]> git.proxmox.com Git - mirror_qemu.git/blob - hw/xtensa/xtfpga.c
Move include qemu/option.h from qemu-common.h to actual users
[mirror_qemu.git] / hw / xtensa / xtfpga.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "qemu/osdep.h"
29 #include "qapi/error.h"
30 #include "cpu.h"
31 #include "sysemu/sysemu.h"
32 #include "hw/boards.h"
33 #include "hw/loader.h"
34 #include "elf.h"
35 #include "exec/memory.h"
36 #include "exec/address-spaces.h"
37 #include "hw/char/serial.h"
38 #include "net/net.h"
39 #include "hw/sysbus.h"
40 #include "hw/block/flash.h"
41 #include "sysemu/block-backend.h"
42 #include "chardev/char.h"
43 #include "sysemu/device_tree.h"
44 #include "qemu/error-report.h"
45 #include "qemu/option.h"
46 #include "bootparam.h"
47 #include "xtensa_memory.h"
48
49 typedef struct XtfpgaFlashDesc {
50 hwaddr base;
51 size_t size;
52 size_t boot_base;
53 size_t sector_size;
54 } XtfpgaFlashDesc;
55
56 typedef struct XtfpgaBoardDesc {
57 const XtfpgaFlashDesc *flash;
58 size_t sram_size;
59 const hwaddr *io;
60 } XtfpgaBoardDesc;
61
62 typedef struct XtfpgaFpgaState {
63 MemoryRegion iomem;
64 uint32_t leds;
65 uint32_t switches;
66 } XtfpgaFpgaState;
67
68 static void xtfpga_fpga_reset(void *opaque)
69 {
70 XtfpgaFpgaState *s = opaque;
71
72 s->leds = 0;
73 s->switches = 0;
74 }
75
76 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
77 unsigned size)
78 {
79 XtfpgaFpgaState *s = opaque;
80
81 switch (addr) {
82 case 0x0: /*build date code*/
83 return 0x09272011;
84
85 case 0x4: /*processor clock frequency, Hz*/
86 return 10000000;
87
88 case 0x8: /*LEDs (off = 0, on = 1)*/
89 return s->leds;
90
91 case 0xc: /*DIP switches (off = 0, on = 1)*/
92 return s->switches;
93 }
94 return 0;
95 }
96
97 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
98 uint64_t val, unsigned size)
99 {
100 XtfpgaFpgaState *s = opaque;
101
102 switch (addr) {
103 case 0x8: /*LEDs (off = 0, on = 1)*/
104 s->leds = val;
105 break;
106
107 case 0x10: /*board reset*/
108 if (val == 0xdead) {
109 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
110 }
111 break;
112 }
113 }
114
115 static const MemoryRegionOps xtfpga_fpga_ops = {
116 .read = xtfpga_fpga_read,
117 .write = xtfpga_fpga_write,
118 .endianness = DEVICE_NATIVE_ENDIAN,
119 };
120
121 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
122 hwaddr base)
123 {
124 XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
125
126 memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
127 "xtfpga.fpga", 0x10000);
128 memory_region_add_subregion(address_space, base, &s->iomem);
129 xtfpga_fpga_reset(s);
130 qemu_register_reset(xtfpga_fpga_reset, s);
131 return s;
132 }
133
134 static void xtfpga_net_init(MemoryRegion *address_space,
135 hwaddr base,
136 hwaddr descriptors,
137 hwaddr buffers,
138 qemu_irq irq, NICInfo *nd)
139 {
140 DeviceState *dev;
141 SysBusDevice *s;
142 MemoryRegion *ram;
143
144 dev = qdev_create(NULL, "open_eth");
145 qdev_set_nic_properties(dev, nd);
146 qdev_init_nofail(dev);
147
148 s = SYS_BUS_DEVICE(dev);
149 sysbus_connect_irq(s, 0, irq);
150 memory_region_add_subregion(address_space, base,
151 sysbus_mmio_get_region(s, 0));
152 memory_region_add_subregion(address_space, descriptors,
153 sysbus_mmio_get_region(s, 1));
154
155 ram = g_malloc(sizeof(*ram));
156 memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16384,
157 &error_fatal);
158 vmstate_register_ram_global(ram);
159 memory_region_add_subregion(address_space, buffers, ram);
160 }
161
162 static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
163 const XtfpgaBoardDesc *board,
164 DriveInfo *dinfo, int be)
165 {
166 SysBusDevice *s;
167 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
168
169 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
170 &error_abort);
171 qdev_prop_set_uint32(dev, "num-blocks",
172 board->flash->size / board->flash->sector_size);
173 qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
