]> git.proxmox.com Git - mirror_qemu.git/blob - hw/xtensa/xtfpga.c
e05ef75a75785a64c16889da0813ebda6436698e
[mirror_qemu.git] / hw / xtensa / xtfpga.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "elf.h"
36 #include "exec/memory.h"
37 #include "exec/address-spaces.h"
38 #include "hw/char/serial.h"
39 #include "net/net.h"
40 #include "hw/sysbus.h"
41 #include "hw/block/flash.h"
42 #include "chardev/char.h"
43 #include "sysemu/device_tree.h"
44 #include "qemu/error-report.h"
45 #include "qemu/option.h"
46 #include "bootparam.h"
47 #include "xtensa_memory.h"
48 #include "hw/xtensa/mx_pic.h"
49
50 typedef struct XtfpgaFlashDesc {
51 hwaddr base;
52 size_t size;
53 size_t boot_base;
54 size_t sector_size;
55 } XtfpgaFlashDesc;
56
57 typedef struct XtfpgaBoardDesc {
58 const XtfpgaFlashDesc *flash;
59 size_t sram_size;
60 const hwaddr *io;
61 } XtfpgaBoardDesc;
62
63 typedef struct XtfpgaFpgaState {
64 MemoryRegion iomem;
65 uint32_t freq;
66 uint32_t leds;
67 uint32_t switches;
68 } XtfpgaFpgaState;
69
70 static void xtfpga_fpga_reset(void *opaque)
71 {
72 XtfpgaFpgaState *s = opaque;
73
74 s->leds = 0;
75 s->switches = 0;
76 }
77
78 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
79 unsigned size)
80 {
81 XtfpgaFpgaState *s = opaque;
82
83 switch (addr) {
84 case 0x0: /*build date code*/
85 return 0x09272011;
86
87 case 0x4: /*processor clock frequency, Hz*/
88 return s->freq;
89
90 case 0x8: /*LEDs (off = 0, on = 1)*/
91 return s->leds;
92
93 case 0xc: /*DIP switches (off = 0, on = 1)*/
94 return s->switches;
95 }
96 return 0;
97 }
98
99 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
100 uint64_t val, unsigned size)
101 {
102 XtfpgaFpgaState *s = opaque;
103
104 switch (addr) {
105 case 0x8: /*LEDs (off = 0, on = 1)*/
106 s->leds = val;
107 break;
108
109 case 0x10: /*board reset*/
110 if (val == 0xdead) {
111 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
112 }
113 break;
114 }
115 }
116
117 static const MemoryRegionOps xtfpga_fpga_ops = {
118 .read = xtfpga_fpga_read,
119 .write = xtfpga_fpga_write,
120 .endianness = DEVICE_NATIVE_ENDIAN,
121 };
122
123 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
124 hwaddr base, uint32_t freq)
125 {
126 XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
127
128 memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
129 "xtfpga.fpga", 0x10000);
130 memory_region_add_subregion(address_space, base, &s->iomem);
131 s->freq = freq;
132 xtfpga_fpga_reset(s);
133 qemu_register_reset(xtfpga_fpga_reset, s);
134 return s;
135 }
136
137 static void xtfpga_net_init(MemoryRegion *address_space,
138 hwaddr base,
139 hwaddr descriptors,
140 hwaddr buffers,
141 qemu_irq irq, NICInfo *nd)
142 {
143 DeviceState *dev;
144 SysBusDevice *s;
145 MemoryRegion *ram;
146
147 dev = qdev_create(NULL, "open_eth");
148 qdev_set_nic_properties(dev, nd);
149 qdev_init_nofail(dev);
150
151 s = SYS_BUS_DEVICE(dev);
152 sysbus_connect_irq(s, 0, irq);
153 memory_region_add_subregion(address_space, base,
154 sysbus_mmio_get_region(s, 0));
155 memory_region_add_subregion(address_space, descriptors,
156 sysbus_mmio_get_region(s, 1));
157
158 ram = g_malloc(sizeof(*ram));
159 memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
160 &error_fatal);
161 vmstate_register_ram_global(ram);
162 memory_region_add_subregion(address_space, buffers, ram);
163 }
164
165 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
166 const XtfpgaBoardDesc *board,
167 DriveInfo *dinfo, int be)
168 {
169 SysBusDevice *s;
170 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
171
172 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
173 &error_abort);
174 qdev_prop_set_uint32(dev, "num-blocks",
175 board->flash->size / board->flash->sector_size);
176 qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
177 qdev_prop_set_uint8(dev, "width", 2);
178 qdev_prop_set_bit(dev, "big-endian", be);
179 qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
180 qdev_init_nofail(dev);
181 s = SYS_BUS_DEVICE(dev);
182 memory_region_add_subregion(address_space, board->flash->base,
183 sysbus_mmio_get_region(s, 0));
184 return PFLASH_CFI01(dev);
