]> git.proxmox.com Git - mirror_qemu.git/blob - hw/timer/mc146818rtc.c
Merge remote-tracking branch 'remotes/vivier2/tags/trivial-branch-pull-request' into...
[mirror_qemu.git] / hw / timer / mc146818rtc.c
1 /*
2 * QEMU MC146818 RTC emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "qemu/cutils.h"
28 #include "qemu/module.h"
29 #include "qemu/bcd.h"
30 #include "hw/hw.h"
31 #include "qemu/timer.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/replay.h"
34 #include "hw/timer/mc146818rtc.h"
35 #include "qapi/error.h"
36 #include "qapi/qapi-commands-misc-target.h"
37 #include "qapi/qapi-events-misc-target.h"
38 #include "qapi/visitor.h"
39 #include "exec/address-spaces.h"
40
41 #ifdef TARGET_I386
42 #include "hw/i386/apic.h"
43 #endif
44
45 //#define DEBUG_CMOS
46 //#define DEBUG_COALESCED
47
48 #ifdef DEBUG_CMOS
49 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
50 #else
51 # define CMOS_DPRINTF(format, ...) do { } while (0)
52 #endif
53
54 #ifdef DEBUG_COALESCED
55 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
56 #else
57 # define DPRINTF_C(format, ...) do { } while (0)
58 #endif
59
60 #define SEC_PER_MIN 60
61 #define MIN_PER_HOUR 60
62 #define SEC_PER_HOUR 3600
63 #define HOUR_PER_DAY 24
64 #define SEC_PER_DAY 86400
65
66 #define RTC_REINJECT_ON_ACK_COUNT 20
67 #define RTC_CLOCK_RATE 32768
68 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
69
70 #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
71
72 typedef struct RTCState {
73 ISADevice parent_obj;
74
75 MemoryRegion io;
76 MemoryRegion coalesced_io;
77 uint8_t cmos_data[128];
78 uint8_t cmos_index;
79 int32_t base_year;
80 uint64_t base_rtc;
81 uint64_t last_update;
82 int64_t offset;
83 qemu_irq irq;
84 int it_shift;
85 /* periodic timer */
86 QEMUTimer *periodic_timer;
87 int64_t next_periodic_time;
88 /* update-ended timer */
89 QEMUTimer *update_timer;
90 uint64_t next_alarm_time;
91 uint16_t irq_reinject_on_ack_count;
92 uint32_t irq_coalesced;
93 uint32_t period;
94 QEMUTimer *coalesced_timer;
95 Notifier clock_reset_notifier;
96 LostTickPolicy lost_tick_policy;
97 Notifier suspend_notifier;
98 QLIST_ENTRY(RTCState) link;
99 } RTCState;
100
101 static void rtc_set_time(RTCState *s);
102 static void rtc_update_time(RTCState *s);
103 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
104 static inline int rtc_from_bcd(RTCState *s, int a);
105 static uint64_t get_next_alarm(RTCState *s);
106
107 static inline bool rtc_running(RTCState *s)
108 {
109 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
110 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
111 }
112
113 static uint64_t get_guest_rtc_ns(RTCState *s)
114 {
115 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
116
117 return s->base_rtc * NANOSECONDS_PER_SECOND +
118 guest_clock - s->last_update + s->offset;
119 }
120
121 static void rtc_coalesced_timer_update(RTCState *s)
122 {
123 if (s->irq_coalesced == 0) {
124 timer_del(s->coalesced_timer);
125 } else {
126 /* divide each RTC interval to 2 - 8 smaller intervals */
127 int c = MIN(s->irq_coalesced, 7) + 1;
128 int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
129 periodic_clock_to_ns(s->period / c);
130 timer_mod(s->coalesced_timer, next_clock);
131 }
132 }
133
134 static QLIST_HEAD(, RTCState) rtc_devices =
135 QLIST_HEAD_INITIALIZER(rtc_devices);
136
137 #ifdef TARGET_I386
138 void qmp_rtc_reset_reinjection(Error **errp)
