i = 0; i < MAX_CPUS; i++) {
375 sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
376 }
377
378 return dev;
379 }
380
381 #define SYS_TIMER_OFFSET 0x10000ULL
382 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
383
384 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
385 qemu_irq *cpu_irqs, unsigned int num_cpus)
386 {
387 DeviceState *dev;
388 SysBusDevice *s;
389 unsigned int i;
390
391 dev = qdev_create(NULL, "slavio_timer");
392 qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
393 qdev_init_nofail(dev);
394 s = SYS_BUS_DEVICE(dev);
395 sysbus_connect_irq(s, 0, master_irq);
396 sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
397
398 for (i = 0; i < MAX_CPUS; i++) {
399 sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
400 sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
401 }
402 }
403
404 static qemu_irq slavio_system_powerdown;
405
406 static void slavio_powerdown_req(Notifier *n, void *opaque)
407 {
408 qemu_irq_raise(slavio_system_powerdown);
409 }
410
411 static Notifier slavio_system_powerdown_notifier = {
412 .notify = slavio_powerdown_req
413 };
414
415 #define MISC_LEDS 0x01600000
416 #define MISC_CFG 0x01800000
417 #define MISC_DIAG 0x01a00000
418 #define MISC_MDM 0x01b00000
419 #define MISC_SYS 0x01f00000
420
421 static void slavio_misc_init(hwaddr base,
422 hwaddr aux1_base,
423 hwaddr aux2_base, qemu_irq irq,
424 qemu_irq fdc_tc)
425 {
426 DeviceState *dev;
427 SysBusDevice *s;
428
429 dev = qdev_create(NULL, "slavio_misc");
430 qdev_init_nofail(dev);
431 s = SYS_BUS_DEVICE(dev);
432 if (base) {
433 /* 8 bit registers */
434 /* Slavio control */
435 sysbus_mmio_map(s, 0, base + MISC_CFG);
436 /* Diagnostics */
437 sysbus_mmio_map(s, 1, base + MISC_DIAG);
438 /* Modem control */
439 sysbus_mmio_map(s, 2, base + MISC_MDM);
440 /* 16 bit registers */
441 /* ss600mp diag LEDs */
442 sysbus_mmio_map(s, 3, base + MISC_LEDS);
443 /* 32 bit registers */
444 /* System control */
445 sysbus_mmio_map(s, 4, base + MISC_SYS);
446 }
447 if (aux1_base) {
448 /* AUX 1 (Misc System Functions) */
449 sysbus_mmio_map(s, 5, aux1_base);
450 }
451 if (aux2_base) {
452 /* AUX 2 (Software Powerdown Control) */
453 sysbus_mmio_map(s, 6, aux2_base);
454 }
455 sysbus_connect_irq(s, 0, irq);
456 sysbus_connect_irq(s, 1, fdc_tc);
457 slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
458 qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
459 }
460
461 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
462 {
463 DeviceState *dev;
464 SysBusDevice *s;
465
466 dev = qdev_create(NULL, "eccmemctl");
467 qdev_prop_set_uint32(dev, "version", version);
468 qdev_init_nofail(dev);
469 s = SYS_BUS_DEVICE(dev);
470 sysbus_connect_irq(s, 0, irq);
471 sysbus_mmio_map(s, 0, base);
472 if (version == 0) { // SS-600MP only
473 sysbus_mmio_map(s, 1, base + 0x1000);
474 }
475 }
476
477 static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
478 {
479 DeviceState *dev;
480 SysBusDevice *s;
481
482 dev = qdev_create(NULL, "apc");
483 qdev_init_nofail(dev);
484 s = SYS_BUS_DEVICE(dev);
485 /* Power management (APC) XXX: not a Slavio device */
486 sysbus_mmio_map(s, 0, power_base);
487 sysbus_connect_irq(s, 0, cpu_halt);
488 }
489
490 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
491 int height, int depth)
492 {
493 DeviceState *dev;
494 SysBusDevice *s;
495
496 dev = qdev_create(NULL, "SUNW,tcx");
497 qdev_prop_set_uint32(dev, "vram_size", vram_size);
498 qdev_prop_set_uint16(dev, "width", width);
499 qdev_prop_set_uint16(dev, "height", height);
500 qdev_prop_set_uint16(dev, "depth", depth);
501 qdev_init_nofail(dev);
502 s = SYS_BUS_DEVICE(dev);
503
504 /* 10/ROM : FCode ROM */
505 sysbus_mmio_map(s, 0, addr);
506 /* 2/STIP : Stipple */
507 sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
508 /* 3/BLIT : Blitter */
509 sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
510 /* 5/RSTIP : Raw Stipple */
511 sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
512 /* 6/RBLIT : Raw Blitter */
513 sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
514 /* 7/TEC : Transform Engine */
515 sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
516 /* 8/CMAP : DAC */
517 sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
518 /* 9/THC : */
519 if (depth == 8) {
520 sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
521 } else {
522 sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
