]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ssi/xilinx_spips.c
4cfce882ab10dbfdb25f092059dd412982fe2dc0
[mirror_qemu.git] / hw / ssi / xilinx_spips.c
1 /*
2 * QEMU model of the Xilinx Zynq SPI controller
3 *
4 * Copyright (c) 2012 Peter A. G. Crosthwaite
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "hw/irq.h"
28 #include "hw/ptimer.h"
29 #include "hw/qdev-properties.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "qemu/bitops.h"
33 #include "hw/ssi/xilinx_spips.h"
34 #include "qapi/error.h"
35 #include "hw/register.h"
36 #include "sysemu/dma.h"
37 #include "migration/blocker.h"
38 #include "migration/vmstate.h"
39
40 #ifndef XILINX_SPIPS_ERR_DEBUG
41 #define XILINX_SPIPS_ERR_DEBUG 0
42 #endif
43
44 #define DB_PRINT_L(level, ...) do { \
45 if (XILINX_SPIPS_ERR_DEBUG > (level)) { \
46 fprintf(stderr, ": %s: ", __func__); \
47 fprintf(stderr, ## __VA_ARGS__); \
48 } \
49 } while (0)
50
51 /* config register */
52 #define R_CONFIG (0x00 / 4)
53 #define IFMODE (1U << 31)
54 #define R_CONFIG_ENDIAN (1 << 26)
55 #define MODEFAIL_GEN_EN (1 << 17)
56 #define MAN_START_COM (1 << 16)
57 #define MAN_START_EN (1 << 15)
58 #define MANUAL_CS (1 << 14)
59 #define CS (0xF << 10)
60 #define CS_SHIFT (10)
61 #define PERI_SEL (1 << 9)
62 #define REF_CLK (1 << 8)
63 #define FIFO_WIDTH (3 << 6)
64 #define BAUD_RATE_DIV (7 << 3)
65 #define CLK_PH (1 << 2)
66 #define CLK_POL (1 << 1)
67 #define MODE_SEL (1 << 0)
68 #define R_CONFIG_RSVD (0x7bf40000)
69
70 /* interrupt mechanism */
71 #define R_INTR_STATUS (0x04 / 4)
72 #define R_INTR_STATUS_RESET (0x104)
73 #define R_INTR_EN (0x08 / 4)
74 #define R_INTR_DIS (0x0C / 4)
75 #define R_INTR_MASK (0x10 / 4)
76 #define IXR_TX_FIFO_UNDERFLOW (1 << 6)
77 /* Poll timeout not implemented */
78 #define IXR_RX_FIFO_EMPTY (1 << 11)
79 #define IXR_GENERIC_FIFO_FULL (1 << 10)
80 #define IXR_GENERIC_FIFO_NOT_FULL (1 << 9)
81 #define IXR_TX_FIFO_EMPTY (1 << 8)
82 #define IXR_GENERIC_FIFO_EMPTY (1 << 7)
83 #define IXR_RX_FIFO_FULL (1 << 5)
84 #define IXR_RX_FIFO_NOT_EMPTY (1 << 4)
85 #define IXR_TX_FIFO_FULL (1 << 3)
86 #define IXR_TX_FIFO_NOT_FULL (1 << 2)
87 #define IXR_TX_FIFO_MODE_FAIL (1 << 1)
88 #define IXR_RX_FIFO_OVERFLOW (1 << 0)
89 #define IXR_ALL ((1 << 13) - 1)
90 #define GQSPI_IXR_MASK 0xFBE
91 #define IXR_SELF_CLEAR \
92 (IXR_GENERIC_FIFO_EMPTY \
93 | IXR_GENERIC_FIFO_FULL \
94 | IXR_GENERIC_FIFO_NOT_FULL \
95 | IXR_TX_FIFO_EMPTY \
96 | IXR_TX_FIFO_FULL \
97 | IXR_TX_FIFO_NOT_FULL \
98 | IXR_RX_FIFO_EMPTY \
99 | IXR_RX_FIFO_FULL \
100 | IXR_RX_FIFO_NOT_EMPTY)
101
102 #define R_EN (0x14 / 4)
103 #define R_DELAY (0x18 / 4)
104 #define R_TX_DATA (0x1C / 4)
105 #define R_RX_DATA (0x20 / 4)
106 #define R_SLAVE_IDLE_COUNT (0x24 / 4)
107 #define R_TX_THRES (0x28 / 4)
108 #define R_RX_THRES (0x2C / 4)
109 #define R_GPIO (0x30 / 4)
110 #define R_LPBK_DLY_ADJ (0x38 / 4)
111 #define R_LPBK_DLY_ADJ_RESET (0x33)
112 #define R_IOU_TAPDLY_BYPASS (0x3C / 4)
113 #define R_TXD1 (0x80 / 4)
114 #define R_TXD2 (0x84 / 4)
115 #define R_TXD3 (0x88 / 4)
116
117 #define R_LQSPI_CFG (0xa0 / 4)
118 #define R_LQSPI_CFG_RESET 0x03A002EB
119 #define LQSPI_CFG_LQ_MODE (1U << 31)
120 #define LQSPI_CFG_TWO_MEM (1 << 30)
121 #define LQSPI_CFG_SEP_BUS (1 << 29)
122 #define LQSPI_CFG_U_PAGE (1 << 28)
123 #define LQSPI_CFG_ADDR4 (1 << 27)
124 #define LQSPI_CFG_MODE_EN (1 << 25)
125 #define LQSPI_CFG_MODE_WIDTH 8
126 #define LQSPI_CFG_MODE_SHIFT 16
127 #define LQSPI_CFG_DUMMY_WIDTH 3
128 #define LQSPI_CFG_DUMMY_SHIFT 8
129 #define LQSPI_CFG_INST_CODE 0xFF
130
131 #define R_CMND (0xc0 / 4)
132 #define R_CMND_RXFIFO_DRAIN (1 << 19)
133 FIELD(CMND, PARTIAL_BYTE_LEN, 16, 3)
134 #define R_CMND_EXT_ADD (1 << 15)
135 FIELD(CMND, RX_DISCARD, 8, 7)
136 FIELD(CMND, DUMMY_CYCLES, 2, 6)
137 #define R_CMND_DMA_EN (1 << 1)
138 #define R_CMND_PUSH_WAIT (1 << 0)
139 #define R_TRANSFER_SIZE (0xc4 / 4)
140 #define R_LQSPI_STS (0xA4 / 4)
141 #define LQSPI_STS_WR_RECVD (1 << 1)
142
143 #define R_DUMMY_CYCLE_EN (0xC8 / 4)
144 #define R_ECO (0xF8 / 4)
145 #define R_MOD_ID (0xFC / 4)
146
147 #define R_GQSPI_SELECT (0x144 / 4)
148 FIELD(GQSPI_SELECT, GENERIC_QSPI_EN, 0, 1)
149 #define R_GQSPI_ISR (0x104 / 4)
150 #define R_GQSPI_IER (0x108 / 4)
151 #define R_GQSPI_IDR (0x10c / 4)
152 #define R_GQSPI_IMR (0x110 / 4)
153 #define R_GQSPI_IMR_RESET (0xfbe)
154 #define R_GQSPI_TX_THRESH (0x128 / 4)
155 #define R_GQSPI_RX_THRESH (0x12c / 4)
156 #define R_GQSPI_GPIO (0x130 / 4)
157 #define R_GQSPI_LPBK_DLY_ADJ (0x138 / 4)
158 #define R_GQSPI_LPBK_DLY_ADJ_RESET (0x33)
159 #define R_GQSPI_CNFG (0x100 / 4)
160 FIELD(GQSPI_CNFG, MODE_EN, 30, 2)
161 FIELD(GQSPI_CNFG, GEN_FIFO_START_MODE, 29, 1)
162 FIELD(GQSPI_CNFG, GEN_FIFO_START, 28, 1)
163 FIELD(GQSPI_CNFG, ENDIAN, 26, 1)
164 /* Poll timeout not implemented */
165 FIELD(GQSPI_CNFG, EN_POLL_TIMEOUT, 20, 1)
166 /* QEMU doesnt care about any of these last three */
167 FIELD(GQSPI_CNFG, BR, 3, 3)
168 FIELD(GQSPI_CNFG, CPH, 2, 1)
