]> git.proxmox.com Git - mirror_qemu.git/blob - include/qom/object.h
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / include / qom / object.h
1 /*
2 * QEMU Object Model
3 *
4 * Copyright IBM, Corp. 2011
5 *
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16
17 #include "qapi/qapi-builtin-types.h"
18 #include "qemu/queue.h"
19
20 struct TypeImpl;
21 typedef struct TypeImpl *Type;
22
23 typedef struct ObjectClass ObjectClass;
24 typedef struct Object Object;
25
26 typedef struct TypeInfo TypeInfo;
27
28 typedef struct InterfaceClass InterfaceClass;
29 typedef struct InterfaceInfo InterfaceInfo;
30
31 #define TYPE_OBJECT "object"
32
33 /**
34 * SECTION:object.h
35 * @title:Base Object Type System
36 * @short_description: interfaces for creating new types and objects
37 *
38 * The QEMU Object Model provides a framework for registering user creatable
39 * types and instantiating objects from those types. QOM provides the following
40 * features:
41 *
42 * - System for dynamically registering types
43 * - Support for single-inheritance of types
44 * - Multiple inheritance of stateless interfaces
45 *
46 * <example>
47 * <title>Creating a minimal type</title>
48 * <programlisting>
49 * #include "qdev.h"
50 *
51 * #define TYPE_MY_DEVICE "my-device"
52 *
53 * // No new virtual functions: we can reuse the typedef for the
54 * // superclass.
55 * typedef DeviceClass MyDeviceClass;
56 * typedef struct MyDevice
57 * {
58 * DeviceState parent;
59 *
60 * int reg0, reg1, reg2;
61 * } MyDevice;
62 *
63 * static const TypeInfo my_device_info = {
64 * .name = TYPE_MY_DEVICE,
65 * .parent = TYPE_DEVICE,
66 * .instance_size = sizeof(MyDevice),
67 * };
68 *
69 * static void my_device_register_types(void)
70 * {
71 * type_register_static(&my_device_info);
72 * }
73 *
74 * type_init(my_device_register_types)
75 * </programlisting>
76 * </example>
77 *
78 * In the above example, we create a simple type that is described by #TypeInfo.
79 * #TypeInfo describes information about the type including what it inherits
80 * from, the instance and class size, and constructor/destructor hooks.
81 *
82 * Alternatively several static types could be registered using helper macro
83 * DEFINE_TYPES()
84 *
85 * <example>
86 * <programlisting>
87 * static const TypeInfo device_types_info[] = {
88 * {
89 * .name = TYPE_MY_DEVICE_A,
90 * .parent = TYPE_DEVICE,
91 * .instance_size = sizeof(MyDeviceA),
92 * },
93 * {
94 * .name = TYPE_MY_DEVICE_B,
95 * .parent = TYPE_DEVICE,
96 * .instance_size = sizeof(MyDeviceB),
97 * },
98 * };
99 *
100 * DEFINE_TYPES(device_types_info)
101 * </programlisting>
102 * </example>
103 *
104 * Every type has an #ObjectClass associated with it. #ObjectClass derivatives
105 * are instantiated dynamically but there is only ever one instance for any
106 * given type. The #ObjectClass typically holds a table of function pointers
107 * for the virtual methods implemented by this type.
108 *
109 * Using object_new(), a new #Object derivative will be instantiated. You can
110 * cast an #Object to a subclass (or base-class) type using
111 * object_dynamic_cast(). You typically want to define macro wrappers around
112 * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
113 * specific type:
114 *
115 * <example>
116 * <title>Typecasting macros</title>
117 * <programlisting>
118 * #define MY_DEVICE_GET_CLASS(obj) \
119 * OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
120 * #define MY_DEVICE_CLASS(klass) \
121 * OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
122 * #define MY_DEVICE(obj) \
123 * OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
124 * </programlisting>
125 * </example>
126 *
127 * # Class Initialization #
128 *
129 * Before an object is initialized, the class for the object must be
130 * initialized. There is only one class object for all instance objects
131 * that is created lazily.
132 *
133 * Classes are initialized by first initializing any parent classes (if
134 * necessary). After the parent class object has initialized, it will be
135 * copied into the current class object and any additional storage in the
136 * class object is zero filled.
137 *
138 * The effect of this is that classes automatically inherit any virtual
139 * function pointers that the parent class has already initialized. All
140 * other fields will be zero filled.
141 *
142 * Once all of the parent classes have been initialized, #TypeInfo::class_init
143 * is called to let the class being instantiated provide default initialize for
144 * its virtual functions. Here is how the above example might be modified
145 * to introduce an overridden virtual function:
146 *
147 * <example>
148 * <title>Overriding a virtual function</title>
149 * <programlisting>
150 * #include "qdev.h"
151 *
152 * void my_device_class_init(ObjectClass *klass, void *class_data)
153 * {
154 * DeviceClass *dc = DEVICE_CLASS(klass);
155 * dc->reset = my_device_reset;
156 * }
157 *
158 * static const TypeInfo my_device_info = {
159 * .name = TYPE_MY_DEVICE,
160 * .parent = TYPE_DEVICE,
161 * .instance_size = sizeof(MyDevice),
162 * .class_init = my_device_class_init,
163 * };
164 * </programlisting>
165 * </example>
166 *
167 * Introducing new virtual methods requires a class to define its own
168 * struct and to add a .class_size member to the #TypeInfo. Each method
169 * will also have a wrapper function to call it easily:
170 *
171 * <example>
172 * <title>Defining an abstract class</title>
173 * <programlisting>
174 * #include "qdev.h"
175 *
176 * typedef struct MyDeviceClass
177 * {
178 * DeviceClass parent;
179 *
180 * void (*frobnicate) (MyDevice *obj);
181 * } MyDeviceClass;
182 *
183 * static const TypeInfo my_device_info = {
184 * .name = TYPE_MY_DEVICE,
185 * .parent = TYPE_DEVICE,
186 * .instance_size = sizeof(MyDevice),
187 * .abstract = true, // or set a default in my_device_class_init
188 * .class_size = sizeof(MyDeviceClass),
189 * };
190 *
191 * void my_device_frobnicate(MyDevice *obj)
192 * {
193 * MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
194 *
195 * klass->frobnicate(obj);
196 * }
197 * </programlisting>
198 * </example>
199 *
200 * # Interfaces #
201 *
202 * Interfaces allow a limited form of multiple inheritance. Instances are
203 * similar to normal types except for the fact that are only defined by
204 * their classes and never carry any state. You can dynamically cast an object
205 * to one of its #Interface types and vice versa.
206 *
207 * # Methods #
208 *
209 * A <emphasis>method</emphasis> is a function within the namespace scope of
210 * a class. It usually operates on the object instance by passing it as a
211 * strongly-typed first argument.
212 * If it does not operate on an object instance, it is dubbed
213 * <emphasis>class method</emphasis>.
214 *
215 * Methods cannot be overloaded. That is, the #ObjectClass and method name
216 * uniquely identity the function to be called; the signature does not vary
217 * except for trailing varargs.