523 }
524 /* 11/DHC : */
525 sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
526 /* 12/ALT : */
527 sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
528 /* 0/DFB8 : 8-bit plane */
529 sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
530 /* 1/DFB24 : 24bit plane */
531 sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
532 /* 4/RDFB32: Raw framebuffer. Control plane */
533 sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
534 /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
535 if (depth == 8) {
536 sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
537 }
538
539 sysbus_connect_irq(s, 0, irq);
540 }
541
542 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
543 int height, int depth)
544 {
545 DeviceState *dev;
546 SysBusDevice *s;
547
548 dev = qdev_create(NULL, "cgthree");
549 qdev_prop_set_uint32(dev, "vram-size", vram_size);
550 qdev_prop_set_uint16(dev, "width", width);
551 qdev_prop_set_uint16(dev, "height", height);
552 qdev_prop_set_uint16(dev, "depth", depth);
553 qdev_init_nofail(dev);
554 s = SYS_BUS_DEVICE(dev);
555
556 /* FCode ROM */
557 sysbus_mmio_map(s, 0, addr);
558 /* DAC */
559 sysbus_mmio_map(s, 1, addr + 0x400000ULL);
560 /* 8-bit plane */
561 sysbus_mmio_map(s, 2, addr + 0x800000ULL);
562
563 sysbus_connect_irq(s, 0, irq);
564 }
565
566 /* NCR89C100/MACIO Internal ID register */
567
568 #define TYPE_MACIO_ID_REGISTER "macio_idreg"
569
570 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
571
572 static void idreg_init(hwaddr addr)
573 {
574 DeviceState *dev;
575 SysBusDevice *s;
576
577 dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER);
578 qdev_init_nofail(dev);
579 s = SYS_BUS_DEVICE(dev);
580
581 sysbus_mmio_map(s, 0, addr);
582 address_space_write_rom(&address_space_memory, addr,
583 MEMTXATTRS_UNSPECIFIED,
584 idreg_data, sizeof(idreg_data));
585 }
586
587 #define MACIO_ID_REGISTER(obj) \
588 OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER)
589
590 typedef struct IDRegState {
591 SysBusDevice parent_obj;
592
593 MemoryRegion mem;
594 } IDRegState;
595
596 static void idreg_realize(DeviceState *ds, Error **errp)
597 {
598 IDRegState *s = MACIO_ID_REGISTER(ds);
599 SysBusDevice *dev = SYS_BUS_DEVICE(ds);
600 Error *local_err = NULL;
601
602 memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
603 sizeof(idreg_data), &local_err);
604 if (local_err) {
605 error_propagate(errp, local_err);
606 return;
607 }
608
609 vmstate_register_ram_global(&s->mem);
610 memory_region_set_readonly(&s->mem, true);
611 sysbus_init_mmio(dev, &s->mem);
612 }
613
614 static void idreg_class_init(ObjectClass *oc, void *data)
615 {
616 DeviceClass *dc = DEVICE_CLASS(oc);
617
618 dc->realize = idreg_realize;
619 }
620
621 static const TypeInfo idreg_info = {
622 .name = TYPE_MACIO_ID_REGISTER,
623 .parent = TYPE_SYS_BUS_DEVICE,
624 .instance_size = sizeof(IDRegState),
625 .class_init = idreg_class_init,
626 };
627
628 #define TYPE_TCX_AFX "tcx_afx"
629 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX)
630
631 typedef struct AFXState {
632 SysBusDevice parent_obj;
633
634 MemoryRegion mem;
635 } AFXState;
636
637 /* SS-5 TCX AFX register */
638 static void afx_init(hwaddr addr)
639 {
640 DeviceState *dev;
641 SysBusDevice *s;
642
643 dev = qdev_create(NULL, TYPE_TCX_AFX);
644 qdev_init_nofail(dev);
645 s = SYS_BUS_DEVICE(dev);
646
647 sysbus_mmio_map(s, 0, addr);
648 }
649
650 static void afx_realize(DeviceState *ds, Error **errp)
651 {
652 AFXState *s = TCX_AFX(ds);
653 SysBusDevice *dev = SYS_BUS_DEVICE(ds);
654 Error *local_err = NULL;
655
656 memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx", 4,
657 &local_err);
658 if (local_err) {
659 error_propagate(errp, local_err);
660 return;
661 }
662
663 vmstate_register_ram_global(&s->mem);
664 sysbus_init_mmio(dev, &s->mem);
665 }
666
667 static void afx_class_init(ObjectClass *oc, void *data)
668 {
669 DeviceClass *dc = DEVICE_CLASS(oc);
670
671 dc->realize = afx_realize;
672 }
673
674 static const TypeInfo afx_info = {
675 .name = TYPE_TCX_AFX,
676 .parent = TYPE_SYS_BUS_DEVICE,
677 .instance_size = sizeof(AFXState),
678 .class_init = afx_class_init,
679 };
680
681 #define TYPE_OPENPROM "openprom"
682 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
683
684 typedef struct PROMState {
685 SysBusDevice parent_obj;
686
687 MemoryRegion prom;
688 } PROMState;
689
