]> git.proxmox.com Git - mirror_qemu.git/blob - hw/xtensa/xtfpga.c
Merge remote-tracking branch 'remotes/ehabkost/tags/x86-and-machine-pull-request...
[mirror_qemu.git] / hw / xtensa / xtfpga.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "qemu/osdep.h"
29 #include "qapi/error.h"
30 #include "qemu-common.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "elf.h"
36 #include "exec/memory.h"
37 #include "exec/address-spaces.h"
38 #include "hw/char/serial.h"
39 #include "net/net.h"
40 #include "hw/sysbus.h"
41 #include "hw/block/flash.h"
42 #include "sysemu/block-backend.h"
43 #include "chardev/char.h"
44 #include "sysemu/device_tree.h"
45 #include "qemu/error-report.h"
46 #include "bootparam.h"
47
48 typedef struct LxBoardDesc {
49 hwaddr flash_base;
50 size_t flash_size;
51 size_t flash_boot_base;
52 size_t flash_sector_size;
53 size_t sram_size;
54 } LxBoardDesc;
55
56 typedef struct Lx60FpgaState {
57 MemoryRegion iomem;
58 uint32_t leds;
59 uint32_t switches;
60 } Lx60FpgaState;
61
62 static void lx60_fpga_reset(void *opaque)
63 {
64 Lx60FpgaState *s = opaque;
65
66 s->leds = 0;
67 s->switches = 0;
68 }
69
70 static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
71 unsigned size)
72 {
73 Lx60FpgaState *s = opaque;
74
75 switch (addr) {
76 case 0x0: /*build date code*/
77 return 0x09272011;
78
79 case 0x4: /*processor clock frequency, Hz*/
80 return 10000000;
81
82 case 0x8: /*LEDs (off = 0, on = 1)*/
83 return s->leds;
84
85 case 0xc: /*DIP switches (off = 0, on = 1)*/
86 return s->switches;
87 }
88 return 0;
89 }
90
91 static void lx60_fpga_write(void *opaque, hwaddr addr,
92 uint64_t val, unsigned size)
93 {
94 Lx60FpgaState *s = opaque;
95
96 switch (addr) {
97 case 0x8: /*LEDs (off = 0, on = 1)*/
98 s->leds = val;
99 break;
100
101 case 0x10: /*board reset*/
102 if (val == 0xdead) {
103 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
104 }
105 break;
106 }
107 }
108
109 static const MemoryRegionOps lx60_fpga_ops = {
110 .read = lx60_fpga_read,
111 .write = lx60_fpga_write,
112 .endianness = DEVICE_NATIVE_ENDIAN,
113 };
114
115 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
116 hwaddr base)
117 {
118 Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
119
120 memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
121 "lx60.fpga", 0x10000);
122 memory_region_add_subregion(address_space, base, &s->iomem);
123 lx60_fpga_reset(s);
124 qemu_register_reset(lx60_fpga_reset, s);
125 return s;
126 }
127
128 static void lx60_net_init(MemoryRegion *address_space,
129 hwaddr base,
130 hwaddr descriptors,
131 hwaddr buffers,
132 qemu_irq irq, NICInfo *nd)
133 {
134 DeviceState *dev;
135 SysBusDevice *s;
136 MemoryRegion *ram;
137
138 dev = qdev_create(NULL, "open_eth");
139 qdev_set_nic_properties(dev, nd);
140 qdev_init_nofail(dev);
141
142 s = SYS_BUS_DEVICE(dev);
143 sysbus_connect_irq(s, 0, irq);
144 memory_region_add_subregion(address_space, base,
145 sysbus_mmio_get_region(s, 0));
146 memory_region_add_subregion(address_space, descriptors,
147 sysbus_mmio_get_region(s, 1));
148
149 ram = g_malloc(sizeof(*ram));
150 memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16384,
151 &error_fatal);
152 vmstate_register_ram_global(ram);
153 memory_region_add_subregion(address_space, buffers, ram);
154 }
155
156 static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
157 const LxBoardDesc *board,
158 DriveInfo *dinfo, int be)
159 {
160 SysBusDevice *s;
161 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
162
163 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
164 &error_abort);
165 qdev_prop_set_uint32(dev, "num-blocks",