139 {
140 RTCState *s;
141
142 QLIST_FOREACH(s, &rtc_devices, link) {
143 s->irq_coalesced = 0;
144 }
145 }
146
147 static bool rtc_policy_slew_deliver_irq(RTCState *s)
148 {
149 apic_reset_irq_delivered();
150 qemu_irq_raise(s->irq);
151 return apic_get_irq_delivered();
152 }
153
154 static void rtc_coalesced_timer(void *opaque)
155 {
156 RTCState *s = opaque;
157
158 if (s->irq_coalesced != 0) {
159 s->cmos_data[RTC_REG_C] |= 0xc0;
160 DPRINTF_C("cmos: injecting from timer\n");
161 if (rtc_policy_slew_deliver_irq(s)) {
162 s->irq_coalesced--;
163 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
164 s->irq_coalesced);
165 }
166 }
167
168 rtc_coalesced_timer_update(s);
169 }
170 #else
171 static bool rtc_policy_slew_deliver_irq(RTCState *s)
172 {
173 assert(0);
174 return false;
175 }
176 #endif
177
178 static uint32_t rtc_periodic_clock_ticks(RTCState *s)
179 {
180 int period_code;
181
182 if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
183 return 0;
184 }
185
186 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
187
188 return periodic_period_to_clock(period_code);
189 }
190
191 /*
192 * handle periodic timer. @old_period indicates the periodic timer update
193 * is just due to period adjustment.
194 */
195 static void
196 periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period)
197 {
198 uint32_t period;
199 int64_t cur_clock, next_irq_clock, lost_clock = 0;
200
201 period = rtc_periodic_clock_ticks(s);
202
203 if (period) {
204 /* compute 32 khz clock */
205 cur_clock =
206 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
207
208 /*
209 * if the periodic timer's update is due to period re-configuration,
210 * we should count the clock since last interrupt.
211 */
212 if (old_period) {
213 int64_t last_periodic_clock, next_periodic_clock;
214
215 next_periodic_clock = muldiv64(s->next_periodic_time,
216 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
217 last_periodic_clock = next_periodic_clock - old_period;
218 lost_clock = cur_clock - last_periodic_clock;
219 assert(lost_clock >= 0);
220 }
221
222 /*
223 * s->irq_coalesced can change for two reasons:
224 *
225 * a) if one or more periodic timer interrupts have been lost,
226 * lost_clock will be more that a period.
227 *
228 * b) when the period may be reconfigured, we expect the OS to
229 * treat delayed tick as the new period. So, when switching
230 * from a shorter to a longer period, scale down the missing,
231 * because the OS will treat past delayed ticks as longer
232 * (leftovers are put back into lost_clock). When switching
233 * to a shorter period, scale up the missing ticks since the
234 * OS handler will treat past delayed ticks as shorter.
235 */
236 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
237 uint32_t old_irq_coalesced = s->irq_coalesced;
238
239 s->period = period;
240 lost_clock += old_irq_coalesced * old_period;
241 s->irq_coalesced = lost_clock / s->period;
242 lost_clock %= s->period;
243 if (old_irq_coalesced != s->irq_coalesced ||
244 old_period != s->period) {
245 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
246 "period scaled from %d to %d\n", old_irq_coalesced,
247 s->irq_coalesced, old_period, s->period);
248 rtc_coalesced_timer_update(s);
249 }
250 } else {
251 /*
252 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
253 * is not used, we should make the time progress anyway.
