]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
memory: Extract memory_region_msync() from memory_region_writeback()
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 #define MEMORY_REGION(obj) \
38 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39
40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
41 #define IOMMU_MEMORY_REGION(obj) \
42 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
43 #define IOMMU_MEMORY_REGION_CLASS(klass) \
44 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
45 TYPE_IOMMU_MEMORY_REGION)
46 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
47 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
48 TYPE_IOMMU_MEMORY_REGION)
49
50 extern bool global_dirty_log;
51
52 typedef struct MemoryRegionOps MemoryRegionOps;
53 typedef struct MemoryRegionMmio MemoryRegionMmio;
54
55 struct MemoryRegionMmio {
56 CPUReadMemoryFunc *read[3];
57 CPUWriteMemoryFunc *write[3];
58 };
59
60 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
61
62 /* See address_space_translate: bit 0 is read, bit 1 is write. */
63 typedef enum {
64 IOMMU_NONE = 0,
65 IOMMU_RO = 1,
66 IOMMU_WO = 2,
67 IOMMU_RW = 3,
68 } IOMMUAccessFlags;
69
70 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
71
72 struct IOMMUTLBEntry {
73 AddressSpace *target_as;
74 hwaddr iova;
75 hwaddr translated_addr;
76 hwaddr addr_mask; /* 0xfff = 4k translation */
77 IOMMUAccessFlags perm;
78 };
79
80 /*
81 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
82 * register with one or multiple IOMMU Notifier capability bit(s).
83 */
84 typedef enum {
85 IOMMU_NOTIFIER_NONE = 0,
86 /* Notify cache invalidations */
87 IOMMU_NOTIFIER_UNMAP = 0x1,
88 /* Notify entry changes (newly created entries) */
89 IOMMU_NOTIFIER_MAP = 0x2,
90 } IOMMUNotifierFlag;
91
92 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
93
94 struct IOMMUNotifier;
95 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
96 IOMMUTLBEntry *data);
97
98 struct IOMMUNotifier {
99 IOMMUNotify notify;
100 IOMMUNotifierFlag notifier_flags;
101 /* Notify for address space range start <= addr <= end */
102 hwaddr start;
103 hwaddr end;
104 int iommu_idx;
105 QLIST_ENTRY(IOMMUNotifier) node;
106 };
107 typedef struct IOMMUNotifier IOMMUNotifier;
108
109 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
110 #define RAM_PREALLOC (1 << 0)
111
112 /* RAM is mmap-ed with MAP_SHARED */
113 #define RAM_SHARED (1 << 1)
114
115 /* Only a portion of RAM (used_length) is actually used, and migrated.
116 * This used_length size can change across reboots.
117 */
118 #define RAM_RESIZEABLE (1 << 2)
119
120 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
121 * zero the page and wake waiting processes.
122 * (Set during postcopy)
123 */
124 #define RAM_UF_ZEROPAGE (1 << 3)
125
126 /* RAM can be migrated */
127 #define RAM_MIGRATABLE (1 << 4)
128
129 /* RAM is a persistent kind memory */
130 #define RAM_PMEM (1 << 5)
131
132 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
133 IOMMUNotifierFlag flags,
134 hwaddr start, hwaddr end,
135 int iommu_idx)
136 {
137 n->notify = fn;
138 n->notifier_flags = flags;
139 n->start = start;
140 n->end = end;
141 n->iommu_idx = iommu_idx;
142 }
143
144 /*
145 * Memory region callbacks
146 */
147 struct MemoryRegionOps {
148 /* Read from the memory region. @addr is relative to @mr; @size is
149 * in bytes. */
150 uint64_t (*read)(void *opaque,
151 hwaddr addr,
152 unsigned size);
153 /* Write to the memory region. @addr is relative to @mr; @size is
154 * in bytes. */
155 void (*write)(void *opaque,
156 hwaddr addr,
157 uint64_t data,
158 unsigned size);
159
160 MemTxResult (*read_with_attrs)(void *opaque,
161 hwaddr addr,
162 uint64_t *data,
163 unsigned size,
164 MemTxAttrs attrs);
165 MemTxResult (*write_with_attrs)(void *opaque,
166 hwaddr addr,
167 uint64_t data,
168 unsigned size,
169 MemTxAttrs attrs);
170
171 enum device_endian endianness;
172 /* Guest-visible constraints: */
173 struct {
174 /* If nonzero, specify bounds on access sizes beyond which a machine
175 * check is thrown.
176 */
177 unsigned min_access_size;
178 unsigned max_access_size;
179 /* If true, unaligned accesses are supported. Otherwise unaligned
180 * accesses throw machine checks.
181 */
182 bool unaligned;
183 /*
184 * If present, and returns #false, the transaction is not accepted
185 * by the device (and results in machine dependent behaviour such
186 * as a machine check exception).
187 */
188 bool (*accepts)(void *opaque, hwaddr addr,
189 unsigned size, bool is_write,
190 MemTxAttrs attrs);
191 } valid;
192 /* Internal implementation constraints: */
193 struct {
194 /* If nonzero, specifies the minimum size implemented. Smaller sizes
195 * will be rounded upwards and a partial result will be returned.
196 */
197 unsigned min_access_size;
198 /* If nonzero, specifies the maximum size implemented. Larger sizes
199 * will be done as a series of accesses with smaller sizes.
200 */
201 unsigned max_access_size;
202 /* If true, unaligned accesses are supported. Otherwise all accesses
203 * are converted to (possibly multiple) naturally aligned accesses.
204 */
205 bool unaligned;
206 } impl;
207 };
208
209 typedef struct MemoryRegionClass {
210 /* private */
211 ObjectClass parent_class;
212 } MemoryRegionClass;
213
214
215 enum IOMMUMemoryRegionAttr {
216 IOMMU_ATTR_SPAPR_TCE_FD
217 };
218
219 /**
220 * IOMMUMemoryRegionClass:
221 *
222 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
223 * and provide an implementation of at least the @translate method here
224 * to handle requests to the memory region. Other methods are optional.
225 *
226 * The IOMMU implementation must use the IOMMU notifier infrastructure
227 * to report whenever mappings are changed, by calling
228 * memory_region_notify_iommu() (or, if necessary, by calling
229 * memory_region_notify_one() for each registered notifier).
230 *
231 * Conceptually an IOMMU provides a mapping from input address
232 * to an output TLB entry. If the IOMMU is aware of memory transaction
233 * attributes and the output TLB entry depends on the transaction
234 * attributes, we represent this using IOMMU indexes. Each index
235 * selects a particular translation table that the IOMMU has:
236 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
237 * @translate takes an input address and an IOMMU index
238 * and the mapping returned can only depend on the input address and the
239 * IOMMU index.
240 *
241 * Most IOMMUs don't care about the transaction attributes and support
242 * only a single IOMMU index. A more complex IOMMU might have one index
243 * for secure transactions and one for non-secure transactions.
244 */
245 typedef struct IOMMUMemoryRegionClass {
246 /* private */
247 MemoryRegionClass parent_class;
248
249 /*
250 * Return a TLB entry that contains a given address.
251 *
252 * The IOMMUAccessFlags indicated via @flag are optional and may
253 * be specified as IOMMU_NONE to indicate that the caller needs
254 * the full translation information for both reads and writes. If
255 * the access flags are specified then the IOMMU implementation
256 * may use this as an optimization, to stop doing a page table
257 * walk as soon as it knows that the requested permissions are not
258 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
259 * full page table walk and report the permissions in the returned
260 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
261 * return different mappings for reads and writes.)
262 *
263 * The returned information remains valid while the caller is
264 * holding the big QEMU lock or is inside an RCU critical section;
265 * if the caller wishes to cache the mapping beyond that it must
266 * register an IOMMU notifier so it can invalidate its cached
267 * information when the IOMMU mapping changes.
268 *
269 * @iommu: the IOMMUMemoryRegion
270 * @hwaddr: address to be translated within the memory region
271 * @flag: requested access permissions
272 * @iommu_idx: IOMMU index for the translation
273 */
274 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
275 IOMMUAccessFlags flag, int iommu_idx);
276 /* Returns minimum supported page size in bytes.
277 * If this method is not provided then the minimum is assumed to
278 * be TARGET_PAGE_SIZE.
279 *
280 * @iommu: the IOMMUMemoryRegion
281 */
282 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
283 /* Called when IOMMU Notifier flag changes (ie when the set of
284 * events which IOMMU users are requesting notification for changes).
285 * Optional method -- need not be provided if the IOMMU does not
286 * need to know exactly which events must be notified.
287 *
288 * @iommu: the IOMMUMemoryRegion
289 * @old_flags: events which previously needed to be notified
290 * @new_flags: events which now need to be notified
291 *
292 * Returns 0 on success, or a negative errno; in particular
293 * returns -EINVAL if the new flag bitmap is not supported by the
294 * IOMMU memory region. In case of failure, the error object
295 * must be created
296 */
297 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
298 IOMMUNotifierFlag old_flags,
299 IOMMUNotifierFlag new_flags,
300 Error **errp);
301 /* Called to handle memory_region_iommu_replay().
302 *
303 * The default implementation of memory_region_iommu_replay() is to
304 * call the IOMMU translate method for every page in the address space
305 * with flag == IOMMU_NONE and then call the notifier if translate
306 * returns a valid mapping. If this method is implemented then it
307 * overrides the default behaviour, and must provide the full semantics
308 * of memory_region_iommu_replay(), by calling @notifier for every
309 * translation present in the IOMMU.
310 *
311 * Optional method -- an IOMMU only needs to provide this method
312 * if the default is inefficient or produces undesirable side effects.
313 *
314 * Note: this is not related to record-and-replay functionality.
315 */
316 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
317
318 /* Get IOMMU misc attributes. This is an optional method that
319 * can be used to allow users of the IOMMU to get implementation-specific
320 * information. The IOMMU implements this method to handle calls
321 * by IOMMU users to memory_region_iommu_get_attr() by filling in
322 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
323 * the IOMMU supports. If the method is unimplemented then
324 * memory_region_iommu_get_attr() will always return -EINVAL.