166 board->flash_size / board->flash_sector_size);
167 qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size);
168 qdev_prop_set_uint8(dev, "width", 2);
169 qdev_prop_set_bit(dev, "big-endian", be);
170 qdev_prop_set_string(dev, "name", "lx60.io.flash");
171 qdev_init_nofail(dev);
172 s = SYS_BUS_DEVICE(dev);
173 memory_region_add_subregion(address_space, board->flash_base,
174 sysbus_mmio_get_region(s, 0));
175 return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
176 }
177
178 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
179 {
180 XtensaCPU *cpu = opaque;
181
182 return cpu_get_phys_page_debug(CPU(cpu), addr);
183 }
184
185 static void lx60_reset(void *opaque)
186 {
187 XtensaCPU *cpu = opaque;
188
189 cpu_reset(CPU(cpu));
190 }
191
192 static uint64_t lx60_io_read(void *opaque, hwaddr addr,
193 unsigned size)
194 {
195 return 0;
196 }
197
198 static void lx60_io_write(void *opaque, hwaddr addr,
199 uint64_t val, unsigned size)
200 {
201 }
202
203 static const MemoryRegionOps lx60_io_ops = {
204 .read = lx60_io_read,
205 .write = lx60_io_write,
206 .endianness = DEVICE_NATIVE_ENDIAN,
207 };
208
209 static void lx_init(const LxBoardDesc *board, MachineState *machine)
210 {
211 #ifdef TARGET_WORDS_BIGENDIAN
212 int be = 1;
213 #else
214 int be = 0;
215 #endif
216 MemoryRegion *system_memory = get_system_memory();
217 XtensaCPU *cpu = NULL;
218 CPUXtensaState *env = NULL;
219 MemoryRegion *ram, *rom, *system_io;
220 DriveInfo *dinfo;
221 pflash_t *flash = NULL;
222 QemuOpts *machine_opts = qemu_get_machine_opts();
223 const char *cpu_model = machine->cpu_model;
224 const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
225 const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
226 const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
227 const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
228 int n;
229
230 if (!cpu_model) {
231 cpu_model = XTENSA_DEFAULT_CPU_MODEL;
232 }
233
234 for (n = 0; n < smp_cpus; n++) {
235 cpu = XTENSA_CPU(cpu_generic_init(TYPE_XTENSA_CPU, cpu_model));
236 if (cpu == NULL) {
237 error_report("unable to find CPU definition '%s'",
238 cpu_model);
239 exit(EXIT_FAILURE);
240 }
241 env = &cpu->env;
242
243 env->sregs[PRID] = n;
244 qemu_register_reset(lx60_reset, cpu);
245 /* Need MMU initialized prior to ELF loading,
246 * so that ELF gets loaded into virtual addresses
247 */
248 cpu_reset(CPU(cpu));
249 }
250
251 ram = g_malloc(sizeof(*ram));
252 memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
253 &error_fatal);
254 memory_region_add_subregion(system_memory, 0, ram);
255
256 system_io = g_malloc(sizeof(*system_io));
257 memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
258 224 * 1024 * 1024);
259 memory_region_add_subregion(system_memory, 0xf0000000, system_io);
260 lx60_fpga_init(system_io, 0x0d020000);
261 if (nd_table[0].used) {
262 lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
263 xtensa_get_extint(env, 1), nd_table);
264 }
265
266 if (!serial_hds[0]) {
267 serial_hds[0] = qemu_chr_new("serial0", "null");
268 }
269
270 serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
271 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
272
273 dinfo = drive_get(IF_PFLASH, 0, 0);
274 if (dinfo) {
275 flash = xtfpga_flash_init(system_io, board, dinfo, be);
276 }
277
278 /* Use presence of kernel file name as 'boot from SRAM' switch. */
279 if (kernel_filename) {
280 uint32_t entry_point = env->pc;
281 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
282 uint32_t tagptr = 0xfe000000 + board->sram_size;
283 uint32_t cur_tagptr;
284 BpMemInfo memory_location = {
285 .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