169 FIELD(GQSPI_CNFG, CPL, 1, 1)
170 #define R_GQSPI_GEN_FIFO (0x140 / 4)
171 #define R_GQSPI_TXD (0x11c / 4)
172 #define R_GQSPI_RXD (0x120 / 4)
173 #define R_GQSPI_FIFO_CTRL (0x14c / 4)
174 FIELD(GQSPI_FIFO_CTRL, RX_FIFO_RESET, 2, 1)
175 FIELD(GQSPI_FIFO_CTRL, TX_FIFO_RESET, 1, 1)
176 FIELD(GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET, 0, 1)
177 #define R_GQSPI_GFIFO_THRESH (0x150 / 4)
178 #define R_GQSPI_DATA_STS (0x15c / 4)
179 /* We use the snapshot register to hold the core state for the currently
180 * or most recently executed command. So the generic fifo format is defined
181 * for the snapshot register
182 */
183 #define R_GQSPI_GF_SNAPSHOT (0x160 / 4)
184 FIELD(GQSPI_GF_SNAPSHOT, POLL, 19, 1)
185 FIELD(GQSPI_GF_SNAPSHOT, STRIPE, 18, 1)
186 FIELD(GQSPI_GF_SNAPSHOT, RECIEVE, 17, 1)
187 FIELD(GQSPI_GF_SNAPSHOT, TRANSMIT, 16, 1)
188 FIELD(GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT, 14, 2)
189 FIELD(GQSPI_GF_SNAPSHOT, CHIP_SELECT, 12, 2)
190 FIELD(GQSPI_GF_SNAPSHOT, SPI_MODE, 10, 2)
191 FIELD(GQSPI_GF_SNAPSHOT, EXPONENT, 9, 1)
192 FIELD(GQSPI_GF_SNAPSHOT, DATA_XFER, 8, 1)
193 FIELD(GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA, 0, 8)
194 #define R_GQSPI_MOD_ID (0x1fc / 4)
195 #define R_GQSPI_MOD_ID_RESET (0x10a0000)
196
197 #define R_QSPIDMA_DST_CTRL (0x80c / 4)
198 #define R_QSPIDMA_DST_CTRL_RESET (0x803ffa00)
199 #define R_QSPIDMA_DST_I_MASK (0x820 / 4)
200 #define R_QSPIDMA_DST_I_MASK_RESET (0xfe)
201 #define R_QSPIDMA_DST_CTRL2 (0x824 / 4)
202 #define R_QSPIDMA_DST_CTRL2_RESET (0x081bfff8)
203
204 /* size of TXRX FIFOs */
205 #define RXFF_A (128)
206 #define TXFF_A (128)
207
208 #define RXFF_A_Q (64 * 4)
209 #define TXFF_A_Q (64 * 4)
210
211 /* 16MB per linear region */
212 #define LQSPI_ADDRESS_BITS 24
213
214 #define SNOOP_CHECKING 0xFF
215 #define SNOOP_ADDR 0xF0
216 #define SNOOP_NONE 0xEE
217 #define SNOOP_STRIPING 0
218
219 #define MIN_NUM_BUSSES 1
220 #define MAX_NUM_BUSSES 2
221
222 static inline int num_effective_busses(XilinxSPIPS *s)
223 {
224 return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS &&
225 s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
226 }
227
228 static void xilinx_spips_update_cs(XilinxSPIPS *s, int field)
229 {
230 int i;
231
232 for (i = 0; i < s->num_cs * s->num_busses; i++) {
233 bool old_state = s->cs_lines_state[i];
234 bool new_state = field & (1 << i);
235
236 if (old_state != new_state) {
237 s->cs_lines_state[i] = new_state;
238 s->rx_discard = ARRAY_FIELD_EX32(s->regs, CMND, RX_DISCARD);
239 DB_PRINT_L(1, "%sselecting slave %d\n", new_state ? "" : "de", i);
240 }
241 qemu_set_irq(s->cs_lines[i], !new_state);
242 }
243 if (!(field & ((1 << (s->num_cs * s->num_busses)) - 1))) {
244 s->snoop_state = SNOOP_CHECKING;
245 s->cmd_dummies = 0;
246 s->link_state = 1;
247 s->link_state_next = 1;
248 s->link_state_next_when = 0;
249 DB_PRINT_L(1, "moving to snoop check state\n");
250 }
251 }
252
253 static void xlnx_zynqmp_qspips_update_cs_lines(XlnxZynqMPQSPIPS *s)
254 {
255 if (s->regs[R_GQSPI_GF_SNAPSHOT]) {
256 int field = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, CHIP_SELECT);
257 bool upper_cs_sel = field & (1 << 1);
258 bool lower_cs_sel = field & 1;
259 bool bus0_enabled;
260 bool bus1_enabled;
261 uint8_t buses;
262 int cs = 0;
263
264 buses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT);
265 bus0_enabled = buses & 1;
266 bus1_enabled = buses & (1 << 1);
267
268 if (bus0_enabled && bus1_enabled) {
269 if (lower_cs_sel) {
270 cs |= 1;
271 }
272 if (upper_cs_sel) {
273 cs |= 1 << 3;
274 }
275 } else if (bus0_enabled) {
276 if (lower_cs_sel) {
277 cs |= 1;
278 }
279 if (upper_cs_sel) {
280 cs |= 1 << 1;
281 }
282 } else if (bus1_enabled) {
283 if (lower_cs_sel) {
284 cs |= 1 << 2;
285 }
286 if (upper_cs_sel) {
287 cs |= 1 << 3;
288 }
289 }
290 xilinx_spips_update_cs(XILINX_SPIPS(s), cs);
291 }
292 }
293
294 static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
295 {
296 int field = ~((s->regs[R_CONFIG] & CS) >> CS_SHIFT);
297
298 /* In dual parallel, mirror low CS to both */
299 if (num_effective_busses(s) == 2) {
300 /* Single bit chip-select for qspi */
301 field &= 0x1;
302 field |= field << 3;
303 /* Dual stack U-Page */
304 } else if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM &&
305 s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE) {
306 /* Single bit chip-select for qspi */
307 field &= 0x1;
308 /* change from CS0 to CS1 */
309 field <<= 1;
310 }
311 /* Auto CS */
312 if (!(s->regs[R_CONFIG] & MANUAL_CS) &&
313 fifo8_is_empty(&s->tx_fifo)) {
314 field = 0;
315 }
316 xilinx_spips_update_cs(s, field);
317 }
318
319 static void xilinx_spips_update_ixr(XilinxSPIPS *s)
320 {
321 if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) {
322 s->regs[R_INTR_STATUS] &= ~IXR_SELF_CLEAR;
323 s->regs[R_INTR_STATUS] |=
324 (fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) |
325 (s->rx_fifo.num >= s->regs[R_RX_THRES] ?