254 */
255 lost_clock = MIN(lost_clock, period);
256 }
257
258 assert(lost_clock >= 0 && lost_clock <= period);
259
260 next_irq_clock = cur_clock + period - lost_clock;
261 s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
262 timer_mod(s->periodic_timer, s->next_periodic_time);
263 } else {
264 s->irq_coalesced = 0;
265 timer_del(s->periodic_timer);
266 }
267 }
268
269 static void rtc_periodic_timer(void *opaque)
270 {
271 RTCState *s = opaque;
272
273 periodic_timer_update(s, s->next_periodic_time, 0);
274 s->cmos_data[RTC_REG_C] |= REG_C_PF;
275 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
276 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
277 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
278 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
279 s->irq_reinject_on_ack_count = 0;
280 if (!rtc_policy_slew_deliver_irq(s)) {
281 s->irq_coalesced++;
282 rtc_coalesced_timer_update(s);
283 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
284 s->irq_coalesced);
285 }
286 } else
287 qemu_irq_raise(s->irq);
288 }
289 }
290
291 /* handle update-ended timer */
292 static void check_update_timer(RTCState *s)
293 {
294 uint64_t next_update_time;
295 uint64_t guest_nsec;
296 int next_alarm_sec;
297
298 /* From the data sheet: "Holding the dividers in reset prevents
299 * interrupts from operating, while setting the SET bit allows"
300 * them to occur.
301 */
302 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
303 assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
304 timer_del(s->update_timer);
305 return;
306 }
307
308 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
309 next_update_time = qemu_clock_get_ns(rtc_clock)
310 + NANOSECONDS_PER_SECOND - guest_nsec;
311
312 /* Compute time of next alarm. One second is already accounted
313 * for in next_update_time.
314 */
315 next_alarm_sec = get_next_alarm(s);
316 s->next_alarm_time = next_update_time +
317 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
318
319 /* If update_in_progress latched the UIP bit, we must keep the timer
320 * programmed to the next second, so that UIP is cleared. Otherwise,
321 * if UF is already set, we might be able to optimize.
322 */
323 if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
324 (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
325 /* If AF cannot change (i.e. either it is set already, or
326 * SET=1 and then the time is not updated), nothing to do.
327 */
328 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
329 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
330 timer_del(s->update_timer);
331 return;
332 }
333
334 /* UF is set, but AF is clear. Program the timer to target
335 * the alarm time. */
336 next_update_time = s->next_alarm_time;
337 }
338 if (next_update_time != timer_expire_time_ns(s->update_timer)) {
339 timer_mod(s->update_timer, next_update_time);
340 }
341 }
342
343 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
344 {
345 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
346 hour %= 12;
347 if (s->cmos_data[RTC_HOURS] & 0x80) {
348 hour += 12;
349 }
350 }
351 return hour;
352 }
353
354 static uint64_t get_next_alarm(RTCState *s)
355 {
356 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
357 int32_t hour, min, sec;
358
359 rtc_update_time(s);
360
361 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
362 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
363 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
364 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
365
366 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
367 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
368 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
369 cur_hour = convert_hour(s, cur_hour);
370
371 if (alarm_hour == -1) {
372 alarm_hour = cur_hour;
373 if (alarm_min == -1) {
374 alarm_min = cur_min;