174 qdev_prop_set_uint8(dev, "width", 2);
175 qdev_prop_set_bit(dev, "big-endian", be);
176 qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
177 qdev_init_nofail(dev);
178 s = SYS_BUS_DEVICE(dev);
179 memory_region_add_subregion(address_space, board->flash->base,
180 sysbus_mmio_get_region(s, 0));
181 return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
182 }
183
184 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
185 {
186 XtensaCPU *cpu = opaque;
187
188 return cpu_get_phys_page_debug(CPU(cpu), addr);
189 }
190
191 static void xtfpga_reset(void *opaque)
192 {
193 XtensaCPU *cpu = opaque;
194
195 cpu_reset(CPU(cpu));
196 }
197
198 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
199 unsigned size)
200 {
201 return 0;
202 }
203
204 static void xtfpga_io_write(void *opaque, hwaddr addr,
205 uint64_t val, unsigned size)
206 {
207 }
208
209 static const MemoryRegionOps xtfpga_io_ops = {
210 .read = xtfpga_io_read,
211 .write = xtfpga_io_write,
212 .endianness = DEVICE_NATIVE_ENDIAN,
213 };
214
215 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
216 {
217 #ifdef TARGET_WORDS_BIGENDIAN
218 int be = 1;
219 #else
220 int be = 0;
221 #endif
222 MemoryRegion *system_memory = get_system_memory();
223 XtensaCPU *cpu = NULL;
224 CPUXtensaState *env = NULL;
225 MemoryRegion *system_io;
226 DriveInfo *dinfo;
227 pflash_t *flash = NULL;
228 QemuOpts *machine_opts = qemu_get_machine_opts();
229 const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
230 const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
231 const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
232 const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
233 const unsigned system_io_size = 224 * 1024 * 1024;
234 int n;
235
236 for (n = 0; n < smp_cpus; n++) {
237 cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
238 env = &cpu->env;
239
240 env->sregs[PRID] = n;
241 qemu_register_reset(xtfpga_reset, cpu);
242 /* Need MMU initialized prior to ELF loading,
243 * so that ELF gets loaded into virtual addresses
244 */
245 cpu_reset(CPU(cpu));
246 }
247
248 if (env) {
249 XtensaMemory sysram = env->config->sysram;
250
251 sysram.location[0].size = machine->ram_size;
252 xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
253 system_memory);
254 xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
255 system_memory);
256 xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
257 system_memory);
258 xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
259 system_memory);
260 xtensa_create_memory_regions(&sysram, "xtensa.sysram",
261 system_memory);
262 }
263
264 system_io = g_malloc(sizeof(*system_io));
265 memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
266 system_io_size);
267 memory_region_add_subregion(system_memory, board->io[0], system_io);
268 if (board->io[1]) {
269 MemoryRegion *io = g_malloc(sizeof(*io));
270
271 memory_region_init_alias(io, NULL, "xtfpga.io.cached",
272 system_io, 0, system_io_size);
273 memory_region_add_subregion(system_memory, board->io[1], io);
274 }
275 xtfpga_fpga_init(system_io, 0x0d020000);
276 if (nd_table[0].used) {
277 xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
278 xtensa_get_extint(env, 1), nd_table);
279 }
280
281 if (!serial_hds[0]) {
282 serial_hds[0] = qemu_chr_new("serial0", "null");
283 }
284
285 serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
286 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
287
288 dinfo = drive_get(IF_PFLASH, 0, 0);
289 if (dinfo) {
290 flash = xtfpga_flash_init(system_io, board, dinfo, be);
291 }
292
293 /* Use presence of kernel file name as 'boot from SRAM' switch. */
294 if (kernel_filename) {
295 uint32_t entry_point = env->pc;
296 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
297 uint32_t tagptr = env->config->sysrom.location[0].addr +
298 board->sram_size;
299 uint32_t cur_tagptr;
300 BpMemInfo memory_location = {
301 .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
