]> git.proxmox.com Git - mirror_qemu.git/blob - hw/xtensa/xtfpga.c
Merge remote-tracking branch 'remotes/vivier2/tags/linux-user-for-3.0-pull-request...
[mirror_qemu.git] / hw / xtensa / xtfpga.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "elf.h"
36 #include "exec/memory.h"
37 #include "exec/address-spaces.h"
38 #include "hw/char/serial.h"
39 #include "net/net.h"
40 #include "hw/sysbus.h"
41 #include "hw/block/flash.h"
42 #include "chardev/char.h"
43 #include "sysemu/device_tree.h"
44 #include "qemu/error-report.h"
45 #include "qemu/option.h"
46 #include "bootparam.h"
47 #include "xtensa_memory.h"
48
49 typedef struct XtfpgaFlashDesc {
50 hwaddr base;
51 size_t size;
52 size_t boot_base;
53 size_t sector_size;
54 } XtfpgaFlashDesc;
55
56 typedef struct XtfpgaBoardDesc {
57 const XtfpgaFlashDesc *flash;
58 size_t sram_size;
59 const hwaddr *io;
60 } XtfpgaBoardDesc;
61
62 typedef struct XtfpgaFpgaState {
63 MemoryRegion iomem;
64 uint32_t leds;
65 uint32_t switches;
66 } XtfpgaFpgaState;
67
68 static void xtfpga_fpga_reset(void *opaque)
69 {
70 XtfpgaFpgaState *s = opaque;
71
72 s->leds = 0;
73 s->switches = 0;
74 }
75
76 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
77 unsigned size)
78 {
79 XtfpgaFpgaState *s = opaque;
80
81 switch (addr) {
82 case 0x0: /*build date code*/
83 return 0x09272011;
84
85 case 0x4: /*processor clock frequency, Hz*/
86 return 10000000;
87
88 case 0x8: /*LEDs (off = 0, on = 1)*/
89 return s->leds;
90
91 case 0xc: /*DIP switches (off = 0, on = 1)*/
92 return s->switches;
93 }
94 return 0;
95 }
96
97 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
98 uint64_t val, unsigned size)
99 {
100 XtfpgaFpgaState *s = opaque;
101
102 switch (addr) {
103 case 0x8: /*LEDs (off = 0, on = 1)*/
104 s->leds = val;
105 break;
106
107 case 0x10: /*board reset*/
108 if (val == 0xdead) {
109 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
110 }
111 break;
112 }
113 }
114
115 static const MemoryRegionOps xtfpga_fpga_ops = {
116 .read = xtfpga_fpga_read,
117 .write = xtfpga_fpga_write,
118 .endianness = DEVICE_NATIVE_ENDIAN,
119 };
120
121 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
122 hwaddr base)
123 {
124 XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
125
126 memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
127 "xtfpga.fpga", 0x10000);
128 memory_region_add_subregion(address_space, base, &s->iomem);
129 xtfpga_fpga_reset(s);
130 qemu_register_reset(xtfpga_fpga_reset, s);
131 return s;
132 }
133
134 static void xtfpga_net_init(MemoryRegion *address_space,
135 hwaddr base,
136 hwaddr descriptors,
137 hwaddr buffers,
138 qemu_irq irq, NICInfo *nd)
139 {
140 DeviceState *dev;
141 SysBusDevice *s;
142 MemoryRegion *ram;
143
144 dev = qdev_create(NULL, "open_eth");
145 qdev_set_nic_properties(dev, nd);
146 qdev_init_nofail(dev);
147
148 s = SYS_BUS_DEVICE(dev);
149 sysbus_connect_irq(s, 0, irq);
150 memory_region_add_subregion(address_space, base,
151 sysbus_mmio_get_region(s, 0));
152 memory_region_add_subregion(address_space, descriptors,
153 sysbus_mmio_get_region(s, 1));
154
155 ram = g_malloc(sizeof(*ram));
156 memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
157 &error_fatal);
158 vmstate_register_ram_global(ram);
159 memory_region_add_subregion(address_space, buffers, ram);
160 }
161
162 static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
163 const XtfpgaBoardDesc *board,
164 DriveInfo *dinfo, int be)
165 {
166 SysBusDevice *s;
167 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
168
169 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
170 &error_abort);
171 qdev_prop_set_uint32(dev, "num-blocks",
172 board->flash->size / board->flash->sector_size);
173 qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
174 qdev_prop_set_uint8(dev, "width", 2);
175 qdev_prop_set_bit(dev, "big-endian", be);
176 qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