325 *
326 * @iommu: the IOMMUMemoryRegion
327 * @attr: attribute being queried
328 * @data: memory to fill in with the attribute data
329 *
330 * Returns 0 on success, or a negative errno; in particular
331 * returns -EINVAL for unrecognized or unimplemented attribute types.
332 */
333 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
334 void *data);
335
336 /* Return the IOMMU index to use for a given set of transaction attributes.
337 *
338 * Optional method: if an IOMMU only supports a single IOMMU index then
339 * the default implementation of memory_region_iommu_attrs_to_index()
340 * will return 0.
341 *
342 * The indexes supported by an IOMMU must be contiguous, starting at 0.
343 *
344 * @iommu: the IOMMUMemoryRegion
345 * @attrs: memory transaction attributes
346 */
347 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
348
349 /* Return the number of IOMMU indexes this IOMMU supports.
350 *
351 * Optional method: if this method is not provided, then
352 * memory_region_iommu_num_indexes() will return 1, indicating that
353 * only a single IOMMU index is supported.
354 *
355 * @iommu: the IOMMUMemoryRegion
356 */
357 int (*num_indexes)(IOMMUMemoryRegion *iommu);
358 } IOMMUMemoryRegionClass;
359
360 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
361 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
362
363 /** MemoryRegion:
364 *
365 * A struct representing a memory region.
366 */
367 struct MemoryRegion {
368 Object parent_obj;
369
370 /* private: */
371
372 /* The following fields should fit in a cache line */
373 bool romd_mode;
374 bool ram;
375 bool subpage;
376 bool readonly; /* For RAM regions */
377 bool nonvolatile;
378 bool rom_device;
379 bool flush_coalesced_mmio;
380 bool global_locking;
381 uint8_t dirty_log_mask;
382 bool is_iommu;
383 RAMBlock *ram_block;
384 Object *owner;
385
386 const MemoryRegionOps *ops;
387 void *opaque;
388 MemoryRegion *container;
389 Int128 size;
390 hwaddr addr;
391 void (*destructor)(MemoryRegion *mr);
392 uint64_t align;
393 bool terminates;
394 bool ram_device;
395 bool enabled;
396 bool warning_printed; /* For reservations */
397 uint8_t vga_logging_count;
398 MemoryRegion *alias;
399 hwaddr alias_offset;
400 int32_t priority;
401 QTAILQ_HEAD(, MemoryRegion) subregions;
402 QTAILQ_ENTRY(MemoryRegion) subregions_link;
403 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
404 const char *name;
405 unsigned ioeventfd_nb;
406 MemoryRegionIoeventfd *ioeventfds;
407 };
408
409 struct IOMMUMemoryRegion {
410 MemoryRegion parent_obj;
411
412 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
413 IOMMUNotifierFlag iommu_notify_flags;
414 };
415
416 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
417 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
418
419 /**
420 * MemoryListener: callbacks structure for updates to the physical memory map
421 *
422 * Allows a component to adjust to changes in the guest-visible memory map.
423 * Use with memory_listener_register() and memory_listener_unregister().
424 */
425 struct MemoryListener {
426 /**
427 * @begin:
428 *
429 * Called at the beginning of an address space update transaction.
430 * Followed by calls to #MemoryListener.region_add(),
431 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
432 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
433 * increasing address order.
434 *
435 * @listener: The #MemoryListener.
436 */
437 void (*begin)(MemoryListener *listener);
438
439 /**
440 * @commit:
441 *
442 * Called at the end of an address space update transaction,
443 * after the last call to #MemoryListener.region_add(),
444 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
445 * #MemoryListener.log_start() and #MemoryListener.log_stop().
446 *
447 * @listener: The #MemoryListener.
448 */
449 void (*commit)(MemoryListener *listener);
450
451 /**
452 * @region_add:
453 *
454 * Called during an address space update transaction,
455 * for a section of the address space that is new in this address space
456 * space since the last transaction.
457 *
458 * @listener: The #MemoryListener.
459 * @section: The new #MemoryRegionSection.
460 */
461 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
462
463 /**
464 * @region_del:
465 *
466 * Called during an address space update transaction,
467 * for a section of the address space that has disappeared in the address
468 * space since the last transaction.
469 *
470 * @listener: The #MemoryListener.
471 * @section: The old #MemoryRegionSection.
472 */
473 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
474
475 /**
476 * @region_nop:
477 *
478 * Called during an address space update transaction,
479 * for a section of the address space that is in the same place in the address
480 * space as in the last transaction.
481 *
482 * @listener: The #MemoryListener.
483 * @section: The #MemoryRegionSection.
484 */
485 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
486
487 /**
488 * @log_start:
489 *
490 * Called during an address space update transaction, after
491 * one of #MemoryListener.region_add(),#MemoryListener.region_del() or
492 * #MemoryListener.region_nop(), if dirty memory logging clients have
493 * become active since the last transaction.
494 *
495 * @listener: The #MemoryListener.
496 * @section: The #MemoryRegionSection.
497 * @old: A bitmap of dirty memory logging clients that were active in
498 * the previous transaction.
499 * @new: A bitmap of dirty memory logging clients that are active in
500 * the current transaction.
501 */
502 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
503 int old, int new);
504
505 /**
506 * @log_stop:
507 *
508 * Called during an address space update transaction, after
509 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
510 * #MemoryListener.region_nop() and possibly after
511 * #MemoryListener.log_start(), if dirty memory logging clients have
512 * become inactive since the last transaction.
513 *
514 * @listener: The #MemoryListener.
515 * @section: The #MemoryRegionSection.
516 * @old: A bitmap of dirty memory logging clients that were active in
517 * the previous transaction.
518 * @new: A bitmap of dirty memory logging clients that are active in
519 * the current transaction.
520 */
521 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
522 int old, int new);
523
524 /**
525 * @log_sync:
526 *
527 * Called by memory_region_snapshot_and_clear_dirty() and
528 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
529 * copy of the dirty memory bitmap for a #MemoryRegionSection.
530 *
531 * @listener: The #MemoryListener.
532 * @section: The #MemoryRegionSection.
533 */
534 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
535
536 /**
537 * @log_clear:
538 *
539 * Called before reading the dirty memory bitmap for a
540 * #MemoryRegionSection.
541 *
542 * @listener: The #MemoryListener.
543 * @section: The #MemoryRegionSection.
544 */
545 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
546
547 /**
548 * @log_global_start:
549 *
550 * Called by memory_global_dirty_log_start(), which
551 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
552 * the address space. #MemoryListener.log_global_start() is also
553 * called when a #MemoryListener is added, if global dirty logging is
554 * active at that time.
555 *
556 * @listener: The #MemoryListener.
557 */
558 void (*log_global_start)(MemoryListener *listener);
559
560 /**
561 * @log_global_stop:
562 *
563 * Called by memory_global_dirty_log_stop(), which
564 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
565 * the address space.
566 *
567 * @listener: The #MemoryListener.
568 */
569 void (*log_global_stop)(MemoryListener *listener);
570
571 /**
572 * @log_global_after_sync:
573 *
574 * Called after reading the dirty memory bitmap
575 * for any #MemoryRegionSection.
576 *
577 * @listener: The #MemoryListener.
578 */
579 void (*log_global_after_sync)(MemoryListener *listener);
580
581 /**
582 * @eventfd_add:
583 *
584 * Called during an address space update transaction,
585 * for a section of the address space that has had a new ioeventfd
586 * registration since the last transaction.
587 *
588 * @listener: The #MemoryListener.
589 * @section: The new #MemoryRegionSection.
590 * @match_data: The @match_data parameter for the new ioeventfd.
591 * @data: The @data parameter for the new ioeventfd.
592 * @e: The #EventNotifier parameter for the new ioeventfd.
593 */
594 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
595 bool match_data, uint64_t data, EventNotifier *e);
596
597 /**
598 * @eventfd_del:
599 *
600 * Called during an address space update transaction,
601 * for a section of the address space that has dropped an ioeventfd
602 * registration since the last transaction.
603 *
604 * @listener: The #MemoryListener.
605 * @section: The new #MemoryRegionSection.
606 * @match_data: The @match_data parameter for the dropped ioeventfd.
607 * @data: The @data parameter for the dropped ioeventfd.
608 * @e: The #EventNotifier parameter for the dropped ioeventfd.
609 */
610 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
611 bool match_data, uint64_t data, EventNotifier *e);
612
613 /**
614 * @coalesced_io_add:
615 *
616 * Called during an address space update transaction,
617 * for a section of the address space that has had a new coalesced
618 * MMIO range registration since the last transaction.
619 *
620 * @listener: The #MemoryListener.
621 * @section: The new #MemoryRegionSection.
622 * @addr: The starting address for the coalesced MMIO range.
623 * @len: The length of the coalesced MMIO range.
624 */
625 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
626 hwaddr addr, hwaddr len);
627
628 /**
629 * @coalesced_io_del:
630 *
631 * Called during an address space update transaction,
632 * for a section of the address space that has dropped a coalesced
633 * MMIO range since the last transaction.
634 *
635 * @listener: The #MemoryListener.
636 * @section: The new #MemoryRegionSection.
637 * @addr: The starting address for the coalesced MMIO range.
638 * @len: The length of the coalesced MMIO range.
639 */
640 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
641 hwaddr addr, hwaddr len);
642 /**
643 * @priority:
644 *
645 * Govern the order in which memory listeners are invoked. Lower priorities
646 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
647 * or "stop" callbacks.
648 */
649 unsigned priority;
650
651 /* private: */
652 AddressSpace *address_space;
653 QTAILQ_ENTRY(MemoryListener) link;
654 QTAILQ_ENTRY(MemoryListener) link_as;
655 };
656
657 /**
658 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
659 */
660 struct AddressSpace {
661 /* private: */
662 struct rcu_head rcu;
663 char *name;
664 MemoryRegion *root;
665
666 /* Accessed via RCU. */
667 struct FlatView *current_map;
668
669 int ioeventfd_nb;
670 struct MemoryRegionIoeventfd *ioeventfds;
671 QTAILQ_HEAD(, MemoryListener) listeners;
672 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
673 };
674
675 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
676 typedef struct FlatRange FlatRange;
677
678 /* Flattened global view of current active memory hierarchy. Kept in sorted
679 * order.
