]> git.proxmox.com Git - mirror_qemu.git/blob - hw/xtensa/xtfpga.c
cpu: make cpu_generic_init() abort QEMU on error
[mirror_qemu.git] / hw / xtensa / xtfpga.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "qemu/osdep.h"
29 #include "qapi/error.h"
30 #include "qemu-common.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "elf.h"
36 #include "exec/memory.h"
37 #include "exec/address-spaces.h"
38 #include "hw/char/serial.h"
39 #include "net/net.h"
40 #include "hw/sysbus.h"
41 #include "hw/block/flash.h"
42 #include "sysemu/block-backend.h"
43 #include "chardev/char.h"
44 #include "sysemu/device_tree.h"
45 #include "qemu/error-report.h"
46 #include "bootparam.h"
47
48 typedef struct LxBoardDesc {
49 hwaddr flash_base;
50 size_t flash_size;
51 size_t flash_boot_base;
52 size_t flash_sector_size;
53 size_t sram_size;
54 } LxBoardDesc;
55
56 typedef struct Lx60FpgaState {
57 MemoryRegion iomem;
58 uint32_t leds;
59 uint32_t switches;
60 } Lx60FpgaState;
61
62 static void lx60_fpga_reset(void *opaque)
63 {
64 Lx60FpgaState *s = opaque;
65
66 s->leds = 0;
67 s->switches = 0;
68 }
69
70 static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
71 unsigned size)
72 {
73 Lx60FpgaState *s = opaque;
74
75 switch (addr) {
76 case 0x0: /*build date code*/
77 return 0x09272011;
78
79 case 0x4: /*processor clock frequency, Hz*/
80 return 10000000;
81
82 case 0x8: /*LEDs (off = 0, on = 1)*/
83 return s->leds;
84
85 case 0xc: /*DIP switches (off = 0, on = 1)*/
86 return s->switches;
87 }
88 return 0;
89 }
90
91 static void lx60_fpga_write(void *opaque, hwaddr addr,
92 uint64_t val, unsigned size)
93 {
94 Lx60FpgaState *s = opaque;
95
96 switch (addr) {
97 case 0x8: /*LEDs (off = 0, on = 1)*/
98 s->leds = val;
99 break;
100
101 case 0x10: /*board reset*/
102 if (val == 0xdead) {
103 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
104 }
105 break;
106 }
107 }
108
109 static const MemoryRegionOps lx60_fpga_ops = {
110 .read = lx60_fpga_read,
111 .write = lx60_fpga_write,
112 .endianness = DEVICE_NATIVE_ENDIAN,
113 };
114
115 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
116 hwaddr base)
117 {
118 Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
119
120 memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
121 "lx60.fpga", 0x10000);
122 memory_region_add_subregion(address_space, base, &s->iomem);
123 lx60_fpga_reset(s);
124 qemu_register_reset(lx60_fpga_reset, s);
125 return s;
126 }
127
128 static void lx60_net_init(MemoryRegion *address_space,
129 hwaddr base,
130 hwaddr descriptors,
131 hwaddr buffers,
132 qemu_irq irq, NICInfo *nd)
133 {
134 DeviceState *dev;
135 SysBusDevice *s;
136 MemoryRegion *ram;
137
138 dev = qdev_create(NULL, "open_eth");
139 qdev_set_nic_properties(dev, nd);
140 qdev_init_nofail(dev);
141
142 s = SYS_BUS_DEVICE(dev);
143 sysbus_connect_irq(s, 0, irq);
144 memory_region_add_subregion(address_space, base,
145 sysbus_mmio_get_region(s, 0));
146 memory_region_add_subregion(address_space, descriptors,
147 sysbus_mmio_get_region(s, 1));
148
149 ram = g_malloc(sizeof(*ram));
150 memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16384,
151 &error_fatal);
152 vmstate_register_ram_global(ram);
153 memory_region_add_subregion(address_space, buffers, ram);
154 }
155
156 static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
157 const LxBoardDesc *board,
158 DriveInfo *dinfo, int be)
159 {
160 SysBusDevice *s;
161 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
162
163 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
164 &error_abort);
165 qdev_prop_set_uint32(dev, "num-blocks",