690 /* Boot PROM (OpenBIOS) */
691 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
692 {
693 hwaddr *base_addr = (hwaddr *)opaque;
694 return addr + *base_addr - PROM_VADDR;
695 }
696
697 static void prom_init(hwaddr addr, const char *bios_name)
698 {
699 DeviceState *dev;
700 SysBusDevice *s;
701 char *filename;
702 int ret;
703
704 dev = qdev_create(NULL, TYPE_OPENPROM);
705 qdev_init_nofail(dev);
706 s = SYS_BUS_DEVICE(dev);
707
708 sysbus_mmio_map(s, 0, addr);
709
710 /* load boot prom */
711 if (bios_name == NULL) {
712 bios_name = PROM_FILENAME;
713 }
714 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
715 if (filename) {
716 ret = load_elf(filename, NULL,
717 translate_prom_address, &addr, NULL,
718 NULL, NULL, 1, EM_SPARC, 0, 0);
719 if (ret < 0 || ret > PROM_SIZE_MAX) {
720 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
721 }
722 g_free(filename);
723 } else {
724 ret = -1;
725 }
726 if (ret < 0 || ret > PROM_SIZE_MAX) {
727 error_report("could not load prom '%s'", bios_name);
728 exit(1);
729 }
730 }
731
732 static void prom_realize(DeviceState *ds, Error **errp)
733 {
734 PROMState *s = OPENPROM(ds);
735 SysBusDevice *dev = SYS_BUS_DEVICE(ds);
736 Error *local_err = NULL;
737
738 memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
739 PROM_SIZE_MAX, &local_err);
740 if (local_err) {
741 error_propagate(errp, local_err);
742 return;
743 }
744
745 vmstate_register_ram_global(&s->prom);
746 memory_region_set_readonly(&s->prom, true);
747 sysbus_init_mmio(dev, &s->prom);
748 }
749
750 static Property prom_properties[] = {
751 {/* end of property list */},
752 };
753
754 static void prom_class_init(ObjectClass *klass, void *data)
755 {
756 DeviceClass *dc = DEVICE_CLASS(klass);
757
758 dc->props = prom_properties;
759 dc->realize = prom_realize;
760 }
761
762 static const TypeInfo prom_info = {
763 .name = TYPE_OPENPROM,
764 .parent = TYPE_SYS_BUS_DEVICE,
765 .instance_size = sizeof(PROMState),
766 .class_init = prom_class_init,
767 };
768
769 #define TYPE_SUN4M_MEMORY "memory"
770 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY)
771
772 typedef struct RamDevice {
773 SysBusDevice parent_obj;
774
775 MemoryRegion ram;
776 uint64_t size;
777 } RamDevice;
778
779 /* System RAM */
780 static void ram_realize(DeviceState *dev, Error **errp)
781 {
782 RamDevice *d = SUN4M_RAM(dev);
783 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
784
785 memory_region_allocate_system_memory(&d->ram, OBJECT(d), "sun4m.ram",
786 d->size);
787 sysbus_init_mmio(sbd, &d->ram);
788 }
789
790 static void ram_init(hwaddr addr, ram_addr_t RAM_size,
791 uint64_t max_mem)
792 {
793 DeviceState *dev;
794 SysBusDevice *s;
795 RamDevice *d;
796
797 /* allocate RAM */
798 if ((uint64_t)RAM_size > max_mem) {
799 error_report("Too much memory for this machine: %" PRId64 ","
800 " maximum %" PRId64,
801 RAM_size / MiB, max_mem / MiB);
802 exit(1);
803 }
804 dev = qdev_create(NULL, "memory");
805 s = SYS_BUS_DEVICE(dev);
806
807 d = SUN4M_RAM(dev);
808 d->size = RAM_size;
809 qdev_init_nofail(dev);
810
811 sysbus_mmio_map(s, 0, addr);
812 }
813
814 static Property ram_properties[] = {
815 DEFINE_PROP_UINT64("size", RamDevice, size, 0),
816 DEFINE_PROP_END_OF_LIST(),
817 };
818
819 static void ram_class_init(ObjectClass *klass, void *data)
820 {
821 DeviceClass *dc = DEVICE_CLASS(klass);
822
823 dc->realize = ram_realize;
824 dc->props = ram_properties;
825 }
826
827 static const TypeInfo ram_info = {
828 .name = TYPE_SUN4M_MEMORY,
829 .parent = TYPE_SYS_BUS_DEVICE,
830 .instance_size = sizeof(RamDevice),
831 .class_init = ram_class_init,
832 };
833
834 static void cpu_devinit(const char *cpu_type, unsigned int id,
835 uint64_t prom_addr, qemu_irq **cpu_irqs)
836 {
837 CPUState *cs;
838 SPARCCPU *cpu;
839 CPUSPARCState *env;
840
841 cpu = SPARC_CPU(cpu_create(cpu_type));
842 env = &cpu->env;
843
844 cpu_sparc_set_id(env, id);
845 if (id == 0) {
846 qemu_register_reset(main_cpu_reset, cpu);
847 } else {
848 qemu_register_reset(secondary_cpu_reset, cpu);
849 cs = CPU(cpu);
850 cs->halted = 1;
851 }
852 *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
853 env->prom_addr = prom_addr;
854 }
855
856 static void dummy_fdc_tc(void *opaque, int irq, int level)
857 {
858 }
859
860 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef,
861 MachineState *machine)
862 {
863 DeviceState *slavio_intctl;
864 unsigned int i;
