]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/memory.h
6f24a3dd4632f38aa578e6359f34ecf1a92a6a9f
[mirror_qemu.git] / include / exec / memory.h
1 /*
2 * Physical memory management API
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef MEMORY_H
15 #define MEMORY_H
16
17 #ifndef CONFIG_USER_ONLY
18
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35
36 #define TYPE_MEMORY_REGION "memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38 TYPE_MEMORY_REGION)
39
40 #define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
44
45 #define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
46 typedef struct RamDiscardManagerClass RamDiscardManagerClass;
47 typedef struct RamDiscardManager RamDiscardManager;
48 DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
49 RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
50
51 #ifdef CONFIG_FUZZ
52 void fuzz_dma_read_cb(size_t addr,
53 size_t len,
54 MemoryRegion *mr);
55 #else
56 static inline void fuzz_dma_read_cb(size_t addr,
57 size_t len,
58 MemoryRegion *mr)
59 {
60 /* Do Nothing */
61 }
62 #endif
63
64 /* Possible bits for global_dirty_log_{start|stop} */
65
66 /* Dirty tracking enabled because migration is running */
67 #define GLOBAL_DIRTY_MIGRATION (1U << 0)
68
69 /* Dirty tracking enabled because measuring dirty rate */
70 #define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
71
72 /* Dirty tracking enabled because dirty limit */
73 #define GLOBAL_DIRTY_LIMIT (1U << 2)
74
75 #define GLOBAL_DIRTY_MASK (0x7)
76
77 extern unsigned int global_dirty_tracking;
78
79 typedef struct MemoryRegionOps MemoryRegionOps;
80
81 struct ReservedRegion {
82 hwaddr low;
83 hwaddr high;
84 unsigned type;
85 };
86
87 /**
88 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
89 *
90 * @mr: the region, or %NULL if empty
91 * @fv: the flat view of the address space the region is mapped in
92 * @offset_within_region: the beginning of the section, relative to @mr's start
93 * @size: the size of the section; will not exceed @mr's boundaries
94 * @offset_within_address_space: the address of the first byte of the section
95 * relative to the region's address space
96 * @readonly: writes to this section are ignored
97 * @nonvolatile: this section is non-volatile
98 */
99 struct MemoryRegionSection {
100 Int128 size;
101 MemoryRegion *mr;
102 FlatView *fv;
103 hwaddr offset_within_region;
104 hwaddr offset_within_address_space;
105 bool readonly;
106 bool nonvolatile;
107 };
108
109 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
110
111 /* See address_space_translate: bit 0 is read, bit 1 is write. */
112 typedef enum {
113 IOMMU_NONE = 0,
114 IOMMU_RO = 1,
115 IOMMU_WO = 2,
116 IOMMU_RW = 3,
117 } IOMMUAccessFlags;
118
119 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
120
121 struct IOMMUTLBEntry {
122 AddressSpace *target_as;
123 hwaddr iova;
124 hwaddr translated_addr;
125 hwaddr addr_mask; /* 0xfff = 4k translation */
126 IOMMUAccessFlags perm;
127 };
128
129 /*
130 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
131 * register with one or multiple IOMMU Notifier capability bit(s).
132 *
133 * Normally there're two use cases for the notifiers:
134 *
135 * (1) When the device needs accurate synchronizations of the vIOMMU page
136 * tables, it needs to register with both MAP|UNMAP notifies (which
137 * is defined as IOMMU_NOTIFIER_IOTLB_EVENTS below).
138 *
139 * Regarding to accurate synchronization, it's when the notified
140 * device maintains a shadow page table and must be notified on each
141 * guest MAP (page table entry creation) and UNMAP (invalidation)
142 * events (e.g. VFIO). Both notifications must be accurate so that
143 * the shadow page table is fully in sync with the guest view.
144 *
145 * (2) When the device doesn't need accurate synchronizations of the
146 * vIOMMU page tables, it needs to register only with UNMAP or
147 * DEVIOTLB_UNMAP notifies.
148 *
149 * It's when the device maintains a cache of IOMMU translations
150 * (IOTLB) and is able to fill that cache by requesting translations
151 * from the vIOMMU through a protocol similar to ATS (Address
152 * Translation Service).
153 *
154 * Note that in this mode the vIOMMU will not maintain a shadowed
155 * page table for the address space, and the UNMAP messages can cover
156 * more than the pages that used to get mapped. The IOMMU notifiee
157 * should be able to take care of over-sized invalidations.
158 */
159 typedef enum {
160 IOMMU_NOTIFIER_NONE = 0,
161 /* Notify cache invalidations */
162 IOMMU_NOTIFIER_UNMAP = 0x1,
163 /* Notify entry changes (newly created entries) */
164 IOMMU_NOTIFIER_MAP = 0x2,
165 /* Notify changes on device IOTLB entries */
166 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
167 } IOMMUNotifierFlag;
168
169 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
170 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
171 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
172 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
173
174 struct IOMMUNotifier;
175 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
176 IOMMUTLBEntry *data);
177
178 struct IOMMUNotifier {
179 IOMMUNotify notify;
180 IOMMUNotifierFlag notifier_flags;
181 /* Notify for address space range start <= addr <= end */
182 hwaddr start;
183 hwaddr end;
184 int iommu_idx;
185 QLIST_ENTRY(IOMMUNotifier) node;
186 };
187 typedef struct IOMMUNotifier IOMMUNotifier;
188
189 typedef struct IOMMUTLBEvent {
190 IOMMUNotifierFlag type;
191 IOMMUTLBEntry entry;
192 } IOMMUTLBEvent;
193
194 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
195 #define RAM_PREALLOC (1 << 0)
196
197 /* RAM is mmap-ed with MAP_SHARED */
198 #define RAM_SHARED (1 << 1)
199
200 /* Only a portion of RAM (used_length) is actually used, and migrated.
201 * Resizing RAM while migrating can result in the migration being canceled.
202 */
203 #define RAM_RESIZEABLE (1 << 2)
204
205 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
206 * zero the page and wake waiting processes.
207 * (Set during postcopy)
208 */
209 #define RAM_UF_ZEROPAGE (1 << 3)
210
211 /* RAM can be migrated */
212 #define RAM_MIGRATABLE (1 << 4)
213
214 /* RAM is a persistent kind memory */
215 #define RAM_PMEM (1 << 5)
216
217
218 /*
219 * UFFDIO_WRITEPROTECT is used on this RAMBlock to
220 * support 'write-tracking' migration type.
221 * Implies ram_state->ram_wt_enabled.
222 */
223 #define RAM_UF_WRITEPROTECT (1 << 6)
224
225 /*
226 * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
227 * pages if applicable) is skipped: will bail out if not supported. When not
228 * set, the OS will do the reservation, if supported for the memory type.
229 */
230 #define RAM_NORESERVE (1 << 7)
231
232 /* RAM that isn't accessible through normal means. */
233 #define RAM_PROTECTED (1 << 8)
234
235 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
236 IOMMUNotifierFlag flags,
237 hwaddr start, hwaddr end,
238 int iommu_idx)
239 {
240 n->notify = fn;
241 n->notifier_flags = flags;
242 n->start = start;
243 n->end = end;
244 n->iommu_idx = iommu_idx;
245 }
246
247 /*
248 * Memory region callbacks
249 */
250 struct MemoryRegionOps {
251 /* Read from the memory region. @addr is relative to @mr; @size is
252 * in bytes. */
253 uint64_t (*read)(void *opaque,
254 hwaddr addr,
255 unsigned size);
256 /* Write to the memory region. @addr is relative to @mr; @size is
257 * in bytes. */
258 void (*write)(void *opaque,
259 hwaddr addr,
260 uint64_t data,
261 unsigned size);
262
263 MemTxResult (*read_with_attrs)(void *opaque,
264 hwaddr addr,
265 uint64_t *data,
266 unsigned size,
267 MemTxAttrs attrs);
268 MemTxResult (*write_with_attrs)(void *opaque,
269 hwaddr addr,
270 uint64_t data,
271 unsigned size,
272 MemTxAttrs attrs);
273
274 enum device_endian endianness;
275 /* Guest-visible constraints: */
276 struct {
277 /* If nonzero, specify bounds on access sizes beyond which a machine
278 * check is thrown.
279 */
280 unsigned min_access_size;
281 unsigned max_access_size;
282 /* If true, unaligned accesses are supported. Otherwise unaligned
283 * accesses throw machine checks.
284 */
285 bool unaligned;
286 /*
287 * If present, and returns #false, the transaction is not accepted
288 * by the device (and results in machine dependent behaviour such
289 * as a machine check exception).
290 */
291 bool (*accepts)(void *opaque, hwaddr addr,
292 unsigned size, bool is_write,
293 MemTxAttrs attrs);
294 } valid;
295 /* Internal implementation constraints: */
296 struct {
297 /* If nonzero, specifies the minimum size implemented. Smaller sizes
298 * will be rounded upwards and a partial result will be returned.
299 */
300 unsigned min_access_size;
301 /* If nonzero, specifies the maximum size implemented. Larger sizes
302 * will be done as a series of accesses with smaller sizes.
303 */
304 unsigned max_access_size;
305 /* If true, unaligned accesses are supported. Otherwise all accesses
306 * are converted to (possibly multiple) naturally aligned accesses.
307 */
308 bool unaligned;
309 } impl;
310 };
311
312 typedef struct MemoryRegionClass {
313 /* private */
314 ObjectClass parent_class;
315 } MemoryRegionClass;
316
317
318 enum IOMMUMemoryRegionAttr {
319 IOMMU_ATTR_SPAPR_TCE_FD
320 };
321
322 /*
323 * IOMMUMemoryRegionClass:
324 *
325 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
326 * and provide an implementation of at least the @translate method here
327 * to handle requests to the memory region. Other methods are optional.
328 *
329 * The IOMMU implementation must use the IOMMU notifier infrastructure
330 * to report whenever mappings are changed, by calling
331 * memory_region_notify_iommu() (or, if necessary, by calling
332 * memory_region_notify_iommu_one() for each registered notifier).
333 *
334 * Conceptually an IOMMU provides a mapping from input address
335 * to an output TLB entry. If the IOMMU is aware of memory transaction
336 * attributes and the output TLB entry depends on the transaction
337 * attributes, we represent this using IOMMU indexes. Each index
338 * selects a particular translation table that the IOMMU has:
339 *
340 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
341 *
342 * @translate takes an input address and an IOMMU index
343 *
344 * and the mapping returned can only depend on the input address and the
345 * IOMMU index.
346 *
347 * Most IOMMUs don't care about the transaction attributes and support
348 * only a single IOMMU index. A more complex IOMMU might have one index
349 * for secure transactions and one for non-secure transactions.
350 */
351 struct IOMMUMemoryRegionClass {
352 /* private: */
353 MemoryRegionClass parent_class;
354
355 /* public: */
356 /**
357 * @translate:
358 *
359 * Return a TLB entry that contains a given address.
360 *
361 * The IOMMUAccessFlags indicated via @flag are optional and may
362 * be specified as IOMMU_NONE to indicate that the caller needs
363 * the full translation information for both reads and writes. If
364 * the access flags are specified then the IOMMU implementation
365 * may use this as an optimization, to stop doing a page table
366 * walk as soon as it knows that the requested permissions are not
367 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
368 * full page table walk and report the permissions in the returned
369 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
370 * return different mappings for reads and writes.)
371 *
372 * The returned information remains valid while the caller is
373 * holding the big QEMU lock or is inside an RCU critical section;
374 * if the caller wishes to cache the mapping beyond that it must
375 * register an IOMMU notifier so it can invalidate its cached
376 * information when the IOMMU mapping changes.
377 *
378 * @iommu: the IOMMUMemoryRegion
379 *
380 * @hwaddr: address to be translated within the memory region
381 *
382 * @flag: requested access permission
383 *
384 * @iommu_idx: IOMMU index for the translation
385 */
386 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
387 IOMMUAccessFlags flag, int iommu_idx);
388 /**
389 * @get_min_page_size:
390 *
391 * Returns minimum supported page size in bytes.
392 *
393 * If this method is not provided then the minimum is assumed to
394 * be TARGET_PAGE_SIZE.
395 *
396 * @iommu: the IOMMUMemoryRegion
397 */
398 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
399 /**
400 * @notify_flag_changed:
401 *
402 * Called when IOMMU Notifier flag changes (ie when the set of
403 * events which IOMMU users are requesting notification for changes).