680 */
681 struct FlatView {
682 struct rcu_head rcu;
683 unsigned ref;
684 FlatRange *ranges;
685 unsigned nr;
686 unsigned nr_allocated;
687 struct AddressSpaceDispatch *dispatch;
688 MemoryRegion *root;
689 };
690
691 static inline FlatView *address_space_to_flatview(AddressSpace *as)
692 {
693 return atomic_rcu_read(&as->current_map);
694 }
695
696
697 /**
698 * MemoryRegionSection: describes a fragment of a #MemoryRegion
699 *
700 * @mr: the region, or %NULL if empty
701 * @fv: the flat view of the address space the region is mapped in
702 * @offset_within_region: the beginning of the section, relative to @mr's start
703 * @size: the size of the section; will not exceed @mr's boundaries
704 * @offset_within_address_space: the address of the first byte of the section
705 * relative to the region's address space
706 * @readonly: writes to this section are ignored
707 * @nonvolatile: this section is non-volatile
708 */
709 struct MemoryRegionSection {
710 Int128 size;
711 MemoryRegion *mr;
712 FlatView *fv;
713 hwaddr offset_within_region;
714 hwaddr offset_within_address_space;
715 bool readonly;
716 bool nonvolatile;
717 };
718
719 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
720 MemoryRegionSection *b)
721 {
722 return a->mr == b->mr &&
723 a->fv == b->fv &&
724 a->offset_within_region == b->offset_within_region &&
725 a->offset_within_address_space == b->offset_within_address_space &&
726 int128_eq(a->size, b->size) &&
727 a->readonly == b->readonly &&
728 a->nonvolatile == b->nonvolatile;
729 }
730
731 /**
732 * memory_region_init: Initialize a memory region
733 *
734 * The region typically acts as a container for other memory regions. Use
735 * memory_region_add_subregion() to add subregions.
736 *
737 * @mr: the #MemoryRegion to be initialized
738 * @owner: the object that tracks the region's reference count
739 * @name: used for debugging; not visible to the user or ABI
740 * @size: size of the region; any subregions beyond this size will be clipped
741 */
742 void memory_region_init(MemoryRegion *mr,
743 struct Object *owner,
744 const char *name,
745 uint64_t size);
746
747 /**
748 * memory_region_ref: Add 1 to a memory region's reference count
749 *
750 * Whenever memory regions are accessed outside the BQL, they need to be
751 * preserved against hot-unplug. MemoryRegions actually do not have their
752 * own reference count; they piggyback on a QOM object, their "owner".
753 * This function adds a reference to the owner.
754 *
755 * All MemoryRegions must have an owner if they can disappear, even if the
756 * device they belong to operates exclusively under the BQL. This is because
757 * the region could be returned at any time by memory_region_find, and this
758 * is usually under guest control.
759 *
760 * @mr: the #MemoryRegion
761 */
762 void memory_region_ref(MemoryRegion *mr);
763
764 /**
765 * memory_region_unref: Remove 1 to a memory region's reference count
766 *
767 * Whenever memory regions are accessed outside the BQL, they need to be
768 * preserved against hot-unplug. MemoryRegions actually do not have their
769 * own reference count; they piggyback on a QOM object, their "owner".
770 * This function removes a reference to the owner and possibly destroys it.
771 *
772 * @mr: the #MemoryRegion
773 */
774 void memory_region_unref(MemoryRegion *mr);
775
776 /**
777 * memory_region_init_io: Initialize an I/O memory region.
778 *
779 * Accesses into the region will cause the callbacks in @ops to be called.
780 * if @size is nonzero, subregions will be clipped to @size.
781 *
782 * @mr: the #MemoryRegion to be initialized.
783 * @owner: the object that tracks the region's reference count
784 * @ops: a structure containing read and write callbacks to be used when
785 * I/O is performed on the region.
786 * @opaque: passed to the read and write callbacks of the @ops structure.
787 * @name: used for debugging; not visible to the user or ABI
788 * @size: size of the region.
789 */
790 void memory_region_init_io(MemoryRegion *mr,
791 struct Object *owner,
792 const MemoryRegionOps *ops,
793 void *opaque,
794 const char *name,
795 uint64_t size);
796
797 /**
798 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
799 * into the region will modify memory
800 * directly.
801 *
802 * @mr: the #MemoryRegion to be initialized.
803 * @owner: the object that tracks the region's reference count
804 * @name: Region name, becomes part of RAMBlock name used in migration stream
805 * must be unique within any device
806 * @size: size of the region.
807 * @errp: pointer to Error*, to store an error if it happens.
808 *
809 * Note that this function does not do anything to cause the data in the
810 * RAM memory region to be migrated; that is the responsibility of the caller.
811 */
812 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
813 struct Object *owner,
814 const char *name,
815 uint64_t size,
816 Error **errp);
817
818 /**
819 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
820 * Accesses into the region will
821 * modify memory directly.
822 *
823 * @mr: the #MemoryRegion to be initialized.
824 * @owner: the object that tracks the region's reference count
825 * @name: Region name, becomes part of RAMBlock name used in migration stream
826 * must be unique within any device
827 * @size: size of the region.
828 * @share: allow remapping RAM to different addresses
829 * @errp: pointer to Error*, to store an error if it happens.
830 *
831 * Note that this function is similar to memory_region_init_ram_nomigrate.
832 * The only difference is part of the RAM region can be remapped.
833 */
834 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
835 struct Object *owner,
836 const char *name,
837 uint64_t size,
838 bool share,
839 Error **errp);
840
841 /**
842 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
843 * RAM. Accesses into the region will
844 * modify memory directly. Only an initial
845 * portion of this RAM is actually used.
846 * The used size can change across reboots.
847 *
848 * @mr: the #MemoryRegion to be initialized.
849 * @owner: the object that tracks the region's reference count
850 * @name: Region name, becomes part of RAMBlock name used in migration stream
851 * must be unique within any device
852 * @size: used size of the region.
853 * @max_size: max size of the region.
854 * @resized: callback to notify owner about used size change.
855 * @errp: pointer to Error*, to store an error if it happens.
856 *
857 * Note that this function does not do anything to cause the data in the
858 * RAM memory region to be migrated; that is the responsibility of the caller.
859 */
860 void memory_region_init_resizeable_ram(MemoryRegion *mr,
861 struct Object *owner,
862 const char *name,
863 uint64_t size,
864 uint64_t max_size,
865 void (*resized)(const char*,
866 uint64_t length,
867 void *host),
868 Error **errp);
869 #ifdef CONFIG_POSIX
870
871 /**
872 * memory_region_init_ram_from_file: Initialize RAM memory region with a
873 * mmap-ed backend.
874 *
875 * @mr: the #MemoryRegion to be initialized.
876 * @owner: the object that tracks the region's reference count
877 * @name: Region name, becomes part of RAMBlock name used in migration stream
878 * must be unique within any device
879 * @size: size of the region.
880 * @align: alignment of the region base address; if 0, the default alignment
881 * (getpagesize()) will be used.
882 * @ram_flags: Memory region features:
883 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
884 * - RAM_PMEM: the memory is persistent memory
885 * Other bits are ignored now.
886 * @path: the path in which to allocate the RAM.
887 * @errp: pointer to Error*, to store an error if it happens.
888 *
889 * Note that this function does not do anything to cause the data in the
890 * RAM memory region to be migrated; that is the responsibility of the caller.
891 */
892 void memory_region_init_ram_from_file(MemoryRegion *mr,
893 struct Object *owner,
894 const char *name,
895 uint64_t size,
896 uint64_t align,
897 uint32_t ram_flags,
898 const char *path,
899 Error **errp);
900
901 /**
902 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
903 * mmap-ed backend.
904 *
905 * @mr: the #MemoryRegion to be initialized.
906 * @owner: the object that tracks the region's reference count
907 * @name: the name of the region.
908 * @size: size of the region.
909 * @share: %true if memory must be mmaped with the MAP_SHARED flag
910 * @fd: the fd to mmap.
911 * @errp: pointer to Error*, to store an error if it happens.
912 *
913 * Note that this function does not do anything to cause the data in the
914 * RAM memory region to be migrated; that is the responsibility of the caller.
915 */
916 void memory_region_init_ram_from_fd(MemoryRegion *mr,
917 struct Object *owner,
918 const char *name,
919 uint64_t size,
920 bool share,
921 int fd,
922 Error **errp);
923 #endif
924
925 /**
926 * memory_region_init_ram_ptr: Initialize RAM memory region from a
927 * user-provided pointer. Accesses into the
928 * region will modify memory directly.
929 *
930 * @mr: the #MemoryRegion to be initialized.
931 * @owner: the object that tracks the region's reference count
932 * @name: Region name, becomes part of RAMBlock name used in migration stream
933 * must be unique within any device
934 * @size: size of the region.
935 * @ptr: memory to be mapped; must contain at least @size bytes.
936 *
937 * Note that this function does not do anything to cause the data in the
938 * RAM memory region to be migrated; that is the responsibility of the caller.
939 */
940 void memory_region_init_ram_ptr(MemoryRegion *mr,
941 struct Object *owner,
942 const char *name,
943 uint64_t size,
944 void *ptr);
945
946 /**
947 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
948 * a user-provided pointer.
949 *
950 * A RAM device represents a mapping to a physical device, such as to a PCI
951 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
952 * into the VM address space and access to the region will modify memory
953 * directly. However, the memory region should not be included in a memory
954 * dump (device may not be enabled/mapped at the time of the dump), and
955 * operations incompatible with manipulating MMIO should be avoided. Replaces
956 * skip_dump flag.
957 *
958 * @mr: the #MemoryRegion to be initialized.
959 * @owner: the object that tracks the region's reference count
960 * @name: the name of the region.