326 IXR_RX_FIFO_NOT_EMPTY : 0) |
327 (fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) |
328 (fifo8_is_empty(&s->tx_fifo) ? IXR_TX_FIFO_EMPTY : 0) |
329 (s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0);
330 }
331 int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] &
332 IXR_ALL);
333 if (new_irqline != s->irqline) {
334 s->irqline = new_irqline;
335 qemu_set_irq(s->irq, s->irqline);
336 }
337 }
338
339 static void xlnx_zynqmp_qspips_update_ixr(XlnxZynqMPQSPIPS *s)
340 {
341 uint32_t gqspi_int;
342 int new_irqline;
343
344 s->regs[R_GQSPI_ISR] &= ~IXR_SELF_CLEAR;
345 s->regs[R_GQSPI_ISR] |=
346 (fifo32_is_empty(&s->fifo_g) ? IXR_GENERIC_FIFO_EMPTY : 0) |
347 (fifo32_is_full(&s->fifo_g) ? IXR_GENERIC_FIFO_FULL : 0) |
348 (s->fifo_g.fifo.num < s->regs[R_GQSPI_GFIFO_THRESH] ?
349 IXR_GENERIC_FIFO_NOT_FULL : 0) |
350 (fifo8_is_empty(&s->rx_fifo_g) ? IXR_RX_FIFO_EMPTY : 0) |
351 (fifo8_is_full(&s->rx_fifo_g) ? IXR_RX_FIFO_FULL : 0) |
352 (s->rx_fifo_g.num >= s->regs[R_GQSPI_RX_THRESH] ?
353 IXR_RX_FIFO_NOT_EMPTY : 0) |
354 (fifo8_is_empty(&s->tx_fifo_g) ? IXR_TX_FIFO_EMPTY : 0) |
355 (fifo8_is_full(&s->tx_fifo_g) ? IXR_TX_FIFO_FULL : 0) |
356 (s->tx_fifo_g.num < s->regs[R_GQSPI_TX_THRESH] ?
357 IXR_TX_FIFO_NOT_FULL : 0);
358
359 /* GQSPI Interrupt Trigger Status */
360 gqspi_int = (~s->regs[R_GQSPI_IMR]) & s->regs[R_GQSPI_ISR] & GQSPI_IXR_MASK;
361 new_irqline = !!(gqspi_int & IXR_ALL);
362
363 /* drive external interrupt pin */
364 if (new_irqline != s->gqspi_irqline) {
365 s->gqspi_irqline = new_irqline;
366 qemu_set_irq(XILINX_SPIPS(s)->irq, s->gqspi_irqline);
367 }
368 }
369
370 static void xilinx_spips_reset(DeviceState *d)
371 {
372 XilinxSPIPS *s = XILINX_SPIPS(d);
373
374 memset(s->regs, 0, sizeof(s->regs));
375
376 fifo8_reset(&s->rx_fifo);
377 fifo8_reset(&s->rx_fifo);
378 /* non zero resets */
379 s->regs[R_CONFIG] |= MODEFAIL_GEN_EN;
380 s->regs[R_SLAVE_IDLE_COUNT] = 0xFF;
381 s->regs[R_TX_THRES] = 1;
382 s->regs[R_RX_THRES] = 1;
383 /* FIXME: move magic number definition somewhere sensible */
384 s->regs[R_MOD_ID] = 0x01090106;
385 s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
386 s->link_state = 1;
387 s->link_state_next = 1;
388 s->link_state_next_when = 0;
389 s->snoop_state = SNOOP_CHECKING;
390 s->cmd_dummies = 0;
391 s->man_start_com = false;
392 xilinx_spips_update_ixr(s);
393 xilinx_spips_update_cs_lines(s);
394 }
395
396 static void xlnx_zynqmp_qspips_reset(DeviceState *d)
397 {
398 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(d);
399
400 xilinx_spips_reset(d);
401
402 memset(s->regs, 0, sizeof(s->regs));
403
404 fifo8_reset(&s->rx_fifo_g);
405 fifo8_reset(&s->rx_fifo_g);
406 fifo32_reset(&s->fifo_g);
407 s->regs[R_INTR_STATUS] = R_INTR_STATUS_RESET;
408 s->regs[R_GPIO] = 1;
409 s->regs[R_LPBK_DLY_ADJ] = R_LPBK_DLY_ADJ_RESET;
410 s->regs[R_GQSPI_GFIFO_THRESH] = 0x10;
411 s->regs[R_MOD_ID] = 0x01090101;
412 s->regs[R_GQSPI_IMR] = R_GQSPI_IMR_RESET;
413 s->regs[R_GQSPI_TX_THRESH] = 1;
414 s->regs[R_GQSPI_RX_THRESH] = 1;
415 s->regs[R_GQSPI_GPIO] = 1;
416 s->regs[R_GQSPI_LPBK_DLY_ADJ] = R_GQSPI_LPBK_DLY_ADJ_RESET;
417 s->regs[R_GQSPI_MOD_ID] = R_GQSPI_MOD_ID_RESET;
418 s->regs[R_QSPIDMA_DST_CTRL] = R_QSPIDMA_DST_CTRL_RESET;
419 s->regs[R_QSPIDMA_DST_I_MASK] = R_QSPIDMA_DST_I_MASK_RESET;
420 s->regs[R_QSPIDMA_DST_CTRL2] = R_QSPIDMA_DST_CTRL2_RESET;
421 s->man_start_com_g = false;
422 s->gqspi_irqline = 0;
423 xlnx_zynqmp_qspips_update_ixr(s);
424 }
425
426 /* N way (num) in place bit striper. Lay out row wise bits (MSB to LSB)
427 * column wise (from element 0 to N-1). num is the length of x, and dir
428 * reverses the direction of the transform. Best illustrated by example:
429 * Each digit in the below array is a single bit (num == 3):
430 *
431 * {{ 76543210, } ----- stripe (dir == false) -----> {{ 741gdaFC, }
432 * { hgfedcba, } { 630fcHEB, }
433 * { HGFEDCBA, }} <---- upstripe (dir == true) ----- { 52hebGDA, }}
434 */
435
436 static inline void stripe8(uint8_t *x, int num, bool dir)
437 {
438 uint8_t r[MAX_NUM_BUSSES];
439 int idx[2] = {0, 0};
440 int bit[2] = {0, 7};
441 int d = dir;
442
443 assert(num <= MAX_NUM_BUSSES);
444 memset(r, 0, sizeof(uint8_t) * num);
445
446 for (idx[0] = 0; idx[0] < num; ++idx[0]) {
447 for (bit[0] = 7; bit[0] >= 0; bit[0]--) {
448 r[idx[!d]] |= x[idx[d]] & 1 << bit[d] ? 1 << bit[!d] : 0;
449 idx[1] = (idx[1] + 1) % num;
450 if (!idx[1]) {
451 bit[1]--;
452 }
453 }
454 }
455 memcpy(x, r, sizeof(uint8_t) * num);
456 }
457
458 static void xlnx_zynqmp_qspips_flush_fifo_g(XlnxZynqMPQSPIPS *s)
459 {
460 while (s->regs[R_GQSPI_DATA_STS] || !fifo32_is_empty(&s->fifo_g)) {
461 uint8_t tx_rx[2] = { 0 };
462 int num_stripes = 1;
463 uint8_t busses;
464 int i;
465
466 if (!s->regs[R_GQSPI_DATA_STS]) {
467 uint8_t imm;
468
469 s->regs[R_GQSPI_GF_SNAPSHOT] = fifo32_pop(&s->fifo_g);
470 DB_PRINT_L(0, "GQSPI command: %x\n", s->regs[R_GQSPI_GF_SNAPSHOT]);
471 if (!s->regs[R_GQSPI_GF_SNAPSHOT]) {
472 DB_PRINT_L(0, "Dummy GQSPI Delay Command Entry, Do nothing");
473 continue;
474 }
475 xlnx_zynqmp_qspips_update_cs_lines(s);
476
477 imm = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA);
478 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) {
479 /* immedate transfer */
480 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) ||
481 ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) {
482 s->regs[R_GQSPI_DATA_STS] = 1;
483 /* CS setup/hold - do nothing */
484 } else {
485 s->regs[R_GQSPI_DATA_STS] = 0;
486 }
487 } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, EXPONENT)) {
488 if (imm > 31) {
489 qemu_log_mask(LOG_UNIMP, "QSPI exponential transfer too"
490 " long - 2 ^ %" PRId8 " requested\n", imm);
491 }