166 board->flash_size / board->flash_sector_size);
167 qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size);
168 qdev_prop_set_uint8(dev, "width", 2);
169 qdev_prop_set_bit(dev, "big-endian", be);
170 qdev_prop_set_string(dev, "name", "lx60.io.flash");
171 qdev_init_nofail(dev);
172 s = SYS_BUS_DEVICE(dev);
173 memory_region_add_subregion(address_space, board->flash_base,
174 sysbus_mmio_get_region(s, 0));
175 return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
176 }
177
178 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
179 {
180 XtensaCPU *cpu = opaque;
181
182 return cpu_get_phys_page_debug(CPU(cpu), addr);
183 }
184
185 static void lx60_reset(void *opaque)
186 {
187 XtensaCPU *cpu = opaque;
188
189 cpu_reset(CPU(cpu));
190 }
191
192 static uint64_t lx60_io_read(void *opaque, hwaddr addr,
193 unsigned size)
194 {
195 return 0;
196 }
197
198 static void lx60_io_write(void *opaque, hwaddr addr,
199 uint64_t val, unsigned size)
200 {
201 }
202
203 static const MemoryRegionOps lx60_io_ops = {
204 .read = lx60_io_read,
205 .write = lx60_io_write,
206 .endianness = DEVICE_NATIVE_ENDIAN,
207 };
208
209 static void lx_init(const LxBoardDesc *board, MachineState *machine)
210 {
211 #ifdef TARGET_WORDS_BIGENDIAN
212 int be = 1;
213 #else
214 int be = 0;
215 #endif
216 MemoryRegion *system_memory = get_system_memory();
217 XtensaCPU *cpu = NULL;
218 CPUXtensaState *env = NULL;
219 MemoryRegion *ram, *rom, *system_io;
220 DriveInfo *dinfo;
221 pflash_t *flash = NULL;
222 QemuOpts *machine_opts = qemu_get_machine_opts();
223 const char *cpu_model = machine->cpu_model;
224 const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
225 const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
226 const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
227 const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
228 int n;
229
230 if (!cpu_model) {
231 cpu_model = XTENSA_DEFAULT_CPU_MODEL;
232 }
233
234 for (n = 0; n < smp_cpus; n++) {
235 cpu = XTENSA_CPU(cpu_generic_init(TYPE_XTENSA_CPU, cpu_model));
236 env = &cpu->env;
237
238 env->sregs[PRID] = n;
239 qemu_register_reset(lx60_reset, cpu);
240 /* Need MMU initialized prior to ELF loading,
241 * so that ELF gets loaded into virtual addresses
242 */
243 cpu_reset(CPU(cpu));
244 }
245
246 ram = g_malloc(sizeof(*ram));
247 memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
248 &error_fatal);
249 memory_region_add_subregion(system_memory, 0, ram);
250
251 system_io = g_malloc(sizeof(*system_io));
252 memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
253 224 * 1024 * 1024);
254 memory_region_add_subregion(system_memory, 0xf0000000, system_io);
255 lx60_fpga_init(system_io, 0x0d020000);
256 if (nd_table[0].used) {
257 lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
258 xtensa_get_extint(env, 1), nd_table);
259 }
260
261 if (!serial_hds[0]) {
262 serial_hds[0] = qemu_chr_new("serial0", "null");
263 }
264
265 serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
266 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
267
268 dinfo = drive_get(IF_PFLASH, 0, 0);
269 if (dinfo) {
270 flash = xtfpga_flash_init(system_io, board, dinfo, be);
271 }
272
273 /* Use presence of kernel file name as 'boot from SRAM' switch. */
274 if (kernel_filename) {
275 uint32_t entry_point = env->pc;
276 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
277 uint32_t tagptr = 0xfe000000 + board->sram_size;
278 uint32_t cur_tagptr;
279 BpMemInfo memory_location = {
280 .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
281 .start = tswap32(0),
282 .end = tswap32(machine->ram_size),