961 * @size: size of the region.
962 * @ptr: memory to be mapped; must contain at least @size bytes.
963 *
964 * Note that this function does not do anything to cause the data in the
965 * RAM memory region to be migrated; that is the responsibility of the caller.
966 * (For RAM device memory regions, migrating the contents rarely makes sense.)
967 */
968 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
969 struct Object *owner,
970 const char *name,
971 uint64_t size,
972 void *ptr);
973
974 /**
975 * memory_region_init_alias: Initialize a memory region that aliases all or a
976 * part of another memory region.
977 *
978 * @mr: the #MemoryRegion to be initialized.
979 * @owner: the object that tracks the region's reference count
980 * @name: used for debugging; not visible to the user or ABI
981 * @orig: the region to be referenced; @mr will be equivalent to
982 * @orig between @offset and @offset + @size - 1.
983 * @offset: start of the section in @orig to be referenced.
984 * @size: size of the region.
985 */
986 void memory_region_init_alias(MemoryRegion *mr,
987 struct Object *owner,
988 const char *name,
989 MemoryRegion *orig,
990 hwaddr offset,
991 uint64_t size);
992
993 /**
994 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
995 *
996 * This has the same effect as calling memory_region_init_ram_nomigrate()
997 * and then marking the resulting region read-only with
998 * memory_region_set_readonly().
999 *
1000 * Note that this function does not do anything to cause the data in the
1001 * RAM side of the memory region to be migrated; that is the responsibility
1002 * of the caller.
1003 *
1004 * @mr: the #MemoryRegion to be initialized.
1005 * @owner: the object that tracks the region's reference count
1006 * @name: Region name, becomes part of RAMBlock name used in migration stream
1007 * must be unique within any device
1008 * @size: size of the region.
1009 * @errp: pointer to Error*, to store an error if it happens.
1010 */
1011 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1012 struct Object *owner,
1013 const char *name,
1014 uint64_t size,
1015 Error **errp);
1016
1017 /**
1018 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1019 * Writes are handled via callbacks.
1020 *
1021 * Note that this function does not do anything to cause the data in the
1022 * RAM side of the memory region to be migrated; that is the responsibility
1023 * of the caller.
1024 *
1025 * @mr: the #MemoryRegion to be initialized.
1026 * @owner: the object that tracks the region's reference count
1027 * @ops: callbacks for write access handling (must not be NULL).
1028 * @opaque: passed to the read and write callbacks of the @ops structure.
1029 * @name: Region name, becomes part of RAMBlock name used in migration stream
1030 * must be unique within any device
1031 * @size: size of the region.
1032 * @errp: pointer to Error*, to store an error if it happens.
1033 */
1034 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1035 struct Object *owner,
1036 const MemoryRegionOps *ops,
1037 void *opaque,
1038 const char *name,
1039 uint64_t size,
1040 Error **errp);
1041
1042 /**
1043 * memory_region_init_iommu: Initialize a memory region of a custom type
1044 * that translates addresses
1045 *
1046 * An IOMMU region translates addresses and forwards accesses to a target
1047 * memory region.
1048 *
1049 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1050 * @_iommu_mr should be a pointer to enough memory for an instance of
1051 * that subclass, @instance_size is the size of that subclass, and
1052 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1053 * instance of the subclass, and its methods will then be called to handle
1054 * accesses to the memory region. See the documentation of
1055 * #IOMMUMemoryRegionClass for further details.
1056 *
1057 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1058 * @instance_size: the IOMMUMemoryRegion subclass instance size
1059 * @mrtypename: the type name of the #IOMMUMemoryRegion
1060 * @owner: the object that tracks the region's reference count
1061 * @name: used for debugging; not visible to the user or ABI
1062 * @size: size of the region.
1063 */
1064 void memory_region_init_iommu(void *_iommu_mr,
1065 size_t instance_size,
1066 const char *mrtypename,
1067 Object *owner,
1068 const char *name,
1069 uint64_t size);
1070
1071 /**
1072 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1073 * region will modify memory directly.
1074 *
1075 * @mr: the #MemoryRegion to be initialized
1076 * @owner: the object that tracks the region's reference count (must be
1077 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1078 * @name: name of the memory region
1079 * @size: size of the region in bytes
1080 * @errp: pointer to Error*, to store an error if it happens.
1081 *
1082 * This function allocates RAM for a board model or device, and
1083 * arranges for it to be migrated (by calling vmstate_register_ram()
1084 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1085 * @owner is NULL).
1086 *
1087 * TODO: Currently we restrict @owner to being either NULL (for
1088 * global RAM regions with no owner) or devices, so that we can
1089 * give the RAM block a unique name for migration purposes.
1090 * We should lift this restriction and allow arbitrary Objects.
1091 * If you pass a non-NULL non-device @owner then we will assert.
1092 */
1093 void memory_region_init_ram(MemoryRegion *mr,
1094 struct Object *owner,
1095 const char *name,
1096 uint64_t size,
1097 Error **errp);
1098
1099 /**
1100 * memory_region_init_rom: Initialize a ROM memory region.
1101 *
1102 * This has the same effect as calling memory_region_init_ram()
1103 * and then marking the resulting region read-only with
1104 * memory_region_set_readonly(). This includes arranging for the
1105 * contents to be migrated.
1106 *
1107 * TODO: Currently we restrict @owner to being either NULL (for
1108 * global RAM regions with no owner) or devices, so that we can
1109 * give the RAM block a unique name for migration purposes.
1110 * We should lift this restriction and allow arbitrary Objects.
1111 * If you pass a non-NULL non-device @owner then we will assert.
1112 *
1113 * @mr: the #MemoryRegion to be initialized.
1114 * @owner: the object that tracks the region's reference count
1115 * @name: Region name, becomes part of RAMBlock name used in migration stream
1116 * must be unique within any device
1117 * @size: size of the region.
1118 * @errp: pointer to Error*, to store an error if it happens.
1119 */
1120 void memory_region_init_rom(MemoryRegion *mr,
1121 struct Object *owner,
1122 const char *name,
1123 uint64_t size,
1124 Error **errp);
1125
1126 /**
1127 * memory_region_init_rom_device: Initialize a ROM memory region.
1128 * Writes are handled via callbacks.
1129 *
1130 * This function initializes a memory region backed by RAM for reads
1131 * and callbacks for writes, and arranges for the RAM backing to
1132 * be migrated (by calling vmstate_register_ram()
1133 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1134 * @owner is NULL).
1135 *
1136 * TODO: Currently we restrict @owner to being either NULL (for
1137 * global RAM regions with no owner) or devices, so that we can
1138 * give the RAM block a unique name for migration purposes.
1139 * We should lift this restriction and allow arbitrary Objects.
1140 * If you pass a non-NULL non-device @owner then we will assert.
1141 *
1142 * @mr: the #MemoryRegion to be initialized.
1143 * @owner: the object that tracks the region's reference count
1144 * @ops: callbacks for write access handling (must not be NULL).
1145 * @opaque: passed to the read and write callbacks of the @ops structure.
1146 * @name: Region name, becomes part of RAMBlock name used in migration stream
1147 * must be unique within any device
1148 * @size: size of the region.
1149 * @errp: pointer to Error*, to store an error if it happens.
1150 */
1151 void memory_region_init_rom_device(MemoryRegion *mr,
1152 struct Object *owner,
1153 const MemoryRegionOps *ops,
1154 void *opaque,
1155 const char *name,
1156 uint64_t size,
1157 Error **errp);
1158
1159
1160 /**
1161 * memory_region_owner: get a memory region's owner.
1162 *
1163 * @mr: the memory region being queried.
1164 */
1165 struct Object *memory_region_owner(MemoryRegion *mr);
1166
1167 /**
1168 * memory_region_size: get a memory region's size.
1169 *
1170 * @mr: the memory region being queried.
1171 */
1172 uint64_t memory_region_size(MemoryRegion *mr);
1173
1174 /**
1175 * memory_region_is_ram: check whether a memory region is random access
1176 *
1177 * Returns %true if a memory region is random access.
1178 *
1179 * @mr: the memory region being queried
1180 */
1181 static inline bool memory_region_is_ram(MemoryRegion *mr)
1182 {
1183 return mr->ram;
1184 }
1185
1186 /**
1187 * memory_region_is_ram_device: check whether a memory region is a ram device
1188 *
1189 * Returns %true if a memory region is a device backed ram region
1190 *
1191 * @mr: the memory region being queried
1192 */
1193 bool memory_region_is_ram_device(MemoryRegion *mr);
1194
1195 /**
1196 * memory_region_is_romd: check whether a memory region is in ROMD mode
1197 *
1198 * Returns %true if a memory region is a ROM device and currently set to allow
1199 * direct reads.
1200 *
1201 * @mr: the memory region being queried
1202 */
1203 static inline bool memory_region_is_romd(MemoryRegion *mr)
1204 {
1205 return mr->rom_device && mr->romd_mode;
1206 }
1207
1208 /**
1209 * memory_region_get_iommu: check whether a memory region is an iommu
1210 *
1211 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1212 * otherwise NULL.
1213 *
1214 * @mr: the memory region being queried
1215 */
1216 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1217 {
1218 if (mr->alias) {
1219 return memory_region_get_iommu(mr->alias);
1220 }
1221 if (mr->is_iommu) {
1222 return (IOMMUMemoryRegion *) mr;
1223 }
1224 return NULL;
1225 }
1226
1227 /**
1228 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1229 * if an iommu or NULL if not
1230 *
1231 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1232 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1233 *
1234 * @iommu_mr: the memory region being queried
1235 */
1236 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1237 IOMMUMemoryRegion *iommu_mr)
1238 {
1239 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1240 }
1241
1242 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1243
1244 /**
1245 * memory_region_iommu_get_min_page_size: get minimum supported page size
1246 * for an iommu
1247 *
1248 * Returns minimum supported page size for an iommu.