492 s->regs[R_GQSPI_DATA_STS] = 1ul << imm;
493 } else {
494 s->regs[R_GQSPI_DATA_STS] = imm;
495 }
496 }
497 /* Zero length transfer check */
498 if (!s->regs[R_GQSPI_DATA_STS]) {
499 continue;
500 }
501 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE) &&
502 fifo8_is_full(&s->rx_fifo_g)) {
503 /* No space in RX fifo for transfer - try again later */
504 return;
505 }
506 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, STRIPE) &&
507 (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) ||
508 ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE))) {
509 num_stripes = 2;
510 }
511 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) {
512 tx_rx[0] = ARRAY_FIELD_EX32(s->regs,
513 GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA);
514 } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT)) {
515 for (i = 0; i < num_stripes; ++i) {
516 if (!fifo8_is_empty(&s->tx_fifo_g)) {
517 tx_rx[i] = fifo8_pop(&s->tx_fifo_g);
518 s->tx_fifo_g_align++;
519 } else {
520 return;
521 }
522 }
523 }
524 if (num_stripes == 1) {
525 /* mirror */
526 tx_rx[1] = tx_rx[0];
527 }
528 busses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT);
529 for (i = 0; i < 2; ++i) {
530 DB_PRINT_L(1, "bus %d tx = %02x\n", i, tx_rx[i]);
531 tx_rx[i] = ssi_transfer(XILINX_SPIPS(s)->spi[i], tx_rx[i]);
532 DB_PRINT_L(1, "bus %d rx = %02x\n", i, tx_rx[i]);
533 }
534 if (s->regs[R_GQSPI_DATA_STS] > 1 &&
535 busses == 0x3 && num_stripes == 2) {
536 s->regs[R_GQSPI_DATA_STS] -= 2;
537 } else if (s->regs[R_GQSPI_DATA_STS] > 0) {
538 s->regs[R_GQSPI_DATA_STS]--;
539 }
540 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) {
541 for (i = 0; i < 2; ++i) {
542 if (busses & (1 << i)) {
543 DB_PRINT_L(1, "bus %d push_byte = %02x\n", i, tx_rx[i]);
544 fifo8_push(&s->rx_fifo_g, tx_rx[i]);
545 s->rx_fifo_g_align++;
546 }
547 }
548 }
549 if (!s->regs[R_GQSPI_DATA_STS]) {
550 for (; s->tx_fifo_g_align % 4; s->tx_fifo_g_align++) {
551 fifo8_pop(&s->tx_fifo_g);
552 }
553 for (; s->rx_fifo_g_align % 4; s->rx_fifo_g_align++) {
554 fifo8_push(&s->rx_fifo_g, 0);
555 }
556 }
557 }
558 }
559
560 static int xilinx_spips_num_dummies(XilinxQSPIPS *qs, uint8_t command)
561 {
562 if (!qs) {
563 /* The SPI device is not a QSPI device */
564 return -1;
565 }
566
567 switch (command) { /* check for dummies */
568 case READ: /* no dummy bytes/cycles */
569 case PP:
570 case DPP:
571 case QPP:
572 case READ_4:
573 case PP_4:
574 case QPP_4:
575 return 0;
576 case FAST_READ:
577 case DOR:
578 case QOR:
579 case FAST_READ_4:
580 case DOR_4:
581 case QOR_4:
582 return 1;
583 case DIOR:
584 case DIOR_4:
585 return 2;
586 case QIOR:
587 case QIOR_4:
588 return 4;
589 default:
590 return -1;
591 }
592 }
593
594 static inline uint8_t get_addr_length(XilinxSPIPS *s, uint8_t cmd)
595 {
596 switch (cmd) {
597 case PP_4:
598 case QPP_4:
599 case READ_4:
600 case QIOR_4:
601 case FAST_READ_4:
602 case DOR_4:
603 case QOR_4:
604 case DIOR_4:
605 return 4;
606 default:
607 return (s->regs[R_CMND] & R_CMND_EXT_ADD) ? 4 : 3;
608 }
609 }
610
611 static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
612 {
613 int debug_level = 0;
614 XilinxQSPIPS *q = (XilinxQSPIPS *) object_dynamic_cast(OBJECT(s),
615 TYPE_XILINX_QSPIPS);
616
617 for (;;) {
618 int i;
619 uint8_t tx = 0;
620 uint8_t tx_rx[MAX_NUM_BUSSES] = { 0 };
621 uint8_t dummy_cycles = 0;
622 uint8_t addr_length;
623
624 if (fifo8_is_empty(&s->tx_fifo)) {
625 xilinx_spips_update_ixr(s);
626 return;
627 } else if (s->snoop_state == SNOOP_STRIPING ||
628 s->snoop_state == SNOOP_NONE) {
629 for (i = 0; i < num_effective_busses(s); ++i) {
630 tx_rx[i] = fifo8_pop(&s->tx_fifo);
631 }
632 stripe8(tx_rx, num_effective_busses(s), false);
633 } else if (s->snoop_state >= SNOOP_ADDR) {
634 tx = fifo8_pop(&s->tx_fifo);
635 for (i = 0; i < num_effective_busses(s); ++i) {
636 tx_rx[i] = tx;
637 }
638 } else {
639 /* Extract a dummy byte and generate dummy cycles according to the
640 * link state */
641 tx = fifo8_pop(&s->tx_fifo);
642 dummy_cycles = 8 / s->link_state;
643 }
644
645 for (i = 0; i < num_effective_busses(s); ++i) {
646 int bus = num_effective_busses(s) - 1 - i;
647 if (dummy_cycles) {
648 int d;
649 for (d = 0; d < dummy_cycles; ++d) {
650 tx_rx[0] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[0]);
651 }
652 } else {
653 DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]);
654 tx_rx[i] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[i]);
655 DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]);
656 }
657 }
658
659 if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) {
660 DB_PRINT_L(debug_level, "dircarding drained rx byte\n");
661 /* Do nothing */
662 } else if (s->rx_discard) {
663 DB_PRINT_L(debug_level, "dircarding discarded rx byte\n");
664 s->rx_discard -= 8 / s->link_state;
665 } else if (fifo8_is_full(&s->rx_fifo)) {
666 s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
667 DB_PRINT_L(0, "rx FIFO overflow");
668 } else if (s->snoop_state == SNOOP_STRIPING) {
669 stripe8(tx_rx, num_effective_busses(s), true);
670 for (i = 0; i < num_effective_busses(s); ++i) {
671 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]);
672 DB_PRINT_L(debug_level, "pushing striped rx byte\n");
673 }
674 } else {
675 DB_PRINT_L(debug_level, "pushing unstriped rx byte\n");
676 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]);
677 }
678
679 if (s->link_state_next_when) {
680 s->link_state_next_when--;
681 if (!s->link_state_next_when) {
682 s->link_state = s->link_state_next;
683 }
684 }
685
686 DB_PRINT_L(debug_level, "initial snoop state: %x\n",
687 (unsigned)s->snoop_state);
688 switch (s->snoop_state) {
689 case (SNOOP_CHECKING):
690 /* Store the count of dummy bytes in the txfifo */