865 void *nvram;
866 qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
867 qemu_irq fdc_tc;
868 unsigned long kernel_size;
869 uint32_t initrd_size;
870 DriveInfo *fd[MAX_FD];
871 FWCfgState *fw_cfg;
872 DeviceState *dev;
873 SysBusDevice *s;
874
875 /* init CPUs */
876 for(i = 0; i < smp_cpus; i++) {
877 cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
878 }
879
880 for (i = smp_cpus; i < MAX_CPUS; i++)
881 cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
882
883
884 /* set up devices */
885 ram_init(0, machine->ram_size, hwdef->max_mem);
886 /* models without ECC don't trap when missing ram is accessed */
887 if (!hwdef->ecc_base) {
888 empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size);
889 }
890
891 prom_init(hwdef->slavio_base, bios_name);
892
893 slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
894 hwdef->intctl_base + 0x10000ULL,
895 cpu_irqs);
896
897 for (i = 0; i < 32; i++) {
898 slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
899 }
900 for (i = 0; i < MAX_CPUS; i++) {
901 slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
902 }
903
904 if (hwdef->idreg_base) {
905 idreg_init(hwdef->idreg_base);
906 }
907
908 if (hwdef->afx_base) {
909 afx_init(hwdef->afx_base);
910 }
911
912 iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
913
914 if (hwdef->iommu_pad_base) {
915 /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
916 Software shouldn't use aliased addresses, neither should it crash
917 when does. Using empty_slot instead of aliasing can help with
918 debugging such accesses */
919 empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len);
920 }
921
922 sparc32_dma_init(hwdef->dma_base,
923 hwdef->esp_base, slavio_irq[18],
924 hwdef->le_base, slavio_irq[16]);
925
926 if (graphic_depth != 8 && graphic_depth != 24) {
927 error_report("Unsupported depth: %d", graphic_depth);
928 exit (1);
929 }
930 if (vga_interface_type != VGA_NONE) {
931 if (vga_interface_type == VGA_CG3) {
932 if (graphic_depth != 8) {
933 error_report("Unsupported depth: %d", graphic_depth);
934 exit(1);
935 }
936
937 if (!(graphic_width == 1024 && graphic_height == 768) &&
938 !(graphic_width == 1152 && graphic_height == 900)) {
939 error_report("Unsupported resolution: %d x %d", graphic_width,
940 graphic_height);
941 exit(1);
942 }
943
944 /* sbus irq 5 */
945 cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
946 graphic_width, graphic_height, graphic_depth);
947 } else {
948 /* If no display specified, default to TCX */
949 if (graphic_depth != 8 && graphic_depth != 24) {
950 error_report("Unsupported depth: %d", graphic_depth);
951 exit(1);
952 }
953
954 if (!(graphic_width == 1024 && graphic_height == 768)) {
955 error_report("Unsupported resolution: %d x %d",
956 graphic_width, graphic_height);
957 exit(1);
958 }
959
960 tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
961 graphic_width, graphic_height, graphic_depth);
962 }
963 }
964
965 for (i = 0; i < MAX_VSIMMS; i++) {
966 /* vsimm registers probed by OBP */
967 if (hwdef->vsimm[i].reg_base) {
968 empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000);
969 }
970 }
971
972 if (hwdef->sx_base) {
973 empty_slot_init(hwdef->sx_base, 0x2000);
974 }
975
976 nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8);
977
978 slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
979
980 /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
981 Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
982 dev = qdev_create(NULL, TYPE_ESCC);
983 qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
984 qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
985 qdev_prop_set_uint32(dev, "it_shift", 1);
986 qdev_prop_set_chr(dev, "chrB", NULL);
987 qdev_prop_set_chr(dev, "chrA", NULL);
988 qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
989 qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
990 qdev_init_nofail(dev);
991 s = SYS_BUS_DEVICE(dev);
992 sysbus_connect_irq(s, 0, slavio_irq[14]);
993 sysbus_connect_irq(s, 1, slavio_irq[14]);
994 sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
995
996 dev = qdev_create(NULL, TYPE_ESCC);
997 qdev_prop_set_uint32(dev, "disabled", 0);
998 qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
999 qdev_prop_set_uint32(dev, "it_shift", 1);
1000 qdev_prop_set_chr(dev, "chrB", serial_hd(1));
1001 qdev_prop_set_chr(dev, "chrA", serial_hd(0));