1249 *
1250 * @iommu_mr: the memory region being queried
1251 */
1252 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1253
1254 /**
1255 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1256 *
1257 * The notification type will be decided by entry.perm bits:
1258 *
1259 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1260 * - For MAP (newly added entry) notifies: set entry.perm to the
1261 * permission of the page (which is definitely !IOMMU_NONE).
1262 *
1263 * Note: for any IOMMU implementation, an in-place mapping change
1264 * should be notified with an UNMAP followed by a MAP.
1265 *
1266 * @iommu_mr: the memory region that was changed
1267 * @iommu_idx: the IOMMU index for the translation table which has changed
1268 * @entry: the new entry in the IOMMU translation table. The entry
1269 * replaces all old entries for the same virtual I/O address range.
1270 * Deleted entries have .@perm == 0.
1271 */
1272 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1273 int iommu_idx,
1274 IOMMUTLBEntry entry);
1275
1276 /**
1277 * memory_region_notify_one: notify a change in an IOMMU translation
1278 * entry to a single notifier
1279 *
1280 * This works just like memory_region_notify_iommu(), but it only
1281 * notifies a specific notifier, not all of them.
1282 *
1283 * @notifier: the notifier to be notified
1284 * @entry: the new entry in the IOMMU translation table. The entry
1285 * replaces all old entries for the same virtual I/O address range.
1286 * Deleted entries have .@perm == 0.
1287 */
1288 void memory_region_notify_one(IOMMUNotifier *notifier,
1289 IOMMUTLBEntry *entry);
1290
1291 /**
1292 * memory_region_register_iommu_notifier: register a notifier for changes to
1293 * IOMMU translation entries.
1294 *
1295 * Returns 0 on success, or a negative errno otherwise. In particular,
1296 * -EINVAL indicates that at least one of the attributes of the notifier
1297 * is not supported (flag/range) by the IOMMU memory region. In case of error
1298 * the error object must be created.
1299 *
1300 * @mr: the memory region to observe
1301 * @n: the IOMMUNotifier to be added; the notify callback receives a
1302 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1303 * ceases to be valid on exit from the notifier.
1304 * @errp: pointer to Error*, to store an error if it happens.
1305 */
1306 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1307 IOMMUNotifier *n, Error **errp);
1308
1309 /**
1310 * memory_region_iommu_replay: replay existing IOMMU translations to
1311 * a notifier with the minimum page granularity returned by
1312 * mr->iommu_ops->get_page_size().
1313 *
1314 * Note: this is not related to record-and-replay functionality.
1315 *
1316 * @iommu_mr: the memory region to observe
1317 * @n: the notifier to which to replay iommu mappings
1318 */
1319 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1320
1321 /**
1322 * memory_region_unregister_iommu_notifier: unregister a notifier for
1323 * changes to IOMMU translation entries.
1324 *
1325 * @mr: the memory region which was observed and for which notity_stopped()
1326 * needs to be called
1327 * @n: the notifier to be removed.
1328 */
1329 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1330 IOMMUNotifier *n);
1331
1332 /**
1333 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1334 * defined on the IOMMU.
1335 *
1336 * Returns 0 on success, or a negative errno otherwise. In particular,
1337 * -EINVAL indicates that the IOMMU does not support the requested
1338 * attribute.
1339 *
1340 * @iommu_mr: the memory region
1341 * @attr: the requested attribute
1342 * @data: a pointer to the requested attribute data
1343 */
1344 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1345 enum IOMMUMemoryRegionAttr attr,
1346 void *data);
1347
1348 /**
1349 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1350 * use for translations with the given memory transaction attributes.
1351 *
1352 * @iommu_mr: the memory region
1353 * @attrs: the memory transaction attributes
1354 */
1355 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1356 MemTxAttrs attrs);
1357
1358 /**
1359 * memory_region_iommu_num_indexes: return the total number of IOMMU
1360 * indexes that this IOMMU supports.
1361 *
1362 * @iommu_mr: the memory region
1363 */
1364 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1365
1366 /**
1367 * memory_region_name: get a memory region's name
1368 *
1369 * Returns the string that was used to initialize the memory region.
1370 *
1371 * @mr: the memory region being queried
1372 */
1373 const char *memory_region_name(const MemoryRegion *mr);
1374
1375 /**
1376 * memory_region_is_logging: return whether a memory region is logging writes
1377 *
1378 * Returns %true if the memory region is logging writes for the given client
1379 *
1380 * @mr: the memory region being queried
1381 * @client: the client being queried
1382 */
1383 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1384
1385 /**
1386 * memory_region_get_dirty_log_mask: return the clients for which a
1387 * memory region is logging writes.
1388 *
1389 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1390 * are the bit indices.
1391 *
1392 * @mr: the memory region being queried
1393 */
1394 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1395
1396 /**
1397 * memory_region_is_rom: check whether a memory region is ROM
1398 *
1399 * Returns %true if a memory region is read-only memory.
1400 *
1401 * @mr: the memory region being queried
1402 */
1403 static inline bool memory_region_is_rom(MemoryRegion *mr)
1404 {
1405 return mr->ram && mr->readonly;
1406 }
1407
1408 /**
1409 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1410 *
1411 * Returns %true is a memory region is non-volatile memory.
1412 *
1413 * @mr: the memory region being queried
1414 */
1415 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1416 {
1417 return mr->nonvolatile;
1418 }
1419
1420 /**
1421 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1422 *
1423 * Returns a file descriptor backing a file-based RAM memory region,
1424 * or -1 if the region is not a file-based RAM memory region.
1425 *
1426 * @mr: the RAM or alias memory region being queried.
1427 */
1428 int memory_region_get_fd(MemoryRegion *mr);
1429
1430 /**
1431 * memory_region_from_host: Convert a pointer into a RAM memory region
1432 * and an offset within it.
1433 *
1434 * Given a host pointer inside a RAM memory region (created with
1435 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1436 * the MemoryRegion and the offset within it.
1437 *
1438 * Use with care; by the time this function returns, the returned pointer is
1439 * not protected by RCU anymore. If the caller is not within an RCU critical
1440 * section and does not hold the iothread lock, it must have other means of
1441 * protecting the pointer, such as a reference to the region that includes
1442 * the incoming ram_addr_t.
1443 *
1444 * @ptr: the host pointer to be converted
1445 * @offset: the offset within memory region
1446 */
1447 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1448
1449 /**
1450 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1451 *
1452 * Returns a host pointer to a RAM memory region (created with
1453 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1454 *
1455 * Use with care; by the time this function returns, the returned pointer is
1456 * not protected by RCU anymore. If the caller is not within an RCU critical
1457 * section and does not hold the iothread lock, it must have other means of
1458 * protecting the pointer, such as a reference to the region that includes
1459 * the incoming ram_addr_t.
1460 *
1461 * @mr: the memory region being queried.
1462 */
1463 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1464
1465 /* memory_region_ram_resize: Resize a RAM region.
1466 *
1467 * Only legal before guest might have detected the memory size: e.g. on
1468 * incoming migration, or right after reset.
1469 *
1470 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1471 * @newsize: the new size the region
1472 * @errp: pointer to Error*, to store an error if it happens.
1473 */
1474 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1475 Error **errp);
1476
1477 /**
1478 * memory_region_msync: Synchronize selected address range of
1479 * a memory mapped region
1480 *
1481 * @mr: the memory region to be msync
1482 * @addr: the initial address of the range to be sync
1483 * @size: the size of the range to be sync
1484 */
1485 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1486
1487 /**
1488 * memory_region_writeback: Trigger cache writeback for
1489 * selected address range
1490 *
1491 * @mr: the memory region to be updated
1492 * @addr: the initial address of the range to be written back
1493 * @size: the size of the range to be written back
1494 */
1495 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1496
1497 /**
1498 * memory_region_set_log: Turn dirty logging on or off for a region.
1499 *
1500 * Turns dirty logging on or off for a specified client (display, migration).
1501 * Only meaningful for RAM regions.
1502 *
1503 * @mr: the memory region being updated.
1504 * @log: whether dirty logging is to be enabled or disabled.
1505 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1506 */
1507 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1508
1509 /**
1510 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1511 *
1512 * Marks a range of bytes as dirty, after it has been dirtied outside
1513 * guest code.
1514 *
1515 * @mr: the memory region being dirtied.
1516 * @addr: the address (relative to the start of the region) being dirtied.
1517 * @size: size of the range being dirtied.
1518 */
1519 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1520 hwaddr size);
1521
1522 /**
1523 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1524 *
1525 * This function is called when the caller wants to clear the remote
1526 * dirty bitmap of a memory range within the memory region. This can
1527 * be used by e.g. KVM to manually clear dirty log when
1528 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1529 * kernel.
1530 *
1531 * @mr: the memory region to clear the dirty log upon
1532 * @start: start address offset within the memory region
1533 * @len: length of the memory region to clear dirty bitmap
1534 */
1535 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1536 hwaddr len);
1537
1538 /**
1539 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1540 * bitmap and clear it.
1541 *
1542 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1543 * returns the snapshot. The snapshot can then be used to query dirty
1544 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1545 * querying the same page multiple times, which is especially useful for
1546 * display updates where the scanlines often are not page aligned.
1547 *
1548 * The dirty bitmap region which gets copyed into the snapshot (and
1549 * cleared afterwards) can be larger than requested. The boundaries
1550 * are rounded up/down so complete bitmap longs (covering 64 pages on
1551 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1552 * isn't a problem for display updates as the extra pages are outside
1553 * the visible area, and in case the visible area changes a full
1554 * display redraw is due anyway. Should other use cases for this
1555 * function emerge we might have to revisit this implementation
1556 * detail.
1557 *
1558 * Use g_free to release DirtyBitmapSnapshot.
1559 *
1560 * @mr: the memory region being queried.
1561 * @addr: the address (relative to the start of the region) being queried.
1562 * @size: the size of the range being queried.
1563 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1564 */
1565 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1566 hwaddr addr,
1567 hwaddr size,
1568 unsigned client);
1569
1570 /**
1571 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1572 * in the specified dirty bitmap snapshot.
1573 *
1574 * @mr: the memory region being queried.