302 .start = tswap32(env->config->sysram.location[0].addr),
303 .end = tswap32(env->config->sysram.location[0].addr +
304 machine->ram_size),
305 };
306 uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
307 machine->ram_size : 0x08000000;
308 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
309
310 lowmem_end += env->config->sysram.location[0].addr;
311 cur_lowmem += env->config->sysram.location[0].addr;
312
313 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
314 system_memory);
315
316 if (kernel_cmdline) {
317 bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
318 }
319 if (dtb_filename) {
320 bp_size += get_tag_size(sizeof(uint32_t));
321 }
322 if (initrd_filename) {
323 bp_size += get_tag_size(sizeof(BpMemInfo));
324 }
325
326 /* Put kernel bootparameters to the end of that SRAM */
327 tagptr = (tagptr - bp_size) & ~0xff;
328 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
329 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
330 sizeof(memory_location), &memory_location);
331
332 if (kernel_cmdline) {
333 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
334 strlen(kernel_cmdline) + 1, kernel_cmdline);
335 }
336 #ifdef CONFIG_FDT
337 if (dtb_filename) {
338 int fdt_size;
339 void *fdt = load_device_tree(dtb_filename, &fdt_size);
340 uint32_t dtb_addr = tswap32(cur_lowmem);
341
342 if (!fdt) {
343 error_report("could not load DTB '%s'", dtb_filename);
344 exit(EXIT_FAILURE);
345 }
346
347 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
348 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
349 sizeof(dtb_addr), &dtb_addr);
350 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
351 }
352 #else
353 if (dtb_filename) {
354 error_report("could not load DTB '%s': "
355 "FDT support is not configured in QEMU",
356 dtb_filename);
357 exit(EXIT_FAILURE);
358 }
359 #endif
360 if (initrd_filename) {
361 BpMemInfo initrd_location = { 0 };
362 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
363 lowmem_end - cur_lowmem);
364
365 if (initrd_size < 0) {
366 initrd_size = load_image_targphys(initrd_filename,
367 cur_lowmem,
368 lowmem_end - cur_lowmem);
369 }
370 if (initrd_size < 0) {
371 error_report("could not load initrd '%s'", initrd_filename);
372 exit(EXIT_FAILURE);
373 }
374 initrd_location.start = tswap32(cur_lowmem);
375 initrd_location.end = tswap32(cur_lowmem + initrd_size);
376 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
377 sizeof(initrd_location), &initrd_location);
378 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
379 }
380 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
381 env->regs[2] = tagptr;
382
383 uint64_t elf_entry;
384 uint64_t elf_lowaddr;
385 int success = load_elf(kernel_filename, translate_phys_addr, cpu,
386 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
387 if (success > 0) {
388 entry_point = elf_entry;
389 } else {
390 hwaddr ep;
391 int is_linux;
392 success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
393 translate_phys_addr, cpu);
394 if (success > 0 && is_linux) {
395 entry_point = ep;
396 } else {
397 error_report("could not load kernel '%s'",
398 kernel_filename);
399 exit(EXIT_FAILURE);
400 }
401 }
402 if (entry_point != env->pc) {
403 uint8_t boot[] = {
404 #ifdef TARGET_WORDS_BIGENDIAN
405 0x60, 0x00, 0x08, /* j 1f */
406 0x00, /* .literal_position */
407 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
408 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
409 /* 1: */
410 0x10, 0xff, 0xfe, /* l32r a0, entry_pc */
411 0x12, 0xff, 0xfe, /* l32r a2, entry_a2 */
412 0x0a, 0x00, 0x00, /* jx a0 */
413 #else
414 0x06, 0x02, 0x00, /* j 1f */
415 0x00, /* .literal_position */
416 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
417 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
418 /* 1: */
419 0x01, 0xfe, 0xff, /* l32r a0, entry_pc */
420 0x21, 0xfe, 0xff, /* l32r a2, entry_a2 */
421 0xa0, 0x00, 0x00, /* jx a0 */
422 #endif
423 };
424 uint32_t entry_pc = tswap32(entry_point);