1002 qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
1003 qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
1004 qdev_init_nofail(dev);
1005
1006 s = SYS_BUS_DEVICE(dev);
1007 sysbus_connect_irq(s, 0, slavio_irq[15]);
1008 sysbus_connect_irq(s, 1, slavio_irq[15]);
1009 sysbus_mmio_map(s, 0, hwdef->serial_base);
1010
1011 if (hwdef->apc_base) {
1012 apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
1013 }
1014
1015 if (hwdef->fd_base) {
1016 /* there is zero or one floppy drive */
1017 memset(fd, 0, sizeof(fd));
1018 fd[0] = drive_get(IF_FLOPPY, 0, 0);
1019 sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
1020 &fdc_tc);
1021 } else {
1022 fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
1023 }
1024
1025 slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
1026 slavio_irq[30], fdc_tc);
1027
1028 if (hwdef->cs_base) {
1029 sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
1030 slavio_irq[5]);
1031 }
1032
1033 if (hwdef->dbri_base) {
1034 /* ISDN chip with attached CS4215 audio codec */
1035 /* prom space */
1036 empty_slot_init(hwdef->dbri_base+0x1000, 0x30);
1037 /* reg space */
1038 empty_slot_init(hwdef->dbri_base+0x10000, 0x100);
1039 }
1040
1041 if (hwdef->bpp_base) {
1042 /* parallel port */
1043 empty_slot_init(hwdef->bpp_base, 0x20);
1044 }
1045
1046 initrd_size = 0;
1047 kernel_size = sun4m_load_kernel(machine->kernel_filename,
1048 machine->initrd_filename,
1049 machine->ram_size, &initrd_size);
1050
1051 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline,
1052 machine->boot_order, machine->ram_size, kernel_size,
1053 graphic_width, graphic_height, graphic_depth,
1054 hwdef->nvram_machine_id, "Sun4m");
1055
1056 if (hwdef->ecc_base)
1057 ecc_init(hwdef->ecc_base, slavio_irq[28],
1058 hwdef->ecc_version);
1059
1060 dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
1061 fw_cfg = FW_CFG(dev);
1062 qdev_prop_set_uint32(dev, "data_width", 1);
1063 qdev_prop_set_bit(dev, "dma_enabled", false);
1064 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1065 OBJECT(fw_cfg), NULL);
1066 qdev_init_nofail(dev);
1067 s = SYS_BUS_DEVICE(dev);
1068 sysbus_mmio_map(s, 0, CFG_ADDR);
1069 sysbus_mmio_map(s, 1, CFG_ADDR + 2);
1070
1071 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
1072 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
1073 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1074 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
1075 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
1076 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
1077 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
1078 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
1079 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1080 if (machine->kernel_cmdline) {
1081 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
1082 pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
1083 machine->kernel_cmdline);
1084 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
1085 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1086 strlen(machine->kernel_cmdline) + 1);
1087 } else {
1088 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
1089 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
1090 }
1091 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
1092 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1093 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
1094 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
1095 }
1096
1097 enum {
1098 ss5_id = 32,
1099 vger_id,
1100 lx_id,
1101 ss4_id,
1102 scls_id,
1103 sbook_id,
1104 ss10_id = 64,
1105 ss20_id,
1106 ss600mp_id,
1107 };
1108
1109 static const struct sun4m_hwdef sun4m_hwdefs[] = {
1110 /* SS-5 */
1111 {
1112 .iommu_base = 0x10000000,
1113 .iommu_pad_base = 0x10004000,
1114 .iommu_pad_len = 0x0fffb000,
1115 .tcx_base = 0x50000000,
1116 .cs_base = 0x6c000000,
1117 .slavio_base = 0x70000000,
1118 .ms_kb_base = 0x71000000,
1119 .serial_base = 0x71100000,
1120 .nvram_base = 0x71200000,
1121 .fd_base = 0x71400000,
1122 .counter_base = 0x71d00000,
1123 .intctl_base = 0x71e00000,
1124 .idreg_base = 0x78000000,
1125 .dma_base = 0x78400000,
1126 .esp_base = 0x78800000,
1127 .le_base = 0x78c00000,
1128 .apc_base = 0x6a000000,
1129 .afx_base = 0x6e000000,
1130 .aux1_base = 0x71900000,
1131 .aux2_base = 0x71910000,
1132 .nvram_machine_id = 0x80,
1133 .machine_id = ss5_id,
1134 .iommu_version = 0x05000000,