185 }
186
187 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
188 {
189 XtensaCPU *cpu = opaque;
190
191 return cpu_get_phys_page_debug(CPU(cpu), addr);
192 }
193
194 static void xtfpga_reset(void *opaque)
195 {
196 XtensaCPU *cpu = opaque;
197
198 cpu_reset(CPU(cpu));
199 }
200
201 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
202 unsigned size)
203 {
204 return 0;
205 }
206
207 static void xtfpga_io_write(void *opaque, hwaddr addr,
208 uint64_t val, unsigned size)
209 {
210 }
211
212 static const MemoryRegionOps xtfpga_io_ops = {
213 .read = xtfpga_io_read,
214 .write = xtfpga_io_write,
215 .endianness = DEVICE_NATIVE_ENDIAN,
216 };
217
218 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
219 {
220 #ifdef TARGET_WORDS_BIGENDIAN
221 int be = 1;
222 #else
223 int be = 0;
224 #endif
225 MemoryRegion *system_memory = get_system_memory();
226 XtensaCPU *cpu = NULL;
227 CPUXtensaState *env = NULL;
228 MemoryRegion *system_io;
229 XtensaMxPic *mx_pic = NULL;
230 qemu_irq *extints;
231 DriveInfo *dinfo;
232 PFlashCFI01 *flash = NULL;
233 QemuOpts *machine_opts = qemu_get_machine_opts();
234 const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
235 const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
236 const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
237 const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
238 const unsigned system_io_size = 224 * MiB;
239 uint32_t freq = 10000000;
240 int n;
241
242 if (smp_cpus > 1) {
243 mx_pic = xtensa_mx_pic_init(31);
244 qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
245 }
246 for (n = 0; n < smp_cpus; n++) {
247 CPUXtensaState *cenv = NULL;
248
249 cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
250 cenv = &cpu->env;
251 if (!env) {
252 env = cenv;
253 freq = env->config->clock_freq_khz * 1000;
254 }
255
256 if (mx_pic) {
257 MemoryRegion *mx_eri;
258
259 mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
260 xtensa_get_extints(cenv),
261 xtensa_get_runstall(cenv));
262 memory_region_add_subregion(xtensa_get_er_region(cenv),
263 0, mx_eri);
264 }
265 cenv->sregs[PRID] = n;
266 xtensa_select_static_vectors(cenv, n != 0);
267 qemu_register_reset(xtfpga_reset, cpu);
268 /* Need MMU initialized prior to ELF loading,
269 * so that ELF gets loaded into virtual addresses
270 */
271 cpu_reset(CPU(cpu));
272 }
273 if (smp_cpus > 1) {
274 extints = xtensa_mx_pic_get_extints(mx_pic);
275 } else {
276 extints = xtensa_get_extints(env);
277 }
278
279 if (env) {
280 XtensaMemory sysram = env->config->sysram;
281
282 sysram.location[0].size = machine->ram_size;
283 xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
284 system_memory);
285 xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
286 system_memory);
287 xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
288 system_memory);
289 xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
290 system_memory);
291 xtensa_create_memory_regions(&sysram, "xtensa.sysram",
292 system_memory);
293 }
294
295 system_io = g_malloc(sizeof(*system_io));
296 memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
297 system_io_size);
298 memory_region_add_subregion(system_memory, board->io[0], system_io);
299 if (board->io[1]) {
300 MemoryRegion *io = g_malloc(sizeof(*io));
301
302 memory_region_init_alias(io, NULL, "xtfpga.io.cached",
303 system_io, 0, system_io_size);
304 memory_region_add_subregion(system_memory, board->io[1], io);
305 }
306 xtfpga_fpga_init(system_io, 0x0d020000, freq);
307 if (nd_table[0].used) {
308 xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
309 extints[1], nd_table);
310 }
311
312 serial_mm_init(system_io, 0x0d050020, 2, extints[0],
313 115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
314
315 dinfo = drive_get(IF_PFLASH, 0, 0);
316 if (dinfo) {
317 flash = xtfpga_flash_init(system_io, board, dinfo, be);
318 }
319
320 /* Use presence of kernel file name as 'boot from SRAM' switch. */
321 if (kernel_filename) {
322 uint32_t entry_point = env->pc;
323 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
324 uint32_t tagptr = env->config->sysrom.location[0].addr +
325 board->sram_size;