1575 * @snap: the dirty bitmap snapshot
1576 * @addr: the address (relative to the start of the region) being queried.
1577 * @size: the size of the range being queried.
1578 */
1579 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1580 DirtyBitmapSnapshot *snap,
1581 hwaddr addr, hwaddr size);
1582
1583 /**
1584 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1585 * client.
1586 *
1587 * Marks a range of pages as no longer dirty.
1588 *
1589 * @mr: the region being updated.
1590 * @addr: the start of the subrange being cleaned.
1591 * @size: the size of the subrange being cleaned.
1592 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1593 * %DIRTY_MEMORY_VGA.
1594 */
1595 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1596 hwaddr size, unsigned client);
1597
1598 /**
1599 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1600 * TBs (for self-modifying code).
1601 *
1602 * The MemoryRegionOps->write() callback of a ROM device must use this function
1603 * to mark byte ranges that have been modified internally, such as by directly
1604 * accessing the memory returned by memory_region_get_ram_ptr().
1605 *
1606 * This function marks the range dirty and invalidates TBs so that TCG can
1607 * detect self-modifying code.
1608 *
1609 * @mr: the region being flushed.
1610 * @addr: the start, relative to the start of the region, of the range being
1611 * flushed.
1612 * @size: the size, in bytes, of the range being flushed.
1613 */
1614 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1615
1616 /**
1617 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1618 *
1619 * Allows a memory region to be marked as read-only (turning it into a ROM).
1620 * only useful on RAM regions.
1621 *
1622 * @mr: the region being updated.
1623 * @readonly: whether rhe region is to be ROM or RAM.
1624 */
1625 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1626
1627 /**
1628 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1629 *
1630 * Allows a memory region to be marked as non-volatile.
1631 * only useful on RAM regions.
1632 *
1633 * @mr: the region being updated.
1634 * @nonvolatile: whether rhe region is to be non-volatile.
1635 */
1636 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1637
1638 /**
1639 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1640 *
1641 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1642 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1643 * device is mapped to guest memory and satisfies read access directly.
1644 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1645 * Writes are always handled by the #MemoryRegion.write function.
1646 *
1647 * @mr: the memory region to be updated
1648 * @romd_mode: %true to put the region into ROMD mode
1649 */
1650 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1651
1652 /**
1653 * memory_region_set_coalescing: Enable memory coalescing for the region.
1654 *
1655 * Enabled writes to a region to be queued for later processing. MMIO ->write
1656 * callbacks may be delayed until a non-coalesced MMIO is issued.
1657 * Only useful for IO regions. Roughly similar to write-combining hardware.
1658 *
1659 * @mr: the memory region to be write coalesced
1660 */
1661 void memory_region_set_coalescing(MemoryRegion *mr);
1662
1663 /**
1664 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1665 * a region.
1666 *
1667 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1668 * Multiple calls can be issued coalesced disjoint ranges.
1669 *
1670 * @mr: the memory region to be updated.
1671 * @offset: the start of the range within the region to be coalesced.
1672 * @size: the size of the subrange to be coalesced.
1673 */
1674 void memory_region_add_coalescing(MemoryRegion *mr,
1675 hwaddr offset,
1676 uint64_t size);
1677
1678 /**
1679 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1680 *
1681 * Disables any coalescing caused by memory_region_set_coalescing() or
1682 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1683 * hardware.
1684 *
1685 * @mr: the memory region to be updated.
1686 */
1687 void memory_region_clear_coalescing(MemoryRegion *mr);
1688
1689 /**
1690 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1691 * accesses.
1692 *
1693 * Ensure that pending coalesced MMIO request are flushed before the memory
1694 * region is accessed. This property is automatically enabled for all regions
1695 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1696 *
1697 * @mr: the memory region to be updated.
1698 */
1699 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1700
1701 /**
1702 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1703 * accesses.
1704 *
1705 * Clear the automatic coalesced MMIO flushing enabled via
1706 * memory_region_set_flush_coalesced. Note that this service has no effect on
1707 * memory regions that have MMIO coalescing enabled for themselves. For them,
1708 * automatic flushing will stop once coalescing is disabled.
1709 *
1710 * @mr: the memory region to be updated.
1711 */
1712 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1713
1714 /**
1715 * memory_region_clear_global_locking: Declares that access processing does
1716 * not depend on the QEMU global lock.
1717 *
1718 * By clearing this property, accesses to the memory region will be processed
1719 * outside of QEMU's global lock (unless the lock is held on when issuing the
1720 * access request). In this case, the device model implementing the access
1721 * handlers is responsible for synchronization of concurrency.
1722 *
1723 * @mr: the memory region to be updated.
1724 */
1725 void memory_region_clear_global_locking(MemoryRegion *mr);
1726
1727 /**
1728 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1729 * is written to a location.
1730 *
1731 * Marks a word in an IO region (initialized with memory_region_init_io())
1732 * as a trigger for an eventfd event. The I/O callback will not be called.
1733 * The caller must be prepared to handle failure (that is, take the required
1734 * action if the callback _is_ called).
1735 *
1736 * @mr: the memory region being updated.
1737 * @addr: the address within @mr that is to be monitored
1738 * @size: the size of the access to trigger the eventfd
1739 * @match_data: whether to match against @data, instead of just @addr
1740 * @data: the data to match against the guest write
1741 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1742 **/
1743 void memory_region_add_eventfd(MemoryRegion *mr,
1744 hwaddr addr,
1745 unsigned size,
1746 bool match_data,
1747 uint64_t data,
1748 EventNotifier *e);
1749
1750 /**
1751 * memory_region_del_eventfd: Cancel an eventfd.
1752 *
1753 * Cancels an eventfd trigger requested by a previous
1754 * memory_region_add_eventfd() call.
1755 *
1756 * @mr: the memory region being updated.
1757 * @addr: the address within @mr that is to be monitored
1758 * @size: the size of the access to trigger the eventfd
1759 * @match_data: whether to match against @data, instead of just @addr
1760 * @data: the data to match against the guest write
1761 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1762 */
1763 void memory_region_del_eventfd(MemoryRegion *mr,
1764 hwaddr addr,
1765 unsigned size,
1766 bool match_data,
1767 uint64_t data,
1768 EventNotifier *e);
1769
1770 /**
1771 * memory_region_add_subregion: Add a subregion to a container.
1772 *
1773 * Adds a subregion at @offset. The subregion may not overlap with other
1774 * subregions (except for those explicitly marked as overlapping). A region
1775 * may only be added once as a subregion (unless removed with
1776 * memory_region_del_subregion()); use memory_region_init_alias() if you
1777 * want a region to be a subregion in multiple locations.
1778 *
1779 * @mr: the region to contain the new subregion; must be a container
1780 * initialized with memory_region_init().
1781 * @offset: the offset relative to @mr where @subregion is added.
1782 * @subregion: the subregion to be added.
1783 */
1784 void memory_region_add_subregion(MemoryRegion *mr,
1785 hwaddr offset,
1786 MemoryRegion *subregion);
1787 /**
1788 * memory_region_add_subregion_overlap: Add a subregion to a container
1789 * with overlap.
1790 *
1791 * Adds a subregion at @offset. The subregion may overlap with other
1792 * subregions. Conflicts are resolved by having a higher @priority hide a
1793 * lower @priority. Subregions without priority are taken as @priority 0.
1794 * A region may only be added once as a subregion (unless removed with
1795 * memory_region_del_subregion()); use memory_region_init_alias() if you
1796 * want a region to be a subregion in multiple locations.
1797 *
1798 * @mr: the region to contain the new subregion; must be a container
1799 * initialized with memory_region_init().
1800 * @offset: the offset relative to @mr where @subregion is added.
1801 * @subregion: the subregion to be added.
1802 * @priority: used for resolving overlaps; highest priority wins.
1803 */
1804 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1805 hwaddr offset,
1806 MemoryRegion *subregion,
1807 int priority);
1808
1809 /**
1810 * memory_region_get_ram_addr: Get the ram address associated with a memory
1811 * region
1812 *
1813 * @mr: the region to be queried
1814 */
1815 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1816
1817 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1818 /**
1819 * memory_region_del_subregion: Remove a subregion.
1820 *
1821 * Removes a subregion from its container.
1822 *
1823 * @mr: the container to be updated.
1824 * @subregion: the region being removed; must be a current subregion of @mr.
1825 */
1826 void memory_region_del_subregion(MemoryRegion *mr,
1827 MemoryRegion *subregion);
1828
1829 /*
1830 * memory_region_set_enabled: dynamically enable or disable a region
1831 *
1832 * Enables or disables a memory region. A disabled memory region
1833 * ignores all accesses to itself and its subregions. It does not
1834 * obscure sibling subregions with lower priority - it simply behaves as
1835 * if it was removed from the hierarchy.
1836 *
1837 * Regions default to being enabled.
1838 *
1839 * @mr: the region to be updated
1840 * @enabled: whether to enable or disable the region
1841 */
1842 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1843
1844 /*
1845 * memory_region_set_address: dynamically update the address of a region
1846 *
1847 * Dynamically updates the address of a region, relative to its container.
1848 * May be used on regions are currently part of a memory hierarchy.
1849 *
1850 * @mr: the region to be updated
1851 * @addr: new address, relative to container region
1852 */
1853 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1854
1855 /*
1856 * memory_region_set_size: dynamically update the size of a region.
1857 *
1858 * Dynamically updates the size of a region.
1859 *
1860 * @mr: the region to be updated
1861 * @size: used size of the region.
1862 */
1863 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1864
1865 /*
1866 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1867 *
1868 * Dynamically updates the offset into the target region that an alias points
1869 * to, as if the fourth argument to memory_region_init_alias() has changed.
1870 *
1871 * @mr: the #MemoryRegion to be updated; should be an alias.
1872 * @offset: the new offset into the target memory region
1873 */
1874 void memory_region_set_alias_offset(MemoryRegion *mr,
1875 hwaddr offset);
1876
1877 /**
1878 * memory_region_present: checks if an address relative to a @container
1879 * translates into #MemoryRegion within @container
1880 *
1881 * Answer whether a #MemoryRegion within @container covers the address
1882 * @addr.