691 s->cmd_dummies = xilinx_spips_num_dummies(q, tx);
692 addr_length = get_addr_length(s, tx);
693 if (s->cmd_dummies < 0) {
694 s->snoop_state = SNOOP_NONE;
695 } else {
696 s->snoop_state = SNOOP_ADDR + addr_length - 1;
697 }
698 switch (tx) {
699 case DPP:
700 case DOR:
701 case DOR_4:
702 s->link_state_next = 2;
703 s->link_state_next_when = addr_length + s->cmd_dummies;
704 break;
705 case QPP:
706 case QPP_4:
707 case QOR:
708 case QOR_4:
709 s->link_state_next = 4;
710 s->link_state_next_when = addr_length + s->cmd_dummies;
711 break;
712 case DIOR:
713 case DIOR_4:
714 s->link_state = 2;
715 break;
716 case QIOR:
717 case QIOR_4:
718 s->link_state = 4;
719 break;
720 }
721 break;
722 case (SNOOP_ADDR):
723 /* Address has been transmitted, transmit dummy cycles now if
724 * needed */
725 if (s->cmd_dummies < 0) {
726 s->snoop_state = SNOOP_NONE;
727 } else {
728 s->snoop_state = s->cmd_dummies;
729 }
730 break;
731 case (SNOOP_STRIPING):
732 case (SNOOP_NONE):
733 /* Once we hit the boring stuff - squelch debug noise */
734 if (!debug_level) {
735 DB_PRINT_L(0, "squelching debug info ....\n");
736 debug_level = 1;
737 }
738 break;
739 default:
740 s->snoop_state--;
741 }
742 DB_PRINT_L(debug_level, "final snoop state: %x\n",
743 (unsigned)s->snoop_state);
744 }
745 }
746
747 static inline void tx_data_bytes(Fifo8 *fifo, uint32_t value, int num, bool be)
748 {
749 int i;
750 for (i = 0; i < num && !fifo8_is_full(fifo); ++i) {
751 if (be) {
752 fifo8_push(fifo, (uint8_t)(value >> 24));
753 value <<= 8;
754 } else {
755 fifo8_push(fifo, (uint8_t)value);
756 value >>= 8;
757 }
758 }
759 }
760
761 static void xilinx_spips_check_zero_pump(XilinxSPIPS *s)
762 {
763 if (!s->regs[R_TRANSFER_SIZE]) {
764 return;
765 }
766 if (!fifo8_is_empty(&s->tx_fifo) && s->regs[R_CMND] & R_CMND_PUSH_WAIT) {
767 return;
768 }
769 /*
770 * The zero pump must never fill tx fifo such that rx overflow is
771 * possible
772 */
773 while (s->regs[R_TRANSFER_SIZE] &&
774 s->rx_fifo.num + s->tx_fifo.num < RXFF_A_Q - 3) {
775 /* endianess just doesn't matter when zero pumping */
776 tx_data_bytes(&s->tx_fifo, 0, 4, false);
777 s->regs[R_TRANSFER_SIZE] &= ~0x03ull;
778 s->regs[R_TRANSFER_SIZE] -= 4;
779 }
780 }
781
782 static void xilinx_spips_check_flush(XilinxSPIPS *s)
783 {
784 if (s->man_start_com ||
785 (!fifo8_is_empty(&s->tx_fifo) &&
786 !(s->regs[R_CONFIG] & MAN_START_EN))) {
787 xilinx_spips_check_zero_pump(s);
788 xilinx_spips_flush_txfifo(s);
789 }
790 if (fifo8_is_empty(&s->tx_fifo) && !s->regs[R_TRANSFER_SIZE]) {
791 s->man_start_com = false;
792 }
793 xilinx_spips_update_ixr(s);
794 }
795
796 static void xlnx_zynqmp_qspips_check_flush(XlnxZynqMPQSPIPS *s)
797 {
798 bool gqspi_has_work = s->regs[R_GQSPI_DATA_STS] ||
799 !fifo32_is_empty(&s->fifo_g);
800
801 if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) {
802 if (s->man_start_com_g || (gqspi_has_work &&
803 !ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE))) {
804 xlnx_zynqmp_qspips_flush_fifo_g(s);
805 }
806 } else {
807 xilinx_spips_check_flush(XILINX_SPIPS(s));
808 }
809 if (!gqspi_has_work) {
810 s->man_start_com_g = false;
811 }
812 xlnx_zynqmp_qspips_update_ixr(s);
813 }
814
815 static inline int rx_data_bytes(Fifo8 *fifo, uint8_t *value, int max)
816 {
817 int i;
818
819 for (i = 0; i < max && !fifo8_is_empty(fifo); ++i) {
820 value[i] = fifo8_pop(fifo);
821 }
822 return max - i;
823 }
824
825 static const void *pop_buf(Fifo8 *fifo, uint32_t max, uint32_t *num)
826 {
827 void *ret;
828
829 if (max == 0 || max > fifo->num) {
830 abort();
831 }
832 *num = MIN(fifo->capacity - fifo->head, max);
833 ret = &fifo->data[fifo->head];
834 fifo->head += *num;
835 fifo->head %= fifo->capacity;
836 fifo->num -= *num;
837 return ret;
838 }
839
840 static void xlnx_zynqmp_qspips_notify(void *opaque)
841 {
842 XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(opaque);
843 XilinxSPIPS *s = XILINX_SPIPS(rq);
844 Fifo8 *recv_fifo;
845
846 if (ARRAY_FIELD_EX32(rq->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) {
847 if (!(ARRAY_FIELD_EX32(rq->regs, GQSPI_CNFG, MODE_EN) == 2)) {
848 return;
849 }
850 recv_fifo = &rq->rx_fifo_g;
851 } else {
852 if (!(s->regs[R_CMND] & R_CMND_DMA_EN)) {
853 return;
854 }
855 recv_fifo = &s->rx_fifo;
856 }
857 while (recv_fifo->num >= 4
858 && stream_can_push(rq->dma, xlnx_zynqmp_qspips_notify, rq))
859 {
860 size_t ret;
861 uint32_t num;
862 const void *rxd;
863 int len;
864
865 len = recv_fifo->num >= rq->dma_burst_size ? rq->dma_burst_size :
866 recv_fifo->num;
867 rxd = pop_buf(recv_fifo, len, &num);
868
869 memcpy(rq->dma_buf, rxd, num);
870
871 ret = stream_push(rq->dma, rq->dma_buf, num, false);
872 assert(ret == num);
873 xlnx_zynqmp_qspips_check_flush(rq);
874 }
875 }
876
877 static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
878 unsigned size)
879 {
880 XilinxSPIPS *s = opaque;
881 uint32_t mask = ~0;
882 uint32_t ret;
883 uint8_t rx_buf[4];
884 int shortfall;
885
886 addr >>= 2;
887 switch (addr) {
888 case R_CONFIG:
889 mask = ~(R_CONFIG_RSVD | MAN_START_COM);
890 break;
891 case R_INTR_STATUS:
892 ret = s->regs[addr] & IXR_ALL;
893 s->regs[addr] = 0;
894 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
895 xilinx_spips_update_ixr(s);
896 return ret;
897 case R_INTR_MASK:
898 mask = IXR_ALL;
899 break;
900 case R_EN:
901 mask = 0x1;
902 break;
903 case R_SLAVE_IDLE_COUNT:
904 mask = 0xFF;
905 break;
906 case R_MOD_ID:
907 mask = 0x01FFFFFF;
908 break;
909 case R_INTR_EN:
910 case R_INTR_DIS:
911 case R_TX_DATA:
912 mask = 0;
913 break;
914 case R_RX_DATA:
915 memset(rx_buf, 0, sizeof(rx_buf));
916 shortfall = rx_data_bytes(&s->rx_fifo, rx_buf, s->num_txrx_bytes);
917 ret = s->regs[R_CONFIG] & R_CONFIG_ENDIAN ?