326 uint32_t cur_tagptr;
327 BpMemInfo memory_location = {
328 .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
329 .start = tswap32(env->config->sysram.location[0].addr),
330 .end = tswap32(env->config->sysram.location[0].addr +
331 machine->ram_size),
332 };
333 uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
334 machine->ram_size : 0x08000000;
335 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
336
337 lowmem_end += env->config->sysram.location[0].addr;
338 cur_lowmem += env->config->sysram.location[0].addr;
339
340 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
341 system_memory);
342
343 if (kernel_cmdline) {
344 bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
345 }
346 if (dtb_filename) {
347 bp_size += get_tag_size(sizeof(uint32_t));
348 }
349 if (initrd_filename) {
350 bp_size += get_tag_size(sizeof(BpMemInfo));
351 }
352
353 /* Put kernel bootparameters to the end of that SRAM */
354 tagptr = (tagptr - bp_size) & ~0xff;
355 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
356 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
357 sizeof(memory_location), &memory_location);
358
359 if (kernel_cmdline) {
360 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
361 strlen(kernel_cmdline) + 1, kernel_cmdline);
362 }
363 #ifdef CONFIG_FDT
364 if (dtb_filename) {
365 int fdt_size;
366 void *fdt = load_device_tree(dtb_filename, &fdt_size);
367 uint32_t dtb_addr = tswap32(cur_lowmem);
368
369 if (!fdt) {
370 error_report("could not load DTB '%s'", dtb_filename);
371 exit(EXIT_FAILURE);
372 }
373
374 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
375 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
376 sizeof(dtb_addr), &dtb_addr);
377 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
378 }
379 #else
380 if (dtb_filename) {
381 error_report("could not load DTB '%s': "
382 "FDT support is not configured in QEMU",
383 dtb_filename);
384 exit(EXIT_FAILURE);
385 }
386 #endif
387 if (initrd_filename) {
388 BpMemInfo initrd_location = { 0 };
389 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
390 lowmem_end - cur_lowmem);
391
392 if (initrd_size < 0) {
393 initrd_size = load_image_targphys(initrd_filename,
394 cur_lowmem,
395 lowmem_end - cur_lowmem);
396 }
397 if (initrd_size < 0) {
398 error_report("could not load initrd '%s'", initrd_filename);
399 exit(EXIT_FAILURE);
400 }
401 initrd_location.start = tswap32(cur_lowmem);
402 initrd_location.end = tswap32(cur_lowmem + initrd_size);
403 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
404 sizeof(initrd_location), &initrd_location);
405 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
406 }
407 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
408 env->regs[2] = tagptr;
409
410 uint64_t elf_entry;
411 uint64_t elf_lowaddr;
412 int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
413 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
414 if (success > 0) {
415 entry_point = elf_entry;
416 } else {
417 hwaddr ep;
418 int is_linux;
419 success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
420 translate_phys_addr, cpu);
421 if (success > 0 && is_linux) {
422 entry_point = ep;
423 } else {
424 error_report("could not load kernel '%s'",
425 kernel_filename);
426 exit(EXIT_FAILURE);
427 }
428 }
429 if (entry_point != env->pc) {
430 uint8_t boot[] = {
431 #ifdef TARGET_WORDS_BIGENDIAN
432 0x60, 0x00, 0x08, /* j 1f */
433 0x00, /* .literal_position */
434 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
435 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
436 /* 1: */
437 0x10, 0xff, 0xfe, /* l32r a0, entry_pc */
438 0x12, 0xff, 0xfe, /* l32r a2, entry_a2 */
439 0x0a, 0x00, 0x00, /* jx a0 */
440 #else
441 0x06, 0x02, 0x00, /* j 1f */
442 0x00, /* .literal_position */
443 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
444 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
445 /* 1: */
446 0x01, 0xfe, 0xff, /* l32r a0, entry_pc */
447 0x21, 0xfe, 0xff, /* l32r a2, entry_a2 */
448 0xa0, 0x00, 0x00, /* jx a0 */
449 #endif
450 };
451 uint32_t entry_pc = tswap32(entry_point);
452 uint32_t entry_a2 = tswap32(tagptr);
453