218 *
219 * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
220 * #TypeInfo.class_init of a subclass leads to any user of the class obtained
221 * via OBJECT_GET_CLASS() accessing the overridden function.
222 * The original function is not automatically invoked. It is the responsibility
223 * of the overriding class to determine whether and when to invoke the method
224 * being overridden.
225 *
226 * To invoke the method being overridden, the preferred solution is to store
227 * the original value in the overriding class before overriding the method.
228 * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
229 * respectively; this frees the overriding class from hardcoding its parent
230 * class, which someone might choose to change at some point.
231 *
232 * <example>
233 * <title>Overriding a virtual method</title>
234 * <programlisting>
235 * typedef struct MyState MyState;
236 *
237 * typedef void (*MyDoSomething)(MyState *obj);
238 *
239 * typedef struct MyClass {
240 * ObjectClass parent_class;
241 *
242 * MyDoSomething do_something;
243 * } MyClass;
244 *
245 * static void my_do_something(MyState *obj)
246 * {
247 * // do something
248 * }
249 *
250 * static void my_class_init(ObjectClass *oc, void *data)
251 * {
252 * MyClass *mc = MY_CLASS(oc);
253 *
254 * mc->do_something = my_do_something;
255 * }
256 *
257 * static const TypeInfo my_type_info = {
258 * .name = TYPE_MY,
259 * .parent = TYPE_OBJECT,
260 * .instance_size = sizeof(MyState),
261 * .class_size = sizeof(MyClass),
262 * .class_init = my_class_init,
263 * };
264 *
265 * typedef struct DerivedClass {
266 * MyClass parent_class;
267 *
268 * MyDoSomething parent_do_something;
269 * } DerivedClass;
270 *
271 * static void derived_do_something(MyState *obj)
272 * {
273 * DerivedClass *dc = DERIVED_GET_CLASS(obj);
274 *
275 * // do something here
276 * dc->parent_do_something(obj);
277 * // do something else here
278 * }
279 *
280 * static void derived_class_init(ObjectClass *oc, void *data)
281 * {
282 * MyClass *mc = MY_CLASS(oc);
283 * DerivedClass *dc = DERIVED_CLASS(oc);
284 *
285 * dc->parent_do_something = mc->do_something;
286 * mc->do_something = derived_do_something;
287 * }
288 *
289 * static const TypeInfo derived_type_info = {
290 * .name = TYPE_DERIVED,
291 * .parent = TYPE_MY,
292 * .class_size = sizeof(DerivedClass),
293 * .class_init = derived_class_init,
294 * };
295 * </programlisting>
296 * </example>
297 *
298 * Alternatively, object_class_by_name() can be used to obtain the class and
299 * its non-overridden methods for a specific type. This would correspond to
300 * |[ MyClass::method(...) ]| in C++.
301 *
302 * The first example of such a QOM method was #CPUClass.reset,
303 * another example is #DeviceClass.realize.
304 */
305
306
307 /**
308 * ObjectPropertyAccessor:
309 * @obj: the object that owns the property
310 * @v: the visitor that contains the property data
311 * @name: the name of the property
312 * @opaque: the object property opaque
313 * @errp: a pointer to an Error that is filled if getting/setting fails.
314 *
315 * Called when trying to get/set a property.
316 */
317 typedef void (ObjectPropertyAccessor)(Object *obj,
318 Visitor *v,
319 const char *name,
320 void *opaque,
321 Error **errp);
322
323 /**
324 * ObjectPropertyResolve:
325 * @obj: the object that owns the property
326 * @opaque: the opaque registered with the property
327 * @part: the name of the property
328 *
329 * Resolves the #Object corresponding to property @part.
330 *
331 * The returned object can also be used as a starting point
332 * to resolve a relative path starting with "@part".
333 *
334 * Returns: If @path is the path that led to @obj, the function
335 * returns the #Object corresponding to "@path/@part".
336 * If "@path/@part" is not a valid object path, it returns #NULL.
337 */
338 typedef Object *(ObjectPropertyResolve)(Object *obj,
339 void *opaque,
340 const char *part);
341
342 /**
343 * ObjectPropertyRelease:
344 * @obj: the object that owns the property
345 * @name: the name of the property
346 * @opaque: the opaque registered with the property
347 *
348 * Called when a property is removed from a object.
349 */
350 typedef void (ObjectPropertyRelease)(Object *obj,
351 const char *name,
352 void *opaque);
353
354 typedef struct ObjectProperty
355 {
356 gchar *name;
357 gchar *type;
358 gchar *description;
359 ObjectPropertyAccessor *get;
360 ObjectPropertyAccessor *set;
361 ObjectPropertyResolve *resolve;
362 ObjectPropertyRelease *release;
363 void *opaque;
364 } ObjectProperty;
365
366 /**
367 * ObjectUnparent:
368 * @obj: the object that is being removed from the composition tree
369 *
370 * Called when an object is being removed from the QOM composition tree.
371 * The function should remove any backlinks from children objects to @obj.
372 */
373 typedef void (ObjectUnparent)(Object *obj);
374
375 /**
376 * ObjectFree:
377 * @obj: the object being freed
378 *
379 * Called when an object's last reference is removed.
380 */
381 typedef void (ObjectFree)(void *obj);
382
383 #define OBJECT_CLASS_CAST_CACHE 4
384
385 /**
386 * ObjectClass:
387 *
388 * The base for all classes. The only thing that #ObjectClass contains is an
389 * integer type handle.
390 */
391 struct ObjectClass
392 {
393 /*< private >*/
394 Type type;
395 GSList *interfaces;
396
397 const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
398 const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
399
400 ObjectUnparent *unparent;
401
402 GHashTable *properties;
403 };
404
405 /**
406 * Object:
407 *
408 * The base for all objects. The first member of this object is a pointer to
409 * a #ObjectClass. Since C guarantees that the first member of a structure
410 * always begins at byte 0 of that structure, as long as any sub-object places
411 * its parent as the first member, we can cast directly to a #Object.
412 *
413 * As a result, #Object contains a reference to the objects type as its
414 * first member. This allows identification of the real type of the object at
415 * run time.
416 */
417 struct Object
418 {
419 /*< private >*/
420 ObjectClass *class;
421 ObjectFree *free;
422 GHashTable *properties;
423 uint32_t ref;
424 Object *parent;
425 };
426
427 /**
428 * TypeInfo:
429 * @name: The name of the type.
430 * @parent: The name of the parent type.
431 * @instance_size: The size of the object (derivative of #Object). If
432 * @instance_size is 0, then the size of the object will be the size of the
433 * parent object.
434 * @instance_init: This function is called to initialize an object. The parent
435 * class will have already been initialized so the type is only responsible
436 * for initializing its own members.
437 * @instance_post_init: This function is called to finish initialization of
438 * an object, after all @instance_init functions were called.
439 * @instance_finalize: This function is called during object destruction. This
440 * is called before the parent @instance_finalize function has been called.
441 * An object should only free the members that are unique to its type in this
442 * function.
443 * @abstract: If this field is true, then the class is considered abstract and
444 * cannot be directly instantiated.
