]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/ram_addr.h
Merge tag 's390-ccw-bios-2019-04-12' into s390-next-staging
[mirror_qemu.git] / include / exec / ram_addr.h
1 /*
2 * Declarations for cpu physical memory functions
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or
10 * later. See the COPYING file in the top-level directory.
11 *
12 */
13
14 /*
15 * This header is for use by exec.c and memory.c ONLY. Do not include it.
16 * The functions declared here will be removed soon.
17 */
18
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
21
22 #ifndef CONFIG_USER_ONLY
23 #include "hw/xen/xen.h"
24 #include "exec/ramlist.h"
25
26 struct RAMBlock {
27 struct rcu_head rcu;
28 struct MemoryRegion *mr;
29 uint8_t *host;
30 uint8_t *colo_cache; /* For colo, VM's ram cache */
31 ram_addr_t offset;
32 ram_addr_t used_length;
33 ram_addr_t max_length;
34 void (*resized)(const char*, uint64_t length, void *host);
35 uint32_t flags;
36 /* Protected by iothread lock. */
37 char idstr[256];
38 /* RCU-enabled, writes protected by the ramlist lock */
39 QLIST_ENTRY(RAMBlock) next;
40 QLIST_HEAD(, RAMBlockNotifier) ramblock_notifiers;
41 int fd;
42 size_t page_size;
43 /* dirty bitmap used during migration */
44 unsigned long *bmap;
45 /* bitmap of pages that haven't been sent even once
46 * only maintained and used in postcopy at the moment
47 * where it's used to send the dirtymap at the start
48 * of the postcopy phase
49 */
50 unsigned long *unsentmap;
51 /* bitmap of already received pages in postcopy */
52 unsigned long *receivedmap;
53 };
54
55 static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
56 {
57 return (b && b->host && offset < b->used_length) ? true : false;
58 }
59
60 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
61 {
62 assert(offset_in_ramblock(block, offset));
63 return (char *)block->host + offset;
64 }
65
66 static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr,
67 RAMBlock *rb)
68 {
69 uint64_t host_addr_offset =
70 (uint64_t)(uintptr_t)(host_addr - (void *)rb->host);
71 return host_addr_offset >> TARGET_PAGE_BITS;
72 }
73
74 bool ramblock_is_pmem(RAMBlock *rb);
75
76 long qemu_minrampagesize(void);
77 long qemu_maxrampagesize(void);
78
79 /**
80 * qemu_ram_alloc_from_file,
81 * qemu_ram_alloc_from_fd: Allocate a ram block from the specified backing
82 * file or device
83 *
84 * Parameters:
85 * @size: the size in bytes of the ram block
86 * @mr: the memory region where the ram block is
87 * @ram_flags: specify the properties of the ram block, which can be one
88 * or bit-or of following values
89 * - RAM_SHARED: mmap the backing file or device with MAP_SHARED
90 * - RAM_PMEM: the backend @mem_path or @fd is persistent memory
91 * Other bits are ignored.
92 * @mem_path or @fd: specify the backing file or device
93 * @errp: pointer to Error*, to store an error if it happens
94 *
95 * Return:
96 * On success, return a pointer to the ram block.
97 * On failure, return NULL.