454 memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
455 memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
456 cpu_physical_memory_write(env->pc, boot, sizeof(boot));
457 }
458 } else {
459 if (flash) {
460 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
461 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
462 uint32_t size = env->config->sysrom.location[0].size;
463
464 if (board->flash->size - board->flash->boot_base < size) {
465 size = board->flash->size - board->flash->boot_base;
466 }
467
468 memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
469 flash_mr, board->flash->boot_base, size);
470 memory_region_add_subregion(system_memory,
471 env->config->sysrom.location[0].addr,
472 flash_io);
473 } else {
474 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
475 system_memory);
476 }
477 }
478 }
479
480 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
481
482 static const hwaddr xtfpga_mmu_io[2] = {
483 0xf0000000,
484 };
485
486 static const hwaddr xtfpga_nommu_io[2] = {
487 0x90000000,
488 0x70000000,
489 };
490
491 static const XtfpgaFlashDesc lx60_flash = {
492 .base = 0x08000000,
493 .size = 0x00400000,
494 .sector_size = 0x10000,
495 };
496
497 static void xtfpga_lx60_init(MachineState *machine)
498 {
499 static const XtfpgaBoardDesc lx60_board = {
500 .flash = &lx60_flash,
501 .sram_size = 0x20000,
502 .io = xtfpga_mmu_io,
503 };
504 xtfpga_init(&lx60_board, machine);
505 }
506
507 static void xtfpga_lx60_nommu_init(MachineState *machine)
508 {
509 static const XtfpgaBoardDesc lx60_board = {
510 .flash = &lx60_flash,
511 .sram_size = 0x20000,
512 .io = xtfpga_nommu_io,
513 };
514 xtfpga_init(&lx60_board, machine);
515 }
516
517 static const XtfpgaFlashDesc lx200_flash = {
518 .base = 0x08000000,
519 .size = 0x01000000,
520 .sector_size = 0x20000,
521 };
522
523 static void xtfpga_lx200_init(MachineState *machine)
524 {
525 static const XtfpgaBoardDesc lx200_board = {
526 .flash = &lx200_flash,
527 .sram_size = 0x2000000,
528 .io = xtfpga_mmu_io,
529 };
530 xtfpga_init(&lx200_board, machine);
531 }
532
533 static void xtfpga_lx200_nommu_init(MachineState *machine)
534 {
535 static const XtfpgaBoardDesc lx200_board = {
536 .flash = &lx200_flash,
537 .sram_size = 0x2000000,
538 .io = xtfpga_nommu_io,
539 };
540 xtfpga_init(&lx200_board, machine);
541 }
542
543 static const XtfpgaFlashDesc ml605_flash = {
544 .base = 0x08000000,
545 .size = 0x01000000,
546 .sector_size = 0x20000,
547 };
548
549 static void xtfpga_ml605_init(MachineState *machine)
550 {
551 static const XtfpgaBoardDesc ml605_board = {
552 .flash = &ml605_flash,
553 .sram_size = 0x2000000,
554 .io = xtfpga_mmu_io,
555 };
556 xtfpga_init(&ml605_board, machine);
557 }
558
559 static void xtfpga_ml605_nommu_init(MachineState *machine)
560 {
561 static const XtfpgaBoardDesc ml605_board = {
562 .flash = &ml605_flash,
563 .sram_size = 0x2000000,
564 .io = xtfpga_nommu_io,
565 };
566 xtfpga_init(&ml605_board, machine);
567 }
568
569 static const XtfpgaFlashDesc kc705_flash = {
570 .base = 0x00000000,
571 .size = 0x08000000,
572 .boot_base = 0x06000000,
573 .sector_size = 0x20000,
574 };
575
576 static void xtfpga_kc705_init(MachineState *machine)
577 {
578 static const XtfpgaBoardDesc kc705_board = {
579 .flash = &kc705_flash,
580 .sram_size = 0x2000000,
581 .io = xtfpga_mmu_io,
582 };
583 xtfpga_init(&kc705_board, machine);
584 }
585
586 static void xtfpga_kc705_nommu_init(MachineState *machine)
587 {
588 static const XtfpgaBoardDesc kc705_board = {
589 .flash = &kc705_flash,
590 .sram_size = 0x2000000,
591 .io = xtfpga_nommu_io,
592 };
593 xtfpga_init(&kc705_board, machine);
594 }
595
596 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
597 {
598 MachineClass *mc = MACHINE_CLASS(oc);
599
600 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
601 mc->init = xtfpga_lx60_init;
602 mc->max_cpus = 32;
603 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
604 mc->default_ram_size = 64 * MiB;
605 }
606
607 static const TypeInfo xtfpga_lx60_type = {
608 .name = MACHINE_TYPE_NAME("lx60"),
609 .parent = TYPE_MACHINE,
610 .class_init = xtfpga_lx60_class_init,