1135 .max_mem = 0x10000000,
1136 },
1137 /* SS-10 */
1138 {
1139 .iommu_base = 0xfe0000000ULL,
1140 .tcx_base = 0xe20000000ULL,
1141 .slavio_base = 0xff0000000ULL,
1142 .ms_kb_base = 0xff1000000ULL,
1143 .serial_base = 0xff1100000ULL,
1144 .nvram_base = 0xff1200000ULL,
1145 .fd_base = 0xff1700000ULL,
1146 .counter_base = 0xff1300000ULL,
1147 .intctl_base = 0xff1400000ULL,
1148 .idreg_base = 0xef0000000ULL,
1149 .dma_base = 0xef0400000ULL,
1150 .esp_base = 0xef0800000ULL,
1151 .le_base = 0xef0c00000ULL,
1152 .apc_base = 0xefa000000ULL, // XXX should not exist
1153 .aux1_base = 0xff1800000ULL,
1154 .aux2_base = 0xff1a01000ULL,
1155 .ecc_base = 0xf00000000ULL,
1156 .ecc_version = 0x10000000, // version 0, implementation 1
1157 .nvram_machine_id = 0x72,
1158 .machine_id = ss10_id,
1159 .iommu_version = 0x03000000,
1160 .max_mem = 0xf00000000ULL,
1161 },
1162 /* SS-600MP */
1163 {
1164 .iommu_base = 0xfe0000000ULL,
1165 .tcx_base = 0xe20000000ULL,
1166 .slavio_base = 0xff0000000ULL,
1167 .ms_kb_base = 0xff1000000ULL,
1168 .serial_base = 0xff1100000ULL,
1169 .nvram_base = 0xff1200000ULL,
1170 .counter_base = 0xff1300000ULL,
1171 .intctl_base = 0xff1400000ULL,
1172 .dma_base = 0xef0081000ULL,
1173 .esp_base = 0xef0080000ULL,
1174 .le_base = 0xef0060000ULL,
1175 .apc_base = 0xefa000000ULL, // XXX should not exist
1176 .aux1_base = 0xff1800000ULL,
1177 .aux2_base = 0xff1a01000ULL, // XXX should not exist
1178 .ecc_base = 0xf00000000ULL,
1179 .ecc_version = 0x00000000, // version 0, implementation 0
1180 .nvram_machine_id = 0x71,
1181 .machine_id = ss600mp_id,
1182 .iommu_version = 0x01000000,
1183 .max_mem = 0xf00000000ULL,
1184 },
1185 /* SS-20 */
1186 {
1187 .iommu_base = 0xfe0000000ULL,
1188 .tcx_base = 0xe20000000ULL,
1189 .slavio_base = 0xff0000000ULL,
1190 .ms_kb_base = 0xff1000000ULL,
1191 .serial_base = 0xff1100000ULL,
1192 .nvram_base = 0xff1200000ULL,
1193 .fd_base = 0xff1700000ULL,
1194 .counter_base = 0xff1300000ULL,
1195 .intctl_base = 0xff1400000ULL,
1196 .idreg_base = 0xef0000000ULL,
1197 .dma_base = 0xef0400000ULL,
1198 .esp_base = 0xef0800000ULL,
1199 .le_base = 0xef0c00000ULL,
1200 .bpp_base = 0xef4800000ULL,
1201 .apc_base = 0xefa000000ULL, // XXX should not exist
1202 .aux1_base = 0xff1800000ULL,
1203 .aux2_base = 0xff1a01000ULL,
1204 .dbri_base = 0xee0000000ULL,
1205 .sx_base = 0xf80000000ULL,
1206 .vsimm = {
1207 {
1208 .reg_base = 0x9c000000ULL,
1209 .vram_base = 0xfc000000ULL
1210 }, {
1211 .reg_base = 0x90000000ULL,
1212 .vram_base = 0xf0000000ULL
1213 }, {
1214 .reg_base = 0x94000000ULL
1215 }, {
1216 .reg_base = 0x98000000ULL
1217 }
1218 },
1219 .ecc_base = 0xf00000000ULL,
1220 .ecc_version = 0x20000000, // version 0, implementation 2
1221 .nvram_machine_id = 0x72,
1222 .machine_id = ss20_id,
1223 .iommu_version = 0x13000000,
1224 .max_mem = 0xf00000000ULL,
1225 },
1226 /* Voyager */
1227 {
1228 .iommu_base = 0x10000000,
1229 .tcx_base = 0x50000000,
1230 .slavio_base = 0x70000000,
1231 .ms_kb_base = 0x71000000,
1232 .serial_base = 0x71100000,
1233 .nvram_base = 0x71200000,
1234 .fd_base = 0x71400000,
1235 .counter_base = 0x71d00000,
1236 .intctl_base = 0x71e00000,
1237 .idreg_base = 0x78000000,
1238 .dma_base = 0x78400000,
1239 .esp_base = 0x78800000,
1240 .le_base = 0x78c00000,
1241 .apc_base = 0x71300000, // pmc
1242 .aux1_base = 0x71900000,
1243 .aux2_base = 0x71910000,
1244 .nvram_machine_id = 0x80,
1245 .machine_id = vger_id,
1246 .iommu_version = 0x05000000,
1247 .max_mem = 0x10000000,
1248 },
1249 /* LX */
1250 {
1251 .iommu_base = 0x10000000,
1252 .iommu_pad_base = 0x10004000,
1253 .iommu_pad_len = 0x0fffb000,
1254 .tcx_base = 0x50000000,
1255 .slavio_base = 0x70000000,
1256 .ms_kb_base = 0x71000000,
1257 .serial_base = 0x71100000,
1258 .nvram_base = 0x71200000,
1259 .fd_base = 0x71400000,
1260 .counter_base = 0x71d00000,
1261 .intctl_base = 0x71e00000,
1262 .idreg_base = 0x78000000,
1263 .dma_base = 0x78400000,
1264 .esp_base = 0x78800000,
1265 .le_base = 0x78c00000,
1266 .aux1_base = 0x71900000,
1267 .aux2_base = 0x71910000,
1268 .nvram_machine_id = 0x80,
1269 .machine_id = lx_id,
1270 .iommu_version = 0x04000000,
1271 .max_mem = 0x10000000,
1272 },
1273 /* SS-4 */
1274 {
1275 .iommu_base = 0x10000000,
1276 .tcx_base = 0x50000000,
1277 .cs_base = 0x6c000000,
1278 .slavio_base = 0x70000000,
1279 .ms_kb_base = 0x71000000,
1280 .serial_base = 0x71100000,
1281 .nvram_base = 0x71200000,