375 if (alarm_sec == -1) {
376 alarm_sec = cur_sec + 1;
377 } else if (cur_sec > alarm_sec) {
378 alarm_min++;
379 }
380 } else if (cur_min == alarm_min) {
381 if (alarm_sec == -1) {
382 alarm_sec = cur_sec + 1;
383 } else {
384 if (cur_sec > alarm_sec) {
385 alarm_hour++;
386 }
387 }
388 if (alarm_sec == SEC_PER_MIN) {
389 /* wrap to next hour, minutes is not in don't care mode */
390 alarm_sec = 0;
391 alarm_hour++;
392 }
393 } else if (cur_min > alarm_min) {
394 alarm_hour++;
395 }
396 } else if (cur_hour == alarm_hour) {
397 if (alarm_min == -1) {
398 alarm_min = cur_min;
399 if (alarm_sec == -1) {
400 alarm_sec = cur_sec + 1;
401 } else if (cur_sec > alarm_sec) {
402 alarm_min++;
403 }
404
405 if (alarm_sec == SEC_PER_MIN) {
406 alarm_sec = 0;
407 alarm_min++;
408 }
409 /* wrap to next day, hour is not in don't care mode */
410 alarm_min %= MIN_PER_HOUR;
411 } else if (cur_min == alarm_min) {
412 if (alarm_sec == -1) {
413 alarm_sec = cur_sec + 1;
414 }
415 /* wrap to next day, hours+minutes not in don't care mode */
416 alarm_sec %= SEC_PER_MIN;
417 }
418 }
419
420 /* values that are still don't care fire at the next min/sec */
421 if (alarm_min == -1) {
422 alarm_min = 0;
423 }
424 if (alarm_sec == -1) {
425 alarm_sec = 0;
426 }
427
428 /* keep values in range */
429 if (alarm_sec == SEC_PER_MIN) {
430 alarm_sec = 0;
431 alarm_min++;
432 }
433 if (alarm_min == MIN_PER_HOUR) {
434 alarm_min = 0;
435 alarm_hour++;
436 }
437 alarm_hour %= HOUR_PER_DAY;
438
439 hour = alarm_hour - cur_hour;
440 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
441 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
442 return sec <= 0 ? sec + SEC_PER_DAY : sec;
443 }
444
445 static void rtc_update_timer(void *opaque)
446 {
447 RTCState *s = opaque;
448 int32_t irqs = REG_C_UF;
449 int32_t new_irqs;
450
451 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
452
453 /* UIP might have been latched, update time and clear it. */
454 rtc_update_time(s);
455 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
456
457 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
458 irqs |= REG_C_AF;
459 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
460 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
461 }
462 }
463
464 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
465 s->cmos_data[RTC_REG_C] |= irqs;
466 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
467 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
468 qemu_irq_raise(s->irq);
469 }
470 check_update_timer(s);
471 }
472
473 static void cmos_ioport_write(void *opaque, hwaddr addr,
474 uint64_t data, unsigned size)
475 {
476 RTCState *s = opaque;
477 uint32_t old_period;
478 bool update_periodic_timer;
479
480 if ((addr & 1) == 0) {
481 s->cmos_index = data & 0x7f;
482 } else {
483 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
484 s->cmos_index, data);
485 switch(s->cmos_index) {
486 case RTC_SECONDS_ALARM:
487 case RTC_MINUTES_ALARM:
488 case RTC_HOURS_ALARM:
489 s->cmos_data[s->cmos_index] = data;
490 check_update_timer(s);
491 break;
492 case RTC_IBM_PS2_CENTURY_BYTE:
493 s->cmos_index = RTC_CENTURY;
494 /* fall through */
495 case RTC_CENTURY:
496 case RTC_SECONDS:
497 case RTC_MINUTES:
498 case RTC_HOURS:
499 case RTC_DAY_OF_WEEK:
500 case RTC_DAY_OF_MONTH:
501 case RTC_MONTH:
502 case RTC_YEAR:
503 s->cmos_data[s->cmos_index] = data;
504 /* if in set mode, do not update the time */
505 if (rtc_running(s)) {
506 rtc_set_time(s);
507 check_update_timer(s);
508 }
509 break;
510 case RTC_REG_A:
511 update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
512 old_period = rtc_periodic_clock_ticks(s);
513
514 if ((data & 0x60) == 0x60) {
515 if (rtc_running(s)) {
516 rtc_update_time(s);
517 }
518 /* What happens to UIP when divider reset is enabled is
519 * unclear from the datasheet. Shouldn't matter much
520 * though.