404 * Optional method -- need not be provided if the IOMMU does not
405 * need to know exactly which events must be notified.
406 *
407 * @iommu: the IOMMUMemoryRegion
408 *
409 * @old_flags: events which previously needed to be notified
410 *
411 * @new_flags: events which now need to be notified
412 *
413 * Returns 0 on success, or a negative errno; in particular
414 * returns -EINVAL if the new flag bitmap is not supported by the
415 * IOMMU memory region. In case of failure, the error object
416 * must be created
417 */
418 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
419 IOMMUNotifierFlag old_flags,
420 IOMMUNotifierFlag new_flags,
421 Error **errp);
422 /**
423 * @replay:
424 *
425 * Called to handle memory_region_iommu_replay().
426 *
427 * The default implementation of memory_region_iommu_replay() is to
428 * call the IOMMU translate method for every page in the address space
429 * with flag == IOMMU_NONE and then call the notifier if translate
430 * returns a valid mapping. If this method is implemented then it
431 * overrides the default behaviour, and must provide the full semantics
432 * of memory_region_iommu_replay(), by calling @notifier for every
433 * translation present in the IOMMU.
434 *
435 * Optional method -- an IOMMU only needs to provide this method
436 * if the default is inefficient or produces undesirable side effects.
437 *
438 * Note: this is not related to record-and-replay functionality.
439 */
440 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
441
442 /**
443 * @get_attr:
444 *
445 * Get IOMMU misc attributes. This is an optional method that
446 * can be used to allow users of the IOMMU to get implementation-specific
447 * information. The IOMMU implements this method to handle calls
448 * by IOMMU users to memory_region_iommu_get_attr() by filling in
449 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
450 * the IOMMU supports. If the method is unimplemented then
451 * memory_region_iommu_get_attr() will always return -EINVAL.
452 *
453 * @iommu: the IOMMUMemoryRegion
454 *
455 * @attr: attribute being queried
456 *
457 * @data: memory to fill in with the attribute data
458 *
459 * Returns 0 on success, or a negative errno; in particular
460 * returns -EINVAL for unrecognized or unimplemented attribute types.
461 */
462 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
463 void *data);
464
465 /**
466 * @attrs_to_index:
467 *
468 * Return the IOMMU index to use for a given set of transaction attributes.
469 *
470 * Optional method: if an IOMMU only supports a single IOMMU index then
471 * the default implementation of memory_region_iommu_attrs_to_index()
472 * will return 0.
473 *
474 * The indexes supported by an IOMMU must be contiguous, starting at 0.
475 *
476 * @iommu: the IOMMUMemoryRegion
477 * @attrs: memory transaction attributes
478 */
479 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
480
481 /**
482 * @num_indexes:
483 *
484 * Return the number of IOMMU indexes this IOMMU supports.
485 *
486 * Optional method: if this method is not provided, then
487 * memory_region_iommu_num_indexes() will return 1, indicating that
488 * only a single IOMMU index is supported.
489 *
490 * @iommu: the IOMMUMemoryRegion
491 */
492 int (*num_indexes)(IOMMUMemoryRegion *iommu);
493
494 /**
495 * @iommu_set_page_size_mask:
496 *
497 * Restrict the page size mask that can be supported with a given IOMMU
498 * memory region. Used for example to propagate host physical IOMMU page
499 * size mask limitations to the virtual IOMMU.
500 *
501 * Optional method: if this method is not provided, then the default global
502 * page mask is used.
503 *
504 * @iommu: the IOMMUMemoryRegion
505 *
506 * @page_size_mask: a bitmask of supported page sizes. At least one bit,
507 * representing the smallest page size, must be set. Additional set bits
508 * represent supported block sizes. For example a host physical IOMMU that
509 * uses page tables with a page size of 4kB, and supports 2MB and 4GB
510 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
511 * block sizes is specified with mask 0xfffffffffffff000.
512 *
513 * Returns 0 on success, or a negative error. In case of failure, the error
514 * object must be created.
515 */
516 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
517 uint64_t page_size_mask,
518 Error **errp);
519 };
520
521 typedef struct RamDiscardListener RamDiscardListener;
522 typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
523 MemoryRegionSection *section);
524 typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
525 MemoryRegionSection *section);
526
527 struct RamDiscardListener {
528 /*
529 * @notify_populate:
530 *
531 * Notification that previously discarded memory is about to get populated.
532 * Listeners are able to object. If any listener objects, already
533 * successfully notified listeners are notified about a discard again.
534 *
535 * @rdl: the #RamDiscardListener getting notified
536 * @section: the #MemoryRegionSection to get populated. The section
537 * is aligned within the memory region to the minimum granularity
538 * unless it would exceed the registered section.
539 *
540 * Returns 0 on success. If the notification is rejected by the listener,
541 * an error is returned.
542 */
543 NotifyRamPopulate notify_populate;
544
545 /*
546 * @notify_discard:
547 *
548 * Notification that previously populated memory was discarded successfully
549 * and listeners should drop all references to such memory and prevent
550 * new population (e.g., unmap).
551 *
552 * @rdl: the #RamDiscardListener getting notified
553 * @section: the #MemoryRegionSection to get populated. The section
554 * is aligned within the memory region to the minimum granularity
555 * unless it would exceed the registered section.
556 */
557 NotifyRamDiscard notify_discard;
558
559 /*
560 * @double_discard_supported:
561 *
562 * The listener suppors getting @notify_discard notifications that span
563 * already discarded parts.
564 */
565 bool double_discard_supported;
566
567 MemoryRegionSection *section;
568 QLIST_ENTRY(RamDiscardListener) next;
569 };
570
571 static inline void ram_discard_listener_init(RamDiscardListener *rdl,
572 NotifyRamPopulate populate_fn,
573 NotifyRamDiscard discard_fn,
574 bool double_discard_supported)
575 {
576 rdl->notify_populate = populate_fn;
577 rdl->notify_discard = discard_fn;
578 rdl->double_discard_supported = double_discard_supported;
579 }
580
581 typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
582 typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
583
584 /*
585 * RamDiscardManagerClass:
586 *
587 * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
588 * regions are currently populated to be used/accessed by the VM, notifying
589 * after parts were discarded (freeing up memory) and before parts will be
590 * populated (consuming memory), to be used/accessed by the VM.
591 *
592 * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
593 * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
594 * mapped.
595 *
596 * The #RamDiscardManager is intended to be used by technologies that are
597 * incompatible with discarding of RAM (e.g., VFIO, which may pin all
598 * memory inside a #MemoryRegion), and require proper coordination to only
599 * map the currently populated parts, to hinder parts that are expected to
600 * remain discarded from silently getting populated and consuming memory.
601 * Technologies that support discarding of RAM don't have to bother and can
602 * simply map the whole #MemoryRegion.
603 *
604 * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
605 * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
606 * Logically unplugging memory consists of discarding RAM. The VM agreed to not
607 * access unplugged (discarded) memory - especially via DMA. virtio-mem will
608 * properly coordinate with listeners before memory is plugged (populated),
609 * and after memory is unplugged (discarded).
610 *
611 * Listeners are called in multiples of the minimum granularity (unless it
612 * would exceed the registered range) and changes are aligned to the minimum
613 * granularity within the #MemoryRegion. Listeners have to prepare for memory
614 * becoming discarded in a different granularity than it was populated and the
615 * other way around.
616 */
617 struct RamDiscardManagerClass {
618 /* private */
619 InterfaceClass parent_class;
620
621 /* public */
622
623 /**
624 * @get_min_granularity:
625 *
626 * Get the minimum granularity in which listeners will get notified
627 * about changes within the #MemoryRegion via the #RamDiscardManager.
628 *
629 * @rdm: the #RamDiscardManager
630 * @mr: the #MemoryRegion
631 *
632 * Returns the minimum granularity.
633 */
634 uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
635 const MemoryRegion *mr);
636
637 /**
638 * @is_populated:
639 *
640 * Check whether the given #MemoryRegionSection is completely populated
641 * (i.e., no parts are currently discarded) via the #RamDiscardManager.
642 * There are no alignment requirements.
643 *
644 * @rdm: the #RamDiscardManager
645 * @section: the #MemoryRegionSection
646 *
647 * Returns whether the given range is completely populated.
648 */
649 bool (*is_populated)(const RamDiscardManager *rdm,
650 const MemoryRegionSection *section);
651
652 /**
653 * @replay_populated:
654 *
655 * Call the #ReplayRamPopulate callback for all populated parts within the
656 * #MemoryRegionSection via the #RamDiscardManager.
657 *
658 * In case any call fails, no further calls are made.
659 *
660 * @rdm: the #RamDiscardManager
661 * @section: the #MemoryRegionSection
662 * @replay_fn: the #ReplayRamPopulate callback
663 * @opaque: pointer to forward to the callback
664 *
665 * Returns 0 on success, or a negative error if any notification failed.
666 */
667 int (*replay_populated)(const RamDiscardManager *rdm,
668 MemoryRegionSection *section,
669 ReplayRamPopulate replay_fn, void *opaque);
670
671 /**
672 * @replay_discarded:
673 *
674 * Call the #ReplayRamDiscard callback for all discarded parts within the
675 * #MemoryRegionSection via the #RamDiscardManager.
676 *
677 * @rdm: the #RamDiscardManager
678 * @section: the #MemoryRegionSection
679 * @replay_fn: the #ReplayRamDiscard callback
680 * @opaque: pointer to forward to the callback
681 */
682 void (*replay_discarded)(const RamDiscardManager *rdm,
683 MemoryRegionSection *section,
684 ReplayRamDiscard replay_fn, void *opaque);
685
686 /**
687 * @register_listener:
688 *
689 * Register a #RamDiscardListener for the given #MemoryRegionSection and
690 * immediately notify the #RamDiscardListener about all populated parts
691 * within the #MemoryRegionSection via the #RamDiscardManager.
692 *
693 * In case any notification fails, no further notifications are triggered
694 * and an error is logged.
695 *
696 * @rdm: the #RamDiscardManager
697 * @rdl: the #RamDiscardListener
698 * @section: the #MemoryRegionSection
699 */
700 void (*register_listener)(RamDiscardManager *rdm,
701 RamDiscardListener *rdl,
702 MemoryRegionSection *section);
703
704 /**
705 * @unregister_listener:
706 *
707 * Unregister a previously registered #RamDiscardListener via the
708 * #RamDiscardManager after notifying the #RamDiscardListener about all
709 * populated parts becoming unpopulated within the registered
710 * #MemoryRegionSection.
711 *
712 * @rdm: the #RamDiscardManager
713 * @rdl: the #RamDiscardListener
714 */
715 void (*unregister_listener)(RamDiscardManager *rdm,
716 RamDiscardListener *rdl);
717 };
718
719 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
720 const MemoryRegion *mr);
721
722 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
723 const MemoryRegionSection *section);
724
725 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
726 MemoryRegionSection *section,
727 ReplayRamPopulate replay_fn,
728 void *opaque);
729
730 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
731 MemoryRegionSection *section,
732 ReplayRamDiscard replay_fn,
733 void *opaque);
734
735 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
736 RamDiscardListener *rdl,
737 MemoryRegionSection *section);
738
739 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
740 RamDiscardListener *rdl);
741
742 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
743 ram_addr_t *ram_addr, bool *read_only,
744 bool *mr_has_discard_manager);
745
746 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
747 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
748
749 /** MemoryRegion:
750 *
751 * A struct representing a memory region.
752 */
753 struct MemoryRegion {
754 Object parent_obj;
755
756 /* private: */
757
758 /* The following fields should fit in a cache line */
759 bool romd_mode;
760 bool ram;
761 bool subpage;
762 bool readonly; /* For RAM regions */
763 bool nonvolatile;
764 bool rom_device;
765 bool flush_coalesced_mmio;
766 uint8_t dirty_log_mask;
767 bool is_iommu;
768 RAMBlock *ram_block;
769 Object *owner;
770 /* owner as TYPE_DEVICE. Used for re-entrancy checks in MR access hotpath */
771 DeviceState *dev;
772
773 const MemoryRegionOps *ops;
774 void *opaque;
775 MemoryRegion *container;
776 int mapped_via_alias; /* Mapped via an alias, container might be NULL */
777 Int128 size;
778 hwaddr addr;
779 void (*destructor)(MemoryRegion *mr);
780 uint64_t align;
781 bool terminates;
782 bool ram_device;
783 bool enabled;
784 bool warning_printed; /* For reservations */
785 uint8_t vga_logging_count;
786 MemoryRegion *alias;
787 hwaddr alias_offset;
788 int32_t priority;
789 QTAILQ_HEAD(, MemoryRegion) subregions;
790 QTAILQ_ENTRY(MemoryRegion) subregions_link;
791 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
792 const char *name;
793 unsigned ioeventfd_nb;
794 MemoryRegionIoeventfd *ioeventfds;
795 RamDiscardManager *rdm; /* Only for RAM */
796
797 /* For devices designed to perform re-entrant IO into their own IO MRs */
798 bool disable_reentrancy_guard;
799 };
800
801 struct IOMMUMemoryRegion {
802 MemoryRegion parent_obj;
803
804 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
805 IOMMUNotifierFlag iommu_notify_flags;
806 };
807
808 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
809 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
810
811 /**
812 * struct MemoryListener: callbacks structure for updates to the physical memory map
813 *
814 * Allows a component to adjust to changes in the guest-visible memory map.