177 qdev_init_nofail(dev);
178 s = SYS_BUS_DEVICE(dev);
179 memory_region_add_subregion(address_space, board->flash->base,
180 sysbus_mmio_get_region(s, 0));
181 return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
182 }
183
184 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
185 {
186 XtensaCPU *cpu = opaque;
187
188 return cpu_get_phys_page_debug(CPU(cpu), addr);
189 }
190
191 static void xtfpga_reset(void *opaque)
192 {
193 XtensaCPU *cpu = opaque;
194
195 cpu_reset(CPU(cpu));
196 }
197
198 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
199 unsigned size)
200 {
201 return 0;
202 }
203
204 static void xtfpga_io_write(void *opaque, hwaddr addr,
205 uint64_t val, unsigned size)
206 {
207 }
208
209 static const MemoryRegionOps xtfpga_io_ops = {
210 .read = xtfpga_io_read,
211 .write = xtfpga_io_write,
212 .endianness = DEVICE_NATIVE_ENDIAN,
213 };
214
215 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
216 {
217 #ifdef TARGET_WORDS_BIGENDIAN
218 int be = 1;
219 #else
220 int be = 0;
221 #endif
222 MemoryRegion *system_memory = get_system_memory();
223 XtensaCPU *cpu = NULL;
224 CPUXtensaState *env = NULL;
225 MemoryRegion *system_io;
226 DriveInfo *dinfo;
227 pflash_t *flash = NULL;
228 QemuOpts *machine_opts = qemu_get_machine_opts();
229 const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
230 const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
231 const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
232 const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
233 const unsigned system_io_size = 224 * MiB;
234 int n;
235
236 for (n = 0; n < smp_cpus; n++) {
237 cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
238 env = &cpu->env;
239
240 env->sregs[PRID] = n;
241 qemu_register_reset(xtfpga_reset, cpu);
242 /* Need MMU initialized prior to ELF loading,
243 * so that ELF gets loaded into virtual addresses
244 */
245 cpu_reset(CPU(cpu));
246 }
247
248 if (env) {
249 XtensaMemory sysram = env->config->sysram;
250
251 sysram.location[0].size = machine->ram_size;
252 xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
253 system_memory);
254 xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
255 system_memory);
256 xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
257 system_memory);
258 xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
259 system_memory);
260 xtensa_create_memory_regions(&sysram, "xtensa.sysram",
261 system_memory);
262 }
263
264 system_io = g_malloc(sizeof(*system_io));
265 memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
266 system_io_size);
267 memory_region_add_subregion(system_memory, board->io[0], system_io);
268 if (board->io[1]) {
269 MemoryRegion *io = g_malloc(sizeof(*io));
270
271 memory_region_init_alias(io, NULL, "xtfpga.io.cached",
272 system_io, 0, system_io_size);
273 memory_region_add_subregion(system_memory, board->io[1], io);
274 }
275 xtfpga_fpga_init(system_io, 0x0d020000);
276 if (nd_table[0].used) {
277 xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
278 xtensa_get_extint(env, 1), nd_table);
279 }
280
281 serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
282 115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
283
284 dinfo = drive_get(IF_PFLASH, 0, 0);
285 if (dinfo) {
286 flash = xtfpga_flash_init(system_io, board, dinfo, be);
287 }
288
289 /* Use presence of kernel file name as 'boot from SRAM' switch. */
290 if (kernel_filename) {
291 uint32_t entry_point = env->pc;
292 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
293 uint32_t tagptr = env->config->sysrom.location[0].addr +
294 board->sram_size;
295 uint32_t cur_tagptr;
296 BpMemInfo memory_location = {
297 .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
298 .start = tswap32(env->config->sysram.location[0].addr),
299 .end = tswap32(env->config->sysram.location[0].addr +
300 machine->ram_size),
301 };
302 uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