521 */
522 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
523 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
524 (data & 0x70) <= 0x20) {
525 /* when the divider reset is removed, the first update cycle
526 * begins one-half second later*/
527 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
528 s->offset = 500000000;
529 rtc_set_time(s);
530 }
531 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
532 }
533 /* UIP bit is read only */
534 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
535 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
536
537 if (update_periodic_timer) {
538 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
539 old_period);
540 }
541
542 check_update_timer(s);
543 break;
544 case RTC_REG_B:
545 update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
546 & REG_B_PIE;
547 old_period = rtc_periodic_clock_ticks(s);
548
549 if (data & REG_B_SET) {
550 /* update cmos to when the rtc was stopping */
551 if (rtc_running(s)) {
552 rtc_update_time(s);
553 }
554 /* set mode: reset UIP mode */
555 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
556 data &= ~REG_B_UIE;
557 } else {
558 /* if disabling set mode, update the time */
559 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
560 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
561 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
562 rtc_set_time(s);
563 }
564 }
565 /* if an interrupt flag is already set when the interrupt
566 * becomes enabled, raise an interrupt immediately. */
567 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
568 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
569 qemu_irq_raise(s->irq);
570 } else {
571 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
572 qemu_irq_lower(s->irq);
573 }
574 s->cmos_data[RTC_REG_B] = data;
575
576 if (update_periodic_timer) {
577 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
578 old_period);
579 }
580
581 check_update_timer(s);
582 break;
583 case RTC_REG_C:
584 case RTC_REG_D:
585 /* cannot write to them */
586 break;
587 default:
588 s->cmos_data[s->cmos_index] = data;
589 break;
590 }
591 }
592 }
593
594 static inline int rtc_to_bcd(RTCState *s, int a)
595 {
596 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
597 return a;
598 } else {
599 return ((a / 10) << 4) | (a % 10);
600 }
601 }
602
603 static inline int rtc_from_bcd(RTCState *s, int a)
604 {
605 if ((a & 0xc0) == 0xc0) {
606 return -1;
607 }
608 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
609 return a;
610 } else {
611 return ((a >> 4) * 10) + (a & 0x0f);
612 }
613 }
614
615 static void rtc_get_time(RTCState *s, struct tm *tm)
616 {
617 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
618 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
619 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
620 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
621 tm->tm_hour %= 12;
622 if (s->cmos_data[RTC_HOURS] & 0x80) {
623 tm->tm_hour += 12;
624 }
625 }
626 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
627 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
628 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
629 tm->tm_year =
630 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
631 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
632 }
633
634 static void rtc_set_time(RTCState *s)
635 {
636 struct tm tm;
637
638 rtc_get_time(s, &tm);
639 s->base_rtc = mktimegm(&tm);
640 s->last_update = qemu_clock_get_ns(rtc_clock);
641
642 qapi_event_send_rtc_change(qemu_timedate_diff(&tm));
643 }
644
645 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
646 {
647 int year;
648
649 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
650 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
651 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
652 /* 24 hour format */
653 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
654 } else {
655 /* 12 hour format */
656 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
657 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
658 if (tm->tm_hour >= 12)
659 s->cmos_data[RTC_HOURS] |= 0x80;
660 }
661 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
662 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