815 * Use with memory_listener_register() and memory_listener_unregister().
816 */
817 struct MemoryListener {
818 /**
819 * @begin:
820 *
821 * Called at the beginning of an address space update transaction.
822 * Followed by calls to #MemoryListener.region_add(),
823 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
824 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
825 * increasing address order.
826 *
827 * @listener: The #MemoryListener.
828 */
829 void (*begin)(MemoryListener *listener);
830
831 /**
832 * @commit:
833 *
834 * Called at the end of an address space update transaction,
835 * after the last call to #MemoryListener.region_add(),
836 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
837 * #MemoryListener.log_start() and #MemoryListener.log_stop().
838 *
839 * @listener: The #MemoryListener.
840 */
841 void (*commit)(MemoryListener *listener);
842
843 /**
844 * @region_add:
845 *
846 * Called during an address space update transaction,
847 * for a section of the address space that is new in this address space
848 * space since the last transaction.
849 *
850 * @listener: The #MemoryListener.
851 * @section: The new #MemoryRegionSection.
852 */
853 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
854
855 /**
856 * @region_del:
857 *
858 * Called during an address space update transaction,
859 * for a section of the address space that has disappeared in the address
860 * space since the last transaction.
861 *
862 * @listener: The #MemoryListener.
863 * @section: The old #MemoryRegionSection.
864 */
865 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
866
867 /**
868 * @region_nop:
869 *
870 * Called during an address space update transaction,
871 * for a section of the address space that is in the same place in the address
872 * space as in the last transaction.
873 *
874 * @listener: The #MemoryListener.
875 * @section: The #MemoryRegionSection.
876 */
877 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
878
879 /**
880 * @log_start:
881 *
882 * Called during an address space update transaction, after
883 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
884 * #MemoryListener.region_nop(), if dirty memory logging clients have
885 * become active since the last transaction.
886 *
887 * @listener: The #MemoryListener.
888 * @section: The #MemoryRegionSection.
889 * @old: A bitmap of dirty memory logging clients that were active in
890 * the previous transaction.
891 * @new: A bitmap of dirty memory logging clients that are active in
892 * the current transaction.
893 */
894 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
895 int old, int new);
896
897 /**
898 * @log_stop:
899 *
900 * Called during an address space update transaction, after
901 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
902 * #MemoryListener.region_nop() and possibly after
903 * #MemoryListener.log_start(), if dirty memory logging clients have
904 * become inactive since the last transaction.
905 *
906 * @listener: The #MemoryListener.
907 * @section: The #MemoryRegionSection.
908 * @old: A bitmap of dirty memory logging clients that were active in
909 * the previous transaction.
910 * @new: A bitmap of dirty memory logging clients that are active in
911 * the current transaction.
912 */
913 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
914 int old, int new);
915
916 /**
917 * @log_sync:
918 *
919 * Called by memory_region_snapshot_and_clear_dirty() and
920 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
921 * copy of the dirty memory bitmap for a #MemoryRegionSection.
922 *
923 * @listener: The #MemoryListener.
924 * @section: The #MemoryRegionSection.
925 */
926 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
927
928 /**
929 * @log_sync_global:
930 *
931 * This is the global version of @log_sync when the listener does
932 * not have a way to synchronize the log with finer granularity.
933 * When the listener registers with @log_sync_global defined, then
934 * its @log_sync must be NULL. Vice versa.
935 *
936 * @listener: The #MemoryListener.
937 * @last_stage: The last stage to synchronize the log during migration.
938 * The caller should gurantee that the synchronization with true for
939 * @last_stage is triggered for once after all VCPUs have been stopped.
940 */
941 void (*log_sync_global)(MemoryListener *listener, bool last_stage);
942
943 /**
944 * @log_clear:
945 *
946 * Called before reading the dirty memory bitmap for a
947 * #MemoryRegionSection.
948 *
949 * @listener: The #MemoryListener.
950 * @section: The #MemoryRegionSection.
951 */
952 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
953
954 /**
955 * @log_global_start:
956 *
957 * Called by memory_global_dirty_log_start(), which
958 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
959 * the address space. #MemoryListener.log_global_start() is also
960 * called when a #MemoryListener is added, if global dirty logging is
961 * active at that time.
962 *
963 * @listener: The #MemoryListener.
964 */
965 void (*log_global_start)(MemoryListener *listener);
966
967 /**
968 * @log_global_stop:
969 *
970 * Called by memory_global_dirty_log_stop(), which
971 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
972 * the address space.
973 *
974 * @listener: The #MemoryListener.
975 */
976 void (*log_global_stop)(MemoryListener *listener);
977
978 /**
979 * @log_global_after_sync:
980 *
981 * Called after reading the dirty memory bitmap
982 * for any #MemoryRegionSection.
983 *
984 * @listener: The #MemoryListener.
985 */
986 void (*log_global_after_sync)(MemoryListener *listener);
987
988 /**
989 * @eventfd_add:
990 *
991 * Called during an address space update transaction,
992 * for a section of the address space that has had a new ioeventfd
993 * registration since the last transaction.
994 *
995 * @listener: The #MemoryListener.
996 * @section: The new #MemoryRegionSection.
997 * @match_data: The @match_data parameter for the new ioeventfd.
998 * @data: The @data parameter for the new ioeventfd.
999 * @e: The #EventNotifier parameter for the new ioeventfd.
1000 */
1001 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
1002 bool match_data, uint64_t data, EventNotifier *e);
1003
1004 /**
1005 * @eventfd_del:
1006 *
1007 * Called during an address space update transaction,
1008 * for a section of the address space that has dropped an ioeventfd
1009 * registration since the last transaction.
1010 *
1011 * @listener: The #MemoryListener.
1012 * @section: The new #MemoryRegionSection.
1013 * @match_data: The @match_data parameter for the dropped ioeventfd.
1014 * @data: The @data parameter for the dropped ioeventfd.
1015 * @e: The #EventNotifier parameter for the dropped ioeventfd.
1016 */
1017 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
1018 bool match_data, uint64_t data, EventNotifier *e);
1019
1020 /**
1021 * @coalesced_io_add:
1022 *
1023 * Called during an address space update transaction,
1024 * for a section of the address space that has had a new coalesced
1025 * MMIO range registration since the last transaction.
1026 *
1027 * @listener: The #MemoryListener.
1028 * @section: The new #MemoryRegionSection.
1029 * @addr: The starting address for the coalesced MMIO range.
1030 * @len: The length of the coalesced MMIO range.
1031 */
1032 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
1033 hwaddr addr, hwaddr len);
1034
1035 /**
1036 * @coalesced_io_del:
1037 *
1038 * Called during an address space update transaction,
1039 * for a section of the address space that has dropped a coalesced
1040 * MMIO range since the last transaction.
1041 *
1042 * @listener: The #MemoryListener.
1043 * @section: The new #MemoryRegionSection.
1044 * @addr: The starting address for the coalesced MMIO range.
1045 * @len: The length of the coalesced MMIO range.
1046 */
1047 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
1048 hwaddr addr, hwaddr len);
1049 /**
1050 * @priority:
1051 *
1052 * Govern the order in which memory listeners are invoked. Lower priorities
1053 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
1054 * or "stop" callbacks.
1055 */
1056 unsigned priority;
1057
1058 /**
1059 * @name:
1060 *
1061 * Name of the listener. It can be used in contexts where we'd like to
1062 * identify one memory listener with the rest.
1063 */
1064 const char *name;
1065
1066 /* private: */
1067 AddressSpace *address_space;
1068 QTAILQ_ENTRY(MemoryListener) link;
1069 QTAILQ_ENTRY(MemoryListener) link_as;
1070 };
1071
1072 /**
1073 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
1074 */
1075 struct AddressSpace {
1076 /* private: */
1077 struct rcu_head rcu;
1078 char *name;
1079 MemoryRegion *root;
1080
1081 /* Accessed via RCU. */
1082 struct FlatView *current_map;
1083
1084 int ioeventfd_nb;
1085 struct MemoryRegionIoeventfd *ioeventfds;
1086 QTAILQ_HEAD(, MemoryListener) listeners;
1087 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
1088 };
1089
1090 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
1091 typedef struct FlatRange FlatRange;
1092
1093 /* Flattened global view of current active memory hierarchy. Kept in sorted
1094 * order.
1095 */
1096 struct FlatView {
1097 struct rcu_head rcu;
1098 unsigned ref;
1099 FlatRange *ranges;
1100 unsigned nr;
1101 unsigned nr_allocated;
1102 struct AddressSpaceDispatch *dispatch;
1103 MemoryRegion *root;
1104 };
1105
1106 static inline FlatView *address_space_to_flatview(AddressSpace *as)
1107 {
1108 return qatomic_rcu_read(&as->current_map);
1109 }
1110
1111 /**
1112 * typedef flatview_cb: callback for flatview_for_each_range()
1113 *
1114 * @start: start address of the range within the FlatView
1115 * @len: length of the range in bytes
1116 * @mr: MemoryRegion covering this range
1117 * @offset_in_region: offset of the first byte of the range within @mr
1118 * @opaque: data pointer passed to flatview_for_each_range()
1119 *
1120 * Returns: true to stop the iteration, false to keep going.
1121 */
1122 typedef bool (*flatview_cb)(Int128 start,
1123 Int128 len,
1124 const MemoryRegion *mr,
1125 hwaddr offset_in_region,
1126 void *opaque);
1127
1128 /**
1129 * flatview_for_each_range: Iterate through a FlatView
1130 * @fv: the FlatView to iterate through
1131 * @cb: function to call for each range
1132 * @opaque: opaque data pointer to pass to @cb
1133 *
1134 * A FlatView is made up of a list of non-overlapping ranges, each of
1135 * which is a slice of a MemoryRegion. This function iterates through
1136 * each range in @fv, calling @cb. The callback function can terminate
1137 * iteration early by returning 'true'.
1138 */
1139 void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
1140
1141 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
1142 MemoryRegionSection *b)
1143 {
1144 return a->mr == b->mr &&
1145 a->fv == b->fv &&
1146 a->offset_within_region == b->offset_within_region &&
1147 a->offset_within_address_space == b->offset_within_address_space &&
1148 int128_eq(a->size, b->size) &&
1149 a->readonly == b->readonly &&
1150 a->nonvolatile == b->nonvolatile;
1151 }
1152
1153 /**
1154 * memory_region_section_new_copy: Copy a memory region section
1155 *
1156 * Allocate memory for a new copy, copy the memory region section, and
1157 * properly take a reference on all relevant members.
1158 *
1159 * @s: the #MemoryRegionSection to copy
1160 */
1161 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
1162
1163 /**
1164 * memory_region_section_new_copy: Free a copied memory region section
1165 *
1166 * Free a copy of a memory section created via memory_region_section_new_copy().
1167 * properly dropping references on all relevant members.
1168 *
1169 * @s: the #MemoryRegionSection to copy
1170 */
1171 void memory_region_section_free_copy(MemoryRegionSection *s);
1172
1173 /**
1174 * memory_region_init: Initialize a memory region
1175 *
1176 * The region typically acts as a container for other memory regions. Use
1177 * memory_region_add_subregion() to add subregions.
1178 *
1179 * @mr: the #MemoryRegion to be initialized
1180 * @owner: the object that tracks the region's reference count
1181 * @name: used for debugging; not visible to the user or ABI
1182 * @size: size of the region; any subregions beyond this size will be clipped
1183 */
1184 void memory_region_init(MemoryRegion *mr,
1185 Object *owner,
1186 const char *name,
1187 uint64_t size);
1188
1189 /**
1190 * memory_region_ref: Add 1 to a memory region's reference count
1191 *
1192 * Whenever memory regions are accessed outside the BQL, they need to be
1193 * preserved against hot-unplug. MemoryRegions actually do not have their
1194 * own reference count; they piggyback on a QOM object, their "owner".