918 cpu_to_be32(*(uint32_t *)rx_buf) :
919 cpu_to_le32(*(uint32_t *)rx_buf);
920 if (!(s->regs[R_CONFIG] & R_CONFIG_ENDIAN)) {
921 ret <<= 8 * shortfall;
922 }
923 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
924 xilinx_spips_check_flush(s);
925 xilinx_spips_update_ixr(s);
926 return ret;
927 }
928 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4,
929 s->regs[addr] & mask);
930 return s->regs[addr] & mask;
931
932 }
933
934 static uint64_t xlnx_zynqmp_qspips_read(void *opaque,
935 hwaddr addr, unsigned size)
936 {
937 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque);
938 uint32_t reg = addr / 4;
939 uint32_t ret;
940 uint8_t rx_buf[4];
941 int shortfall;
942
943 if (reg <= R_MOD_ID) {
944 return xilinx_spips_read(opaque, addr, size);
945 } else {
946 switch (reg) {
947 case R_GQSPI_RXD:
948 if (fifo8_is_empty(&s->rx_fifo_g)) {
949 qemu_log_mask(LOG_GUEST_ERROR,
950 "Read from empty GQSPI RX FIFO\n");
951 return 0;
952 }
953 memset(rx_buf, 0, sizeof(rx_buf));
954 shortfall = rx_data_bytes(&s->rx_fifo_g, rx_buf,
955 XILINX_SPIPS(s)->num_txrx_bytes);
956 ret = ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN) ?
957 cpu_to_be32(*(uint32_t *)rx_buf) :
958 cpu_to_le32(*(uint32_t *)rx_buf);
959 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)) {
960 ret <<= 8 * shortfall;
961 }
962 xlnx_zynqmp_qspips_check_flush(s);
963 xlnx_zynqmp_qspips_update_ixr(s);
964 return ret;
965 default:
966 return s->regs[reg];
967 }
968 }
969 }
970
971 static void xilinx_spips_write(void *opaque, hwaddr addr,
972 uint64_t value, unsigned size)
973 {
974 int mask = ~0;
975 XilinxSPIPS *s = opaque;
976 bool try_flush = true;
977
978 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value);
979 addr >>= 2;
980 switch (addr) {
981 case R_CONFIG:
982 mask = ~(R_CONFIG_RSVD | MAN_START_COM);
983 if ((value & MAN_START_COM) && (s->regs[R_CONFIG] & MAN_START_EN)) {
984 s->man_start_com = true;
985 }
986 break;
987 case R_INTR_STATUS:
988 mask = IXR_ALL;
989 s->regs[R_INTR_STATUS] &= ~(mask & value);
990 goto no_reg_update;
991 case R_INTR_DIS:
992 mask = IXR_ALL;
993 s->regs[R_INTR_MASK] &= ~(mask & value);
994 goto no_reg_update;
995 case R_INTR_EN:
996 mask = IXR_ALL;
997 s->regs[R_INTR_MASK] |= mask & value;
998 goto no_reg_update;
999 case R_EN:
1000 mask = 0x1;
1001 break;
1002 case R_SLAVE_IDLE_COUNT:
1003 mask = 0xFF;
1004 break;
1005 case R_RX_DATA:
1006 case R_INTR_MASK:
1007 case R_MOD_ID:
1008 mask = 0;
1009 break;
1010 case R_TX_DATA:
1011 tx_data_bytes(&s->tx_fifo, (uint32_t)value, s->num_txrx_bytes,
1012 s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
1013 goto no_reg_update;
1014 case R_TXD1:
1015 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 1,
1016 s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
1017 goto no_reg_update;
1018 case R_TXD2:
1019 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 2,
1020 s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
1021 goto no_reg_update;
1022 case R_TXD3:
1023 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 3,
1024 s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
1025 goto no_reg_update;
1026 /* Skip SPI bus update for below registers writes */
1027 case R_GPIO:
1028 case R_LPBK_DLY_ADJ:
1029 case R_IOU_TAPDLY_BYPASS:
1030 case R_DUMMY_CYCLE_EN:
1031 case R_ECO:
1032 try_flush = false;
1033 break;
1034 }
1035 s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
1036 no_reg_update:
1037 if (try_flush) {
1038 xilinx_spips_update_cs_lines(s);
1039 xilinx_spips_check_flush(s);
1040 xilinx_spips_update_cs_lines(s);
1041 xilinx_spips_update_ixr(s);
1042 }
1043 }
1044
1045 static const MemoryRegionOps spips_ops = {
1046 .read = xilinx_spips_read,
1047 .write = xilinx_spips_write,
1048 .endianness = DEVICE_LITTLE_ENDIAN,
1049 };
1050
1051 static void xilinx_qspips_invalidate_mmio_ptr(XilinxQSPIPS *q)
1052 {
1053 q->lqspi_cached_addr = ~0ULL;
1054 }
1055
1056 static void xilinx_qspips_write(void *opaque, hwaddr addr,
1057 uint64_t value, unsigned size)
1058 {
1059 XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
1060 XilinxSPIPS *s = XILINX_SPIPS(opaque);
1061
1062 xilinx_spips_write(opaque, addr, value, size);
1063 addr >>= 2;
1064
1065 if (addr == R_LQSPI_CFG) {
1066 xilinx_qspips_invalidate_mmio_ptr(q);
1067 }
1068 if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) {
1069 fifo8_reset(&s->rx_fifo);
1070 }
1071 }
1072
1073 static void xlnx_zynqmp_qspips_write(void *opaque, hwaddr addr,
1074 uint64_t value, unsigned size)
1075 {
1076 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque);
1077 uint32_t reg = addr / 4;
1078
1079 if (reg <= R_MOD_ID) {
1080 xilinx_qspips_write(opaque, addr, value, size);
1081 } else {
1082 switch (reg) {
1083 case R_GQSPI_CNFG:
1084 if (FIELD_EX32(value, GQSPI_CNFG, GEN_FIFO_START) &&
1085 ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE)) {
1086 s->man_start_com_g = true;
1087 }
1088 s->regs[reg] = value & ~(R_GQSPI_CNFG_GEN_FIFO_START_MASK);
1089 break;
1090 case R_GQSPI_GEN_FIFO:
1091 if (!fifo32_is_full(&s->fifo_g)) {
1092 fifo32_push(&s->fifo_g, value);
1093 }
1094 break;
1095 case R_GQSPI_TXD:
1096 tx_data_bytes(&s->tx_fifo_g, (uint32_t)value, 4,
1097 ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN));
1098 break;
1099 case R_GQSPI_FIFO_CTRL:
1100 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET)) {
1101 fifo32_reset(&s->fifo_g);
1102 }
1103 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, TX_FIFO_RESET)) {
1104 fifo8_reset(&s->tx_fifo_g);
1105 }
1106 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, RX_FIFO_RESET)) {
1107 fifo8_reset(&s->rx_fifo_g);
1108 }
1109 break;
1110 case R_GQSPI_IDR:
1111 s->regs[R_GQSPI_IMR] |= value;
1112 break;
1113 case R_GQSPI_IER:
1114 s->regs[R_GQSPI_IMR] &= ~value;
1115 break;
1116 case R_GQSPI_ISR:
1117 s->regs[R_GQSPI_ISR] &= ~value;
1118 break;
1119 case R_GQSPI_IMR:
1120 case R_GQSPI_RXD:
1121 case R_GQSPI_GF_SNAPSHOT:
1122 case R_GQSPI_MOD_ID:
1123 break;
1124 default:
1125 s->regs[reg] = value;
1126 break;
1127 }
1128 xlnx_zynqmp_qspips_update_cs_lines(s);
1129 xlnx_zynqmp_qspips_check_flush(s);
1130 xlnx_zynqmp_qspips_update_cs_lines(s);
1131 xlnx_zynqmp_qspips_update_ixr(s);
1132 }