445 * @class_size: The size of the class object (derivative of #ObjectClass)
446 * for this object. If @class_size is 0, then the size of the class will be
447 * assumed to be the size of the parent class. This allows a type to avoid
448 * implementing an explicit class type if they are not adding additional
449 * virtual functions.
450 * @class_init: This function is called after all parent class initialization
451 * has occurred to allow a class to set its default virtual method pointers.
452 * This is also the function to use to override virtual methods from a parent
453 * class.
454 * @class_base_init: This function is called for all base classes after all
455 * parent class initialization has occurred, but before the class itself
456 * is initialized. This is the function to use to undo the effects of
457 * memcpy from the parent class to the descendants.
458 * @class_finalize: This function is called during class destruction and is
459 * meant to release and dynamic parameters allocated by @class_init.
460 * @class_data: Data to pass to the @class_init, @class_base_init and
461 * @class_finalize functions. This can be useful when building dynamic
462 * classes.
463 * @interfaces: The list of interfaces associated with this type. This
464 * should point to a static array that's terminated with a zero filled
465 * element.
466 */
467 struct TypeInfo
468 {
469 const char *name;
470 const char *parent;
471
472 size_t instance_size;
473 void (*instance_init)(Object *obj);
474 void (*instance_post_init)(Object *obj);
475 void (*instance_finalize)(Object *obj);
476
477 bool abstract;
478 size_t class_size;
479
480 void (*class_init)(ObjectClass *klass, void *data);
481 void (*class_base_init)(ObjectClass *klass, void *data);
482 void (*class_finalize)(ObjectClass *klass, void *data);
483 void *class_data;
484
485 InterfaceInfo *interfaces;
486 };
487
488 /**
489 * OBJECT:
490 * @obj: A derivative of #Object
491 *
492 * Converts an object to a #Object. Since all objects are #Objects,
493 * this function will always succeed.
494 */
495 #define OBJECT(obj) \
496 ((Object *)(obj))
497
498 /**
499 * OBJECT_CLASS:
500 * @class: A derivative of #ObjectClass.
501 *
502 * Converts a class to an #ObjectClass. Since all objects are #Objects,
503 * this function will always succeed.
504 */
505 #define OBJECT_CLASS(class) \
506 ((ObjectClass *)(class))
507
508 /**
509 * OBJECT_CHECK:
510 * @type: The C type to use for the return value.
511 * @obj: A derivative of @type to cast.
512 * @name: The QOM typename of @type
513 *
514 * A type safe version of @object_dynamic_cast_assert. Typically each class
515 * will define a macro based on this type to perform type safe dynamic_casts to
516 * this object type.
517 *
518 * If an invalid object is passed to this function, a run time assert will be
519 * generated.
520 */
521 #define OBJECT_CHECK(type, obj, name) \
522 ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
523 __FILE__, __LINE__, __func__))
524
525 /**
526 * OBJECT_CLASS_CHECK:
527 * @class_type: The C type to use for the return value.
528 * @class: A derivative class of @class_type to cast.
529 * @name: the QOM typename of @class_type.
530 *
531 * A type safe version of @object_class_dynamic_cast_assert. This macro is
532 * typically wrapped by each type to perform type safe casts of a class to a
533 * specific class type.
534 */
535 #define OBJECT_CLASS_CHECK(class_type, class, name) \
536 ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \
537 __FILE__, __LINE__, __func__))
538
539 /**
540 * OBJECT_GET_CLASS:
541 * @class: The C type to use for the return value.
542 * @obj: The object to obtain the class for.
543 * @name: The QOM typename of @obj.
544 *
545 * This function will return a specific class for a given object. Its generally
546 * used by each type to provide a type safe macro to get a specific class type
547 * from an object.
548 */
549 #define OBJECT_GET_CLASS(class, obj, name) \
550 OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
551
552 /**
553 * InterfaceInfo:
554 * @type: The name of the interface.
555 *
556 * The information associated with an interface.
557 */
558 struct InterfaceInfo {
559 const char *type;
560 };
561
562 /**
563 * InterfaceClass:
564 * @parent_class: the base class
565 *
566 * The class for all interfaces. Subclasses of this class should only add
567 * virtual methods.
568 */
569 struct InterfaceClass
570 {
571 ObjectClass parent_class;
572 /*< private >*/
573 ObjectClass *concrete_class;
574 Type interface_type;
575 };
576
577 #define TYPE_INTERFACE "interface"
578
579 /**
580 * INTERFACE_CLASS:
581 * @klass: class to cast from
582 * Returns: An #InterfaceClass or raise an error if cast is invalid
583 */
584 #define INTERFACE_CLASS(klass) \
585 OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
586
587 /**
588 * INTERFACE_CHECK:
589 * @interface: the type to return
590 * @obj: the object to convert to an interface
591 * @name: the interface type name
592 *
593 * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
594 */
595 #define INTERFACE_CHECK(interface, obj, name) \
596 ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
597 __FILE__, __LINE__, __func__))
598
599 /**
600 * object_new:
601 * @typename: The name of the type of the object to instantiate.
602 *
603 * This function will initialize a new object using heap allocated memory.
604 * The returned object has a reference count of 1, and will be freed when
605 * the last reference is dropped.
606 *
607 * Returns: The newly allocated and instantiated object.
608 */
609 Object *object_new(const char *typename);
610
611 /**
612 * object_new_with_props:
613 * @typename: The name of the type of the object to instantiate.
614 * @parent: the parent object
615 * @id: The unique ID of the object
616 * @errp: pointer to error object
617 * @...: list of property names and values
618 *
619 * This function will initialize a new object using heap allocated memory.
620 * The returned object has a reference count of 1, and will be freed when
621 * the last reference is dropped.
622 *
623 * The @id parameter will be used when registering the object as a
624 * child of @parent in the composition tree.
625 *
626 * The variadic parameters are a list of pairs of (propname, propvalue)
627 * strings. The propname of %NULL indicates the end of the property
628 * list. If the object implements the user creatable interface, the
629 * object will be marked complete once all the properties have been
630 * processed.
631 *
632 * <example>
633 * <title>Creating an object with properties</title>
634 * <programlisting>
635 * Error *err = NULL;
636 * Object *obj;
637 *
638 * obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
639 * object_get_objects_root(),
640 * "hostmem0",
641 * &err,
642 * "share", "yes",
643 * "mem-path", "/dev/shm/somefile",
644 * "prealloc", "yes",
645 * "size", "1048576",
646 * NULL);
647 *
648 * if (!obj) {
649 * g_printerr("Cannot create memory backend: %s\n",
650 * error_get_pretty(err));
651 * }
652 * </programlisting>
653 * </example>
654 *
655 * The returned object will have one stable reference maintained
656 * for as long as it is present in the object hierarchy.
657 *
658 * Returns: The newly allocated, instantiated & initialized object.
659 */
660 Object *object_new_with_props(const char *typename,
661 Object *parent,
662 const char *id,
663 Error **errp,
664 ...) QEMU_SENTINEL;
665
666 /**
667 * object_new_with_propv:
668 * @typename: The name of the type of the object to instantiate.