611 };
612
613 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
614 {
615 MachineClass *mc = MACHINE_CLASS(oc);
616
617 mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
618 mc->init = xtfpga_lx60_nommu_init;
619 mc->max_cpus = 32;
620 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
621 mc->default_ram_size = 64 * MiB;
622 }
623
624 static const TypeInfo xtfpga_lx60_nommu_type = {
625 .name = MACHINE_TYPE_NAME("lx60-nommu"),
626 .parent = TYPE_MACHINE,
627 .class_init = xtfpga_lx60_nommu_class_init,
628 };
629
630 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
631 {
632 MachineClass *mc = MACHINE_CLASS(oc);
633
634 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
635 mc->init = xtfpga_lx200_init;
636 mc->max_cpus = 32;
637 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
638 mc->default_ram_size = 96 * MiB;
639 }
640
641 static const TypeInfo xtfpga_lx200_type = {
642 .name = MACHINE_TYPE_NAME("lx200"),
643 .parent = TYPE_MACHINE,
644 .class_init = xtfpga_lx200_class_init,
645 };
646
647 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
648 {
649 MachineClass *mc = MACHINE_CLASS(oc);
650
651 mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
652 mc->init = xtfpga_lx200_nommu_init;
653 mc->max_cpus = 32;
654 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
655 mc->default_ram_size = 96 * MiB;
656 }
657
658 static const TypeInfo xtfpga_lx200_nommu_type = {
659 .name = MACHINE_TYPE_NAME("lx200-nommu"),
660 .parent = TYPE_MACHINE,
661 .class_init = xtfpga_lx200_nommu_class_init,
662 };
663
664 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
665 {
666 MachineClass *mc = MACHINE_CLASS(oc);
667
668 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
669 mc->init = xtfpga_ml605_init;
670 mc->max_cpus = 32;
671 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
672 mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
673 }
674
675 static const TypeInfo xtfpga_ml605_type = {
676 .name = MACHINE_TYPE_NAME("ml605"),
677 .parent = TYPE_MACHINE,
678 .class_init = xtfpga_ml605_class_init,
679 };
680
681 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
682 {
683 MachineClass *mc = MACHINE_CLASS(oc);
684
685 mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
686 mc->init = xtfpga_ml605_nommu_init;
687 mc->max_cpus = 32;
688 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
689 mc->default_ram_size = 256 * MiB;
690 }
691
692 static const TypeInfo xtfpga_ml605_nommu_type = {
693 .name = MACHINE_TYPE_NAME("ml605-nommu"),
694 .parent = TYPE_MACHINE,
695 .class_init = xtfpga_ml605_nommu_class_init,
696 };
697
698 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
699 {
700 MachineClass *mc = MACHINE_CLASS(oc);
701
702 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
703 mc->init = xtfpga_kc705_init;
704 mc->max_cpus = 32;
705 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
706 mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
707 }
708
709 static const TypeInfo xtfpga_kc705_type = {
710 .name = MACHINE_TYPE_NAME("kc705"),
711 .parent = TYPE_MACHINE,
712 .class_init = xtfpga_kc705_class_init,
713 };
714
715 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
716 {
717 MachineClass *mc = MACHINE_CLASS(oc);
718
719 mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
720 mc->init = xtfpga_kc705_nommu_init;
721 mc->max_cpus = 32;
722 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
723 mc->default_ram_size = 256 * MiB;
724 }
725
726 static const TypeInfo xtfpga_kc705_nommu_type = {
727 .name = MACHINE_TYPE_NAME("kc705-nommu"),
728 .parent = TYPE_MACHINE,
729 .class_init = xtfpga_kc705_nommu_class_init,
730 };
731
732 static void xtfpga_machines_init(void)
733 {
734 type_register_static(&xtfpga_lx60_type);
735 type_register_static(&xtfpga_lx200_type);
736 type_register_static(&xtfpga_ml605_type);
737 type_register_static(&xtfpga_kc705_type);
738 type_register_static(&xtfpga_lx60_nommu_type);
739 type_register_static(&xtfpga_lx200_nommu_type);
740 type_register_static(&xtfpga_ml605_nommu_type);
741 type_register_static(&xtfpga_kc705_nommu_type);
742 }
743
744 type_init(xtfpga_machines_init)