1133 xlnx_zynqmp_qspips_notify(s);
1134 }
1135
1136 static const MemoryRegionOps qspips_ops = {
1137 .read = xilinx_spips_read,
1138 .write = xilinx_qspips_write,
1139 .endianness = DEVICE_LITTLE_ENDIAN,
1140 };
1141
1142 static const MemoryRegionOps xlnx_zynqmp_qspips_ops = {
1143 .read = xlnx_zynqmp_qspips_read,
1144 .write = xlnx_zynqmp_qspips_write,
1145 .endianness = DEVICE_LITTLE_ENDIAN,
1146 };
1147
1148 #define LQSPI_CACHE_SIZE 1024
1149
1150 static void lqspi_load_cache(void *opaque, hwaddr addr)
1151 {
1152 XilinxQSPIPS *q = opaque;
1153 XilinxSPIPS *s = opaque;
1154 int i;
1155 int flash_addr = ((addr & ~(LQSPI_CACHE_SIZE - 1))
1156 / num_effective_busses(s));
1157 int slave = flash_addr >> LQSPI_ADDRESS_BITS;
1158 int cache_entry = 0;
1159 uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE;
1160
1161 if (addr < q->lqspi_cached_addr ||
1162 addr > q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
1163 xilinx_qspips_invalidate_mmio_ptr(q);
1164 s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
1165 s->regs[R_LQSPI_STS] |= slave ? LQSPI_CFG_U_PAGE : 0;
1166
1167 DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
1168
1169 fifo8_reset(&s->tx_fifo);
1170 fifo8_reset(&s->rx_fifo);
1171
1172 /* instruction */
1173 DB_PRINT_L(0, "pushing read instruction: %02x\n",
1174 (unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] &
1175 LQSPI_CFG_INST_CODE));
1176 fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
1177 /* read address */
1178 DB_PRINT_L(0, "pushing read address %06x\n", flash_addr);
1179 if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_ADDR4) {
1180 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 24));
1181 }
1182 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
1183 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
1184 fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
1185 /* mode bits */
1186 if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) {
1187 fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG],
1188 LQSPI_CFG_MODE_SHIFT,
1189 LQSPI_CFG_MODE_WIDTH));
1190 }
1191 /* dummy bytes */
1192 for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
1193 LQSPI_CFG_DUMMY_WIDTH)); ++i) {
1194 DB_PRINT_L(0, "pushing dummy byte\n");
1195 fifo8_push(&s->tx_fifo, 0);
1196 }
1197 xilinx_spips_update_cs_lines(s);
1198 xilinx_spips_flush_txfifo(s);
1199 fifo8_reset(&s->rx_fifo);
1200
1201 DB_PRINT_L(0, "starting QSPI data read\n");
1202
1203 while (cache_entry < LQSPI_CACHE_SIZE) {
1204 for (i = 0; i < 64; ++i) {
1205 tx_data_bytes(&s->tx_fifo, 0, 1, false);
1206 }
1207 xilinx_spips_flush_txfifo(s);
1208 for (i = 0; i < 64; ++i) {
1209 rx_data_bytes(&s->rx_fifo, &q->lqspi_buf[cache_entry++], 1);
1210 }
1211 }
1212
1213 s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
1214 s->regs[R_LQSPI_STS] |= u_page_save;
1215 xilinx_spips_update_cs_lines(s);
1216
1217 q->lqspi_cached_addr = flash_addr * num_effective_busses(s);
1218 }
1219 }
1220
1221 static MemTxResult lqspi_read(void *opaque, hwaddr addr, uint64_t *value,
1222 unsigned size, MemTxAttrs attrs)
1223 {
1224 XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
1225
1226 if (addr >= q->lqspi_cached_addr &&
1227 addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
1228 uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr];
1229 *value = cpu_to_le32(*(uint32_t *)retp);
1230 DB_PRINT_L(1, "addr: %08" HWADDR_PRIx ", data: %08" PRIx64 "\n",
1231 addr, *value);
1232 return MEMTX_OK;
1233 }
1234
1235 lqspi_load_cache(opaque, addr);
1236 return lqspi_read(opaque, addr, value, size, attrs);
1237 }
1238
1239 static MemTxResult lqspi_write(void *opaque, hwaddr offset, uint64_t value,
1240 unsigned size, MemTxAttrs attrs)
1241 {
1242 /*
1243 * From UG1085, Chapter 24 (Quad-SPI controllers):
1244 * - Writes are ignored
1245 * - AXI writes generate an external AXI slave error (SLVERR)
1246 */
1247 qemu_log_mask(LOG_GUEST_ERROR, "%s Unexpected %u-bit access to 0x%" PRIx64
1248 " (value: 0x%" PRIx64 "\n",
1249 __func__, size << 3, offset, value);
1250
1251 return MEMTX_ERROR;
1252 }
1253
1254 static const MemoryRegionOps lqspi_ops = {
1255 .read_with_attrs = lqspi_read,
1256 .write_with_attrs = lqspi_write,
1257 .endianness = DEVICE_NATIVE_ENDIAN,
1258 .impl = {
1259 .min_access_size = 4,
1260 .max_access_size = 4,
1261 },
1262 .valid = {
1263 .min_access_size = 1,
1264 .max_access_size = 4
1265 }
1266 };
1267
1268 static void xilinx_spips_realize(DeviceState *dev, Error **errp)
1269 {
1270 XilinxSPIPS *s = XILINX_SPIPS(dev);
1271 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1272 XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
1273 qemu_irq *cs;
1274 int i;
1275
1276 DB_PRINT_L(0, "realized spips\n");
1277
1278 if (s->num_busses > MAX_NUM_BUSSES) {
1279 error_setg(errp,
1280 "requested number of SPI busses %u exceeds maximum %d",
1281 s->num_busses, MAX_NUM_BUSSES);
1282 return;
1283 }
1284 if (s->num_busses < MIN_NUM_BUSSES) {
1285 error_setg(errp,
1286 "requested number of SPI busses %u is below minimum %d",
1287 s->num_busses, MIN_NUM_BUSSES);
1288 return;
1289 }
1290
1291 s->spi = g_new(SSIBus *, s->num_busses);
1292 for (i = 0; i < s->num_busses; ++i) {
1293 char bus_name[16];
1294 snprintf(bus_name, 16, "spi%d", i);
1295 s->spi[i] = ssi_create_bus(dev, bus_name);
1296 }
1297
1298 s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses);
1299 s->cs_lines_state = g_new0(bool, s->num_cs * s->num_busses);
1300 for (i = 0, cs = s->cs_lines; i < s->num_busses; ++i, cs += s->num_cs) {
1301 ssi_auto_connect_slaves(DEVICE(s), cs, s->spi[i]);
1302 }
1303
1304 sysbus_init_irq(sbd, &s->irq);
1305 for (i = 0; i < s->num_cs * s->num_busses; ++i) {
1306 sysbus_init_irq(sbd, &s->cs_lines[i]);
1307 }
1308
1309 memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s,
1310 "spi", XLNX_ZYNQMP_SPIPS_R_MAX * 4);
1311 sysbus_init_mmio(sbd, &s->iomem);
1312
1313 s->irqline = -1;
1314
1315 fifo8_create(&s->rx_fifo, xsc->rx_fifo_size);
1316 fifo8_create(&s->tx_fifo, xsc->tx_fifo_size);
1317 }
1318
1319 static void xilinx_qspips_realize(DeviceState *dev, Error **errp)
1320 {
1321 XilinxSPIPS *s = XILINX_SPIPS(dev);
1322 XilinxQSPIPS *q = XILINX_QSPIPS(dev);