1195 * This function adds a reference to the owner.
1196 *
1197 * All MemoryRegions must have an owner if they can disappear, even if the
1198 * device they belong to operates exclusively under the BQL. This is because
1199 * the region could be returned at any time by memory_region_find, and this
1200 * is usually under guest control.
1201 *
1202 * @mr: the #MemoryRegion
1203 */
1204 void memory_region_ref(MemoryRegion *mr);
1205
1206 /**
1207 * memory_region_unref: Remove 1 to a memory region's reference count
1208 *
1209 * Whenever memory regions are accessed outside the BQL, they need to be
1210 * preserved against hot-unplug. MemoryRegions actually do not have their
1211 * own reference count; they piggyback on a QOM object, their "owner".
1212 * This function removes a reference to the owner and possibly destroys it.
1213 *
1214 * @mr: the #MemoryRegion
1215 */
1216 void memory_region_unref(MemoryRegion *mr);
1217
1218 /**
1219 * memory_region_init_io: Initialize an I/O memory region.
1220 *
1221 * Accesses into the region will cause the callbacks in @ops to be called.
1222 * if @size is nonzero, subregions will be clipped to @size.
1223 *
1224 * @mr: the #MemoryRegion to be initialized.
1225 * @owner: the object that tracks the region's reference count
1226 * @ops: a structure containing read and write callbacks to be used when
1227 * I/O is performed on the region.
1228 * @opaque: passed to the read and write callbacks of the @ops structure.
1229 * @name: used for debugging; not visible to the user or ABI
1230 * @size: size of the region.
1231 */
1232 void memory_region_init_io(MemoryRegion *mr,
1233 Object *owner,
1234 const MemoryRegionOps *ops,
1235 void *opaque,
1236 const char *name,
1237 uint64_t size);
1238
1239 /**
1240 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
1241 * into the region will modify memory
1242 * directly.
1243 *
1244 * @mr: the #MemoryRegion to be initialized.
1245 * @owner: the object that tracks the region's reference count
1246 * @name: Region name, becomes part of RAMBlock name used in migration stream
1247 * must be unique within any device
1248 * @size: size of the region.
1249 * @errp: pointer to Error*, to store an error if it happens.
1250 *
1251 * Note that this function does not do anything to cause the data in the
1252 * RAM memory region to be migrated; that is the responsibility of the caller.
1253 */
1254 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1255 Object *owner,
1256 const char *name,
1257 uint64_t size,
1258 Error **errp);
1259
1260 /**
1261 * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region.
1262 * Accesses into the region will
1263 * modify memory directly.
1264 *
1265 * @mr: the #MemoryRegion to be initialized.
1266 * @owner: the object that tracks the region's reference count
1267 * @name: Region name, becomes part of RAMBlock name used in migration stream
1268 * must be unique within any device
1269 * @size: size of the region.
1270 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
1271 * @errp: pointer to Error*, to store an error if it happens.
1272 *
1273 * Note that this function does not do anything to cause the data in the
1274 * RAM memory region to be migrated; that is the responsibility of the caller.
1275 */
1276 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1277 Object *owner,
1278 const char *name,
1279 uint64_t size,
1280 uint32_t ram_flags,
1281 Error **errp);
1282
1283 /**
1284 * memory_region_init_resizeable_ram: Initialize memory region with resizable
1285 * RAM. Accesses into the region will
1286 * modify memory directly. Only an initial
1287 * portion of this RAM is actually used.
1288 * Changing the size while migrating
1289 * can result in the migration being
1290 * canceled.
1291 *
1292 * @mr: the #MemoryRegion to be initialized.
1293 * @owner: the object that tracks the region's reference count
1294 * @name: Region name, becomes part of RAMBlock name used in migration stream
1295 * must be unique within any device
1296 * @size: used size of the region.
1297 * @max_size: max size of the region.
1298 * @resized: callback to notify owner about used size change.
1299 * @errp: pointer to Error*, to store an error if it happens.
1300 *
1301 * Note that this function does not do anything to cause the data in the
1302 * RAM memory region to be migrated; that is the responsibility of the caller.
1303 */
1304 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1305 Object *owner,
1306 const char *name,
1307 uint64_t size,
1308 uint64_t max_size,
1309 void (*resized)(const char*,
1310 uint64_t length,
1311 void *host),
1312 Error **errp);
1313 #ifdef CONFIG_POSIX
1314
1315 /**
1316 * memory_region_init_ram_from_file: Initialize RAM memory region with a
1317 * mmap-ed backend.
1318 *
1319 * @mr: the #MemoryRegion to be initialized.
1320 * @owner: the object that tracks the region's reference count
1321 * @name: Region name, becomes part of RAMBlock name used in migration stream
1322 * must be unique within any device
1323 * @size: size of the region.
1324 * @align: alignment of the region base address; if 0, the default alignment
1325 * (getpagesize()) will be used.
1326 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1327 * RAM_NORESERVE,
1328 * @path: the path in which to allocate the RAM.
1329 * @readonly: true to open @path for reading, false for read/write.
1330 * @errp: pointer to Error*, to store an error if it happens.
1331 *
1332 * Note that this function does not do anything to cause the data in the
1333 * RAM memory region to be migrated; that is the responsibility of the caller.
1334 */
1335 void memory_region_init_ram_from_file(MemoryRegion *mr,
1336 Object *owner,
1337 const char *name,
1338 uint64_t size,
1339 uint64_t align,
1340 uint32_t ram_flags,
1341 const char *path,
1342 bool readonly,
1343 Error **errp);
1344
1345 /**
1346 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
1347 * mmap-ed backend.
1348 *
1349 * @mr: the #MemoryRegion to be initialized.
1350 * @owner: the object that tracks the region's reference count
1351 * @name: the name of the region.
1352 * @size: size of the region.
1353 * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
1354 * RAM_NORESERVE, RAM_PROTECTED.
1355 * @fd: the fd to mmap.
1356 * @offset: offset within the file referenced by fd
1357 * @errp: pointer to Error*, to store an error if it happens.
1358 *
1359 * Note that this function does not do anything to cause the data in the
1360 * RAM memory region to be migrated; that is the responsibility of the caller.
1361 */
1362 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1363 Object *owner,
1364 const char *name,
1365 uint64_t size,
1366 uint32_t ram_flags,
1367 int fd,
1368 ram_addr_t offset,
1369 Error **errp);
1370 #endif
1371
1372 /**
1373 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1374 * user-provided pointer. Accesses into the
1375 * region will modify memory directly.
1376 *
1377 * @mr: the #MemoryRegion to be initialized.
1378 * @owner: the object that tracks the region's reference count
1379 * @name: Region name, becomes part of RAMBlock name used in migration stream
1380 * must be unique within any device
1381 * @size: size of the region.
1382 * @ptr: memory to be mapped; must contain at least @size bytes.
1383 *
1384 * Note that this function does not do anything to cause the data in the
1385 * RAM memory region to be migrated; that is the responsibility of the caller.
1386 */
1387 void memory_region_init_ram_ptr(MemoryRegion *mr,
1388 Object *owner,
1389 const char *name,
1390 uint64_t size,
1391 void *ptr);
1392
1393 /**
1394 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1395 * a user-provided pointer.
1396 *
1397 * A RAM device represents a mapping to a physical device, such as to a PCI
1398 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1399 * into the VM address space and access to the region will modify memory
1400 * directly. However, the memory region should not be included in a memory
1401 * dump (device may not be enabled/mapped at the time of the dump), and
1402 * operations incompatible with manipulating MMIO should be avoided. Replaces
1403 * skip_dump flag.
1404 *
1405 * @mr: the #MemoryRegion to be initialized.
1406 * @owner: the object that tracks the region's reference count
1407 * @name: the name of the region.
1408 * @size: size of the region.
1409 * @ptr: memory to be mapped; must contain at least @size bytes.
1410 *
1411 * Note that this function does not do anything to cause the data in the
1412 * RAM memory region to be migrated; that is the responsibility of the caller.
1413 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1414 */
1415 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1416 Object *owner,
1417 const char *name,
1418 uint64_t size,
1419 void *ptr);
1420
1421 /**
1422 * memory_region_init_alias: Initialize a memory region that aliases all or a
1423 * part of another memory region.
1424 *
1425 * @mr: the #MemoryRegion to be initialized.
1426 * @owner: the object that tracks the region's reference count
1427 * @name: used for debugging; not visible to the user or ABI
1428 * @orig: the region to be referenced; @mr will be equivalent to
1429 * @orig between @offset and @offset + @size - 1.
1430 * @offset: start of the section in @orig to be referenced.
1431 * @size: size of the region.
1432 */
1433 void memory_region_init_alias(MemoryRegion *mr,
1434 Object *owner,
1435 const char *name,
1436 MemoryRegion *orig,
1437 hwaddr offset,
1438 uint64_t size);
1439
1440 /**
1441 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1442 *
1443 * This has the same effect as calling memory_region_init_ram_nomigrate()
1444 * and then marking the resulting region read-only with
1445 * memory_region_set_readonly().
1446 *
1447 * Note that this function does not do anything to cause the data in the
1448 * RAM side of the memory region to be migrated; that is the responsibility
1449 * of the caller.
1450 *
1451 * @mr: the #MemoryRegion to be initialized.
1452 * @owner: the object that tracks the region's reference count
1453 * @name: Region name, becomes part of RAMBlock name used in migration stream
1454 * must be unique within any device
1455 * @size: size of the region.
1456 * @errp: pointer to Error*, to store an error if it happens.
1457 */
1458 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1459 Object *owner,
1460 const char *name,
1461 uint64_t size,
1462 Error **errp);
1463
1464 /**
1465 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1466 * Writes are handled via callbacks.
1467 *
1468 * Note that this function does not do anything to cause the data in the
1469 * RAM side of the memory region to be migrated; that is the responsibility
1470 * of the caller.
1471 *
1472 * @mr: the #MemoryRegion to be initialized.
1473 * @owner: the object that tracks the region's reference count
1474 * @ops: callbacks for write access handling (must not be NULL).
1475 * @opaque: passed to the read and write callbacks of the @ops structure.
1476 * @name: Region name, becomes part of RAMBlock name used in migration stream
1477 * must be unique within any device
1478 * @size: size of the region.
1479 * @errp: pointer to Error*, to store an error if it happens.
1480 */
1481 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1482 Object *owner,
1483 const MemoryRegionOps *ops,
1484 void *opaque,
1485 const char *name,
1486 uint64_t size,
1487 Error **errp);
1488
1489 /**
1490 * memory_region_init_iommu: Initialize a memory region of a custom type
1491 * that translates addresses
1492 *
1493 * An IOMMU region translates addresses and forwards accesses to a target
1494 * memory region.
1495 *
1496 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1497 * @_iommu_mr should be a pointer to enough memory for an instance of
1498 * that subclass, @instance_size is the size of that subclass, and
1499 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1500 * instance of the subclass, and its methods will then be called to handle
1501 * accesses to the memory region. See the documentation of
1502 * #IOMMUMemoryRegionClass for further details.
1503 *
1504 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1505 * @instance_size: the IOMMUMemoryRegion subclass instance size
1506 * @mrtypename: the type name of the #IOMMUMemoryRegion
1507 * @owner: the object that tracks the region's reference count
1508 * @name: used for debugging; not visible to the user or ABI
1509 * @size: size of the region.
1510 */
1511 void memory_region_init_iommu(void *_iommu_mr,
1512 size_t instance_size,
1513 const char *mrtypename,
1514 Object *owner,
1515 const char *name,
1516 uint64_t size);
1517
1518 /**
1519 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1520 * region will modify memory directly.
1521 *
1522 * @mr: the #MemoryRegion to be initialized
1523 * @owner: the object that tracks the region's reference count (must be
1524 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1525 * @name: name of the memory region
1526 * @size: size of the region in bytes
1527 * @errp: pointer to Error*, to store an error if it happens.
1528 *
1529 * This function allocates RAM for a board model or device, and
1530 * arranges for it to be migrated (by calling vmstate_register_ram()
1531 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1532 * @owner is NULL).
1533 *
1534 * TODO: Currently we restrict @owner to being either NULL (for
1535 * global RAM regions with no owner) or devices, so that we can
1536 * give the RAM block a unique name for migration purposes.