669 * @parent: the parent object
670 * @id: The unique ID of the object
671 * @errp: pointer to error object
672 * @vargs: list of property names and values
673 *
674 * See object_new_with_props() for documentation.
675 */
676 Object *object_new_with_propv(const char *typename,
677 Object *parent,
678 const char *id,
679 Error **errp,
680 va_list vargs);
681
682 /**
683 * object_set_props:
684 * @obj: the object instance to set properties on
685 * @errp: pointer to error object
686 * @...: list of property names and values
687 *
688 * This function will set a list of properties on an existing object
689 * instance.
690 *
691 * The variadic parameters are a list of pairs of (propname, propvalue)
692 * strings. The propname of %NULL indicates the end of the property
693 * list.
694 *
695 * <example>
696 * <title>Update an object's properties</title>
697 * <programlisting>
698 * Error *err = NULL;
699 * Object *obj = ...get / create object...;
700 *
701 * obj = object_set_props(obj,
702 * &err,
703 * "share", "yes",
704 * "mem-path", "/dev/shm/somefile",
705 * "prealloc", "yes",
706 * "size", "1048576",
707 * NULL);
708 *
709 * if (!obj) {
710 * g_printerr("Cannot set properties: %s\n",
711 * error_get_pretty(err));
712 * }
713 * </programlisting>
714 * </example>
715 *
716 * The returned object will have one stable reference maintained
717 * for as long as it is present in the object hierarchy.
718 *
719 * Returns: -1 on error, 0 on success
720 */
721 int object_set_props(Object *obj,
722 Error **errp,
723 ...) QEMU_SENTINEL;
724
725 /**
726 * object_set_propv:
727 * @obj: the object instance to set properties on
728 * @errp: pointer to error object
729 * @vargs: list of property names and values
730 *
731 * See object_set_props() for documentation.
732 *
733 * Returns: -1 on error, 0 on success
734 */
735 int object_set_propv(Object *obj,
736 Error **errp,
737 va_list vargs);
738
739 /**
740 * object_initialize:
741 * @obj: A pointer to the memory to be used for the object.
742 * @size: The maximum size available at @obj for the object.
743 * @typename: The name of the type of the object to instantiate.
744 *
745 * This function will initialize an object. The memory for the object should
746 * have already been allocated. The returned object has a reference count of 1,
747 * and will be finalized when the last reference is dropped.
748 */
749 void object_initialize(void *obj, size_t size, const char *typename);
750
751 /**
752 * object_dynamic_cast:
753 * @obj: The object to cast.
754 * @typename: The @typename to cast to.
755 *
756 * This function will determine if @obj is-a @typename. @obj can refer to an
757 * object or an interface associated with an object.
758 *
759 * Returns: This function returns @obj on success or #NULL on failure.
760 */
761 Object *object_dynamic_cast(Object *obj, const char *typename);
762
763 /**
764 * object_dynamic_cast_assert:
765 *
766 * See object_dynamic_cast() for a description of the parameters of this
767 * function. The only difference in behavior is that this function asserts
768 * instead of returning #NULL on failure if QOM cast debugging is enabled.
769 * This function is not meant to be called directly, but only through
770 * the wrapper macro OBJECT_CHECK.
771 */
772 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
773 const char *file, int line, const char *func);
774
775 /**
776 * object_get_class:
777 * @obj: A derivative of #Object
778 *
779 * Returns: The #ObjectClass of the type associated with @obj.
780 */
781 ObjectClass *object_get_class(Object *obj);
782
783 /**
784 * object_get_typename:
785 * @obj: A derivative of #Object.
786 *
787 * Returns: The QOM typename of @obj.
788 */
789 const char *object_get_typename(const Object *obj);
790
791 /**
792 * type_register_static:
793 * @info: The #TypeInfo of the new type.
794 *
795 * @info and all of the strings it points to should exist for the life time
796 * that the type is registered.
797 *
798 * Returns: the new #Type.
799 */
800 Type type_register_static(const TypeInfo *info);
801
802 /**
803 * type_register:
804 * @info: The #TypeInfo of the new type
805 *
806 * Unlike type_register_static(), this call does not require @info or its
807 * string members to continue to exist after the call returns.
808 *
809 * Returns: the new #Type.
810 */
811 Type type_register(const TypeInfo *info);
812
813 /**
814 * type_register_static_array:
815 * @infos: The array of the new type #TypeInfo structures.
816 * @nr_infos: number of entries in @infos
817 *
818 * @infos and all of the strings it points to should exist for the life time
819 * that the type is registered.
820 */
821 void type_register_static_array(const TypeInfo *infos, int nr_infos);
822
823 /**
824 * DEFINE_TYPES:
825 * @type_array: The array containing #TypeInfo structures to register
826 *
827 * @type_array should be static constant that exists for the life time
828 * that the type is registered.
829 */
830 #define DEFINE_TYPES(type_array) \
831 static void do_qemu_init_ ## type_array(void) \
832 { \
833 type_register_static_array(type_array, ARRAY_SIZE(type_array)); \
834 } \
835 type_init(do_qemu_init_ ## type_array)
836
837 /**
838 * object_class_dynamic_cast_assert:
839 * @klass: The #ObjectClass to attempt to cast.
840 * @typename: The QOM typename of the class to cast to.
841 *
842 * See object_class_dynamic_cast() for a description of the parameters
843 * of this function. The only difference in behavior is that this function
844 * asserts instead of returning #NULL on failure if QOM cast debugging is
845 * enabled. This function is not meant to be called directly, but only through
846 * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK.
847 */
848 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
849 const char *typename,
850 const char *file, int line,
851 const char *func);
852
853 /**
854 * object_class_dynamic_cast:
855 * @klass: The #ObjectClass to attempt to cast.
856 * @typename: The QOM typename of the class to cast to.
857 *
858 * Returns: If @typename is a class, this function returns @klass if
859 * @typename is a subtype of @klass, else returns #NULL.
860 *
861 * If @typename is an interface, this function returns the interface
862 * definition for @klass if @klass implements it unambiguously; #NULL
863 * is returned if @klass does not implement the interface or if multiple
864 * classes or interfaces on the hierarchy leading to @klass implement
865 * it. (FIXME: perhaps this can be detected at type definition time?)
866 */
867 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
868 const char *typename);
869
870 /**
871 * object_class_get_parent:
872 * @klass: The class to obtain the parent for.
873 *
874 * Returns: The parent for @klass or %NULL if none.
875 */
876 ObjectClass *object_class_get_parent(ObjectClass *klass);
877
878 /**
879 * object_class_get_name:
880 * @klass: The class to obtain the QOM typename for.
881 *
882 * Returns: The QOM typename for @klass.
883 */
884 const char *object_class_get_name(ObjectClass *klass);
885
886 /**
887 * object_class_is_abstract:
888 * @klass: The class to obtain the abstractness for.
889 *
890 * Returns: %true if @klass is abstract, %false otherwise.
891 */
892 bool object_class_is_abstract(ObjectClass *klass);
893
894 /**
895 * object_class_by_name:
896 * @typename: The QOM typename to obtain the class for.