1323 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1324
1325 DB_PRINT_L(0, "realized qspips\n");
1326
1327 s->num_busses = 2;
1328 s->num_cs = 2;
1329 s->num_txrx_bytes = 4;
1330
1331 xilinx_spips_realize(dev, errp);
1332 memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi",
1333 (1 << LQSPI_ADDRESS_BITS) * 2);
1334 sysbus_init_mmio(sbd, &s->mmlqspi);
1335
1336 q->lqspi_cached_addr = ~0ULL;
1337 }
1338
1339 static void xlnx_zynqmp_qspips_realize(DeviceState *dev, Error **errp)
1340 {
1341 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(dev);
1342 XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
1343
1344 if (s->dma_burst_size > QSPI_DMA_MAX_BURST_SIZE) {
1345 error_setg(errp,
1346 "qspi dma burst size %u exceeds maximum limit %d",
1347 s->dma_burst_size, QSPI_DMA_MAX_BURST_SIZE);
1348 return;
1349 }
1350 xilinx_qspips_realize(dev, errp);
1351 fifo8_create(&s->rx_fifo_g, xsc->rx_fifo_size);
1352 fifo8_create(&s->tx_fifo_g, xsc->tx_fifo_size);
1353 fifo32_create(&s->fifo_g, 32);
1354 }
1355
1356 static void xlnx_zynqmp_qspips_init(Object *obj)
1357 {
1358 XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(obj);
1359
1360 object_property_add_link(obj, "stream-connected-dma", TYPE_STREAM_SLAVE,
1361 (Object **)&rq->dma,
1362 object_property_allow_set_link,
1363 OBJ_PROP_LINK_STRONG,
1364 NULL);
1365 }
1366
1367 static int xilinx_spips_post_load(void *opaque, int version_id)
1368 {
1369 xilinx_spips_update_ixr((XilinxSPIPS *)opaque);
1370 xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque);
1371 return 0;
1372 }
1373
1374 static const VMStateDescription vmstate_xilinx_spips = {
1375 .name = "xilinx_spips",
1376 .version_id = 2,
1377 .minimum_version_id = 2,
1378 .post_load = xilinx_spips_post_load,
1379 .fields = (VMStateField[]) {
1380 VMSTATE_FIFO8(tx_fifo, XilinxSPIPS),
1381 VMSTATE_FIFO8(rx_fifo, XilinxSPIPS),
1382 VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, XLNX_SPIPS_R_MAX),
1383 VMSTATE_UINT8(snoop_state, XilinxSPIPS),
1384 VMSTATE_END_OF_LIST()
1385 }
1386 };
1387
1388 static int xlnx_zynqmp_qspips_post_load(void *opaque, int version_id)
1389 {
1390 XlnxZynqMPQSPIPS *s = (XlnxZynqMPQSPIPS *)opaque;
1391 XilinxSPIPS *qs = XILINX_SPIPS(s);
1392
1393 if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN) &&
1394 fifo8_is_empty(&qs->rx_fifo) && fifo8_is_empty(&qs->tx_fifo)) {
1395 xlnx_zynqmp_qspips_update_ixr(s);
1396 xlnx_zynqmp_qspips_update_cs_lines(s);
1397 }
1398 return 0;
1399 }
1400
1401 static const VMStateDescription vmstate_xilinx_qspips = {
1402 .name = "xilinx_qspips",
1403 .version_id = 1,
1404 .minimum_version_id = 1,
1405 .fields = (VMStateField[]) {
1406 VMSTATE_STRUCT(parent_obj, XilinxQSPIPS, 0,
1407 vmstate_xilinx_spips, XilinxSPIPS),
1408 VMSTATE_END_OF_LIST()
1409 }
1410 };
1411
1412 static const VMStateDescription vmstate_xlnx_zynqmp_qspips = {
1413 .name = "xlnx_zynqmp_qspips",
1414 .version_id = 1,
1415 .minimum_version_id = 1,
1416 .post_load = xlnx_zynqmp_qspips_post_load,
1417 .fields = (VMStateField[]) {
1418 VMSTATE_STRUCT(parent_obj, XlnxZynqMPQSPIPS, 0,
1419 vmstate_xilinx_qspips, XilinxQSPIPS),
1420 VMSTATE_FIFO8(tx_fifo_g, XlnxZynqMPQSPIPS),
1421 VMSTATE_FIFO8(rx_fifo_g, XlnxZynqMPQSPIPS),
1422 VMSTATE_FIFO32(fifo_g, XlnxZynqMPQSPIPS),
1423 VMSTATE_UINT32_ARRAY(regs, XlnxZynqMPQSPIPS, XLNX_ZYNQMP_SPIPS_R_MAX),
1424 VMSTATE_END_OF_LIST()
1425 }
1426 };
1427
1428 static Property xilinx_zynqmp_qspips_properties[] = {
1429 DEFINE_PROP_UINT32("dma-burst-size", XlnxZynqMPQSPIPS, dma_burst_size, 64),
1430 DEFINE_PROP_END_OF_LIST(),
1431 };
1432
1433 static Property xilinx_spips_properties[] = {
1434 DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1),
1435 DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4),
1436 DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
1437 DEFINE_PROP_END_OF_LIST(),
1438 };
1439
1440 static void xilinx_qspips_class_init(ObjectClass *klass, void * data)
1441 {
1442 DeviceClass *dc = DEVICE_CLASS(klass);
1443 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
1444
1445 dc->realize = xilinx_qspips_realize;
1446 xsc->reg_ops = &qspips_ops;
1447 xsc->rx_fifo_size = RXFF_A_Q;
1448 xsc->tx_fifo_size = TXFF_A_Q;
1449 }
1450
1451 static void xilinx_spips_class_init(ObjectClass *klass, void *data)
1452 {
1453 DeviceClass *dc = DEVICE_CLASS(klass);
1454 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
1455
1456 dc->realize = xilinx_spips_realize;
1457 dc->reset = xilinx_spips_reset;
1458 device_class_set_props(dc, xilinx_spips_properties);
1459 dc->vmsd = &vmstate_xilinx_spips;
1460
1461 xsc->reg_ops = &spips_ops;
1462 xsc->rx_fifo_size = RXFF_A;
1463 xsc->tx_fifo_size = TXFF_A;
1464 }
1465
1466 static void xlnx_zynqmp_qspips_class_init(ObjectClass *klass, void * data)
1467 {
1468 DeviceClass *dc = DEVICE_CLASS(klass);
1469 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
1470
1471 dc->realize = xlnx_zynqmp_qspips_realize;
1472 dc->reset = xlnx_zynqmp_qspips_reset;
1473 dc->vmsd = &vmstate_xlnx_zynqmp_qspips;
1474 device_class_set_props(dc, xilinx_zynqmp_qspips_properties);
1475 xsc->reg_ops = &xlnx_zynqmp_qspips_ops;
1476 xsc->rx_fifo_size = RXFF_A_Q;
1477 xsc->tx_fifo_size = TXFF_A_Q;
1478 }
1479
1480 static const TypeInfo xilinx_spips_info = {
1481 .name = TYPE_XILINX_SPIPS,
1482 .parent = TYPE_SYS_BUS_DEVICE,
1483 .instance_size = sizeof(XilinxSPIPS),
1484 .class_init = xilinx_spips_class_init,
1485 .class_size = sizeof(XilinxSPIPSClass),
1486 };
1487
1488 static const TypeInfo xilinx_qspips_info = {
1489 .name = TYPE_XILINX_QSPIPS,
1490 .parent = TYPE_XILINX_SPIPS,
1491 .instance_size = sizeof(XilinxQSPIPS),
1492 .class_init = xilinx_qspips_class_init,
1493 };
1494
1495 static const TypeInfo xlnx_zynqmp_qspips_info = {
1496 .name = TYPE_XLNX_ZYNQMP_QSPIPS,
1497 .parent = TYPE_XILINX_QSPIPS,
1498 .instance_size = sizeof(XlnxZynqMPQSPIPS),
1499 .instance_init = xlnx_zynqmp_qspips_init,
1500 .class_init = xlnx_zynqmp_qspips_class_init,
1501 };
1502
1503 static void xilinx_spips_register_types(void)
1504 {
1505 type_register_static(&xilinx_spips_info);
1506 type_register_static(&xilinx_qspips_info);
1507 type_register_static(&xlnx_zynqmp_qspips_info);
1508 }
1509
1510 type_init(xilinx_spips_register_types)