1537 * We should lift this restriction and allow arbitrary Objects.
1538 * If you pass a non-NULL non-device @owner then we will assert.
1539 */
1540 void memory_region_init_ram(MemoryRegion *mr,
1541 Object *owner,
1542 const char *name,
1543 uint64_t size,
1544 Error **errp);
1545
1546 /**
1547 * memory_region_init_rom: Initialize a ROM memory region.
1548 *
1549 * This has the same effect as calling memory_region_init_ram()
1550 * and then marking the resulting region read-only with
1551 * memory_region_set_readonly(). This includes arranging for the
1552 * contents to be migrated.
1553 *
1554 * TODO: Currently we restrict @owner to being either NULL (for
1555 * global RAM regions with no owner) or devices, so that we can
1556 * give the RAM block a unique name for migration purposes.
1557 * We should lift this restriction and allow arbitrary Objects.
1558 * If you pass a non-NULL non-device @owner then we will assert.
1559 *
1560 * @mr: the #MemoryRegion to be initialized.
1561 * @owner: the object that tracks the region's reference count
1562 * @name: Region name, becomes part of RAMBlock name used in migration stream
1563 * must be unique within any device
1564 * @size: size of the region.
1565 * @errp: pointer to Error*, to store an error if it happens.
1566 */
1567 void memory_region_init_rom(MemoryRegion *mr,
1568 Object *owner,
1569 const char *name,
1570 uint64_t size,
1571 Error **errp);
1572
1573 /**
1574 * memory_region_init_rom_device: Initialize a ROM memory region.
1575 * Writes are handled via callbacks.
1576 *
1577 * This function initializes a memory region backed by RAM for reads
1578 * and callbacks for writes, and arranges for the RAM backing to
1579 * be migrated (by calling vmstate_register_ram()
1580 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1581 * @owner is NULL).
1582 *
1583 * TODO: Currently we restrict @owner to being either NULL (for
1584 * global RAM regions with no owner) or devices, so that we can
1585 * give the RAM block a unique name for migration purposes.
1586 * We should lift this restriction and allow arbitrary Objects.
1587 * If you pass a non-NULL non-device @owner then we will assert.
1588 *
1589 * @mr: the #MemoryRegion to be initialized.
1590 * @owner: the object that tracks the region's reference count
1591 * @ops: callbacks for write access handling (must not be NULL).
1592 * @opaque: passed to the read and write callbacks of the @ops structure.
1593 * @name: Region name, becomes part of RAMBlock name used in migration stream
1594 * must be unique within any device
1595 * @size: size of the region.
1596 * @errp: pointer to Error*, to store an error if it happens.
1597 */
1598 void memory_region_init_rom_device(MemoryRegion *mr,
1599 Object *owner,
1600 const MemoryRegionOps *ops,
1601 void *opaque,
1602 const char *name,
1603 uint64_t size,
1604 Error **errp);
1605
1606
1607 /**
1608 * memory_region_owner: get a memory region's owner.
1609 *
1610 * @mr: the memory region being queried.
1611 */
1612 Object *memory_region_owner(MemoryRegion *mr);
1613
1614 /**
1615 * memory_region_size: get a memory region's size.
1616 *
1617 * @mr: the memory region being queried.
1618 */
1619 uint64_t memory_region_size(MemoryRegion *mr);
1620
1621 /**
1622 * memory_region_is_ram: check whether a memory region is random access
1623 *
1624 * Returns %true if a memory region is random access.
1625 *
1626 * @mr: the memory region being queried
1627 */
1628 static inline bool memory_region_is_ram(MemoryRegion *mr)
1629 {
1630 return mr->ram;
1631 }
1632
1633 /**
1634 * memory_region_is_ram_device: check whether a memory region is a ram device
1635 *
1636 * Returns %true if a memory region is a device backed ram region
1637 *
1638 * @mr: the memory region being queried
1639 */
1640 bool memory_region_is_ram_device(MemoryRegion *mr);
1641
1642 /**
1643 * memory_region_is_romd: check whether a memory region is in ROMD mode
1644 *
1645 * Returns %true if a memory region is a ROM device and currently set to allow
1646 * direct reads.
1647 *
1648 * @mr: the memory region being queried
1649 */
1650 static inline bool memory_region_is_romd(MemoryRegion *mr)
1651 {
1652 return mr->rom_device && mr->romd_mode;
1653 }
1654
1655 /**
1656 * memory_region_is_protected: check whether a memory region is protected
1657 *
1658 * Returns %true if a memory region is protected RAM and cannot be accessed
1659 * via standard mechanisms, e.g. DMA.
1660 *
1661 * @mr: the memory region being queried
1662 */
1663 bool memory_region_is_protected(MemoryRegion *mr);
1664
1665 /**
1666 * memory_region_get_iommu: check whether a memory region is an iommu
1667 *
1668 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1669 * otherwise NULL.
1670 *
1671 * @mr: the memory region being queried
1672 */
1673 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1674 {
1675 if (mr->alias) {
1676 return memory_region_get_iommu(mr->alias);
1677 }
1678 if (mr->is_iommu) {
1679 return (IOMMUMemoryRegion *) mr;
1680 }
1681 return NULL;
1682 }
1683
1684 /**
1685 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1686 * if an iommu or NULL if not
1687 *
1688 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1689 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1690 *
1691 * @iommu_mr: the memory region being queried
1692 */
1693 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1694 IOMMUMemoryRegion *iommu_mr)
1695 {
1696 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1697 }
1698
1699 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1700
1701 /**
1702 * memory_region_iommu_get_min_page_size: get minimum supported page size
1703 * for an iommu
1704 *
1705 * Returns minimum supported page size for an iommu.
1706 *
1707 * @iommu_mr: the memory region being queried
1708 */
1709 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1710
1711 /**
1712 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1713 *
1714 * Note: for any IOMMU implementation, an in-place mapping change
1715 * should be notified with an UNMAP followed by a MAP.
1716 *
1717 * @iommu_mr: the memory region that was changed
1718 * @iommu_idx: the IOMMU index for the translation table which has changed
1719 * @event: TLB event with the new entry in the IOMMU translation table.
1720 * The entry replaces all old entries for the same virtual I/O address
1721 * range.
1722 */
1723 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1724 int iommu_idx,
1725 IOMMUTLBEvent event);
1726
1727 /**
1728 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1729 * entry to a single notifier
1730 *
1731 * This works just like memory_region_notify_iommu(), but it only
1732 * notifies a specific notifier, not all of them.
1733 *
1734 * @notifier: the notifier to be notified
1735 * @event: TLB event with the new entry in the IOMMU translation table.
1736 * The entry replaces all old entries for the same virtual I/O address
1737 * range.
1738 */
1739 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1740 IOMMUTLBEvent *event);
1741
1742 /**
1743 * memory_region_unmap_iommu_notifier_range: notify a unmap for an IOMMU
1744 * translation that covers the
1745 * range of a notifier
1746 *
1747 * @notifier: the notifier to be notified
1748 */
1749 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier);
1750
1751
1752 /**
1753 * memory_region_register_iommu_notifier: register a notifier for changes to
1754 * IOMMU translation entries.
1755 *
1756 * Returns 0 on success, or a negative errno otherwise. In particular,
1757 * -EINVAL indicates that at least one of the attributes of the notifier
1758 * is not supported (flag/range) by the IOMMU memory region. In case of error
1759 * the error object must be created.
1760 *
1761 * @mr: the memory region to observe
1762 * @n: the IOMMUNotifier to be added; the notify callback receives a
1763 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1764 * ceases to be valid on exit from the notifier.
1765 * @errp: pointer to Error*, to store an error if it happens.
1766 */
1767 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1768 IOMMUNotifier *n, Error **errp);
1769
1770 /**
1771 * memory_region_iommu_replay: replay existing IOMMU translations to
1772 * a notifier with the minimum page granularity returned by
1773 * mr->iommu_ops->get_page_size().
1774 *
1775 * Note: this is not related to record-and-replay functionality.
1776 *
1777 * @iommu_mr: the memory region to observe
1778 * @n: the notifier to which to replay iommu mappings
1779 */
1780 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1781
1782 /**
1783 * memory_region_unregister_iommu_notifier: unregister a notifier for
1784 * changes to IOMMU translation entries.
1785 *
1786 * @mr: the memory region which was observed and for which notity_stopped()
1787 * needs to be called
1788 * @n: the notifier to be removed.
1789 */
1790 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1791 IOMMUNotifier *n);
1792
1793 /**
1794 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1795 * defined on the IOMMU.
1796 *
1797 * Returns 0 on success, or a negative errno otherwise. In particular,
1798 * -EINVAL indicates that the IOMMU does not support the requested
1799 * attribute.
1800 *
1801 * @iommu_mr: the memory region
1802 * @attr: the requested attribute
1803 * @data: a pointer to the requested attribute data
1804 */
1805 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1806 enum IOMMUMemoryRegionAttr attr,
1807 void *data);
1808
1809 /**
1810 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1811 * use for translations with the given memory transaction attributes.
1812 *
1813 * @iommu_mr: the memory region
1814 * @attrs: the memory transaction attributes
1815 */
1816 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1817 MemTxAttrs attrs);
1818
1819 /**
1820 * memory_region_iommu_num_indexes: return the total number of IOMMU
1821 * indexes that this IOMMU supports.
1822 *
1823 * @iommu_mr: the memory region
1824 */
1825 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1826
1827 /**
1828 * memory_region_iommu_set_page_size_mask: set the supported page
1829 * sizes for a given IOMMU memory region
1830 *
1831 * @iommu_mr: IOMMU memory region
1832 * @page_size_mask: supported page size mask
1833 * @errp: pointer to Error*, to store an error if it happens.
1834 */
1835 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1836 uint64_t page_size_mask,
1837 Error **errp);
1838
1839 /**
1840 * memory_region_name: get a memory region's name
1841 *
1842 * Returns the string that was used to initialize the memory region.
1843 *
1844 * @mr: the memory region being queried
1845 */
1846 const char *memory_region_name(const MemoryRegion *mr);
1847
1848 /**
1849 * memory_region_is_logging: return whether a memory region is logging writes
1850 *
1851 * Returns %true if the memory region is logging writes for the given client
1852 *
1853 * @mr: the memory region being queried
1854 * @client: the client being queried
1855 */
1856 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1857
1858 /**
1859 * memory_region_get_dirty_log_mask: return the clients for which a
1860 * memory region is logging writes.
1861 *
1862 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1863 * are the bit indices.
1864 *
1865 * @mr: the memory region being queried
1866 */
1867 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1868
1869 /**
1870 * memory_region_is_rom: check whether a memory region is ROM
1871 *
1872 * Returns %true if a memory region is read-only memory.
1873 *
1874 * @mr: the memory region being queried
1875 */
1876 static inline bool memory_region_is_rom(MemoryRegion *mr)
1877 {
1878 return mr->ram && mr->readonly;
1879 }
1880
1881 /**
1882 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1883 *
1884 * Returns %true is a memory region is non-volatile memory.
1885 *
1886 * @mr: the memory region being queried
1887 */
1888 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1889 {
1890 return mr->nonvolatile;
1891 }
1892
1893 /**
1894 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1895 *
1896 * Returns a file descriptor backing a file-based RAM memory region,
1897 * or -1 if the region is not a file-based RAM memory region.
1898 *
1899 * @mr: the RAM or alias memory region being queried.
1900 */
1901 int memory_region_get_fd(MemoryRegion *mr);
1902
1903 /**
1904 * memory_region_from_host: Convert a pointer into a RAM memory region
1905 * and an offset within it.
1906 *
1907 * Given a host pointer inside a RAM memory region (created with
1908 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1909 * the MemoryRegion and the offset within it.
1910 *
1911 * Use with care; by the time this function returns, the returned pointer is
1912 * not protected by RCU anymore. If the caller is not within an RCU critical
1913 * section and does not hold the iothread lock, it must have other means of
1914 * protecting the pointer, such as a reference to the region that includes
1915 * the incoming ram_addr_t.
1916 *
1917 * @ptr: the host pointer to be converted
1918 * @offset: the offset within memory region
1919 */
1920 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1921
1922 /**
1923 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1924 *
1925 * Returns a host pointer to a RAM memory region (created with
1926 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1927 *
1928 * Use with care; by the time this function returns, the returned pointer is
1929 * not protected by RCU anymore. If the caller is not within an RCU critical
1930 * section and does not hold the iothread lock, it must have other means of
1931 * protecting the pointer, such as a reference to the region that includes
1932 * the incoming ram_addr_t.