283 };
284 uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
285 machine->ram_size : 0x08000000;
286 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
287
288 rom = g_malloc(sizeof(*rom));
289 memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
290 &error_fatal);
291 memory_region_add_subregion(system_memory, 0xfe000000, rom);
292
293 if (kernel_cmdline) {
294 bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
295 }
296 if (dtb_filename) {
297 bp_size += get_tag_size(sizeof(uint32_t));
298 }
299 if (initrd_filename) {
300 bp_size += get_tag_size(sizeof(BpMemInfo));
301 }
302
303 /* Put kernel bootparameters to the end of that SRAM */
304 tagptr = (tagptr - bp_size) & ~0xff;
305 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
306 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
307 sizeof(memory_location), &memory_location);
308
309 if (kernel_cmdline) {
310 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
311 strlen(kernel_cmdline) + 1, kernel_cmdline);
312 }
313 #ifdef CONFIG_FDT
314 if (dtb_filename) {
315 int fdt_size;
316 void *fdt = load_device_tree(dtb_filename, &fdt_size);
317 uint32_t dtb_addr = tswap32(cur_lowmem);
318
319 if (!fdt) {
320 error_report("could not load DTB '%s'", dtb_filename);
321 exit(EXIT_FAILURE);
322 }
323
324 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
325 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
326 sizeof(dtb_addr), &dtb_addr);
327 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
328 }
329 #else
330 if (dtb_filename) {
331 error_report("could not load DTB '%s': "
332 "FDT support is not configured in QEMU",
333 dtb_filename);
334 exit(EXIT_FAILURE);
335 }
336 #endif
337 if (initrd_filename) {
338 BpMemInfo initrd_location = { 0 };
339 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
340 lowmem_end - cur_lowmem);
341
342 if (initrd_size < 0) {
343 initrd_size = load_image_targphys(initrd_filename,
344 cur_lowmem,
345 lowmem_end - cur_lowmem);
346 }
347 if (initrd_size < 0) {
348 error_report("could not load initrd '%s'", initrd_filename);
349 exit(EXIT_FAILURE);
350 }
351 initrd_location.start = tswap32(cur_lowmem);
352 initrd_location.end = tswap32(cur_lowmem + initrd_size);
353 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
354 sizeof(initrd_location), &initrd_location);
355 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
356 }
357 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
358 env->regs[2] = tagptr;
359
360 uint64_t elf_entry;
361 uint64_t elf_lowaddr;
362 int success = load_elf(kernel_filename, translate_phys_addr, cpu,
363 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
364 if (success > 0) {
365 entry_point = elf_entry;
366 } else {
367 hwaddr ep;
368 int is_linux;
369 success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
370 translate_phys_addr, cpu);
371 if (success > 0 && is_linux) {
372 entry_point = ep;
373 } else {
374 error_report("could not load kernel '%s'",
375 kernel_filename);
376 exit(EXIT_FAILURE);
377 }
378 }
379 if (entry_point != env->pc) {
380 static const uint8_t jx_a0[] = {
381 #ifdef TARGET_WORDS_BIGENDIAN
382 0x0a, 0, 0,
383 #else
384 0xa0, 0, 0,
385 #endif
386 };
387 env->regs[0] = entry_point;
388 cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
389 }
390 } else {
391 if (flash) {
392 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
393 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
394
395 memory_region_init_alias(flash_io, NULL, "lx60.flash",
396 flash_mr, board->flash_boot_base,
397 board->flash_size - board->flash_boot_base < 0x02000000 ?