98 */
99 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
100 uint32_t ram_flags, const char *mem_path,
101 Error **errp);
102 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
103 uint32_t ram_flags, int fd,
104 Error **errp);
105
106 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
107 MemoryRegion *mr, Error **errp);
108 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, MemoryRegion *mr,
109 Error **errp);
110 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
111 void (*resized)(const char*,
112 uint64_t length,
113 void *host),
114 MemoryRegion *mr, Error **errp);
115 void qemu_ram_free(RAMBlock *block);
116
117 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
118
119 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
120 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
121
122 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end);
123
124 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
125 ram_addr_t length,
126 unsigned client)
127 {
128 DirtyMemoryBlocks *blocks;
129 unsigned long end, page;
130 unsigned long idx, offset, base;
131 bool dirty = false;
132
133 assert(client < DIRTY_MEMORY_NUM);
134
135 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
136 page = start >> TARGET_PAGE_BITS;
137
138 rcu_read_lock();
139
140 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
141
142 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
143 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
144 base = page - offset;
145 while (page < end) {
146 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
147 unsigned long num = next - base;
148 unsigned long found = find_next_bit(blocks->blocks[idx], num, offset);
149 if (found < num) {
150 dirty = true;
151 break;
152 }
153
154 page = next;
155 idx++;
156 offset = 0;
157 base += DIRTY_MEMORY_BLOCK_SIZE;
158 }
159
160 rcu_read_unlock();
161
162 return dirty;
163 }
164
165 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
166 ram_addr_t length,
167 unsigned client)
168 {
169 DirtyMemoryBlocks *blocks;
170 unsigned long end, page;
171 unsigned long idx, offset, base;
172 bool dirty = true;
173
174 assert(client < DIRTY_MEMORY_NUM);
175
176 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
177 page = start >> TARGET_PAGE_BITS;
178
179 rcu_read_lock();
180
181 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
182
183 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
184 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
185 base = page - offset;
186 while (page < end) {
187 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
188 unsigned long num = next - base;
189 unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
190 if (found < num) {
191 dirty = false;
192 break;
193 }
194
195 page = next;
196 idx++;
197 offset = 0;
198 base += DIRTY_MEMORY_BLOCK_SIZE;
199 }
200
201 rcu_read_unlock();
202
203 return dirty;
204 }
205
206 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
207 unsigned client)
208 {
209 return cpu_physical_memory_get_dirty(addr, 1, client);
210 }
211
212 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
213 {
214 bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
215 bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
216 bool migration =
217 cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
218 return !(vga && code && migration);
219 }
220
221 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
222 ram_addr_t length,
223 uint8_t mask)
224 {
225 uint8_t ret = 0;
226
227 if (mask & (1 << DIRTY_MEMORY_VGA) &&
228 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
229 ret |= (1 << DIRTY_MEMORY_VGA);
230 }
231 if (mask & (1 << DIRTY_MEMORY_CODE) &&
232 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
233 ret |= (1 << DIRTY_MEMORY_CODE);
234 }
235 if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
236 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
237 ret |= (1 << DIRTY_MEMORY_MIGRATION);
238 }
239 return ret;
240 }
241
242 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
243 unsigned client)
244 {
245 unsigned long page, idx, offset;
246 DirtyMemoryBlocks *blocks;
247
248 assert(client < DIRTY_MEMORY_NUM);
249
250 page = addr >> TARGET_PAGE_BITS;
251 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
252 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
253
254 rcu_read_lock();
255
256 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
257
258 set_bit_atomic(offset, blocks->blocks[idx]);
259
260 rcu_read_unlock();
261 }
262
263 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
264 ram_addr_t length,
265 uint8_t mask)
266 {
267 DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
268 unsigned long end, page;
269 unsigned long idx, offset, base;
270 int i;
271
272 if (!mask && !xen_enabled()) {
273 return;
274 }
275
276 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
277 page = start >> TARGET_PAGE_BITS;
278
279 rcu_read_lock();
280
281 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
282 blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
283 }
284
285 idx = page / DIRTY_MEMORY_BLOCK_SIZE;
286 offset = page % DIRTY_MEMORY_BLOCK_SIZE;
287 base = page - offset;
288 while (page < end) {
289 unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
290
291 if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
292 bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
293 offset, next - page);
294 }
295 if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
296 bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
297 offset, next - page);
298 }
299 if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
300 bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
301 offset, next - page);
302 }
303
304 page = next;
305 idx++;
306 offset = 0;
307 base += DIRTY_MEMORY_BLOCK_SIZE;
308 }
309
310 rcu_read_unlock();
311
312 xen_hvm_modified_memory(start, length);
313 }
314
315 #if !defined(_WIN32)
316 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
317 ram_addr_t start,
318 ram_addr_t pages)
319 {
320 unsigned long i, j;
321 unsigned long page_number, c;
322 hwaddr addr;
323 ram_addr_t ram_addr;
324 unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
325 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
326 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
327
328 /* start address is aligned at the start of a word? */
329 if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
330 (hpratio == 1)) {
331 unsigned long **blocks[DIRTY_MEMORY_NUM];
332 unsigned long idx;
333 unsigned long offset;
334 long k;
335 long nr = BITS_TO_LONGS(pages);
336
337 idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
338 offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
339 DIRTY_MEMORY_BLOCK_SIZE);
340
341 rcu_read_lock();
342
343 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
344 blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
345 }
346
347 for (k = 0; k < nr; k++) {
348 if (bitmap[k]) {
349 unsigned long temp = leul_to_cpu(bitmap[k]);
350
351 atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp);
352 atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
353 if (tcg_enabled()) {
354 atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
355 }
356 }
357
358 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
359 offset = 0;
360 idx++;
361 }
362 }
363
364 rcu_read_unlock();
365
366 xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
367 } else {
368 uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
369 /*
370 * bitmap-traveling is faster than memory-traveling (for addr...)