897 *
898 * Returns: The class for @typename or %NULL if not found.
899 */
900 ObjectClass *object_class_by_name(const char *typename);
901
902 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
903 const char *implements_type, bool include_abstract,
904 void *opaque);
905
906 /**
907 * object_class_get_list:
908 * @implements_type: The type to filter for, including its derivatives.
909 * @include_abstract: Whether to include abstract classes.
910 *
911 * Returns: A singly-linked list of the classes in reverse hashtable order.
912 */
913 GSList *object_class_get_list(const char *implements_type,
914 bool include_abstract);
915
916 /**
917 * object_class_get_list_sorted:
918 * @implements_type: The type to filter for, including its derivatives.
919 * @include_abstract: Whether to include abstract classes.
920 *
921 * Returns: A singly-linked list of the classes in alphabetical
922 * case-insensitive order.
923 */
924 GSList *object_class_get_list_sorted(const char *implements_type,
925 bool include_abstract);
926
927 /**
928 * object_ref:
929 * @obj: the object
930 *
931 * Increase the reference count of a object. A object cannot be freed as long
932 * as its reference count is greater than zero.
933 */
934 void object_ref(Object *obj);
935
936 /**
937 * object_unref:
938 * @obj: the object
939 *
940 * Decrease the reference count of a object. A object cannot be freed as long
941 * as its reference count is greater than zero.
942 */
943 void object_unref(Object *obj);
944
945 /**
946 * object_property_add:
947 * @obj: the object to add a property to
948 * @name: the name of the property. This can contain any character except for
949 * a forward slash. In general, you should use hyphens '-' instead of
950 * underscores '_' when naming properties.
951 * @type: the type name of the property. This namespace is pretty loosely
952 * defined. Sub namespaces are constructed by using a prefix and then
953 * to angle brackets. For instance, the type 'virtio-net-pci' in the
954 * 'link' namespace would be 'link<virtio-net-pci>'.
955 * @get: The getter to be called to read a property. If this is NULL, then
956 * the property cannot be read.
957 * @set: the setter to be called to write a property. If this is NULL,
958 * then the property cannot be written.
959 * @release: called when the property is removed from the object. This is
960 * meant to allow a property to free its opaque upon object
961 * destruction. This may be NULL.
962 * @opaque: an opaque pointer to pass to the callbacks for the property
963 * @errp: returns an error if this function fails
964 *
965 * Returns: The #ObjectProperty; this can be used to set the @resolve
966 * callback for child and link properties.
967 */
968 ObjectProperty *object_property_add(Object *obj, const char *name,
969 const char *type,
970 ObjectPropertyAccessor *get,
971 ObjectPropertyAccessor *set,
972 ObjectPropertyRelease *release,
973 void *opaque, Error **errp);
974
975 void object_property_del(Object *obj, const char *name, Error **errp);
976
977 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name,
978 const char *type,
979 ObjectPropertyAccessor *get,
980 ObjectPropertyAccessor *set,
981 ObjectPropertyRelease *release,
982 void *opaque, Error **errp);
983
984 /**
985 * object_property_find:
986 * @obj: the object
987 * @name: the name of the property
988 * @errp: returns an error if this function fails
989 *
990 * Look up a property for an object and return its #ObjectProperty if found.
991 */
992 ObjectProperty *object_property_find(Object *obj, const char *name,
993 Error **errp);
994 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name,
995 Error **errp);
996
997 typedef struct ObjectPropertyIterator {
998 ObjectClass *nextclass;
999 GHashTableIter iter;
1000 } ObjectPropertyIterator;
1001
1002 /**
1003 * object_property_iter_init:
1004 * @obj: the object
1005 *
1006 * Initializes an iterator for traversing all properties
1007 * registered against an object instance, its class and all parent classes.
1008 *
1009 * It is forbidden to modify the property list while iterating,
1010 * whether removing or adding properties.
1011 *
1012 * Typical usage pattern would be
1013 *
1014 * <example>
1015 * <title>Using object property iterators</title>
1016 * <programlisting>
1017 * ObjectProperty *prop;
1018 * ObjectPropertyIterator iter;
1019 *
1020 * object_property_iter_init(&iter, obj);
1021 * while ((prop = object_property_iter_next(&iter))) {
1022 * ... do something with prop ...
1023 * }
1024 * </programlisting>
1025 * </example>
1026 */
1027 void object_property_iter_init(ObjectPropertyIterator *iter,
1028 Object *obj);
1029
1030 /**
1031 * object_class_property_iter_init:
1032 * @klass: the class
1033 *
1034 * Initializes an iterator for traversing all properties
1035 * registered against an object class and all parent classes.
1036 *
1037 * It is forbidden to modify the property list while iterating,
1038 * whether removing or adding properties.
1039 *
1040 * This can be used on abstract classes as it does not create a temporary
1041 * instance.
1042 */
1043 void object_class_property_iter_init(ObjectPropertyIterator *iter,
1044 ObjectClass *klass);
1045
1046 /**
1047 * object_property_iter_next:
1048 * @iter: the iterator instance
1049 *
1050 * Return the next available property. If no further properties
1051 * are available, a %NULL value will be returned and the @iter
1052 * pointer should not be used again after this point without
1053 * re-initializing it.
1054 *
1055 * Returns: the next property, or %NULL when all properties
1056 * have been traversed.
1057 */
1058 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter);
1059
1060 void object_unparent(Object *obj);
1061
1062 /**
1063 * object_property_get:
1064 * @obj: the object
1065 * @v: the visitor that will receive the property value. This should be an
1066 * Output visitor and the data will be written with @name as the name.
1067 * @name: the name of the property
1068 * @errp: returns an error if this function fails
1069 *
1070 * Reads a property from a object.
1071 */
1072 void object_property_get(Object *obj, Visitor *v, const char *name,
1073 Error **errp);
1074
1075 /**
1076 * object_property_set_str:
1077 * @value: the value to be written to the property
1078 * @name: the name of the property
1079 * @errp: returns an error if this function fails
1080 *
1081 * Writes a string value to a property.
1082 */
1083 void object_property_set_str(Object *obj, const char *value,
1084 const char *name, Error **errp);
1085
1086 /**
1087 * object_property_get_str:
1088 * @obj: the object
1089 * @name: the name of the property
1090 * @errp: returns an error if this function fails
1091 *
1092 * Returns: the value of the property, converted to a C string, or NULL if
1093 * an error occurs (including when the property value is not a string).
1094 * The caller should free the string.
1095 */
1096 char *object_property_get_str(Object *obj, const char *name,
1097 Error **errp);
1098
1099 /**
1100 * object_property_set_link:
1101 * @value: the value to be written to the property
1102 * @name: the name of the property
1103 * @errp: returns an error if this function fails
1104 *
1105 * Writes an object's canonical path to a property.
1106 */
1107 void object_property_set_link(Object *obj, Object *value,
1108 const char *name, Error **errp);
1109
1110 /**
1111 * object_property_get_link:
1112 * @obj: the object
1113 * @name: the name of the property
1114 * @errp: returns an error if this function fails
1115 *
1116 * Returns: the value of the property, resolved from a path to an Object,
1117 * or NULL if an error occurs (including when the property value is not a
1118 * string or not a valid object path).