663 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
664 year = tm->tm_year + 1900 - s->base_year;
665 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
666 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
667 }
668
669 static void rtc_update_time(RTCState *s)
670 {
671 struct tm ret;
672 time_t guest_sec;
673 int64_t guest_nsec;
674
675 guest_nsec = get_guest_rtc_ns(s);
676 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
677 gmtime_r(&guest_sec, &ret);
678
679 /* Is SET flag of Register B disabled? */
680 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
681 rtc_set_cmos(s, &ret);
682 }
683 }
684
685 static int update_in_progress(RTCState *s)
686 {
687 int64_t guest_nsec;
688
689 if (!rtc_running(s)) {
690 return 0;
691 }
692 if (timer_pending(s->update_timer)) {
693 int64_t next_update_time = timer_expire_time_ns(s->update_timer);
694 /* Latch UIP until the timer expires. */
695 if (qemu_clock_get_ns(rtc_clock) >=
696 (next_update_time - UIP_HOLD_LENGTH)) {
697 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
698 return 1;
699 }
700 }
701
702 guest_nsec = get_guest_rtc_ns(s);
703 /* UIP bit will be set at last 244us of every second. */
704 if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
705 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
706 return 1;
707 }
708 return 0;
709 }
710
711 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
712 unsigned size)
713 {
714 RTCState *s = opaque;
715 int ret;
716 if ((addr & 1) == 0) {
717 return 0xff;
718 } else {
719 switch(s->cmos_index) {
720 case RTC_IBM_PS2_CENTURY_BYTE:
721 s->cmos_index = RTC_CENTURY;
722 /* fall through */
723 case RTC_CENTURY:
724 case RTC_SECONDS:
725 case RTC_MINUTES:
726 case RTC_HOURS:
727 case RTC_DAY_OF_WEEK:
728 case RTC_DAY_OF_MONTH:
729 case RTC_MONTH:
730 case RTC_YEAR:
731 /* if not in set mode, calibrate cmos before
732 * reading*/
733 if (rtc_running(s)) {
734 rtc_update_time(s);
735 }
736 ret = s->cmos_data[s->cmos_index];
737 break;
738 case RTC_REG_A:
739 ret = s->cmos_data[s->cmos_index];
740 if (update_in_progress(s)) {
741 ret |= REG_A_UIP;
742 }
743 break;
744 case RTC_REG_C:
745 ret = s->cmos_data[s->cmos_index];
746 qemu_irq_lower(s->irq);
747 s->cmos_data[RTC_REG_C] = 0x00;
748 if (ret & (REG_C_UF | REG_C_AF)) {
749 check_update_timer(s);
750 }
751
752 if(s->irq_coalesced &&
753 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
754 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
755 s->irq_reinject_on_ack_count++;
756 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
757 DPRINTF_C("cmos: injecting on ack\n");
758 if (rtc_policy_slew_deliver_irq(s)) {
759 s->irq_coalesced--;
760 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
761 s->irq_coalesced);
762 }
763 }
764 break;
765 default:
766 ret = s->cmos_data[s->cmos_index];
767 break;
768 }
769 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
770 s->cmos_index, ret);
771 return ret;
772 }
773 }
774
775 void rtc_set_memory(ISADevice *dev, int addr, int val)
776 {
777 RTCState *s = MC146818_RTC(dev);
778 if (addr >= 0 && addr <= 127)
779 s->cmos_data[addr] = val;
780 }
781
782 int rtc_get_memory(ISADevice *dev, int addr)
783 {
784 RTCState *s = MC146818_RTC(dev);
785 assert(addr >= 0 && addr <= 127);
786 return s->cmos_data[addr];
787 }
788
789 static void rtc_set_date_from_host(ISADevice *dev)
790 {
791 RTCState *s = MC146818_RTC(dev);
792 struct tm tm;
793
794 qemu_get_timedate(&tm, 0);
795
796 s->base_rtc = mktimegm(&tm);
797 s->last_update = qemu_clock_get_ns(rtc_clock);
798 s->offset = 0;
799
800 /* set the CMOS date */
801 rtc_set_cmos(s, &tm);
802 }
803
804 static int rtc_pre_save(void *opaque)
805 {
806 RTCState *s = opaque;
807
808 rtc_update_time(s);
809
810 return 0;
811 }
812
813 static int rtc_post_load(void *opaque, int version_id)
814 {
815 RTCState *s = opaque;
816
817 if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
818 rtc_set_time(s);
819 s->offset = 0;
820 check_update_timer(s);
821 }
822
823 /* The periodic timer is deterministic in record/replay mode,
824 * so there is no need to update it after loading the vmstate.
825 * Reading RTC here would misalign record and replay.