1933 *
1934 * @mr: the memory region being queried.
1935 */
1936 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1937
1938 /* memory_region_ram_resize: Resize a RAM region.
1939 *
1940 * Resizing RAM while migrating can result in the migration being canceled.
1941 * Care has to be taken if the guest might have already detected the memory.
1942 *
1943 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1944 * @newsize: the new size the region
1945 * @errp: pointer to Error*, to store an error if it happens.
1946 */
1947 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1948 Error **errp);
1949
1950 /**
1951 * memory_region_msync: Synchronize selected address range of
1952 * a memory mapped region
1953 *
1954 * @mr: the memory region to be msync
1955 * @addr: the initial address of the range to be sync
1956 * @size: the size of the range to be sync
1957 */
1958 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1959
1960 /**
1961 * memory_region_writeback: Trigger cache writeback for
1962 * selected address range
1963 *
1964 * @mr: the memory region to be updated
1965 * @addr: the initial address of the range to be written back
1966 * @size: the size of the range to be written back
1967 */
1968 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1969
1970 /**
1971 * memory_region_set_log: Turn dirty logging on or off for a region.
1972 *
1973 * Turns dirty logging on or off for a specified client (display, migration).
1974 * Only meaningful for RAM regions.
1975 *
1976 * @mr: the memory region being updated.
1977 * @log: whether dirty logging is to be enabled or disabled.
1978 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1979 */
1980 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1981
1982 /**
1983 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1984 *
1985 * Marks a range of bytes as dirty, after it has been dirtied outside
1986 * guest code.
1987 *
1988 * @mr: the memory region being dirtied.
1989 * @addr: the address (relative to the start of the region) being dirtied.
1990 * @size: size of the range being dirtied.
1991 */
1992 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1993 hwaddr size);
1994
1995 /**
1996 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1997 *
1998 * This function is called when the caller wants to clear the remote
1999 * dirty bitmap of a memory range within the memory region. This can
2000 * be used by e.g. KVM to manually clear dirty log when
2001 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
2002 * kernel.
2003 *
2004 * @mr: the memory region to clear the dirty log upon
2005 * @start: start address offset within the memory region
2006 * @len: length of the memory region to clear dirty bitmap
2007 */
2008 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2009 hwaddr len);
2010
2011 /**
2012 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
2013 * bitmap and clear it.
2014 *
2015 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
2016 * returns the snapshot. The snapshot can then be used to query dirty
2017 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
2018 * querying the same page multiple times, which is especially useful for
2019 * display updates where the scanlines often are not page aligned.
2020 *
2021 * The dirty bitmap region which gets copied into the snapshot (and
2022 * cleared afterwards) can be larger than requested. The boundaries
2023 * are rounded up/down so complete bitmap longs (covering 64 pages on
2024 * 64bit hosts) can be copied over into the bitmap snapshot. Which
2025 * isn't a problem for display updates as the extra pages are outside
2026 * the visible area, and in case the visible area changes a full
2027 * display redraw is due anyway. Should other use cases for this
2028 * function emerge we might have to revisit this implementation
2029 * detail.
2030 *
2031 * Use g_free to release DirtyBitmapSnapshot.
2032 *
2033 * @mr: the memory region being queried.
2034 * @addr: the address (relative to the start of the region) being queried.
2035 * @size: the size of the range being queried.
2036 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
2037 */
2038 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2039 hwaddr addr,
2040 hwaddr size,
2041 unsigned client);
2042
2043 /**
2044 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
2045 * in the specified dirty bitmap snapshot.
2046 *
2047 * @mr: the memory region being queried.
2048 * @snap: the dirty bitmap snapshot
2049 * @addr: the address (relative to the start of the region) being queried.
2050 * @size: the size of the range being queried.
2051 */
2052 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
2053 DirtyBitmapSnapshot *snap,
2054 hwaddr addr, hwaddr size);
2055
2056 /**
2057 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
2058 * client.
2059 *
2060 * Marks a range of pages as no longer dirty.
2061 *
2062 * @mr: the region being updated.
2063 * @addr: the start of the subrange being cleaned.
2064 * @size: the size of the subrange being cleaned.
2065 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
2066 * %DIRTY_MEMORY_VGA.
2067 */
2068 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2069 hwaddr size, unsigned client);
2070
2071 /**
2072 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
2073 * TBs (for self-modifying code).
2074 *
2075 * The MemoryRegionOps->write() callback of a ROM device must use this function
2076 * to mark byte ranges that have been modified internally, such as by directly
2077 * accessing the memory returned by memory_region_get_ram_ptr().
2078 *
2079 * This function marks the range dirty and invalidates TBs so that TCG can
2080 * detect self-modifying code.
2081 *
2082 * @mr: the region being flushed.
2083 * @addr: the start, relative to the start of the region, of the range being
2084 * flushed.
2085 * @size: the size, in bytes, of the range being flushed.
2086 */
2087 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
2088
2089 /**
2090 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
2091 *
2092 * Allows a memory region to be marked as read-only (turning it into a ROM).
2093 * only useful on RAM regions.
2094 *
2095 * @mr: the region being updated.
2096 * @readonly: whether rhe region is to be ROM or RAM.
2097 */
2098 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
2099
2100 /**
2101 * memory_region_set_nonvolatile: Turn a memory region non-volatile
2102 *
2103 * Allows a memory region to be marked as non-volatile.
2104 * only useful on RAM regions.
2105 *
2106 * @mr: the region being updated.
2107 * @nonvolatile: whether rhe region is to be non-volatile.
2108 */
2109 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
2110
2111 /**
2112 * memory_region_rom_device_set_romd: enable/disable ROMD mode
2113 *
2114 * Allows a ROM device (initialized with memory_region_init_rom_device() to
2115 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
2116 * device is mapped to guest memory and satisfies read access directly.
2117 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
2118 * Writes are always handled by the #MemoryRegion.write function.
2119 *
2120 * @mr: the memory region to be updated
2121 * @romd_mode: %true to put the region into ROMD mode
2122 */
2123 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
2124
2125 /**
2126 * memory_region_set_coalescing: Enable memory coalescing for the region.
2127 *
2128 * Enabled writes to a region to be queued for later processing. MMIO ->write
2129 * callbacks may be delayed until a non-coalesced MMIO is issued.
2130 * Only useful for IO regions. Roughly similar to write-combining hardware.
2131 *
2132 * @mr: the memory region to be write coalesced
2133 */
2134 void memory_region_set_coalescing(MemoryRegion *mr);
2135
2136 /**
2137 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
2138 * a region.
2139 *
2140 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
2141 * Multiple calls can be issued coalesced disjoint ranges.
2142 *
2143 * @mr: the memory region to be updated.
2144 * @offset: the start of the range within the region to be coalesced.
2145 * @size: the size of the subrange to be coalesced.
2146 */
2147 void memory_region_add_coalescing(MemoryRegion *mr,
2148 hwaddr offset,
2149 uint64_t size);
2150
2151 /**
2152 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
2153 *
2154 * Disables any coalescing caused by memory_region_set_coalescing() or
2155 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
2156 * hardware.
2157 *
2158 * @mr: the memory region to be updated.
2159 */
2160 void memory_region_clear_coalescing(MemoryRegion *mr);
2161
2162 /**
2163 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
2164 * accesses.
2165 *
2166 * Ensure that pending coalesced MMIO request are flushed before the memory
2167 * region is accessed. This property is automatically enabled for all regions
2168 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
2169 *
2170 * @mr: the memory region to be updated.
2171 */
2172 void memory_region_set_flush_coalesced(MemoryRegion *mr);
2173
2174 /**
2175 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
2176 * accesses.
2177 *
2178 * Clear the automatic coalesced MMIO flushing enabled via
2179 * memory_region_set_flush_coalesced. Note that this service has no effect on
2180 * memory regions that have MMIO coalescing enabled for themselves. For them,
2181 * automatic flushing will stop once coalescing is disabled.
2182 *
2183 * @mr: the memory region to be updated.
2184 */
2185 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
2186
2187 /**
2188 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
2189 * is written to a location.
2190 *
2191 * Marks a word in an IO region (initialized with memory_region_init_io())
2192 * as a trigger for an eventfd event. The I/O callback will not be called.
2193 * The caller must be prepared to handle failure (that is, take the required
2194 * action if the callback _is_ called).
2195 *
2196 * @mr: the memory region being updated.
2197 * @addr: the address within @mr that is to be monitored
2198 * @size: the size of the access to trigger the eventfd
2199 * @match_data: whether to match against @data, instead of just @addr
2200 * @data: the data to match against the guest write
2201 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2202 **/
2203 void memory_region_add_eventfd(MemoryRegion *mr,
2204 hwaddr addr,
2205 unsigned size,
2206 bool match_data,
2207 uint64_t data,
2208 EventNotifier *e);
2209
2210 /**
2211 * memory_region_del_eventfd: Cancel an eventfd.
2212 *
2213 * Cancels an eventfd trigger requested by a previous
2214 * memory_region_add_eventfd() call.
2215 *
2216 * @mr: the memory region being updated.
2217 * @addr: the address within @mr that is to be monitored
2218 * @size: the size of the access to trigger the eventfd
2219 * @match_data: whether to match against @data, instead of just @addr
2220 * @data: the data to match against the guest write
2221 * @e: event notifier to be triggered when @addr, @size, and @data all match.
2222 */
2223 void memory_region_del_eventfd(MemoryRegion *mr,
2224 hwaddr addr,
2225 unsigned size,
2226 bool match_data,
2227 uint64_t data,
2228 EventNotifier *e);
2229
2230 /**
2231 * memory_region_add_subregion: Add a subregion to a container.
2232 *
2233 * Adds a subregion at @offset. The subregion may not overlap with other
2234 * subregions (except for those explicitly marked as overlapping). A region
2235 * may only be added once as a subregion (unless removed with
2236 * memory_region_del_subregion()); use memory_region_init_alias() if you
2237 * want a region to be a subregion in multiple locations.
2238 *
2239 * @mr: the region to contain the new subregion; must be a container
2240 * initialized with memory_region_init().
2241 * @offset: the offset relative to @mr where @subregion is added.
2242 * @subregion: the subregion to be added.
2243 */
2244 void memory_region_add_subregion(MemoryRegion *mr,
2245 hwaddr offset,
2246 MemoryRegion *subregion);
2247 /**
2248 * memory_region_add_subregion_overlap: Add a subregion to a container
2249 * with overlap.
2250 *
2251 * Adds a subregion at @offset. The subregion may overlap with other
2252 * subregions. Conflicts are resolved by having a higher @priority hide a
2253 * lower @priority. Subregions without priority are taken as @priority 0.
2254 * A region may only be added once as a subregion (unless removed with
2255 * memory_region_del_subregion()); use memory_region_init_alias() if you
2256 * want a region to be a subregion in multiple locations.
2257 *
2258 * @mr: the region to contain the new subregion; must be a container
2259 * initialized with memory_region_init().
2260 * @offset: the offset relative to @mr where @subregion is added.
2261 * @subregion: the subregion to be added.
2262 * @priority: used for resolving overlaps; highest priority wins.
2263 */
2264 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2265 hwaddr offset,
2266 MemoryRegion *subregion,
2267 int priority);
2268
2269 /**
2270 * memory_region_get_ram_addr: Get the ram address associated with a memory
2271 * region
2272 *
2273 * @mr: the region to be queried
2274 */
2275 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
2276
2277 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
2278 /**
2279 * memory_region_del_subregion: Remove a subregion.
2280 *
2281 * Removes a subregion from its container.
2282 *
2283 * @mr: the container to be updated.
2284 * @subregion: the region being removed; must be a current subregion of @mr.
2285 */
2286 void memory_region_del_subregion(MemoryRegion *mr,
2287 MemoryRegion *subregion);
2288
2289 /*
2290 * memory_region_set_enabled: dynamically enable or disable a region
2291 *
2292 * Enables or disables a memory region. A disabled memory region
2293 * ignores all accesses to itself and its subregions. It does not
2294 * obscure sibling subregions with lower priority - it simply behaves as
2295 * if it was removed from the hierarchy.
2296 *
2297 * Regions default to being enabled.
2298 *
2299 * @mr: the region to be updated
2300 * @enabled: whether to enable or disable the region
2301 */
2302 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
2303
2304 /*
2305 * memory_region_set_address: dynamically update the address of a region
2306 *
2307 * Dynamically updates the address of a region, relative to its container.