1883 *
1884 * @container: a #MemoryRegion within which @addr is a relative address
1885 * @addr: the area within @container to be searched
1886 */
1887 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1888
1889 /**
1890 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1891 * into any address space.
1892 *
1893 * @mr: a #MemoryRegion which should be checked if it's mapped
1894 */
1895 bool memory_region_is_mapped(MemoryRegion *mr);
1896
1897 /**
1898 * memory_region_find: translate an address/size relative to a
1899 * MemoryRegion into a #MemoryRegionSection.
1900 *
1901 * Locates the first #MemoryRegion within @mr that overlaps the range
1902 * given by @addr and @size.
1903 *
1904 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1905 * It will have the following characteristics:
1906 * - @size = 0 iff no overlap was found
1907 * - @mr is non-%NULL iff an overlap was found
1908 *
1909 * Remember that in the return value the @offset_within_region is
1910 * relative to the returned region (in the .@mr field), not to the
1911 * @mr argument.
1912 *
1913 * Similarly, the .@offset_within_address_space is relative to the
1914 * address space that contains both regions, the passed and the
1915 * returned one. However, in the special case where the @mr argument
1916 * has no container (and thus is the root of the address space), the
1917 * following will hold:
1918 * - @offset_within_address_space >= @addr
1919 * - @offset_within_address_space + .@size <= @addr + @size
1920 *
1921 * @mr: a MemoryRegion within which @addr is a relative address
1922 * @addr: start of the area within @as to be searched
1923 * @size: size of the area to be searched
1924 */
1925 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1926 hwaddr addr, uint64_t size);
1927
1928 /**
1929 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1930 *
1931 * Synchronizes the dirty page log for all address spaces.
1932 */
1933 void memory_global_dirty_log_sync(void);
1934
1935 /**
1936 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1937 *
1938 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
1939 * This function must be called after the dirty log bitmap is cleared, and
1940 * before dirty guest memory pages are read. If you are using
1941 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
1942 * care of doing this.
1943 */
1944 void memory_global_after_dirty_log_sync(void);
1945
1946 /**
1947 * memory_region_transaction_begin: Start a transaction.
1948 *
1949 * During a transaction, changes will be accumulated and made visible
1950 * only when the transaction ends (is committed).
1951 */
1952 void memory_region_transaction_begin(void);
1953
1954 /**
1955 * memory_region_transaction_commit: Commit a transaction and make changes
1956 * visible to the guest.
1957 */
1958 void memory_region_transaction_commit(void);
1959
1960 /**
1961 * memory_listener_register: register callbacks to be called when memory
1962 * sections are mapped or unmapped into an address
1963 * space
1964 *
1965 * @listener: an object containing the callbacks to be called
1966 * @filter: if non-%NULL, only regions in this address space will be observed
1967 */
1968 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1969
1970 /**
1971 * memory_listener_unregister: undo the effect of memory_listener_register()
1972 *
1973 * @listener: an object containing the callbacks to be removed
1974 */
1975 void memory_listener_unregister(MemoryListener *listener);
1976
1977 /**
1978 * memory_global_dirty_log_start: begin dirty logging for all regions
1979 */
1980 void memory_global_dirty_log_start(void);
1981
1982 /**
1983 * memory_global_dirty_log_stop: end dirty logging for all regions
1984 */
1985 void memory_global_dirty_log_stop(void);
1986
1987 void mtree_info(bool flatview, bool dispatch_tree, bool owner);
1988
1989 /**
1990 * memory_region_dispatch_read: perform a read directly to the specified
1991 * MemoryRegion.
1992 *
1993 * @mr: #MemoryRegion to access
1994 * @addr: address within that region
1995 * @pval: pointer to uint64_t which the data is written to
1996 * @op: size, sign, and endianness of the memory operation
1997 * @attrs: memory transaction attributes to use for the access
1998 */
1999 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2000 hwaddr addr,
2001 uint64_t *pval,
2002 MemOp op,
2003 MemTxAttrs attrs);
2004 /**
2005 * memory_region_dispatch_write: perform a write directly to the specified
2006 * MemoryRegion.
2007 *
2008 * @mr: #MemoryRegion to access
2009 * @addr: address within that region
2010 * @data: data to write
2011 * @op: size, sign, and endianness of the memory operation
2012 * @attrs: memory transaction attributes to use for the access
2013 */
2014 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2015 hwaddr addr,
2016 uint64_t data,
2017 MemOp op,
2018 MemTxAttrs attrs);
2019
2020 /**
2021 * address_space_init: initializes an address space
2022 *
2023 * @as: an uninitialized #AddressSpace
2024 * @root: a #MemoryRegion that routes addresses for the address space
2025 * @name: an address space name. The name is only used for debugging
2026 * output.
2027 */
2028 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2029
2030 /**
2031 * address_space_destroy: destroy an address space
2032 *
2033 * Releases all resources associated with an address space. After an address space
2034 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2035 * as well.
2036 *
2037 * @as: address space to be destroyed
2038 */
2039 void address_space_destroy(AddressSpace *as);
2040
2041 /**
2042 * address_space_remove_listeners: unregister all listeners of an address space
2043 *
2044 * Removes all callbacks previously registered with memory_listener_register()
2045 * for @as.
2046 *
2047 * @as: an initialized #AddressSpace
2048 */
2049 void address_space_remove_listeners(AddressSpace *as);
2050
2051 /**
2052 * address_space_rw: read from or write to an address space.
2053 *
2054 * Return a MemTxResult indicating whether the operation succeeded
2055 * or failed (eg unassigned memory, device rejected the transaction,
2056 * IOMMU fault).
2057 *
2058 * @as: #AddressSpace to be accessed
2059 * @addr: address within that address space
2060 * @attrs: memory transaction attributes
2061 * @buf: buffer with the data transferred
2062 * @len: the number of bytes to read or write
2063 * @is_write: indicates the transfer direction
2064 */
2065 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2066 MemTxAttrs attrs, void *buf,
2067 hwaddr len, bool is_write);
2068
2069 /**
2070 * address_space_write: write to address space.
2071 *
2072 * Return a MemTxResult indicating whether the operation succeeded
2073 * or failed (eg unassigned memory, device rejected the transaction,
2074 * IOMMU fault).
2075 *
2076 * @as: #AddressSpace to be accessed
2077 * @addr: address within that address space
2078 * @attrs: memory transaction attributes
2079 * @buf: buffer with the data transferred
2080 * @len: the number of bytes to write
2081 */
2082 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2083 MemTxAttrs attrs,
2084 const void *buf, hwaddr len);
2085
2086 /**
2087 * address_space_write_rom: write to address space, including ROM.
2088 *
2089 * This function writes to the specified address space, but will
2090 * write data to both ROM and RAM. This is used for non-guest
2091 * writes like writes from the gdb debug stub or initial loading
2092 * of ROM contents.
2093 *
2094 * Note that portions of the write which attempt to write data to
2095 * a device will be silently ignored -- only real RAM and ROM will
2096 * be written to.
2097 *
2098 * Return a MemTxResult indicating whether the operation succeeded
2099 * or failed (eg unassigned memory, device rejected the transaction,
2100 * IOMMU fault).
2101 *
2102 * @as: #AddressSpace to be accessed
2103 * @addr: address within that address space
2104 * @attrs: memory transaction attributes
2105 * @buf: buffer with the data transferred
2106 * @len: the number of bytes to write
2107 */
2108 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2109 MemTxAttrs attrs,
2110 const void *buf, hwaddr len);
2111
2112 /* address_space_ld*: load from an address space
2113 * address_space_st*: store to an address space
2114 *
2115 * These functions perform a load or store of the byte, word,
2116 * longword or quad to the specified address within the AddressSpace.
2117 * The _le suffixed functions treat the data as little endian;
2118 * _be indicates big endian; no suffix indicates "same endianness
2119 * as guest CPU".
2120 *
2121 * The "guest CPU endianness" accessors are deprecated for use outside
2122 * target-* code; devices should be CPU-agnostic and use either the LE
2123 * or the BE accessors.
2124 *
2125 * @as #AddressSpace to be accessed
2126 * @addr: address within that address space
2127 * @val: data value, for stores
2128 * @attrs: memory transaction attributes
2129 * @result: location to write the success/failure of the transaction;
2130 * if NULL, this information is discarded
2131 */
2132
2133 #define SUFFIX
2134 #define ARG1 as
2135 #define ARG1_DECL AddressSpace *as
2136 #include "exec/memory_ldst.inc.h"
2137
2138 #define SUFFIX
2139 #define ARG1 as
2140 #define ARG1_DECL AddressSpace *as
2141 #include "exec/memory_ldst_phys.inc.h"
2142
2143 struct MemoryRegionCache {
2144 void *ptr;
2145 hwaddr xlat;
2146 hwaddr len;
2147 FlatView *fv;
2148 MemoryRegionSection mrs;
2149 bool is_write;
2150 };
2151
2152 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2153
2154
2155 /* address_space_ld*_cached: load from a cached #MemoryRegion
2156 * address_space_st*_cached: store into a cached #MemoryRegion
2157 *
2158 * These functions perform a load or store of the byte, word,
2159 * longword or quad to the specified address. The address is
2160 * a physical address in the AddressSpace, but it must lie within
2161 * a #MemoryRegion that was mapped with address_space_cache_init.
2162 *
2163 * The _le suffixed functions treat the data as little endian;
2164 * _be indicates big endian; no suffix indicates "same endianness
2165 * as guest CPU".
2166 *
2167 * The "guest CPU endianness" accessors are deprecated for use outside
2168 * target-* code; devices should be CPU-agnostic and use either the LE
2169 * or the BE accessors.