303 machine->ram_size : 0x08000000;
304 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
305
306 lowmem_end += env->config->sysram.location[0].addr;
307 cur_lowmem += env->config->sysram.location[0].addr;
308
309 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
310 system_memory);
311
312 if (kernel_cmdline) {
313 bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
314 }
315 if (dtb_filename) {
316 bp_size += get_tag_size(sizeof(uint32_t));
317 }
318 if (initrd_filename) {
319 bp_size += get_tag_size(sizeof(BpMemInfo));
320 }
321
322 /* Put kernel bootparameters to the end of that SRAM */
323 tagptr = (tagptr - bp_size) & ~0xff;
324 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
325 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
326 sizeof(memory_location), &memory_location);
327
328 if (kernel_cmdline) {
329 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
330 strlen(kernel_cmdline) + 1, kernel_cmdline);
331 }
332 #ifdef CONFIG_FDT
333 if (dtb_filename) {
334 int fdt_size;
335 void *fdt = load_device_tree(dtb_filename, &fdt_size);
336 uint32_t dtb_addr = tswap32(cur_lowmem);
337
338 if (!fdt) {
339 error_report("could not load DTB '%s'", dtb_filename);
340 exit(EXIT_FAILURE);
341 }
342
343 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
344 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
345 sizeof(dtb_addr), &dtb_addr);
346 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
347 }
348 #else
349 if (dtb_filename) {
350 error_report("could not load DTB '%s': "
351 "FDT support is not configured in QEMU",
352 dtb_filename);
353 exit(EXIT_FAILURE);
354 }
355 #endif
356 if (initrd_filename) {
357 BpMemInfo initrd_location = { 0 };
358 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
359 lowmem_end - cur_lowmem);
360
361 if (initrd_size < 0) {
362 initrd_size = load_image_targphys(initrd_filename,
363 cur_lowmem,
364 lowmem_end - cur_lowmem);
365 }
366 if (initrd_size < 0) {
367 error_report("could not load initrd '%s'", initrd_filename);
368 exit(EXIT_FAILURE);
369 }
370 initrd_location.start = tswap32(cur_lowmem);
371 initrd_location.end = tswap32(cur_lowmem + initrd_size);
372 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
373 sizeof(initrd_location), &initrd_location);
374 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
375 }
376 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
377 env->regs[2] = tagptr;
378
379 uint64_t elf_entry;
380 uint64_t elf_lowaddr;
381 int success = load_elf(kernel_filename, translate_phys_addr, cpu,
382 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
383 if (success > 0) {
384 entry_point = elf_entry;
385 } else {
386 hwaddr ep;
387 int is_linux;
388 success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
389 translate_phys_addr, cpu);
390 if (success > 0 && is_linux) {
391 entry_point = ep;
392 } else {
393 error_report("could not load kernel '%s'",
394 kernel_filename);
395 exit(EXIT_FAILURE);
396 }
397 }
398 if (entry_point != env->pc) {
399 uint8_t boot[] = {
400 #ifdef TARGET_WORDS_BIGENDIAN
401 0x60, 0x00, 0x08, /* j 1f */
402 0x00, /* .literal_position */
403 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
404 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
405 /* 1: */
406 0x10, 0xff, 0xfe, /* l32r a0, entry_pc */
407 0x12, 0xff, 0xfe, /* l32r a2, entry_a2 */
408 0x0a, 0x00, 0x00, /* jx a0 */
409 #else
410 0x06, 0x02, 0x00, /* j 1f */
411 0x00, /* .literal_position */
412 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
413 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
414 /* 1: */
415 0x01, 0xfe, 0xff, /* l32r a0, entry_pc */
416 0x21, 0xfe, 0xff, /* l32r a2, entry_a2 */
417 0xa0, 0x00, 0x00, /* jx a0 */
418 #endif
419 };
420 uint32_t entry_pc = tswap32(entry_point);
421 uint32_t entry_a2 = tswap32(tagptr);
422
423 memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