1119 */
1120 Object *object_property_get_link(Object *obj, const char *name,
1121 Error **errp);
1122
1123 /**
1124 * object_property_set_bool:
1125 * @value: the value to be written to the property
1126 * @name: the name of the property
1127 * @errp: returns an error if this function fails
1128 *
1129 * Writes a bool value to a property.
1130 */
1131 void object_property_set_bool(Object *obj, bool value,
1132 const char *name, Error **errp);
1133
1134 /**
1135 * object_property_get_bool:
1136 * @obj: the object
1137 * @name: the name of the property
1138 * @errp: returns an error if this function fails
1139 *
1140 * Returns: the value of the property, converted to a boolean, or NULL if
1141 * an error occurs (including when the property value is not a bool).
1142 */
1143 bool object_property_get_bool(Object *obj, const char *name,
1144 Error **errp);
1145
1146 /**
1147 * object_property_set_int:
1148 * @value: the value to be written to the property
1149 * @name: the name of the property
1150 * @errp: returns an error if this function fails
1151 *
1152 * Writes an integer value to a property.
1153 */
1154 void object_property_set_int(Object *obj, int64_t value,
1155 const char *name, Error **errp);
1156
1157 /**
1158 * object_property_get_int:
1159 * @obj: the object
1160 * @name: the name of the property
1161 * @errp: returns an error if this function fails
1162 *
1163 * Returns: the value of the property, converted to an integer, or negative if
1164 * an error occurs (including when the property value is not an integer).
1165 */
1166 int64_t object_property_get_int(Object *obj, const char *name,
1167 Error **errp);
1168
1169 /**
1170 * object_property_set_uint:
1171 * @value: the value to be written to the property
1172 * @name: the name of the property
1173 * @errp: returns an error if this function fails
1174 *
1175 * Writes an unsigned integer value to a property.
1176 */
1177 void object_property_set_uint(Object *obj, uint64_t value,
1178 const char *name, Error **errp);
1179
1180 /**
1181 * object_property_get_uint:
1182 * @obj: the object
1183 * @name: the name of the property
1184 * @errp: returns an error if this function fails
1185 *
1186 * Returns: the value of the property, converted to an unsigned integer, or 0
1187 * an error occurs (including when the property value is not an integer).
1188 */
1189 uint64_t object_property_get_uint(Object *obj, const char *name,
1190 Error **errp);
1191
1192 /**
1193 * object_property_get_enum:
1194 * @obj: the object
1195 * @name: the name of the property
1196 * @typename: the name of the enum data type
1197 * @errp: returns an error if this function fails
1198 *
1199 * Returns: the value of the property, converted to an integer, or
1200 * undefined if an error occurs (including when the property value is not
1201 * an enum).
1202 */
1203 int object_property_get_enum(Object *obj, const char *name,
1204 const char *typename, Error **errp);
1205
1206 /**
1207 * object_property_get_uint16List:
1208 * @obj: the object
1209 * @name: the name of the property
1210 * @list: the returned int list
1211 * @errp: returns an error if this function fails
1212 *
1213 * Returns: the value of the property, converted to integers, or
1214 * undefined if an error occurs (including when the property value is not
1215 * an list of integers).
1216 */
1217 void object_property_get_uint16List(Object *obj, const char *name,
1218 uint16List **list, Error **errp);
1219
1220 /**
1221 * object_property_set:
1222 * @obj: the object
1223 * @v: the visitor that will be used to write the property value. This should
1224 * be an Input visitor and the data will be first read with @name as the
1225 * name and then written as the property value.
1226 * @name: the name of the property
1227 * @errp: returns an error if this function fails
1228 *
1229 * Writes a property to a object.
1230 */
1231 void object_property_set(Object *obj, Visitor *v, const char *name,
1232 Error **errp);
1233
1234 /**
1235 * object_property_parse:
1236 * @obj: the object
1237 * @string: the string that will be used to parse the property value.
1238 * @name: the name of the property
1239 * @errp: returns an error if this function fails
1240 *
1241 * Parses a string and writes the result into a property of an object.
1242 */
1243 void object_property_parse(Object *obj, const char *string,
1244 const char *name, Error **errp);
1245
1246 /**
1247 * object_property_print:
1248 * @obj: the object
1249 * @name: the name of the property
1250 * @human: if true, print for human consumption
1251 * @errp: returns an error if this function fails
1252 *
1253 * Returns a string representation of the value of the property. The
1254 * caller shall free the string.
1255 */
1256 char *object_property_print(Object *obj, const char *name, bool human,
1257 Error **errp);
1258
1259 /**
1260 * object_property_get_type:
1261 * @obj: the object
1262 * @name: the name of the property
1263 * @errp: returns an error if this function fails
1264 *
1265 * Returns: The type name of the property.
1266 */
1267 const char *object_property_get_type(Object *obj, const char *name,
1268 Error **errp);
1269
1270 /**
1271 * object_get_root:
1272 *
1273 * Returns: the root object of the composition tree
1274 */
1275 Object *object_get_root(void);
1276
1277
1278 /**
1279 * object_get_objects_root:
1280 *
1281 * Get the container object that holds user created
1282 * object instances. This is the object at path
1283 * "/objects"
1284 *
1285 * Returns: the user object container
1286 */
1287 Object *object_get_objects_root(void);
1288
1289 /**
1290 * object_get_internal_root:
1291 *
1292 * Get the container object that holds internally used object
1293 * instances. Any object which is put into this container must not be
1294 * user visible, and it will not be exposed in the QOM tree.
1295 *
1296 * Returns: the internal object container
1297 */
1298 Object *object_get_internal_root(void);
1299
1300 /**
1301 * object_get_canonical_path_component:
1302 *
1303 * Returns: The final component in the object's canonical path. The canonical
1304 * path is the path within the composition tree starting from the root.
1305 */
1306 gchar *object_get_canonical_path_component(Object *obj);
1307
1308 /**
1309 * object_get_canonical_path:
1310 *
1311 * Returns: The canonical path for a object. This is the path within the
1312 * composition tree starting from the root.
1313 */
1314 gchar *object_get_canonical_path(Object *obj);
1315
1316 /**
1317 * object_resolve_path:
1318 * @path: the path to resolve
1319 * @ambiguous: returns true if the path resolution failed because of an
1320 * ambiguous match
1321 *
1322 * There are two types of supported paths--absolute paths and partial paths.
1323 *
1324 * Absolute paths are derived from the root object and can follow child<> or
1325 * link<> properties. Since they can follow link<> properties, they can be
1326 * arbitrarily long. Absolute paths look like absolute filenames and are
1327 * prefixed with a leading slash.
1328 *
1329 * Partial paths look like relative filenames. They do not begin with a
1330 * prefix. The matching rules for partial paths are subtle but designed to make
1331 * specifying objects easy. At each level of the composition tree, the partial
1332 * path is matched as an absolute path. The first match is not returned. At
1333 * least two matches are searched for. A successful result is only returned if
1334 * only one match is found. If more than one match is found, a flag is
1335 * returned to indicate that the match was ambiguous.