286 .start = tswap32(0),
287 .end = tswap32(machine->ram_size),
288 };
289 uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
290 machine->ram_size : 0x08000000;
291 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
292
293 rom = g_malloc(sizeof(*rom));
294 memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
295 &error_fatal);
296 memory_region_add_subregion(system_memory, 0xfe000000, rom);
297
298 if (kernel_cmdline) {
299 bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
300 }
301 if (dtb_filename) {
302 bp_size += get_tag_size(sizeof(uint32_t));
303 }
304 if (initrd_filename) {
305 bp_size += get_tag_size(sizeof(BpMemInfo));
306 }
307
308 /* Put kernel bootparameters to the end of that SRAM */
309 tagptr = (tagptr - bp_size) & ~0xff;
310 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
311 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
312 sizeof(memory_location), &memory_location);
313
314 if (kernel_cmdline) {
315 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
316 strlen(kernel_cmdline) + 1, kernel_cmdline);
317 }
318 #ifdef CONFIG_FDT
319 if (dtb_filename) {
320 int fdt_size;
321 void *fdt = load_device_tree(dtb_filename, &fdt_size);
322 uint32_t dtb_addr = tswap32(cur_lowmem);
323
324 if (!fdt) {
325 error_report("could not load DTB '%s'", dtb_filename);
326 exit(EXIT_FAILURE);
327 }
328
329 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
330 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
331 sizeof(dtb_addr), &dtb_addr);
332 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
333 }
334 #else
335 if (dtb_filename) {
336 error_report("could not load DTB '%s': "
337 "FDT support is not configured in QEMU",
338 dtb_filename);
339 exit(EXIT_FAILURE);
340 }
341 #endif
342 if (initrd_filename) {
343 BpMemInfo initrd_location = { 0 };
344 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
345 lowmem_end - cur_lowmem);
346
347 if (initrd_size < 0) {
348 initrd_size = load_image_targphys(initrd_filename,
349 cur_lowmem,
350 lowmem_end - cur_lowmem);
351 }
352 if (initrd_size < 0) {
353 error_report("could not load initrd '%s'", initrd_filename);
354 exit(EXIT_FAILURE);
355 }
356 initrd_location.start = tswap32(cur_lowmem);
357 initrd_location.end = tswap32(cur_lowmem + initrd_size);
358 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
359 sizeof(initrd_location), &initrd_location);
360 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
361 }
362 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
363 env->regs[2] = tagptr;
364
365 uint64_t elf_entry;
366 uint64_t elf_lowaddr;
367 int success = load_elf(kernel_filename, translate_phys_addr, cpu,
368 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
369 if (success > 0) {
370 entry_point = elf_entry;
371 } else {
372 hwaddr ep;
373 int is_linux;
374 success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
375 translate_phys_addr, cpu);
376 if (success > 0 && is_linux) {
377 entry_point = ep;
378 } else {
379 error_report("could not load kernel '%s'",
380 kernel_filename);
381 exit(EXIT_FAILURE);
382 }
383 }
384 if (entry_point != env->pc) {
385 static const uint8_t jx_a0[] = {
386 #ifdef TARGET_WORDS_BIGENDIAN
387 0x0a, 0, 0,
388 #else
389 0xa0, 0, 0,
390 #endif
391 };
392 env->regs[0] = entry_point;
393 cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
394 }
395 } else {
396 if (flash) {
397 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
398 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
399
400 memory_region_init_alias(flash_io, NULL, "lx60.flash",
401 flash_mr, board->flash_boot_base,
402 board->flash_size - board->flash_boot_base < 0x02000000 ?