826 */
827 if (replay_mode == REPLAY_MODE_NONE) {
828 uint64_t now = qemu_clock_get_ns(rtc_clock);
829 if (now < s->next_periodic_time ||
830 now > (s->next_periodic_time + get_max_clock_jump())) {
831 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 0);
832 }
833 }
834
835 if (version_id >= 2) {
836 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
837 rtc_coalesced_timer_update(s);
838 }
839 }
840 return 0;
841 }
842
843 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
844 {
845 RTCState *s = (RTCState *)opaque;
846 return s->irq_reinject_on_ack_count != 0;
847 }
848
849 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
850 .name = "mc146818rtc/irq_reinject_on_ack_count",
851 .version_id = 1,
852 .minimum_version_id = 1,
853 .needed = rtc_irq_reinject_on_ack_count_needed,
854 .fields = (VMStateField[]) {
855 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
856 VMSTATE_END_OF_LIST()
857 }
858 };
859
860 static const VMStateDescription vmstate_rtc = {
861 .name = "mc146818rtc",
862 .version_id = 3,
863 .minimum_version_id = 1,
864 .pre_save = rtc_pre_save,
865 .post_load = rtc_post_load,
866 .fields = (VMStateField[]) {
867 VMSTATE_BUFFER(cmos_data, RTCState),
868 VMSTATE_UINT8(cmos_index, RTCState),
869 VMSTATE_UNUSED(7*4),
870 VMSTATE_TIMER_PTR(periodic_timer, RTCState),
871 VMSTATE_INT64(next_periodic_time, RTCState),
872 VMSTATE_UNUSED(3*8),
873 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
874 VMSTATE_UINT32_V(period, RTCState, 2),
875 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
876 VMSTATE_UINT64_V(last_update, RTCState, 3),
877 VMSTATE_INT64_V(offset, RTCState, 3),
878 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
879 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
880 VMSTATE_END_OF_LIST()
881 },
882 .subsections = (const VMStateDescription*[]) {
883 &vmstate_rtc_irq_reinject_on_ack_count,
884 NULL
885 }
886 };
887
888 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
889 {
890 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
891 int64_t now = *(int64_t *)data;
892
893 rtc_set_date_from_host(ISA_DEVICE(s));
894 periodic_timer_update(s, now, 0);
895 check_update_timer(s);
896
897 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
898 rtc_coalesced_timer_update(s);
899 }
900 }
901
902 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
903 BIOS will read it and start S3 resume at POST Entry */
904 static void rtc_notify_suspend(Notifier *notifier, void *data)
905 {
906 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
907 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
908 }
909
910 static void rtc_reset(void *opaque)
911 {
912 RTCState *s = opaque;
913
914 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
915 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
916 check_update_timer(s);
917
918 qemu_irq_lower(s->irq);
919
920 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
921 s->irq_coalesced = 0;
922 s->irq_reinject_on_ack_count = 0;
923 }
924 }
925
926 static const MemoryRegionOps cmos_ops = {
927 .read = cmos_ioport_read,
928 .write = cmos_ioport_write,
929 .impl = {
930 .min_access_size = 1,
931 .max_access_size = 1,
932 },
933 .endianness = DEVICE_LITTLE_ENDIAN,
934 };
935
936 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
937 {
938 RTCState *s = MC146818_RTC(obj);
939
940 rtc_update_time(s);
941 rtc_get_time(s, current_tm);
942 }
943
944 static void rtc_realizefn(DeviceState *dev, Error **errp)
945 {
946 ISADevice *isadev = ISA_DEVICE(dev);
947 RTCState *s = MC146818_RTC(dev);
948 int base = 0x70;
949
950 s->cmos_data[RTC_REG_A] = 0x26;
951 s->cmos_data[RTC_REG_B] = 0x02;
952 s->cmos_data[RTC_REG_C] = 0x00;
953 s->cmos_data[RTC_REG_D] = 0x80;
954
955 /* This is for historical reasons. The default base year qdev property
956 * was set to 2000 for most machine types before the century byte was
957 * implemented.
958 *
959 * This if statement means that the century byte will be always 0
960 * (at least until 2079...) for base_year = 1980, but will be set
961 * correctly for base_year = 2000.