425 uint32_t entry_a2 = tswap32(tagptr);
426
427 memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
428 memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
429 cpu_physical_memory_write(env->pc, boot, sizeof(boot));
430 }
431 } else {
432 if (flash) {
433 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
434 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
435 uint32_t size = env->config->sysrom.location[0].size;
436
437 if (board->flash->size - board->flash->boot_base < size) {
438 size = board->flash->size - board->flash->boot_base;
439 }
440
441 memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
442 flash_mr, board->flash->boot_base, size);
443 memory_region_add_subregion(system_memory,
444 env->config->sysrom.location[0].addr,
445 flash_io);
446 } else {
447 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
448 system_memory);
449 }
450 }
451 }
452
453 static const hwaddr xtfpga_mmu_io[2] = {
454 0xf0000000,
455 };
456
457 static const hwaddr xtfpga_nommu_io[2] = {
458 0x90000000,
459 0x70000000,
460 };
461
462 static const XtfpgaFlashDesc lx60_flash = {
463 .base = 0x08000000,
464 .size = 0x00400000,
465 .sector_size = 0x10000,
466 };
467
468 static void xtfpga_lx60_init(MachineState *machine)
469 {
470 static const XtfpgaBoardDesc lx60_board = {
471 .flash = &lx60_flash,
472 .sram_size = 0x20000,
473 .io = xtfpga_mmu_io,
474 };
475 xtfpga_init(&lx60_board, machine);
476 }
477
478 static void xtfpga_lx60_nommu_init(MachineState *machine)
479 {
480 static const XtfpgaBoardDesc lx60_board = {
481 .flash = &lx60_flash,
482 .sram_size = 0x20000,
483 .io = xtfpga_nommu_io,
484 };
485 xtfpga_init(&lx60_board, machine);
486 }
487
488 static const XtfpgaFlashDesc lx200_flash = {
489 .base = 0x08000000,
490 .size = 0x01000000,
491 .sector_size = 0x20000,
492 };
493
494 static void xtfpga_lx200_init(MachineState *machine)
495 {
496 static const XtfpgaBoardDesc lx200_board = {
497 .flash = &lx200_flash,
498 .sram_size = 0x2000000,
499 .io = xtfpga_mmu_io,
500 };
501 xtfpga_init(&lx200_board, machine);
502 }
503
504 static void xtfpga_lx200_nommu_init(MachineState *machine)
505 {
506 static const XtfpgaBoardDesc lx200_board = {
507 .flash = &lx200_flash,
508 .sram_size = 0x2000000,
509 .io = xtfpga_nommu_io,
510 };
511 xtfpga_init(&lx200_board, machine);
512 }
513
514 static const XtfpgaFlashDesc ml605_flash = {
515 .base = 0x08000000,
516 .size = 0x01000000,
517 .sector_size = 0x20000,
518 };
519
520 static void xtfpga_ml605_init(MachineState *machine)
521 {
522 static const XtfpgaBoardDesc ml605_board = {
523 .flash = &ml605_flash,
524 .sram_size = 0x2000000,
525 .io = xtfpga_mmu_io,
526 };
527 xtfpga_init(&ml605_board, machine);
528 }
529
530 static void xtfpga_ml605_nommu_init(MachineState *machine)
531 {
532 static const XtfpgaBoardDesc ml605_board = {
533 .flash = &ml605_flash,
534 .sram_size = 0x2000000,
535 .io = xtfpga_nommu_io,
536 };
537 xtfpga_init(&ml605_board, machine);
538 }
539
540 static const XtfpgaFlashDesc kc705_flash = {
541 .base = 0x00000000,
542 .size = 0x08000000,
543 .boot_base = 0x06000000,
544 .sector_size = 0x20000,
545 };
546
547 static void xtfpga_kc705_init(MachineState *machine)
548 {
549 static const XtfpgaBoardDesc kc705_board = {
550 .flash = &kc705_flash,
551 .sram_size = 0x2000000,
552 .io = xtfpga_mmu_io,
553 };
554 xtfpga_init(&kc705_board, machine);
555 }
556
557 static void xtfpga_kc705_nommu_init(MachineState *machine)
558 {
559 static const XtfpgaBoardDesc kc705_board = {
560 .flash = &kc705_flash,
561 .sram_size = 0x2000000,
562 .io = xtfpga_nommu_io,
563 };
564 xtfpga_init(&kc705_board, machine);
565 }
566
567 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
568 {
569 MachineClass *mc = MACHINE_CLASS(oc);
570
571 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
572 mc->init = xtfpga_lx60_init;
573 mc->max_cpus = 4;
574 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
575 }
576