403 board->flash_size - board->flash_boot_base : 0x02000000);
404 memory_region_add_subregion(system_memory, 0xfe000000,
405 flash_io);
406 }
407 }
408 }
409
410 static void xtensa_lx60_init(MachineState *machine)
411 {
412 static const LxBoardDesc lx60_board = {
413 .flash_base = 0x08000000,
414 .flash_size = 0x00400000,
415 .flash_sector_size = 0x10000,
416 .sram_size = 0x20000,
417 };
418 lx_init(&lx60_board, machine);
419 }
420
421 static void xtensa_lx200_init(MachineState *machine)
422 {
423 static const LxBoardDesc lx200_board = {
424 .flash_base = 0x08000000,
425 .flash_size = 0x01000000,
426 .flash_sector_size = 0x20000,
427 .sram_size = 0x2000000,
428 };
429 lx_init(&lx200_board, machine);
430 }
431
432 static void xtensa_ml605_init(MachineState *machine)
433 {
434 static const LxBoardDesc ml605_board = {
435 .flash_base = 0x08000000,
436 .flash_size = 0x01000000,
437 .flash_sector_size = 0x20000,
438 .sram_size = 0x2000000,
439 };
440 lx_init(&ml605_board, machine);
441 }
442
443 static void xtensa_kc705_init(MachineState *machine)
444 {
445 static const LxBoardDesc kc705_board = {
446 .flash_base = 0x00000000,
447 .flash_size = 0x08000000,
448 .flash_boot_base = 0x06000000,
449 .flash_sector_size = 0x20000,
450 .sram_size = 0x2000000,
451 };
452 lx_init(&kc705_board, machine);
453 }
454
455 static void xtensa_lx60_class_init(ObjectClass *oc, void *data)
456 {
457 MachineClass *mc = MACHINE_CLASS(oc);
458
459 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
460 mc->init = xtensa_lx60_init;
461 mc->max_cpus = 4;
462 }
463
464 static const TypeInfo xtensa_lx60_type = {
465 .name = MACHINE_TYPE_NAME("lx60"),
466 .parent = TYPE_MACHINE,
467 .class_init = xtensa_lx60_class_init,
468 };
469
470 static void xtensa_lx200_class_init(ObjectClass *oc, void *data)
471 {
472 MachineClass *mc = MACHINE_CLASS(oc);
473
474 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
475 mc->init = xtensa_lx200_init;
476 mc->max_cpus = 4;
477 }
478
479 static const TypeInfo xtensa_lx200_type = {
480 .name = MACHINE_TYPE_NAME("lx200"),
481 .parent = TYPE_MACHINE,
482 .class_init = xtensa_lx200_class_init,
483 };
484
485 static void xtensa_ml605_class_init(ObjectClass *oc, void *data)
486 {
487 MachineClass *mc = MACHINE_CLASS(oc);
488
489 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
490 mc->init = xtensa_ml605_init;
491 mc->max_cpus = 4;
492 }
493
494 static const TypeInfo xtensa_ml605_type = {
495 .name = MACHINE_TYPE_NAME("ml605"),
496 .parent = TYPE_MACHINE,
497 .class_init = xtensa_ml605_class_init,
498 };
499
500 static void xtensa_kc705_class_init(ObjectClass *oc, void *data)
501 {
502 MachineClass *mc = MACHINE_CLASS(oc);
503
504 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
505 mc->init = xtensa_kc705_init;
506 mc->max_cpus = 4;
507 }
508
509 static const TypeInfo xtensa_kc705_type = {
510 .name = MACHINE_TYPE_NAME("kc705"),
511 .parent = TYPE_MACHINE,
512 .class_init = xtensa_kc705_class_init,
513 };
514
515 static void xtensa_lx_machines_init(void)
516 {
517 type_register_static(&xtensa_lx60_type);
518 type_register_static(&xtensa_lx200_type);
519 type_register_static(&xtensa_ml605_type);
520 type_register_static(&xtensa_kc705_type);
521 }
522
523 type_init(xtensa_lx_machines_init)