962 */
963 if (s->base_year == 2000) {
964 s->base_year = 0;
965 }
966
967 rtc_set_date_from_host(isadev);
968
969 switch (s->lost_tick_policy) {
970 #ifdef TARGET_I386
971 case LOST_TICK_POLICY_SLEW:
972 s->coalesced_timer =
973 timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
974 break;
975 #endif
976 case LOST_TICK_POLICY_DISCARD:
977 break;
978 default:
979 error_setg(errp, "Invalid lost tick policy.");
980 return;
981 }
982
983 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
984 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
985 check_update_timer(s);
986
987 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
988 qemu_clock_register_reset_notifier(rtc_clock,
989 &s->clock_reset_notifier);
990
991 s->suspend_notifier.notify = rtc_notify_suspend;
992 qemu_register_suspend_notifier(&s->suspend_notifier);
993
994 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
995 isa_register_ioport(isadev, &s->io, base);
996
997 /* register rtc 0x70 port for coalesced_pio */
998 memory_region_set_flush_coalesced(&s->io);
999 memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
1000 s, "rtc-index", 1);
1001 memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
1002 memory_region_add_coalescing(&s->coalesced_io, 0, 1);
1003
1004 qdev_set_legacy_instance_id(dev, base, 3);
1005 qemu_register_reset(rtc_reset, s);
1006
1007 object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL);
1008
1009 qdev_init_gpio_out(dev, &s->irq, 1);
1010 }
1011
1012 ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
1013 {
1014 DeviceState *dev;
1015 ISADevice *isadev;
1016 RTCState *s;
1017
1018 isadev = isa_create(bus, TYPE_MC146818_RTC);
1019 dev = DEVICE(isadev);
1020 s = MC146818_RTC(isadev);
1021 qdev_prop_set_int32(dev, "base_year", base_year);
1022 qdev_init_nofail(dev);
1023 if (intercept_irq) {
1024 qdev_connect_gpio_out(dev, 0, intercept_irq);
1025 } else {
1026 isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
1027 }
1028 QLIST_INSERT_HEAD(&rtc_devices, s, link);
1029
1030 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(s),
1031 "date", NULL);
1032
1033 return isadev;
1034 }
1035
1036 static Property mc146818rtc_properties[] = {
1037 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
1038 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
1039 lost_tick_policy, LOST_TICK_POLICY_DISCARD),
1040 DEFINE_PROP_END_OF_LIST(),
1041 };
1042
1043 static void rtc_resetdev(DeviceState *d)
1044 {
1045 RTCState *s = MC146818_RTC(d);
1046
1047 /* Reason: VM do suspend self will set 0xfe
1048 * Reset any values other than 0xfe(Guest suspend case) */
1049 if (s->cmos_data[0x0f] != 0xfe) {
1050 s->cmos_data[0x0f] = 0x00;
1051 }
1052 }
1053
1054 static void rtc_class_initfn(ObjectClass *klass, void *data)
1055 {
1056 DeviceClass *dc = DEVICE_CLASS(klass);
1057
1058 dc->realize = rtc_realizefn;
1059 dc->reset = rtc_resetdev;
1060 dc->vmsd = &vmstate_rtc;
1061 dc->props = mc146818rtc_properties;
1062 /* Reason: needs to be wired up by rtc_init() */
1063 dc->user_creatable = false;
1064 }
1065
1066 static const TypeInfo mc146818rtc_info = {
1067 .name = TYPE_MC146818_RTC,
1068 .parent = TYPE_ISA_DEVICE,
1069 .instance_size = sizeof(RTCState),
1070 .class_init = rtc_class_initfn,
1071 };
1072
1073 static void mc146818rtc_register_types(void)
1074 {
1075 type_register_static(&mc146818rtc_info);
1076 }
1077
1078 type_init(mc146818rtc_register_types)