577 static const TypeInfo xtfpga_lx60_type = {
578 .name = MACHINE_TYPE_NAME("lx60"),
579 .parent = TYPE_MACHINE,
580 .class_init = xtfpga_lx60_class_init,
581 };
582
583 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
584 {
585 MachineClass *mc = MACHINE_CLASS(oc);
586
587 mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
588 mc->init = xtfpga_lx60_nommu_init;
589 mc->max_cpus = 4;
590 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
591 }
592
593 static const TypeInfo xtfpga_lx60_nommu_type = {
594 .name = MACHINE_TYPE_NAME("lx60-nommu"),
595 .parent = TYPE_MACHINE,
596 .class_init = xtfpga_lx60_nommu_class_init,
597 };
598
599 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
600 {
601 MachineClass *mc = MACHINE_CLASS(oc);
602
603 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
604 mc->init = xtfpga_lx200_init;
605 mc->max_cpus = 4;
606 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
607 }
608
609 static const TypeInfo xtfpga_lx200_type = {
610 .name = MACHINE_TYPE_NAME("lx200"),
611 .parent = TYPE_MACHINE,
612 .class_init = xtfpga_lx200_class_init,
613 };
614
615 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
616 {
617 MachineClass *mc = MACHINE_CLASS(oc);
618
619 mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
620 mc->init = xtfpga_lx200_nommu_init;
621 mc->max_cpus = 4;
622 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
623 }
624
625 static const TypeInfo xtfpga_lx200_nommu_type = {
626 .name = MACHINE_TYPE_NAME("lx200-nommu"),
627 .parent = TYPE_MACHINE,
628 .class_init = xtfpga_lx200_nommu_class_init,
629 };
630
631 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
632 {
633 MachineClass *mc = MACHINE_CLASS(oc);
634
635 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
636 mc->init = xtfpga_ml605_init;
637 mc->max_cpus = 4;
638 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
639 }
640
641 static const TypeInfo xtfpga_ml605_type = {
642 .name = MACHINE_TYPE_NAME("ml605"),
643 .parent = TYPE_MACHINE,
644 .class_init = xtfpga_ml605_class_init,
645 };
646
647 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
648 {
649 MachineClass *mc = MACHINE_CLASS(oc);
650
651 mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
652 mc->init = xtfpga_ml605_nommu_init;
653 mc->max_cpus = 4;
654 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
655 }
656
657 static const TypeInfo xtfpga_ml605_nommu_type = {
658 .name = MACHINE_TYPE_NAME("ml605-nommu"),
659 .parent = TYPE_MACHINE,
660 .class_init = xtfpga_ml605_nommu_class_init,
661 };
662
663 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
664 {
665 MachineClass *mc = MACHINE_CLASS(oc);
666
667 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
668 mc->init = xtfpga_kc705_init;
669 mc->max_cpus = 4;
670 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
671 }
672
673 static const TypeInfo xtfpga_kc705_type = {
674 .name = MACHINE_TYPE_NAME("kc705"),
675 .parent = TYPE_MACHINE,
676 .class_init = xtfpga_kc705_class_init,
677 };
678
679 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
680 {
681 MachineClass *mc = MACHINE_CLASS(oc);
682
683 mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
684 mc->init = xtfpga_kc705_nommu_init;
685 mc->max_cpus = 4;
686 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
687 }
688
689 static const TypeInfo xtfpga_kc705_nommu_type = {
690 .name = MACHINE_TYPE_NAME("kc705-nommu"),
691 .parent = TYPE_MACHINE,
692 .class_init = xtfpga_kc705_nommu_class_init,
693 };
694
695 static void xtfpga_machines_init(void)
696 {
697 type_register_static(&xtfpga_lx60_type);
698 type_register_static(&xtfpga_lx200_type);
699 type_register_static(&xtfpga_ml605_type);
700 type_register_static(&xtfpga_kc705_type);
701 type_register_static(&xtfpga_lx60_nommu_type);
702 type_register_static(&xtfpga_lx200_nommu_type);
703 type_register_static(&xtfpga_ml605_nommu_type);
704 type_register_static(&xtfpga_kc705_nommu_type);
705 }
706
707 type_init(xtfpga_machines_init)