371 * especially when most of the memory is not dirty.
372 */
373 for (i = 0; i < len; i++) {
374 if (bitmap[i] != 0) {
375 c = leul_to_cpu(bitmap[i]);
376 do {
377 j = ctzl(c);
378 c &= ~(1ul << j);
379 page_number = (i * HOST_LONG_BITS + j) * hpratio;
380 addr = page_number * TARGET_PAGE_SIZE;
381 ram_addr = start + addr;
382 cpu_physical_memory_set_dirty_range(ram_addr,
383 TARGET_PAGE_SIZE * hpratio, clients);
384 } while (c != 0);
385 }
386 }
387 }
388 }
389 #endif /* not _WIN32 */
390
391 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
392 ram_addr_t length,
393 unsigned client);
394
395 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
396 (ram_addr_t start, ram_addr_t length, unsigned client);
397
398 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
399 ram_addr_t start,
400 ram_addr_t length);
401
402 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
403 ram_addr_t length)
404 {
405 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
406 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
407 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
408 }
409
410
411 static inline
412 uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
413 ram_addr_t start,
414 ram_addr_t length,
415 uint64_t *real_dirty_pages)
416 {
417 ram_addr_t addr;
418 unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
419 uint64_t num_dirty = 0;
420 unsigned long *dest = rb->bmap;
421
422 /* start address and length is aligned at the start of a word? */
423 if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) ==
424 (start + rb->offset) &&
425 !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) {
426 int k;
427 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
428 unsigned long * const *src;
429 unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
430 unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
431 DIRTY_MEMORY_BLOCK_SIZE);
432 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
433
434 rcu_read_lock();
435
436 src = atomic_rcu_read(
437 &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
438
439 for (k = page; k < page + nr; k++) {
440 if (src[idx][offset]) {
441 unsigned long bits = atomic_xchg(&src[idx][offset], 0);
442 unsigned long new_dirty;
443 *real_dirty_pages += ctpopl(bits);
444 new_dirty = ~dest[k];
445 dest[k] |= bits;
446 new_dirty &= bits;
447 num_dirty += ctpopl(new_dirty);
448 }
449
450 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
451 offset = 0;
452 idx++;
453 }
454 }
455
456 rcu_read_unlock();
457 } else {
458 ram_addr_t offset = rb->offset;
459
460 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
461 if (cpu_physical_memory_test_and_clear_dirty(
462 start + addr + offset,
463 TARGET_PAGE_SIZE,
464 DIRTY_MEMORY_MIGRATION)) {
465 *real_dirty_pages += 1;
466 long k = (start + addr) >> TARGET_PAGE_BITS;
467 if (!test_and_set_bit(k, dest)) {
468 num_dirty++;
469 }
470 }
471 }
472 }
473
474 return num_dirty;
475 }
476 #endif
477 #endif