2170 *
2171 * @cache: previously initialized #MemoryRegionCache to be accessed
2172 * @addr: address within the address space
2173 * @val: data value, for stores
2174 * @attrs: memory transaction attributes
2175 * @result: location to write the success/failure of the transaction;
2176 * if NULL, this information is discarded
2177 */
2178
2179 #define SUFFIX _cached_slow
2180 #define ARG1 cache
2181 #define ARG1_DECL MemoryRegionCache *cache
2182 #include "exec/memory_ldst.inc.h"
2183
2184 /* Inline fast path for direct RAM access. */
2185 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2186 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2187 {
2188 assert(addr < cache->len);
2189 if (likely(cache->ptr)) {
2190 return ldub_p(cache->ptr + addr);
2191 } else {
2192 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2193 }
2194 }
2195
2196 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2197 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
2198 {
2199 assert(addr < cache->len);
2200 if (likely(cache->ptr)) {
2201 stb_p(cache->ptr + addr, val);
2202 } else {
2203 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2204 }
2205 }
2206
2207 #define ENDIANNESS _le
2208 #include "exec/memory_ldst_cached.inc.h"
2209
2210 #define ENDIANNESS _be
2211 #include "exec/memory_ldst_cached.inc.h"
2212
2213 #define SUFFIX _cached
2214 #define ARG1 cache
2215 #define ARG1_DECL MemoryRegionCache *cache
2216 #include "exec/memory_ldst_phys.inc.h"
2217
2218 /* address_space_cache_init: prepare for repeated access to a physical
2219 * memory region
2220 *
2221 * @cache: #MemoryRegionCache to be filled
2222 * @as: #AddressSpace to be accessed
2223 * @addr: address within that address space
2224 * @len: length of buffer
2225 * @is_write: indicates the transfer direction
2226 *
2227 * Will only work with RAM, and may map a subset of the requested range by
2228 * returning a value that is less than @len. On failure, return a negative
2229 * errno value.
2230 *
2231 * Because it only works with RAM, this function can be used for
2232 * read-modify-write operations. In this case, is_write should be %true.
2233 *
2234 * Note that addresses passed to the address_space_*_cached functions
2235 * are relative to @addr.
2236 */
2237 int64_t address_space_cache_init(MemoryRegionCache *cache,
2238 AddressSpace *as,
2239 hwaddr addr,
2240 hwaddr len,
2241 bool is_write);
2242
2243 /**
2244 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2245 *
2246 * @cache: The #MemoryRegionCache to operate on.
2247 * @addr: The first physical address that was written, relative to the
2248 * address that was passed to @address_space_cache_init.
2249 * @access_len: The number of bytes that were written starting at @addr.
2250 */
2251 void address_space_cache_invalidate(MemoryRegionCache *cache,
2252 hwaddr addr,
2253 hwaddr access_len);
2254
2255 /**
2256 * address_space_cache_destroy: free a #MemoryRegionCache
2257 *
2258 * @cache: The #MemoryRegionCache whose memory should be released.
2259 */
2260 void address_space_cache_destroy(MemoryRegionCache *cache);
2261
2262 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2263 * entry. Should be called from an RCU critical section.
2264 */
2265 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2266 bool is_write, MemTxAttrs attrs);
2267
2268 /* address_space_translate: translate an address range into an address space
2269 * into a MemoryRegion and an address range into that section. Should be
2270 * called from an RCU critical section, to avoid that the last reference
2271 * to the returned region disappears after address_space_translate returns.
2272 *
2273 * @fv: #FlatView to be accessed
2274 * @addr: address within that address space
2275 * @xlat: pointer to address within the returned memory region section's
2276 * #MemoryRegion.
2277 * @len: pointer to length
2278 * @is_write: indicates the transfer direction
2279 * @attrs: memory attributes
2280 */
2281 MemoryRegion *flatview_translate(FlatView *fv,
2282 hwaddr addr, hwaddr *xlat,
2283 hwaddr *len, bool is_write,
2284 MemTxAttrs attrs);
2285
2286 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2287 hwaddr addr, hwaddr *xlat,
2288 hwaddr *len, bool is_write,
2289 MemTxAttrs attrs)
2290 {
2291 return flatview_translate(address_space_to_flatview(as),
2292 addr, xlat, len, is_write, attrs);
2293 }
2294
2295 /* address_space_access_valid: check for validity of accessing an address
2296 * space range
2297 *
2298 * Check whether memory is assigned to the given address space range, and
2299 * access is permitted by any IOMMU regions that are active for the address
2300 * space.
2301 *
2302 * For now, addr and len should be aligned to a page size. This limitation
2303 * will be lifted in the future.
2304 *
2305 * @as: #AddressSpace to be accessed
2306 * @addr: address within that address space
2307 * @len: length of the area to be checked
2308 * @is_write: indicates the transfer direction
2309 * @attrs: memory attributes
2310 */
2311 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2312 bool is_write, MemTxAttrs attrs);
2313
2314 /* address_space_map: map a physical memory region into a host virtual address
2315 *
2316 * May map a subset of the requested range, given by and returned in @plen.
2317 * May return %NULL if resources needed to perform the mapping are exhausted.
2318 * Use only for reads OR writes - not for read-modify-write operations.
2319 * Use cpu_register_map_client() to know when retrying the map operation is
2320 * likely to succeed.
2321 *
2322 * @as: #AddressSpace to be accessed
2323 * @addr: address within that address space
2324 * @plen: pointer to length of buffer; updated on return
2325 * @is_write: indicates the transfer direction
2326 * @attrs: memory attributes
2327 */
2328 void *address_space_map(AddressSpace *as, hwaddr addr,
2329 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2330
2331 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2332 *
2333 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2334 * the amount of memory that was actually read or written by the caller.
2335 *
2336 * @as: #AddressSpace used
2337 * @buffer: host pointer as returned by address_space_map()
2338 * @len: buffer length as returned by address_space_map()
2339 * @access_len: amount of data actually transferred
2340 * @is_write: indicates the transfer direction
2341 */
2342 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2343 bool is_write, hwaddr access_len);
2344
2345
2346 /* Internal functions, part of the implementation of address_space_read. */
2347 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2348 MemTxAttrs attrs, void *buf, hwaddr len);
2349 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2350 MemTxAttrs attrs, void *buf,
2351 hwaddr len, hwaddr addr1, hwaddr l,
2352 MemoryRegion *mr);
2353 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2354
2355 /* Internal functions, part of the implementation of address_space_read_cached
2356 * and address_space_write_cached. */
2357 void address_space_read_cached_slow(MemoryRegionCache *cache,
2358 hwaddr addr, void *buf, hwaddr len);
2359 void address_space_write_cached_slow(MemoryRegionCache *cache,
2360 hwaddr addr, const void *buf, hwaddr len);
2361
2362 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2363 {
2364 if (is_write) {
2365 return memory_region_is_ram(mr) && !mr->readonly &&
2366 !mr->rom_device && !memory_region_is_ram_device(mr);
2367 } else {
2368 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2369 memory_region_is_romd(mr);
2370 }
2371 }
2372
2373 /**
2374 * address_space_read: read from an address space.
2375 *
2376 * Return a MemTxResult indicating whether the operation succeeded
2377 * or failed (eg unassigned memory, device rejected the transaction,
2378 * IOMMU fault). Called within RCU critical section.
2379 *
2380 * @as: #AddressSpace to be accessed
2381 * @addr: address within that address space
2382 * @attrs: memory transaction attributes
2383 * @buf: buffer with the data transferred
2384 * @len: length of the data transferred
2385 */
2386 static inline __attribute__((__always_inline__))
2387 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2388 MemTxAttrs attrs, void *buf,
2389 hwaddr len)
2390 {
2391 MemTxResult result = MEMTX_OK;
2392 hwaddr l, addr1;
2393 void *ptr;
2394 MemoryRegion *mr;
2395 FlatView *fv;
2396
2397 if (__builtin_constant_p(len)) {
2398 if (len) {
2399 RCU_READ_LOCK_GUARD();
2400 fv = address_space_to_flatview(as);
2401 l = len;
2402 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2403 if (len == l && memory_access_is_direct(mr, false)) {
2404 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2405 memcpy(buf, ptr, len);
2406 } else {
2407 result = flatview_read_continue(fv, addr, attrs, buf, len,
2408 addr1, l, mr);
2409 }
2410 }
2411 } else {
2412 result = address_space_read_full(as, addr, attrs, buf, len);
2413 }
2414 return result;
2415 }
2416
2417 /**
2418 * address_space_read_cached: read from a cached RAM region
2419 *
2420 * @cache: Cached region to be addressed
2421 * @addr: address relative to the base of the RAM region
2422 * @buf: buffer with the data transferred
2423 * @len: length of the data transferred
2424 */
2425 static inline void
2426 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2427 void *buf, hwaddr len)
2428 {
2429 assert(addr < cache->len && len <= cache->len - addr);
2430 if (likely(cache->ptr)) {
2431 memcpy(buf, cache->ptr + addr, len);
2432 } else {
2433 address_space_read_cached_slow(cache, addr, buf, len);
2434 }
2435 }
2436
2437 /**
2438 * address_space_write_cached: write to a cached RAM region
2439 *
2440 * @cache: Cached region to be addressed
2441 * @addr: address relative to the base of the RAM region
2442 * @buf: buffer with the data transferred
2443 * @len: length of the data transferred
2444 */
2445 static inline void
2446 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2447 const void *buf, hwaddr len)
2448 {
2449 assert(addr < cache->len && len <= cache->len - addr);
2450 if (likely(cache->ptr)) {
2451 memcpy(cache->ptr + addr, buf, len);
2452 } else {
2453 address_space_write_cached_slow(cache, addr, buf, len);
2454 }
2455 }
2456
2457 #ifdef NEED_CPU_H
2458 /* enum device_endian to MemOp. */
2459 static inline MemOp devend_memop(enum device_endian end)
2460 {
2461 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2462 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2463
2464 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2465 /* Swap if non-host endianness or native (target) endianness */
2466 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2467 #else
2468 const int non_host_endianness =
2469 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2470
2471 /* In this case, native (target) endianness needs no swap. */
2472 return (end == non_host_endianness) ? MO_BSWAP : 0;
2473 #endif
2474 }
2475 #endif
2476
2477 #endif
2478
2479 #endif