2308 * May be used on regions are currently part of a memory hierarchy.
2309 *
2310 * @mr: the region to be updated
2311 * @addr: new address, relative to container region
2312 */
2313 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
2314
2315 /*
2316 * memory_region_set_size: dynamically update the size of a region.
2317 *
2318 * Dynamically updates the size of a region.
2319 *
2320 * @mr: the region to be updated
2321 * @size: used size of the region.
2322 */
2323 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
2324
2325 /*
2326 * memory_region_set_alias_offset: dynamically update a memory alias's offset
2327 *
2328 * Dynamically updates the offset into the target region that an alias points
2329 * to, as if the fourth argument to memory_region_init_alias() has changed.
2330 *
2331 * @mr: the #MemoryRegion to be updated; should be an alias.
2332 * @offset: the new offset into the target memory region
2333 */
2334 void memory_region_set_alias_offset(MemoryRegion *mr,
2335 hwaddr offset);
2336
2337 /**
2338 * memory_region_present: checks if an address relative to a @container
2339 * translates into #MemoryRegion within @container
2340 *
2341 * Answer whether a #MemoryRegion within @container covers the address
2342 * @addr.
2343 *
2344 * @container: a #MemoryRegion within which @addr is a relative address
2345 * @addr: the area within @container to be searched
2346 */
2347 bool memory_region_present(MemoryRegion *container, hwaddr addr);
2348
2349 /**
2350 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
2351 * into another memory region, which does not necessarily imply that it is
2352 * mapped into an address space.
2353 *
2354 * @mr: a #MemoryRegion which should be checked if it's mapped
2355 */
2356 bool memory_region_is_mapped(MemoryRegion *mr);
2357
2358 /**
2359 * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
2360 * #MemoryRegion
2361 *
2362 * The #RamDiscardManager cannot change while a memory region is mapped.
2363 *
2364 * @mr: the #MemoryRegion
2365 */
2366 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
2367
2368 /**
2369 * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
2370 * #RamDiscardManager assigned
2371 *
2372 * @mr: the #MemoryRegion
2373 */
2374 static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
2375 {
2376 return !!memory_region_get_ram_discard_manager(mr);
2377 }
2378
2379 /**
2380 * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
2381 * #MemoryRegion
2382 *
2383 * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
2384 * that does not cover RAM, or a #MemoryRegion that already has a
2385 * #RamDiscardManager assigned.
2386 *
2387 * @mr: the #MemoryRegion
2388 * @rdm: #RamDiscardManager to set
2389 */
2390 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2391 RamDiscardManager *rdm);
2392
2393 /**
2394 * memory_region_find: translate an address/size relative to a
2395 * MemoryRegion into a #MemoryRegionSection.
2396 *
2397 * Locates the first #MemoryRegion within @mr that overlaps the range
2398 * given by @addr and @size.
2399 *
2400 * Returns a #MemoryRegionSection that describes a contiguous overlap.
2401 * It will have the following characteristics:
2402 * - @size = 0 iff no overlap was found
2403 * - @mr is non-%NULL iff an overlap was found
2404 *
2405 * Remember that in the return value the @offset_within_region is
2406 * relative to the returned region (in the .@mr field), not to the
2407 * @mr argument.
2408 *
2409 * Similarly, the .@offset_within_address_space is relative to the
2410 * address space that contains both regions, the passed and the
2411 * returned one. However, in the special case where the @mr argument
2412 * has no container (and thus is the root of the address space), the
2413 * following will hold:
2414 * - @offset_within_address_space >= @addr
2415 * - @offset_within_address_space + .@size <= @addr + @size
2416 *
2417 * @mr: a MemoryRegion within which @addr is a relative address
2418 * @addr: start of the area within @as to be searched
2419 * @size: size of the area to be searched
2420 */
2421 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2422 hwaddr addr, uint64_t size);
2423
2424 /**
2425 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2426 *
2427 * Synchronizes the dirty page log for all address spaces.
2428 *
2429 * @last_stage: whether this is the last stage of live migration
2430 */
2431 void memory_global_dirty_log_sync(bool last_stage);
2432
2433 /**
2434 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2435 *
2436 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2437 * This function must be called after the dirty log bitmap is cleared, and
2438 * before dirty guest memory pages are read. If you are using
2439 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2440 * care of doing this.
2441 */
2442 void memory_global_after_dirty_log_sync(void);
2443
2444 /**
2445 * memory_region_transaction_begin: Start a transaction.
2446 *
2447 * During a transaction, changes will be accumulated and made visible
2448 * only when the transaction ends (is committed).
2449 */
2450 void memory_region_transaction_begin(void);
2451
2452 /**
2453 * memory_region_transaction_commit: Commit a transaction and make changes
2454 * visible to the guest.
2455 */
2456 void memory_region_transaction_commit(void);
2457
2458 /**
2459 * memory_listener_register: register callbacks to be called when memory
2460 * sections are mapped or unmapped into an address
2461 * space
2462 *
2463 * @listener: an object containing the callbacks to be called
2464 * @filter: if non-%NULL, only regions in this address space will be observed
2465 */
2466 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2467
2468 /**
2469 * memory_listener_unregister: undo the effect of memory_listener_register()
2470 *
2471 * @listener: an object containing the callbacks to be removed
2472 */
2473 void memory_listener_unregister(MemoryListener *listener);
2474
2475 /**
2476 * memory_global_dirty_log_start: begin dirty logging for all regions
2477 *
2478 * @flags: purpose of starting dirty log, migration or dirty rate
2479 */
2480 void memory_global_dirty_log_start(unsigned int flags);
2481
2482 /**
2483 * memory_global_dirty_log_stop: end dirty logging for all regions
2484 *
2485 * @flags: purpose of stopping dirty log, migration or dirty rate
2486 */
2487 void memory_global_dirty_log_stop(unsigned int flags);
2488
2489 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2490
2491 bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
2492 unsigned size, bool is_write,
2493 MemTxAttrs attrs);
2494
2495 /**
2496 * memory_region_dispatch_read: perform a read directly to the specified
2497 * MemoryRegion.
2498 *
2499 * @mr: #MemoryRegion to access
2500 * @addr: address within that region
2501 * @pval: pointer to uint64_t which the data is written to
2502 * @op: size, sign, and endianness of the memory operation
2503 * @attrs: memory transaction attributes to use for the access
2504 */
2505 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2506 hwaddr addr,
2507 uint64_t *pval,
2508 MemOp op,
2509 MemTxAttrs attrs);
2510 /**
2511 * memory_region_dispatch_write: perform a write directly to the specified
2512 * MemoryRegion.
2513 *
2514 * @mr: #MemoryRegion to access
2515 * @addr: address within that region
2516 * @data: data to write
2517 * @op: size, sign, and endianness of the memory operation
2518 * @attrs: memory transaction attributes to use for the access
2519 */
2520 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2521 hwaddr addr,
2522 uint64_t data,
2523 MemOp op,
2524 MemTxAttrs attrs);
2525
2526 /**
2527 * address_space_init: initializes an address space
2528 *
2529 * @as: an uninitialized #AddressSpace
2530 * @root: a #MemoryRegion that routes addresses for the address space
2531 * @name: an address space name. The name is only used for debugging
2532 * output.
2533 */
2534 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2535
2536 /**
2537 * address_space_destroy: destroy an address space
2538 *
2539 * Releases all resources associated with an address space. After an address space
2540 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2541 * as well.
2542 *
2543 * @as: address space to be destroyed
2544 */
2545 void address_space_destroy(AddressSpace *as);
2546
2547 /**
2548 * address_space_remove_listeners: unregister all listeners of an address space
2549 *
2550 * Removes all callbacks previously registered with memory_listener_register()
2551 * for @as.
2552 *
2553 * @as: an initialized #AddressSpace
2554 */
2555 void address_space_remove_listeners(AddressSpace *as);
2556
2557 /**
2558 * address_space_rw: read from or write to an address space.
2559 *
2560 * Return a MemTxResult indicating whether the operation succeeded
2561 * or failed (eg unassigned memory, device rejected the transaction,
2562 * IOMMU fault).
2563 *
2564 * @as: #AddressSpace to be accessed
2565 * @addr: address within that address space
2566 * @attrs: memory transaction attributes
2567 * @buf: buffer with the data transferred
2568 * @len: the number of bytes to read or write
2569 * @is_write: indicates the transfer direction
2570 */
2571 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2572 MemTxAttrs attrs, void *buf,
2573 hwaddr len, bool is_write);
2574
2575 /**
2576 * address_space_write: write to address space.
2577 *
2578 * Return a MemTxResult indicating whether the operation succeeded
2579 * or failed (eg unassigned memory, device rejected the transaction,
2580 * IOMMU fault).
2581 *
2582 * @as: #AddressSpace to be accessed
2583 * @addr: address within that address space
2584 * @attrs: memory transaction attributes
2585 * @buf: buffer with the data transferred
2586 * @len: the number of bytes to write
2587 */
2588 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2589 MemTxAttrs attrs,
2590 const void *buf, hwaddr len);
2591
2592 /**
2593 * address_space_write_rom: write to address space, including ROM.
2594 *
2595 * This function writes to the specified address space, but will
2596 * write data to both ROM and RAM. This is used for non-guest
2597 * writes like writes from the gdb debug stub or initial loading
2598 * of ROM contents.
2599 *
2600 * Note that portions of the write which attempt to write data to
2601 * a device will be silently ignored -- only real RAM and ROM will
2602 * be written to.
2603 *
2604 * Return a MemTxResult indicating whether the operation succeeded
2605 * or failed (eg unassigned memory, device rejected the transaction,
2606 * IOMMU fault).
2607 *
2608 * @as: #AddressSpace to be accessed
2609 * @addr: address within that address space
2610 * @attrs: memory transaction attributes
2611 * @buf: buffer with the data transferred
2612 * @len: the number of bytes to write
2613 */
2614 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2615 MemTxAttrs attrs,
2616 const void *buf, hwaddr len);
2617
2618 /* address_space_ld*: load from an address space
2619 * address_space_st*: store to an address space
2620 *
2621 * These functions perform a load or store of the byte, word,
2622 * longword or quad to the specified address within the AddressSpace.
2623 * The _le suffixed functions treat the data as little endian;
2624 * _be indicates big endian; no suffix indicates "same endianness
2625 * as guest CPU".
2626 *
2627 * The "guest CPU endianness" accessors are deprecated for use outside
2628 * target-* code; devices should be CPU-agnostic and use either the LE
2629 * or the BE accessors.
2630 *
2631 * @as #AddressSpace to be accessed
2632 * @addr: address within that address space
2633 * @val: data value, for stores
2634 * @attrs: memory transaction attributes
2635 * @result: location to write the success/failure of the transaction;
2636 * if NULL, this information is discarded
2637 */
2638
2639 #define SUFFIX
2640 #define ARG1 as
2641 #define ARG1_DECL AddressSpace *as
2642 #include "exec/memory_ldst.h.inc"
2643
2644 #define SUFFIX
2645 #define ARG1 as
2646 #define ARG1_DECL AddressSpace *as
2647 #include "exec/memory_ldst_phys.h.inc"
2648
2649 struct MemoryRegionCache {
2650 void *ptr;
2651 hwaddr xlat;
2652 hwaddr len;
2653 FlatView *fv;
2654 MemoryRegionSection mrs;
2655 bool is_write;
2656 };
2657
2658 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2659
2660
2661 /* address_space_ld*_cached: load from a cached #MemoryRegion
2662 * address_space_st*_cached: store into a cached #MemoryRegion
2663 *
2664 * These functions perform a load or store of the byte, word,
2665 * longword or quad to the specified address. The address is
2666 * a physical address in the AddressSpace, but it must lie within
2667 * a #MemoryRegion that was mapped with address_space_cache_init.
2668 *
2669 * The _le suffixed functions treat the data as little endian;
2670 * _be indicates big endian; no suffix indicates "same endianness
2671 * as guest CPU".
2672 *
2673 * The "guest CPU endianness" accessors are deprecated for use outside
2674 * target-* code; devices should be CPU-agnostic and use either the LE
2675 * or the BE accessors.