1282 .fd_base = 0x71400000,
1283 .counter_base = 0x71d00000,
1284 .intctl_base = 0x71e00000,
1285 .idreg_base = 0x78000000,
1286 .dma_base = 0x78400000,
1287 .esp_base = 0x78800000,
1288 .le_base = 0x78c00000,
1289 .apc_base = 0x6a000000,
1290 .aux1_base = 0x71900000,
1291 .aux2_base = 0x71910000,
1292 .nvram_machine_id = 0x80,
1293 .machine_id = ss4_id,
1294 .iommu_version = 0x05000000,
1295 .max_mem = 0x10000000,
1296 },
1297 /* SPARCClassic */
1298 {
1299 .iommu_base = 0x10000000,
1300 .tcx_base = 0x50000000,
1301 .slavio_base = 0x70000000,
1302 .ms_kb_base = 0x71000000,
1303 .serial_base = 0x71100000,
1304 .nvram_base = 0x71200000,
1305 .fd_base = 0x71400000,
1306 .counter_base = 0x71d00000,
1307 .intctl_base = 0x71e00000,
1308 .idreg_base = 0x78000000,
1309 .dma_base = 0x78400000,
1310 .esp_base = 0x78800000,
1311 .le_base = 0x78c00000,
1312 .apc_base = 0x6a000000,
1313 .aux1_base = 0x71900000,
1314 .aux2_base = 0x71910000,
1315 .nvram_machine_id = 0x80,
1316 .machine_id = scls_id,
1317 .iommu_version = 0x05000000,
1318 .max_mem = 0x10000000,
1319 },
1320 /* SPARCbook */
1321 {
1322 .iommu_base = 0x10000000,
1323 .tcx_base = 0x50000000, // XXX
1324 .slavio_base = 0x70000000,
1325 .ms_kb_base = 0x71000000,
1326 .serial_base = 0x71100000,
1327 .nvram_base = 0x71200000,
1328 .fd_base = 0x71400000,
1329 .counter_base = 0x71d00000,
1330 .intctl_base = 0x71e00000,
1331 .idreg_base = 0x78000000,
1332 .dma_base = 0x78400000,
1333 .esp_base = 0x78800000,
1334 .le_base = 0x78c00000,
1335 .apc_base = 0x6a000000,
1336 .aux1_base = 0x71900000,
1337 .aux2_base = 0x71910000,
1338 .nvram_machine_id = 0x80,
1339 .machine_id = sbook_id,
1340 .iommu_version = 0x05000000,
1341 .max_mem = 0x10000000,
1342 },
1343 };
1344
1345 /* SPARCstation 5 hardware initialisation */
1346 static void ss5_init(MachineState *machine)
1347 {
1348 sun4m_hw_init(&sun4m_hwdefs[0], machine);
1349 }
1350
1351 /* SPARCstation 10 hardware initialisation */
1352 static void ss10_init(MachineState *machine)
1353 {
1354 sun4m_hw_init(&sun4m_hwdefs[1], machine);
1355 }
1356
1357 /* SPARCserver 600MP hardware initialisation */
1358 static void ss600mp_init(MachineState *machine)
1359 {
1360 sun4m_hw_init(&sun4m_hwdefs[2], machine);
1361 }
1362
1363 /* SPARCstation 20 hardware initialisation */
1364 static void ss20_init(MachineState *machine)
1365 {
1366 sun4m_hw_init(&sun4m_hwdefs[3], machine);
1367 }
1368
1369 /* SPARCstation Voyager hardware initialisation */
1370 static void vger_init(MachineState *machine)
1371 {
1372 sun4m_hw_init(&sun4m_hwdefs[4], machine);
1373 }
1374
1375 /* SPARCstation LX hardware initialisation */
1376 static void ss_lx_init(MachineState *machine)
1377 {
1378 sun4m_hw_init(&sun4m_hwdefs[5], machine);
1379 }
1380
1381 /* SPARCstation 4 hardware initialisation */
1382 static void ss4_init(MachineState *machine)
1383 {
1384 sun4m_hw_init(&sun4m_hwdefs[6], machine);
1385 }
1386
1387 /* SPARCClassic hardware initialisation */
1388 static void scls_init(MachineState *machine)
1389 {
1390 sun4m_hw_init(&sun4m_hwdefs[7], machine);
1391 }
1392
1393 /* SPARCbook hardware initialisation */
1394 static void sbook_init(MachineState *machine)
1395 {
1396 sun4m_hw_init(&sun4m_hwdefs[8], machine);
1397 }
1398
1399 static void ss5_class_init(ObjectClass *oc, void *data)
1400 {
1401 MachineClass *mc = MACHINE_CLASS(oc);
1402
1403 mc->desc = "Sun4m platform, SPARCstation 5";
1404 mc->init = ss5_init;
1405 mc->block_default_type = IF_SCSI;
1406 mc->is_default = 1;
1407 mc->default_boot_order = "c";
1408 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1409 mc->default_display = "tcx";
1410 }
1411
1412 static const TypeInfo ss5_type = {
1413 .name = MACHINE_TYPE_NAME("SS-5"),
1414 .parent = TYPE_MACHINE,
1415 .class_init = ss5_class_init,
1416 };
1417
1418 static void ss10_class_init(ObjectClass *oc, void *data)
1419 {
1420 MachineClass *mc = MACHINE_CLASS(oc);
1421
1422 mc->desc = "Sun4m platform, SPARCstation 10";
1423 mc->init = ss10_init;
1424 mc->block_default_type = IF_SCSI;
1425 mc->max_cpus = 4;
1426 mc->default_boot_order = "c";
1427 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1428 mc->default_display = "tcx";
1429 }
1430
1431 static const TypeInfo ss10_type = {
1432 .name = MACHINE_TYPE_NAME("SS-10"),
1433 .parent = TYPE_MACHINE,
1434 .class_init = ss10_class_init,
1435 };
1436
1437 static void ss600mp_class_init(ObjectClass *oc, void *data)