1336 *
1337 * Returns: The matched object or NULL on path lookup failure.
1338 */
1339 Object *object_resolve_path(const char *path, bool *ambiguous);
1340
1341 /**
1342 * object_resolve_path_type:
1343 * @path: the path to resolve
1344 * @typename: the type to look for.
1345 * @ambiguous: returns true if the path resolution failed because of an
1346 * ambiguous match
1347 *
1348 * This is similar to object_resolve_path. However, when looking for a
1349 * partial path only matches that implement the given type are considered.
1350 * This restricts the search and avoids spuriously flagging matches as
1351 * ambiguous.
1352 *
1353 * For both partial and absolute paths, the return value goes through
1354 * a dynamic cast to @typename. This is important if either the link,
1355 * or the typename itself are of interface types.
1356 *
1357 * Returns: The matched object or NULL on path lookup failure.
1358 */
1359 Object *object_resolve_path_type(const char *path, const char *typename,
1360 bool *ambiguous);
1361
1362 /**
1363 * object_resolve_path_component:
1364 * @parent: the object in which to resolve the path
1365 * @part: the component to resolve.
1366 *
1367 * This is similar to object_resolve_path with an absolute path, but it
1368 * only resolves one element (@part) and takes the others from @parent.
1369 *
1370 * Returns: The resolved object or NULL on path lookup failure.
1371 */
1372 Object *object_resolve_path_component(Object *parent, const gchar *part);
1373
1374 /**
1375 * object_property_add_child:
1376 * @obj: the object to add a property to
1377 * @name: the name of the property
1378 * @child: the child object
1379 * @errp: if an error occurs, a pointer to an area to store the area
1380 *
1381 * Child properties form the composition tree. All objects need to be a child
1382 * of another object. Objects can only be a child of one object.
1383 *
1384 * There is no way for a child to determine what its parent is. It is not
1385 * a bidirectional relationship. This is by design.
1386 *
1387 * The value of a child property as a C string will be the child object's
1388 * canonical path. It can be retrieved using object_property_get_str().
1389 * The child object itself can be retrieved using object_property_get_link().
1390 */
1391 void object_property_add_child(Object *obj, const char *name,
1392 Object *child, Error **errp);
1393
1394 typedef enum {
1395 /* Unref the link pointer when the property is deleted */
1396 OBJ_PROP_LINK_UNREF_ON_RELEASE = 0x1,
1397 } ObjectPropertyLinkFlags;
1398
1399 /**
1400 * object_property_allow_set_link:
1401 *
1402 * The default implementation of the object_property_add_link() check()
1403 * callback function. It allows the link property to be set and never returns
1404 * an error.
1405 */
1406 void object_property_allow_set_link(const Object *, const char *,
1407 Object *, Error **);
1408
1409 /**
1410 * object_property_add_link:
1411 * @obj: the object to add a property to
1412 * @name: the name of the property
1413 * @type: the qobj type of the link
1414 * @child: a pointer to where the link object reference is stored
1415 * @check: callback to veto setting or NULL if the property is read-only
1416 * @flags: additional options for the link
1417 * @errp: if an error occurs, a pointer to an area to store the area
1418 *
1419 * Links establish relationships between objects. Links are unidirectional
1420 * although two links can be combined to form a bidirectional relationship
1421 * between objects.
1422 *
1423 * Links form the graph in the object model.
1424 *
1425 * The <code>@check()</code> callback is invoked when
1426 * object_property_set_link() is called and can raise an error to prevent the
1427 * link being set. If <code>@check</code> is NULL, the property is read-only
1428 * and cannot be set.
1429 *
1430 * Ownership of the pointer that @child points to is transferred to the
1431 * link property. The reference count for <code>*@child</code> is
1432 * managed by the property from after the function returns till the
1433 * property is deleted with object_property_del(). If the
1434 * <code>@flags</code> <code>OBJ_PROP_LINK_UNREF_ON_RELEASE</code> bit is set,
1435 * the reference count is decremented when the property is deleted.
1436 */
1437 void object_property_add_link(Object *obj, const char *name,
1438 const char *type, Object **child,
1439 void (*check)(const Object *obj, const char *name,
1440 Object *val, Error **errp),
1441 ObjectPropertyLinkFlags flags,
1442 Error **errp);
1443
1444 /**
1445 * object_property_add_str:
1446 * @obj: the object to add a property to
1447 * @name: the name of the property
1448 * @get: the getter or NULL if the property is write-only. This function must
1449 * return a string to be freed by g_free().
1450 * @set: the setter or NULL if the property is read-only
1451 * @errp: if an error occurs, a pointer to an area to store the error
1452 *
1453 * Add a string property using getters/setters. This function will add a
1454 * property of type 'string'.
1455 */
1456 void object_property_add_str(Object *obj, const char *name,
1457 char *(*get)(Object *, Error **),
1458 void (*set)(Object *, const char *, Error **),
1459 Error **errp);
1460
1461 void object_class_property_add_str(ObjectClass *klass, const char *name,
1462 char *(*get)(Object *, Error **),
1463 void (*set)(Object *, const char *,
1464 Error **),
1465 Error **errp);
1466
1467 /**
1468 * object_property_add_bool:
1469 * @obj: the object to add a property to
1470 * @name: the name of the property
1471 * @get: the getter or NULL if the property is write-only.
1472 * @set: the setter or NULL if the property is read-only
1473 * @errp: if an error occurs, a pointer to an area to store the error
1474 *
1475 * Add a bool property using getters/setters. This function will add a
1476 * property of type 'bool'.
1477 */
1478 void object_property_add_bool(Object *obj, const char *name,
1479 bool (*get)(Object *, Error **),
1480 void (*set)(Object *, bool, Error **),
1481 Error **errp);
1482
1483 void object_class_property_add_bool(ObjectClass *klass, const char *name,
1484 bool (*get)(Object *, Error **),
1485 void (*set)(Object *, bool, Error **),
1486 Error **errp);
1487
1488 /**
1489 * object_property_add_enum:
1490 * @obj: the object to add a property to
1491 * @name: the name of the property
1492 * @typename: the name of the enum data type
1493 * @get: the getter or %NULL if the property is write-only.
1494 * @set: the setter or %NULL if the property is read-only
1495 * @errp: if an error occurs, a pointer to an area to store the error
1496 *
1497 * Add an enum property using getters/setters. This function will add a
1498 * property of type '@typename'.
1499 */
1500 void object_property_add_enum(Object *obj, const char *name,
1501 const char *typename,
1502 const QEnumLookup *lookup,
1503 int (*get)(Object *, Error **),
1504 void (*set)(Object *, int, Error **),
1505 Error **errp);
1506
1507 void object_class_property_add_enum(ObjectClass *klass, const char *name,
1508 const char *typename,
1509 const QEnumLookup *lookup,
1510 int (*get)(Object *, Error **),
1511 void (*set)(Object *, int, Error **),
1512 Error **errp);
1513
1514 /**
1515 * object_property_add_tm:
1516 * @obj: the object to add a property to
1517 * @name: the name of the property
1518 * @get: the getter or NULL if the property is write-only.