2676 *
2677 * @cache: previously initialized #MemoryRegionCache to be accessed
2678 * @addr: address within the address space
2679 * @val: data value, for stores
2680 * @attrs: memory transaction attributes
2681 * @result: location to write the success/failure of the transaction;
2682 * if NULL, this information is discarded
2683 */
2684
2685 #define SUFFIX _cached_slow
2686 #define ARG1 cache
2687 #define ARG1_DECL MemoryRegionCache *cache
2688 #include "exec/memory_ldst.h.inc"
2689
2690 /* Inline fast path for direct RAM access. */
2691 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2692 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2693 {
2694 assert(addr < cache->len);
2695 if (likely(cache->ptr)) {
2696 return ldub_p(cache->ptr + addr);
2697 } else {
2698 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2699 }
2700 }
2701
2702 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2703 hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
2704 {
2705 assert(addr < cache->len);
2706 if (likely(cache->ptr)) {
2707 stb_p(cache->ptr + addr, val);
2708 } else {
2709 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2710 }
2711 }
2712
2713 #define ENDIANNESS _le
2714 #include "exec/memory_ldst_cached.h.inc"
2715
2716 #define ENDIANNESS _be
2717 #include "exec/memory_ldst_cached.h.inc"
2718
2719 #define SUFFIX _cached
2720 #define ARG1 cache
2721 #define ARG1_DECL MemoryRegionCache *cache
2722 #include "exec/memory_ldst_phys.h.inc"
2723
2724 /* address_space_cache_init: prepare for repeated access to a physical
2725 * memory region
2726 *
2727 * @cache: #MemoryRegionCache to be filled
2728 * @as: #AddressSpace to be accessed
2729 * @addr: address within that address space
2730 * @len: length of buffer
2731 * @is_write: indicates the transfer direction
2732 *
2733 * Will only work with RAM, and may map a subset of the requested range by
2734 * returning a value that is less than @len. On failure, return a negative
2735 * errno value.
2736 *
2737 * Because it only works with RAM, this function can be used for
2738 * read-modify-write operations. In this case, is_write should be %true.
2739 *
2740 * Note that addresses passed to the address_space_*_cached functions
2741 * are relative to @addr.
2742 */
2743 int64_t address_space_cache_init(MemoryRegionCache *cache,
2744 AddressSpace *as,
2745 hwaddr addr,
2746 hwaddr len,
2747 bool is_write);
2748
2749 /**
2750 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2751 *
2752 * @cache: The #MemoryRegionCache to operate on.
2753 * @addr: The first physical address that was written, relative to the
2754 * address that was passed to @address_space_cache_init.
2755 * @access_len: The number of bytes that were written starting at @addr.
2756 */
2757 void address_space_cache_invalidate(MemoryRegionCache *cache,
2758 hwaddr addr,
2759 hwaddr access_len);
2760
2761 /**
2762 * address_space_cache_destroy: free a #MemoryRegionCache
2763 *
2764 * @cache: The #MemoryRegionCache whose memory should be released.
2765 */
2766 void address_space_cache_destroy(MemoryRegionCache *cache);
2767
2768 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2769 * entry. Should be called from an RCU critical section.
2770 */
2771 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2772 bool is_write, MemTxAttrs attrs);
2773
2774 /* address_space_translate: translate an address range into an address space
2775 * into a MemoryRegion and an address range into that section. Should be
2776 * called from an RCU critical section, to avoid that the last reference
2777 * to the returned region disappears after address_space_translate returns.
2778 *
2779 * @fv: #FlatView to be accessed
2780 * @addr: address within that address space
2781 * @xlat: pointer to address within the returned memory region section's
2782 * #MemoryRegion.
2783 * @len: pointer to length
2784 * @is_write: indicates the transfer direction
2785 * @attrs: memory attributes
2786 */
2787 MemoryRegion *flatview_translate(FlatView *fv,
2788 hwaddr addr, hwaddr *xlat,
2789 hwaddr *len, bool is_write,
2790 MemTxAttrs attrs);
2791
2792 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2793 hwaddr addr, hwaddr *xlat,
2794 hwaddr *len, bool is_write,
2795 MemTxAttrs attrs)
2796 {
2797 return flatview_translate(address_space_to_flatview(as),
2798 addr, xlat, len, is_write, attrs);
2799 }
2800
2801 /* address_space_access_valid: check for validity of accessing an address
2802 * space range
2803 *
2804 * Check whether memory is assigned to the given address space range, and
2805 * access is permitted by any IOMMU regions that are active for the address
2806 * space.
2807 *
2808 * For now, addr and len should be aligned to a page size. This limitation
2809 * will be lifted in the future.
2810 *
2811 * @as: #AddressSpace to be accessed
2812 * @addr: address within that address space
2813 * @len: length of the area to be checked
2814 * @is_write: indicates the transfer direction
2815 * @attrs: memory attributes
2816 */
2817 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2818 bool is_write, MemTxAttrs attrs);
2819
2820 /* address_space_map: map a physical memory region into a host virtual address
2821 *
2822 * May map a subset of the requested range, given by and returned in @plen.
2823 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2824 * the mapping are exhausted.
2825 * Use only for reads OR writes - not for read-modify-write operations.
2826 * Use cpu_register_map_client() to know when retrying the map operation is
2827 * likely to succeed.
2828 *
2829 * @as: #AddressSpace to be accessed
2830 * @addr: address within that address space
2831 * @plen: pointer to length of buffer; updated on return
2832 * @is_write: indicates the transfer direction
2833 * @attrs: memory attributes
2834 */
2835 void *address_space_map(AddressSpace *as, hwaddr addr,
2836 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2837
2838 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2839 *
2840 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2841 * the amount of memory that was actually read or written by the caller.
2842 *
2843 * @as: #AddressSpace used
2844 * @buffer: host pointer as returned by address_space_map()
2845 * @len: buffer length as returned by address_space_map()
2846 * @access_len: amount of data actually transferred
2847 * @is_write: indicates the transfer direction
2848 */
2849 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2850 bool is_write, hwaddr access_len);
2851
2852
2853 /* Internal functions, part of the implementation of address_space_read. */
2854 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2855 MemTxAttrs attrs, void *buf, hwaddr len);
2856 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2857 MemTxAttrs attrs, void *buf,
2858 hwaddr len, hwaddr addr1, hwaddr l,
2859 MemoryRegion *mr);
2860 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2861
2862 /* Internal functions, part of the implementation of address_space_read_cached
2863 * and address_space_write_cached. */
2864 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2865 hwaddr addr, void *buf, hwaddr len);
2866 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2867 hwaddr addr, const void *buf,
2868 hwaddr len);
2869
2870 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr);
2871 bool prepare_mmio_access(MemoryRegion *mr);
2872
2873 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2874 {
2875 if (is_write) {
2876 return memory_region_is_ram(mr) && !mr->readonly &&
2877 !mr->rom_device && !memory_region_is_ram_device(mr);
2878 } else {
2879 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2880 memory_region_is_romd(mr);
2881 }
2882 }
2883
2884 /**
2885 * address_space_read: read from an address space.
2886 *
2887 * Return a MemTxResult indicating whether the operation succeeded
2888 * or failed (eg unassigned memory, device rejected the transaction,
2889 * IOMMU fault). Called within RCU critical section.
2890 *
2891 * @as: #AddressSpace to be accessed
2892 * @addr: address within that address space
2893 * @attrs: memory transaction attributes
2894 * @buf: buffer with the data transferred
2895 * @len: length of the data transferred
2896 */
2897 static inline __attribute__((__always_inline__))
2898 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2899 MemTxAttrs attrs, void *buf,
2900 hwaddr len)
2901 {
2902 MemTxResult result = MEMTX_OK;
2903 hwaddr l, addr1;
2904 void *ptr;
2905 MemoryRegion *mr;
2906 FlatView *fv;
2907
2908 if (__builtin_constant_p(len)) {
2909 if (len) {
2910 RCU_READ_LOCK_GUARD();
2911 fv = address_space_to_flatview(as);
2912 l = len;
2913 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2914 if (len == l && memory_access_is_direct(mr, false)) {
2915 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2916 memcpy(buf, ptr, len);
2917 } else {
2918 result = flatview_read_continue(fv, addr, attrs, buf, len,
2919 addr1, l, mr);
2920 }
2921 }
2922 } else {
2923 result = address_space_read_full(as, addr, attrs, buf, len);
2924 }
2925 return result;
2926 }
2927
2928 /**
2929 * address_space_read_cached: read from a cached RAM region
2930 *
2931 * @cache: Cached region to be addressed
2932 * @addr: address relative to the base of the RAM region
2933 * @buf: buffer with the data transferred
2934 * @len: length of the data transferred
2935 */
2936 static inline MemTxResult
2937 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2938 void *buf, hwaddr len)
2939 {
2940 assert(addr < cache->len && len <= cache->len - addr);
2941 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
2942 if (likely(cache->ptr)) {
2943 memcpy(buf, cache->ptr + addr, len);
2944 return MEMTX_OK;
2945 } else {
2946 return address_space_read_cached_slow(cache, addr, buf, len);
2947 }
2948 }
2949
2950 /**
2951 * address_space_write_cached: write to a cached RAM region
2952 *
2953 * @cache: Cached region to be addressed
2954 * @addr: address relative to the base of the RAM region
2955 * @buf: buffer with the data transferred
2956 * @len: length of the data transferred
2957 */
2958 static inline MemTxResult
2959 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2960 const void *buf, hwaddr len)
2961 {
2962 assert(addr < cache->len && len <= cache->len - addr);
2963 if (likely(cache->ptr)) {
2964 memcpy(cache->ptr + addr, buf, len);
2965 return MEMTX_OK;
2966 } else {
2967 return address_space_write_cached_slow(cache, addr, buf, len);
2968 }
2969 }
2970
2971 /**
2972 * address_space_set: Fill address space with a constant byte.
2973 *
2974 * Return a MemTxResult indicating whether the operation succeeded
2975 * or failed (eg unassigned memory, device rejected the transaction,
2976 * IOMMU fault).
2977 *
2978 * @as: #AddressSpace to be accessed
2979 * @addr: address within that address space
2980 * @c: constant byte to fill the memory
2981 * @len: the number of bytes to fill with the constant byte
2982 * @attrs: memory transaction attributes
2983 */
2984 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2985 uint8_t c, hwaddr len, MemTxAttrs attrs);
2986
2987 #ifdef NEED_CPU_H
2988 /* enum device_endian to MemOp. */
2989 static inline MemOp devend_memop(enum device_endian end)
2990 {
2991 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2992 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2993
2994 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
2995 /* Swap if non-host endianness or native (target) endianness */
2996 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2997 #else
2998 const int non_host_endianness =
2999 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
3000
3001 /* In this case, native (target) endianness needs no swap. */
3002 return (end == non_host_endianness) ? MO_BSWAP : 0;
3003 #endif
3004 }
3005 #endif
3006
3007 /*
3008 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
3009 * to manage the actual amount of memory consumed by the VM (then, the memory
3010 * provided by RAM blocks might be bigger than the desired memory consumption).
3011 * This *must* be set if:
3012 * - Discarding parts of a RAM blocks does not result in the change being
3013 * reflected in the VM and the pages getting freed.
3014 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
3015 * discards blindly.
3016 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
3017 * encrypted VMs).
3018 * Technologies that only temporarily pin the current working set of a
3019 * driver are fine, because we don't expect such pages to be discarded
3020 * (esp. based on guest action like balloon inflation).
3021 *
3022 * This is *not* to be used to protect from concurrent discards (esp.,
3023 * postcopy).
3024 *
3025 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
3026 * discards to work reliably is active.
3027 */
3028 int ram_block_discard_disable(bool state);
3029
3030 /*
3031 * See ram_block_discard_disable(): only disable uncoordinated discards,
3032 * keeping coordinated discards (via the RamDiscardManager) enabled.
3033 */
3034 int ram_block_uncoordinated_discard_disable(bool state);
3035
3036 /*
3037 * Inhibit technologies that disable discarding of pages in RAM blocks.
3038 *
3039 * Returns 0 if successful. Returns -EBUSY if discards are already set to
3040 * broken.
3041 */
3042 int ram_block_discard_require(bool state);
3043
3044 /*
3045 * See ram_block_discard_require(): only inhibit technologies that disable
3046 * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
3047 * technologies that only inhibit uncoordinated discards (via the
3048 * RamDiscardManager).
3049 */
3050 int ram_block_coordinated_discard_require(bool state);
3051
3052 /*
3053 * Test if any discarding of memory in ram blocks is disabled.
3054 */
3055 bool ram_block_discard_is_disabled(void);
3056
3057 /*
3058 * Test if any discarding of memory in ram blocks is required to work reliably.
3059 */
3060 bool ram_block_discard_is_required(void);
3061
3062 #endif
3063
3064 #endif