424 memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
425 cpu_physical_memory_write(env->pc, boot, sizeof(boot));
426 }
427 } else {
428 if (flash) {
429 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
430 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
431 uint32_t size = env->config->sysrom.location[0].size;
432
433 if (board->flash->size - board->flash->boot_base < size) {
434 size = board->flash->size - board->flash->boot_base;
435 }
436
437 memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
438 flash_mr, board->flash->boot_base, size);
439 memory_region_add_subregion(system_memory,
440 env->config->sysrom.location[0].addr,
441 flash_io);
442 } else {
443 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
444 system_memory);
445 }
446 }
447 }
448
449 static const hwaddr xtfpga_mmu_io[2] = {
450 0xf0000000,
451 };
452
453 static const hwaddr xtfpga_nommu_io[2] = {
454 0x90000000,
455 0x70000000,
456 };
457
458 static const XtfpgaFlashDesc lx60_flash = {
459 .base = 0x08000000,
460 .size = 0x00400000,
461 .sector_size = 0x10000,
462 };
463
464 static void xtfpga_lx60_init(MachineState *machine)
465 {
466 static const XtfpgaBoardDesc lx60_board = {
467 .flash = &lx60_flash,
468 .sram_size = 0x20000,
469 .io = xtfpga_mmu_io,
470 };
471 xtfpga_init(&lx60_board, machine);
472 }
473
474 static void xtfpga_lx60_nommu_init(MachineState *machine)
475 {
476 static const XtfpgaBoardDesc lx60_board = {
477 .flash = &lx60_flash,
478 .sram_size = 0x20000,
479 .io = xtfpga_nommu_io,
480 };
481 xtfpga_init(&lx60_board, machine);
482 }
483
484 static const XtfpgaFlashDesc lx200_flash = {
485 .base = 0x08000000,
486 .size = 0x01000000,
487 .sector_size = 0x20000,
488 };
489
490 static void xtfpga_lx200_init(MachineState *machine)
491 {
492 static const XtfpgaBoardDesc lx200_board = {
493 .flash = &lx200_flash,
494 .sram_size = 0x2000000,
495 .io = xtfpga_mmu_io,
496 };
497 xtfpga_init(&lx200_board, machine);
498 }
499
500 static void xtfpga_lx200_nommu_init(MachineState *machine)
501 {
502 static const XtfpgaBoardDesc lx200_board = {
503 .flash = &lx200_flash,
504 .sram_size = 0x2000000,
505 .io = xtfpga_nommu_io,
506 };
507 xtfpga_init(&lx200_board, machine);
508 }
509
510 static const XtfpgaFlashDesc ml605_flash = {
511 .base = 0x08000000,
512 .size = 0x01000000,
513 .sector_size = 0x20000,
514 };
515
516 static void xtfpga_ml605_init(MachineState *machine)
517 {
518 static const XtfpgaBoardDesc ml605_board = {
519 .flash = &ml605_flash,
520 .sram_size = 0x2000000,
521 .io = xtfpga_mmu_io,
522 };
523 xtfpga_init(&ml605_board, machine);
524 }
525
526 static void xtfpga_ml605_nommu_init(MachineState *machine)
527 {
528 static const XtfpgaBoardDesc ml605_board = {
529 .flash = &ml605_flash,
530 .sram_size = 0x2000000,
531 .io = xtfpga_nommu_io,
532 };
533 xtfpga_init(&ml605_board, machine);
534 }
535
536 static const XtfpgaFlashDesc kc705_flash = {
537 .base = 0x00000000,
538 .size = 0x08000000,
539 .boot_base = 0x06000000,
540 .sector_size = 0x20000,
541 };
542
543 static void xtfpga_kc705_init(MachineState *machine)
544 {
545 static const XtfpgaBoardDesc kc705_board = {
546 .flash = &kc705_flash,
547 .sram_size = 0x2000000,
548 .io = xtfpga_mmu_io,
549 };
550 xtfpga_init(&kc705_board, machine);
551 }
552
553 static void xtfpga_kc705_nommu_init(MachineState *machine)
554 {
555 static const XtfpgaBoardDesc kc705_board = {
556 .flash = &kc705_flash,
557 .sram_size = 0x2000000,
558 .io = xtfpga_nommu_io,
559 };
560 xtfpga_init(&kc705_board, machine);
561 }
562
563 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
564 {
565 MachineClass *mc = MACHINE_CLASS(oc);
566
567 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
568 mc->init = xtfpga_lx60_init;
569 mc->max_cpus = 4;
570 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
571 }
572
573 static const TypeInfo xtfpga_lx60_type = {
574 .name = MACHINE_TYPE_NAME("lx60"),