1438 {
1439 MachineClass *mc = MACHINE_CLASS(oc);
1440
1441 mc->desc = "Sun4m platform, SPARCserver 600MP";
1442 mc->init = ss600mp_init;
1443 mc->block_default_type = IF_SCSI;
1444 mc->max_cpus = 4;
1445 mc->default_boot_order = "c";
1446 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1447 mc->default_display = "tcx";
1448 }
1449
1450 static const TypeInfo ss600mp_type = {
1451 .name = MACHINE_TYPE_NAME("SS-600MP"),
1452 .parent = TYPE_MACHINE,
1453 .class_init = ss600mp_class_init,
1454 };
1455
1456 static void ss20_class_init(ObjectClass *oc, void *data)
1457 {
1458 MachineClass *mc = MACHINE_CLASS(oc);
1459
1460 mc->desc = "Sun4m platform, SPARCstation 20";
1461 mc->init = ss20_init;
1462 mc->block_default_type = IF_SCSI;
1463 mc->max_cpus = 4;
1464 mc->default_boot_order = "c";
1465 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1466 mc->default_display = "tcx";
1467 }
1468
1469 static const TypeInfo ss20_type = {
1470 .name = MACHINE_TYPE_NAME("SS-20"),
1471 .parent = TYPE_MACHINE,
1472 .class_init = ss20_class_init,
1473 };
1474
1475 static void voyager_class_init(ObjectClass *oc, void *data)
1476 {
1477 MachineClass *mc = MACHINE_CLASS(oc);
1478
1479 mc->desc = "Sun4m platform, SPARCstation Voyager";
1480 mc->init = vger_init;
1481 mc->block_default_type = IF_SCSI;
1482 mc->default_boot_order = "c";
1483 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1484 mc->default_display = "tcx";
1485 }
1486
1487 static const TypeInfo voyager_type = {
1488 .name = MACHINE_TYPE_NAME("Voyager"),
1489 .parent = TYPE_MACHINE,
1490 .class_init = voyager_class_init,
1491 };
1492
1493 static void ss_lx_class_init(ObjectClass *oc, void *data)
1494 {
1495 MachineClass *mc = MACHINE_CLASS(oc);
1496
1497 mc->desc = "Sun4m platform, SPARCstation LX";
1498 mc->init = ss_lx_init;
1499 mc->block_default_type = IF_SCSI;
1500 mc->default_boot_order = "c";
1501 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1502 mc->default_display = "tcx";
1503 }
1504
1505 static const TypeInfo ss_lx_type = {
1506 .name = MACHINE_TYPE_NAME("LX"),
1507 .parent = TYPE_MACHINE,
1508 .class_init = ss_lx_class_init,
1509 };
1510
1511 static void ss4_class_init(ObjectClass *oc, void *data)
1512 {
1513 MachineClass *mc = MACHINE_CLASS(oc);
1514
1515 mc->desc = "Sun4m platform, SPARCstation 4";
1516 mc->init = ss4_init;
1517 mc->block_default_type = IF_SCSI;
1518 mc->default_boot_order = "c";
1519 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1520 mc->default_display = "tcx";
1521 }
1522
1523 static const TypeInfo ss4_type = {
1524 .name = MACHINE_TYPE_NAME("SS-4"),
1525 .parent = TYPE_MACHINE,
1526 .class_init = ss4_class_init,
1527 };
1528
1529 static void scls_class_init(ObjectClass *oc, void *data)
1530 {
1531 MachineClass *mc = MACHINE_CLASS(oc);
1532
1533 mc->desc = "Sun4m platform, SPARCClassic";
1534 mc->init = scls_init;
1535 mc->block_default_type = IF_SCSI;
1536 mc->default_boot_order = "c";
1537 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1538 mc->default_display = "tcx";
1539 }
1540
1541 static const TypeInfo scls_type = {
1542 .name = MACHINE_TYPE_NAME("SPARCClassic"),
1543 .parent = TYPE_MACHINE,
1544 .class_init = scls_class_init,
1545 };
1546
1547 static void sbook_class_init(ObjectClass *oc, void *data)
1548 {
1549 MachineClass *mc = MACHINE_CLASS(oc);
1550
1551 mc->desc = "Sun4m platform, SPARCbook";
1552 mc->init = sbook_init;
1553 mc->block_default_type = IF_SCSI;
1554 mc->default_boot_order = "c";
1555 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1556 mc->default_display = "tcx";
1557 }
1558
1559 static const TypeInfo sbook_type = {
1560 .name = MACHINE_TYPE_NAME("SPARCbook"),
1561 .parent = TYPE_MACHINE,
1562 .class_init = sbook_class_init,
1563 };
1564
1565 static void sun4m_register_types(void)
1566 {
1567 type_register_static(&idreg_info);
1568 type_register_static(&afx_info);
1569 type_register_static(&prom_info);
1570 type_register_static(&ram_info);
1571
1572 type_register_static(&ss5_type);
1573 type_register_static(&ss10_type);
1574 type_register_static(&ss600mp_type);
1575 type_register_static(&ss20_type);
1576 type_register_static(&voyager_type);
1577 type_register_static(&ss_lx_type);
1578 type_register_static(&ss4_type);
1579 type_register_static(&scls_type);
1580 type_register_static(&sbook_type);
1581 }
1582
1583 type_init(sun4m_register_types)