398 board->flash_size - board->flash_boot_base : 0x02000000);
399 memory_region_add_subregion(system_memory, 0xfe000000,
400 flash_io);
401 }
402 }
403 }
404
405 static void xtensa_lx60_init(MachineState *machine)
406 {
407 static const LxBoardDesc lx60_board = {
408 .flash_base = 0x08000000,
409 .flash_size = 0x00400000,
410 .flash_sector_size = 0x10000,
411 .sram_size = 0x20000,
412 };
413 lx_init(&lx60_board, machine);
414 }
415
416 static void xtensa_lx200_init(MachineState *machine)
417 {
418 static const LxBoardDesc lx200_board = {
419 .flash_base = 0x08000000,
420 .flash_size = 0x01000000,
421 .flash_sector_size = 0x20000,
422 .sram_size = 0x2000000,
423 };
424 lx_init(&lx200_board, machine);
425 }
426
427 static void xtensa_ml605_init(MachineState *machine)
428 {
429 static const LxBoardDesc ml605_board = {
430 .flash_base = 0x08000000,
431 .flash_size = 0x01000000,
432 .flash_sector_size = 0x20000,
433 .sram_size = 0x2000000,
434 };
435 lx_init(&ml605_board, machine);
436 }
437
438 static void xtensa_kc705_init(MachineState *machine)
439 {
440 static const LxBoardDesc kc705_board = {
441 .flash_base = 0x00000000,
442 .flash_size = 0x08000000,
443 .flash_boot_base = 0x06000000,
444 .flash_sector_size = 0x20000,
445 .sram_size = 0x2000000,
446 };
447 lx_init(&kc705_board, machine);
448 }
449
450 static void xtensa_lx60_class_init(ObjectClass *oc, void *data)
451 {
452 MachineClass *mc = MACHINE_CLASS(oc);
453
454 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
455 mc->init = xtensa_lx60_init;
456 mc->max_cpus = 4;
457 }
458
459 static const TypeInfo xtensa_lx60_type = {
460 .name = MACHINE_TYPE_NAME("lx60"),
461 .parent = TYPE_MACHINE,
462 .class_init = xtensa_lx60_class_init,
463 };
464
465 static void xtensa_lx200_class_init(ObjectClass *oc, void *data)
466 {
467 MachineClass *mc = MACHINE_CLASS(oc);
468
469 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
470 mc->init = xtensa_lx200_init;
471 mc->max_cpus = 4;
472 }
473
474 static const TypeInfo xtensa_lx200_type = {
475 .name = MACHINE_TYPE_NAME("lx200"),
476 .parent = TYPE_MACHINE,
477 .class_init = xtensa_lx200_class_init,
478 };
479
480 static void xtensa_ml605_class_init(ObjectClass *oc, void *data)
481 {
482 MachineClass *mc = MACHINE_CLASS(oc);
483
484 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
485 mc->init = xtensa_ml605_init;
486 mc->max_cpus = 4;
487 }
488
489 static const TypeInfo xtensa_ml605_type = {
490 .name = MACHINE_TYPE_NAME("ml605"),
491 .parent = TYPE_MACHINE,
492 .class_init = xtensa_ml605_class_init,
493 };
494
495 static void xtensa_kc705_class_init(ObjectClass *oc, void *data)
496 {
497 MachineClass *mc = MACHINE_CLASS(oc);
498
499 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
500 mc->init = xtensa_kc705_init;
501 mc->max_cpus = 4;
502 }
503
504 static const TypeInfo xtensa_kc705_type = {
505 .name = MACHINE_TYPE_NAME("kc705"),
506 .parent = TYPE_MACHINE,
507 .class_init = xtensa_kc705_class_init,
508 };
509
510 static void xtensa_lx_machines_init(void)
511 {
512 type_register_static(&xtensa_lx60_type);
513 type_register_static(&xtensa_lx200_type);
514 type_register_static(&xtensa_ml605_type);
515 type_register_static(&xtensa_kc705_type);
516 }
517
518 type_init(xtensa_lx_machines_init)