1519 * @errp: if an error occurs, a pointer to an area to store the error
1520 *
1521 * Add a read-only struct tm valued property using a getter function.
1522 * This function will add a property of type 'struct tm'.
1523 */
1524 void object_property_add_tm(Object *obj, const char *name,
1525 void (*get)(Object *, struct tm *, Error **),
1526 Error **errp);
1527
1528 void object_class_property_add_tm(ObjectClass *klass, const char *name,
1529 void (*get)(Object *, struct tm *, Error **),
1530 Error **errp);
1531
1532 /**
1533 * object_property_add_uint8_ptr:
1534 * @obj: the object to add a property to
1535 * @name: the name of the property
1536 * @v: pointer to value
1537 * @errp: if an error occurs, a pointer to an area to store the error
1538 *
1539 * Add an integer property in memory. This function will add a
1540 * property of type 'uint8'.
1541 */
1542 void object_property_add_uint8_ptr(Object *obj, const char *name,
1543 const uint8_t *v, Error **errp);
1544 void object_class_property_add_uint8_ptr(ObjectClass *klass, const char *name,
1545 const uint8_t *v, Error **errp);
1546
1547 /**
1548 * object_property_add_uint16_ptr:
1549 * @obj: the object to add a property to
1550 * @name: the name of the property
1551 * @v: pointer to value
1552 * @errp: if an error occurs, a pointer to an area to store the error
1553 *
1554 * Add an integer property in memory. This function will add a
1555 * property of type 'uint16'.
1556 */
1557 void object_property_add_uint16_ptr(Object *obj, const char *name,
1558 const uint16_t *v, Error **errp);
1559 void object_class_property_add_uint16_ptr(ObjectClass *klass, const char *name,
1560 const uint16_t *v, Error **errp);
1561
1562 /**
1563 * object_property_add_uint32_ptr:
1564 * @obj: the object to add a property to
1565 * @name: the name of the property
1566 * @v: pointer to value
1567 * @errp: if an error occurs, a pointer to an area to store the error
1568 *
1569 * Add an integer property in memory. This function will add a
1570 * property of type 'uint32'.
1571 */
1572 void object_property_add_uint32_ptr(Object *obj, const char *name,
1573 const uint32_t *v, Error **errp);
1574 void object_class_property_add_uint32_ptr(ObjectClass *klass, const char *name,
1575 const uint32_t *v, Error **errp);
1576
1577 /**
1578 * object_property_add_uint64_ptr:
1579 * @obj: the object to add a property to
1580 * @name: the name of the property
1581 * @v: pointer to value
1582 * @errp: if an error occurs, a pointer to an area to store the error
1583 *
1584 * Add an integer property in memory. This function will add a
1585 * property of type 'uint64'.
1586 */
1587 void object_property_add_uint64_ptr(Object *obj, const char *name,
1588 const uint64_t *v, Error **Errp);
1589 void object_class_property_add_uint64_ptr(ObjectClass *klass, const char *name,
1590 const uint64_t *v, Error **Errp);
1591
1592 /**
1593 * object_property_add_alias:
1594 * @obj: the object to add a property to
1595 * @name: the name of the property
1596 * @target_obj: the object to forward property access to
1597 * @target_name: the name of the property on the forwarded object
1598 * @errp: if an error occurs, a pointer to an area to store the error
1599 *
1600 * Add an alias for a property on an object. This function will add a property
1601 * of the same type as the forwarded property.
1602 *
1603 * The caller must ensure that <code>@target_obj</code> stays alive as long as
1604 * this property exists. In the case of a child object or an alias on the same
1605 * object this will be the case. For aliases to other objects the caller is
1606 * responsible for taking a reference.
1607 */
1608 void object_property_add_alias(Object *obj, const char *name,
1609 Object *target_obj, const char *target_name,
1610 Error **errp);
1611
1612 /**
1613 * object_property_add_const_link:
1614 * @obj: the object to add a property to
1615 * @name: the name of the property
1616 * @target: the object to be referred by the link
1617 * @errp: if an error occurs, a pointer to an area to store the error
1618 *
1619 * Add an unmodifiable link for a property on an object. This function will
1620 * add a property of type link<TYPE> where TYPE is the type of @target.
1621 *
1622 * The caller must ensure that @target stays alive as long as
1623 * this property exists. In the case @target is a child of @obj,
1624 * this will be the case. Otherwise, the caller is responsible for
1625 * taking a reference.
1626 */
1627 void object_property_add_const_link(Object *obj, const char *name,
1628 Object *target, Error **errp);
1629
1630 /**
1631 * object_property_set_description:
1632 * @obj: the object owning the property
1633 * @name: the name of the property
1634 * @description: the description of the property on the object
1635 * @errp: if an error occurs, a pointer to an area to store the error
1636 *
1637 * Set an object property's description.
1638 *
1639 */
1640 void object_property_set_description(Object *obj, const char *name,
1641 const char *description, Error **errp);
1642 void object_class_property_set_description(ObjectClass *klass, const char *name,
1643 const char *description,
1644 Error **errp);
1645
1646 /**
1647 * object_child_foreach:
1648 * @obj: the object whose children will be navigated
1649 * @fn: the iterator function to be called
1650 * @opaque: an opaque value that will be passed to the iterator
1651 *
1652 * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1653 * non-zero.
1654 *
1655 * It is forbidden to add or remove children from @obj from the @fn
1656 * callback.
1657 *
1658 * Returns: The last value returned by @fn, or 0 if there is no child.
1659 */
1660 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
1661 void *opaque);
1662
1663 /**
1664 * object_child_foreach_recursive:
1665 * @obj: the object whose children will be navigated
1666 * @fn: the iterator function to be called
1667 * @opaque: an opaque value that will be passed to the iterator
1668 *
1669 * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1670 * non-zero. Calls recursively, all child nodes of @obj will also be passed
1671 * all the way down to the leaf nodes of the tree. Depth first ordering.
1672 *
1673 * It is forbidden to add or remove children from @obj (or its
1674 * child nodes) from the @fn callback.
1675 *
1676 * Returns: The last value returned by @fn, or 0 if there is no child.
1677 */
1678 int object_child_foreach_recursive(Object *obj,
1679 int (*fn)(Object *child, void *opaque),
1680 void *opaque);
1681 /**
1682 * container_get:
1683 * @root: root of the #path, e.g., object_get_root()
1684 * @path: path to the container
1685 *
1686 * Return a container object whose path is @path. Create more containers
1687 * along the path if necessary.
1688 *
1689 * Returns: the container object.
1690 */
1691 Object *container_get(Object *root, const char *path);
1692
1693 /**
1694 * object_type_get_instance_size:
1695 * @typename: Name of the Type whose instance_size is required
1696 *
1697 * Returns the instance_size of the given @typename.
1698 */
1699 size_t object_type_get_instance_size(const char *typename);
1700 #endif