575 .parent = TYPE_MACHINE,
576 .class_init = xtfpga_lx60_class_init,
577 };
578
579 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
580 {
581 MachineClass *mc = MACHINE_CLASS(oc);
582
583 mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
584 mc->init = xtfpga_lx60_nommu_init;
585 mc->max_cpus = 4;
586 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
587 }
588
589 static const TypeInfo xtfpga_lx60_nommu_type = {
590 .name = MACHINE_TYPE_NAME("lx60-nommu"),
591 .parent = TYPE_MACHINE,
592 .class_init = xtfpga_lx60_nommu_class_init,
593 };
594
595 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
596 {
597 MachineClass *mc = MACHINE_CLASS(oc);
598
599 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
600 mc->init = xtfpga_lx200_init;
601 mc->max_cpus = 4;
602 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
603 }
604
605 static const TypeInfo xtfpga_lx200_type = {
606 .name = MACHINE_TYPE_NAME("lx200"),
607 .parent = TYPE_MACHINE,
608 .class_init = xtfpga_lx200_class_init,
609 };
610
611 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
612 {
613 MachineClass *mc = MACHINE_CLASS(oc);
614
615 mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
616 mc->init = xtfpga_lx200_nommu_init;
617 mc->max_cpus = 4;
618 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
619 }
620
621 static const TypeInfo xtfpga_lx200_nommu_type = {
622 .name = MACHINE_TYPE_NAME("lx200-nommu"),
623 .parent = TYPE_MACHINE,
624 .class_init = xtfpga_lx200_nommu_class_init,
625 };
626
627 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
628 {
629 MachineClass *mc = MACHINE_CLASS(oc);
630
631 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
632 mc->init = xtfpga_ml605_init;
633 mc->max_cpus = 4;
634 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
635 }
636
637 static const TypeInfo xtfpga_ml605_type = {
638 .name = MACHINE_TYPE_NAME("ml605"),
639 .parent = TYPE_MACHINE,
640 .class_init = xtfpga_ml605_class_init,
641 };
642
643 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
644 {
645 MachineClass *mc = MACHINE_CLASS(oc);
646
647 mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
648 mc->init = xtfpga_ml605_nommu_init;
649 mc->max_cpus = 4;
650 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
651 }
652
653 static const TypeInfo xtfpga_ml605_nommu_type = {
654 .name = MACHINE_TYPE_NAME("ml605-nommu"),
655 .parent = TYPE_MACHINE,
656 .class_init = xtfpga_ml605_nommu_class_init,
657 };
658
659 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
660 {
661 MachineClass *mc = MACHINE_CLASS(oc);
662
663 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
664 mc->init = xtfpga_kc705_init;
665 mc->max_cpus = 4;
666 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
667 }
668
669 static const TypeInfo xtfpga_kc705_type = {
670 .name = MACHINE_TYPE_NAME("kc705"),
671 .parent = TYPE_MACHINE,
672 .class_init = xtfpga_kc705_class_init,
673 };
674
675 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
676 {
677 MachineClass *mc = MACHINE_CLASS(oc);
678
679 mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
680 mc->init = xtfpga_kc705_nommu_init;
681 mc->max_cpus = 4;
682 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
683 }
684
685 static const TypeInfo xtfpga_kc705_nommu_type = {
686 .name = MACHINE_TYPE_NAME("kc705-nommu"),
687 .parent = TYPE_MACHINE,
688 .class_init = xtfpga_kc705_nommu_class_init,
689 };
690
691 static void xtfpga_machines_init(void)
692 {
693 type_register_static(&xtfpga_lx60_type);
694 type_register_static(&xtfpga_lx200_type);
695 type_register_static(&xtfpga_ml605_type);
696 type_register_static(&xtfpga_kc705_type);
697 type_register_static(&xtfpga_lx60_nommu_type);
698 type_register_static(&xtfpga_lx200_nommu_type);
699 type_register_static(&xtfpga_ml605_nommu_type);
700 type_register_static(&xtfpga_kc705_nommu_type);
701 }
702
703 type_init(xtfpga_machines_init)